Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material
NASA Astrophysics Data System (ADS)
Flandes, Alberto; Albin, Thomas; Arnold, Walter; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Mewes, Cornelia; Podolak, Morris; Seidensticker, Klaus J.; Volkert, Cynthia; Krüger, Harald
2018-03-01
On 12 November 2014, during the descent of the Rosetta lander Philae to the surface of comet 67P/Churyumov-Gerasimenko the Dust Impact Monitor (DIM) on board Philae recorded an impact of a cometary dust impact of a cometary dust particle at 2.4 km from the comet surface (5 km from the nucleus' barycentre). In this work, we report further experiments that support the identification of this particle. We use aerogel as a comet analog material to characterise the properties of this particle. Our experiments show that this particle has a radius of 0.9 mm, a low density of 0.25 g/cm3 and a high porosity close to 90%. The particle likely moved at near 4 m/s with respect to the comet.
The Distribution of Interplanetary Dust Near 1-AU: An MMS Perspective
NASA Astrophysics Data System (ADS)
Adrian, M. L.; St Cyr, O. C.; Wilson, L. B., III; Schiff, C.; Sacks, L. W.; Chai, D. J.; Queen, S. Z.; Sedlak, J. E.
2017-12-01
The distribution of dust in the ecliptic plane in the vicinity of 1-AU has been inferred from impacts on the four Magnetospheric Multiscale (MMS) mission spacecraft as detected by the Acceleration Measurement System (AMS) during periods when no other spacecraft activities are in progress. Consisting of four identically instrumented spacecraft, with an inter-spacecraft separation ranging from 10-km to 400-km, the MMS constellation forms a dust "detector" with approximately four-times the collection area of any previous dust monitoring framework. Here we introduce the MMS-AMS and the inferred dust impact observations, provide a preliminary comparison of the MMS distribution of dust impacts to previously reported interplanetary dust distributions — namely those of the STEREO mission — and report on our initial comparison of the MMS distribution of dust impacts with known meteor showers.
Climate Change Implications and Use of Early Warning Systems for Global Dust Storms
NASA Astrophysics Data System (ADS)
Harriman, L.
2014-12-01
Increased changes in land cover and global climate have led to increased frequency and/or intensity of dust storms in some regions of the world. Early detection and warning of dust storms, in conjunction with effective and widespread information broadcasts, will be essential to the prevention and mitigation of future risks and impacts to people and the environment. Since frequency and intensity of dust storms can vary from region to region, there is a demonstrated need for more research to be conducted over longer periods of time to analyze trends of dust storm events [1]. Dust storms impact their origin area, but also land, water and people a great distance away from where dust finally settles [2, 3]. These transboundary movements and accompanying impacts further warrant the need for global collaboration to help predict the onset, duration and path of a dust storm. Early warning systems can help communicate when a dust storm is occurring, the projected intensity of the dust storm and its anticipated physical impact over a particular geographic area. Development of regional dust storm models, such as CUACE/Dust for East Asia, and monitoring networks, like the Sand and Dust Storm Warning Network operated by the World Meteorological Organization, and the use of remote sensing and satellite imagery derived products [4], including MODIS, are currently being incorporated into early warning and monitoring initiatives. However, to increase future certainty of impacts of dust storms on vulnerable populations and ecosystems, more research is needed to analyze the influences of human activities, seasonal variations and long-term climatic patterns on dust storm generation, movement and impact. Sources: [1] Goudie, A.S. (2009), Dust storms: recent developments, J Environ. Manage., 90. [2] Lee, H., and Liu, C. (2004), Coping with dust storm events: information, impacts, and policymaking in Taiwan, TAO, 15(5). [3] Marx, S.K., McGowan, H.A., and Balz, K.S. (2009), Long-range dust transport from eastern Australia: a proxy for Holocene aridity and ENSO-type climate variability, Earth Planet Sci. Lett., 282. [4] Kimura, R. (2012), Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002, J. Arid Environ. 80
The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny
2006-01-01
Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.
The MAGO experiment for dust environment monitoring on the Martian surface
NASA Astrophysics Data System (ADS)
Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.
2004-01-01
Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.
Quantifying Anthropogenic Dust Emissions
NASA Astrophysics Data System (ADS)
Webb, Nicholas P.; Pierre, Caroline
2018-02-01
Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.
Do we detect interplanetary dust with Faraday cups?
NASA Astrophysics Data System (ADS)
Kočiščák, S.; Pavlů, J.; Šafránková, J.; Němeček, Z.; Přech, L.
2018-07-01
Transient clouds of a plasma generated by hypervelocity dust particles impacting onto the spacecraft were observed in-situ by many experiments over the last 20 years. The reported observations analyze sensitive measurements of plasma waves that are transmitted to the Earth with a sufficient time resolution. The detection is based on a fact that hypervelocity impacts generate plumes of the ionized gas expanding into a space. The present paper analyzes five years of the operation of the Bright Monitor of the Solar Wind (BMSW) onboard the Spektr-R spacecraft with a motivation to demonstrate that such type of the instruments is capable to observe the dust impacts into its detectors. The results of analysis are compared with Wind electric field measurements used for a detection of hypervelocity dust impacts.
NASA Astrophysics Data System (ADS)
Purwanta, J.; Marnoto, T.; Setyono, P.; Ramelan, A. H.
2018-03-01
The cement plant impacts on the lives of people around the factory site, one of them on the air quality, especially dust. Cement plant has made various efforts to mitigate dust generated, but the reality on the ground is still a lot of dust flying around either of the cement factory chimneys and transportation. The purpose of this study was to find the optimum condition of nozle diameter from the cement dust catcher, for mitigation the dust spread to around the cement plant. This study uses research methods such as collecting secondary data which includes data intensity rainfall, the average long rains, wind speed and direction as well as data quality monitoring dust around PT. Semen Gresik (Persero) Tbk. Tuban plant. To determine the wind direction propensity models, use a soft Windrose file. To determine the impact on the spread of dust into the environment using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, namely the tendency of wind direction, rainfall and rainy days, and the rate of dust emission from the chimney. I try for operate the cement dust catcher with variable of nozle diameter. Finally, I find the optimum condition of nozle diameter for cement dust catcher is 1.40 mm, with line equation is y = 149.09.e 1.6237.x and error 5%. In that condition, nozle can make the fog with a good quality and it can catch the cement dust well.
Ground level and Lidar monitoring of volcanic dust and dust from Patagonia
NASA Astrophysics Data System (ADS)
Otero, L. A.; Losno, R.; Salvador, J. O.; Journet, E.; Qu, Z.; Triquet, S.; Monna, F.; Balkanski, Y.; Bulnes, D.; Ristori, P. R.; Quel, E. J.
2013-05-01
A combined approach including ground level aerosol sampling, lidar and sunphotometer measurements is used to monitor suspended particles in the atmosphere at several sites in Patagonia. Motivated by the Puyehue volcanic eruption in June 2011 two aerosol monitoring stations with several passive and active instruments were installed in Bariloche and Comodoro Rivadavia. The main goal which is to monitor ground lifted and transported ashes and dust involving danger to civil aviation, is achieved by measuring continuously aerosol concentration at ground level and aerosol vertical distribution using lidar. In addition, starting from December 2011, continuous series of weekly accumulated aerosol concentrations at Rio Gallegos are being measured to study the impact of Patagonian dust over the open ocean on phytoplankton primary productivity and CO2 removal. These measurements are going to be coupled with LIDAR monitoring and a dust optical response models to test if aerosol extrapolation can be done from the ground to the top of the layer. Laboratory chemical analysis of the aerosols will include elemental composition, solubilisation kinetic and mineralogical determination. Expected deliverables for this study is the estimation of the amount of dust exported from Patagonia towards the South Atlantic, its chemical properties, including bioavailability simulation, from model and comparison to experimental measurements.
Dust storms and their impact on ocean and human health: dust in Earth's atmosphere
Griffin, Dale W.; Kellog, Christina A.
2004-01-01
Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.
Development of Mercury dust monitor (MDM) using piezo-electric sensor on boad BepiColombo spacecraft
NASA Astrophysics Data System (ADS)
Nogami, K.; Mercury Dust Team
BepiColombo spacecraft K.Nogami(1), S.Sasaki(2), T.Miyachi(3), H.Ohashi(4), M.Fujii(5), H.Shibata(6), T.Iwai(7), A.Fujiwara(8), H.Yano(8), S.Minami(9), S.Takechi(9), T.Ohnishi(9), R.Srama(10) and E.Grün(10) (1) Dokkyo Medical Univ., Japan, (2) National Astronomical Observatory of Japan, Japan, (3) Waseda Univ., Japan, (4) Tokyo Univ. Marine Science and Technology, Japan, (5) FAM Science Co. Ltd., Japan, (6) Kyoto Univ., Japan, (7) Univ. of Tokyo, Japan, (8) ISAS, JAXA, Japan, (9) Osaka City University, Japan, (10) Max Planck Institute for Nuclear Physics, Germany (nogami@dokkyomed.ac.jp / +81-282-87-2116 ) BepiColombo" project is the first large-sized Europe-Japan joint mission to provide the best understanding of Mercury to date. It consists of two individual orbiters: the Mercury Planetary Orbiter (MPO), that will map the planet, and the Mercury Magnetospheric Orbiter (MMO), that will investigate its magnetosphere. It will be launched in 2013. We will have a chance to put the dust monitor (MDM) on the MMO. This project is intended to reveal the dust environment near Mercury. The scientific interests are to investigate the flux and the variations of interplanetary meteoroid complex inside 1 AU. The Mercury dust monitor is a light-weight, heat resistant (˜300°C) piezoelectric ceramic (PZT) which will be installed on the side panel of the BepiColombo MMO spacecraft. Solar radiation near Mercury is ten times greater than near Earth, but the PZT sensor will endure this severe condition. The momentum, crude incoming direction and impact velocity of the cosmic dusts, with masses > 10-15 g are derived from the impact signal from the monitor. This dust monitor is composed of 4 flat PZT plate, 5cm x 5cm and 1mm thick each, and total sensitive area is almost 100 cm2 . The impact signals are processed by a digital circuit with about several 10 MHz A/D converters. From the rise time of the signals, we can know rough speed of the impact particles and also can separate the real impact signals from the noises. The weight of this PZT monitor is about 0.2 kg, and the weight of this circuit, include box and connector is about 0.4 kg and nominal power is less than 3W. Total weight of MDM system will be less than 0.6 kg. The calibration experiments of this system are made using Van de Graaff microparticle accelerators at HIT, Univ. of Tokyo in Japan ( silver or carbon particles, max speed ˜ 10 km/s ), and at MPI-K in Germany ( carbon, iron and silver particles, max speed ˜ 70 km/s ).
Using albedo to reform wind erosion modelling, mapping and monitoring
USDA-ARS?s Scientific Manuscript database
Dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. We describe a need in aeolian research to adequately represent the spatial variability and particularly the area average of the key aerodynami...
Using shadow to reformulate wind erosion modelling, mapping and monitoring
USDA-ARS?s Scientific Manuscript database
Wind erosion and dust emission models are required to assess the impacts of dust in the Earth system. We describe a need in aeolian research to adequately represent the spatial variability and particularly the area average of the key aerodynamic properties which influence these models and our unders...
NASA Astrophysics Data System (ADS)
Webb, N.; Chappell, A.; Van Zee, J.; Toledo, D.; Duniway, M.; Billings, B.; Tedela, N.
2017-12-01
Anthropogenic land use and land cover change (LULCC) influence global rates of wind erosion and dust emission, yet our understanding of the magnitude of the responses remains poor. Field measurements and monitoring provide essential data to resolve aeolian sediment transport patterns and assess the impacts of human land use and management intensity. Data collected in the field are also required for dust model calibration and testing, as models have become the primary tool for assessing LULCC-dust cycle interactions. However, there is considerable uncertainty in estimates of dust emission due to the spatial variability of sediment transport. Field sampling designs are currently rudimentary and considerable opportunities are available to reduce the uncertainty. Establishing the minimum detectable change is critical for measuring spatial and temporal patterns of sediment transport, detecting potential impacts of LULCC and land management, and for quantifying the uncertainty of dust model estimates. Here, we evaluate the effectiveness of common sampling designs (e.g., simple random sampling, systematic sampling) used to measure and monitor aeolian sediment transport rates. Using data from the US National Wind Erosion Research Network across diverse rangeland and cropland cover types, we demonstrate how only large changes in sediment mass flux (of the order 200% to 800%) can be detected when small sample sizes are used, crude sampling designs are implemented, or when the spatial variation is large. We then show how statistical rigour and the straightforward application of a sampling design can reduce the uncertainty and detect change in sediment transport over time and between land use and land cover types.
Study on the alternative mitigation of cement dust spread by capturing the dust with fogging method
NASA Astrophysics Data System (ADS)
Purwanta, Jaka; Marnoto, Tjukup; Setyono, Prabang; Handono Ramelan, Ari
2017-12-01
The existence of a cement plant impact the lives of people around the factory site. For example the air quality, which is polluted by dust. Cement plant has made various efforts to mitigate the generated dust, but there are still alot of dust fly inground either from the cement factory chimneys or transportation. The purpose of this study was to conduct a review of alternative mitigation of the spread of dust around the cement plant. This study uses research methods such as collecting secondary data which includes data of rain density, the average rains duration, wind speed and direction as well as data of dust intensity quality around PT. Semen Gresik (Persero) Tbk.Tuban plant. A soft Wind rose file is used To determine the wind direction propensity models. The impact on the spread of dust into the environment is determined using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, such as the tendency of wind direction, rain fall and rainy days, and the rate of dust emission from the chimney. The alternative means proposed is an environmental friendly fogging dust catcher.
NASA Astrophysics Data System (ADS)
Chao, H. Jasmine; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Chuang, Ying-Chih; Chiu, Yueh-Hsiu; Hsu, Hsiao-Hsien; Wu, Yi-Hua
2012-03-01
This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus ( A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted ( p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.
NASA Astrophysics Data System (ADS)
Lederer, S. M.; Osip, D. J.; Thomas-Osip, J. E.; DeBuizer, J. M.; Mondragon, L. A.; Schweiger, D. L.; Viehweg, J.; SB Collaboration
2005-08-01
An extensive observing campaign to monitor Comet 9P/Tempel 1 will be conducted from 20 June to 19 July, 2005 at Las Campanas Observatory, Chile. These observations will precede and follow the impact of the Deep Impact projectile, which is likely to create a crater on the nucleus that will act as a fresh active area on the surface of the comet. Discreet nucleus active areas, believed to be the source of coma gas and dust jets, will likely result in changing morphology in the coma. We present the initial results of the wide-field narrowband visible imaging of the comet. Data will be taken with the 2.5m DuPont telescope from 27 June - 9 July, following the comet from 4 rotations prior to impact, to 4 rotations after impact using the narrowband Hale-Bopp filters, including CN, C2, and two continuum filters. These data will allow an accurate determination of the rotation state of the embedded nucleus immediately preceding the impact event as well as a measure of any changes to the rotation state due to the impact. In addition, modeling of these data will provide the total dust and gas production rates from the unaltered nucleus compared to the enhanced dust and gas emission from the newly created active region and freely sublimating pieces of mantle material ejected into the coma by the impactor. We will monitor temporal changes (on hours and days time-scales) in the morphology of both the gas and refractory components. We will use coma morphology studies to estimate the dust and gas outflow velocities and infer the presence of discreet nucleus source regions (pre- and post-impact). Of particular interest is the study of the gas-to-dust ratio and the ratio of the minor carbon species emitted from the newly created active region relative to the pre-impact coma environment.
Calipso recordings and monitoring dust storms over the open seas in south of the iran plateau
NASA Astrophysics Data System (ADS)
Khalesifard, Hamid R.; Bayat, Farizeh
2018-04-01
Open seas in the south of the Iran plateau are under the influence of heavy dust storms which are originating either from the Tigris and Euphrates basin, the Arabian Peninsula or Hamoun lake. We have used the recordings of the CALIPSO satellite to investigate the seasonal variations as well as the origins of the dust storms over the region. CALIPSO data set shows dust activities are frequent during May to September in the interested region and the Hamoun lake has considerable impacts on it.
Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2
NASA Astrophysics Data System (ADS)
Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki
2010-05-01
The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. We can deduce the mass and velocity information of the impacted dust particle from the recorded signal waveforms generated by the impacts of dust particles. Dust particles around the Moon are classified based on their origins: interstellar dust, interplanetary dust, beta meteoroids, and possibly dust that originated on the Moon. They can be inferred from their kinematic properties: the velocities and the arrival directions. If the proportion of dust components around the Moon is determined by observation, we can increase our knowledge of the contribution of inflow and outflow dust particles to lunar surface materials. References: [1] Matsumoto, K. et al., Joint Annual Meeting of LEAG-ICEUM-SRR (2008) LPI Contribution No.1446, 86. [2] Iglseder H. et al., Adv. Space Res. 17 (1996) 177-182. [3] Sasaki S., et al., Adv. Space Res., 39 (2007), 485-488. [4] Horanyi, M. et al., (2009) LPSC 40th, Abstract #1741.
NASA Astrophysics Data System (ADS)
Karagulian, F.; Ghebreyesus, D. T.; Weston, M.; Krishnan, V.; Temimi, M.; Al Hammadi, F.; Al Abdooli, A.
2017-12-01
A strong dust event occurred over the Arabian Peninsula from 1 to 3 April 2015. The event impacted the United Arab Emirates (UAE) on 2 April 2015 in the form of a dust storm. The origin and synopsis of the event is investigated in this study together with its impact on Air Quality in the UAE. The Weather Research Forecasting model coupled with chemistry (WRF-Chem) was run for the dates of the dust event. Outputs of the model were assessed against ground measurements of Particulate Matter (PM10) from monitoring stations in the United Arab Emirates (UAE), meteorological data, and the Aerosol Optical Depth from the new 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS Terra and Aqua at 0.55 mm. Data from the geo-stationary satellite MSG SEVIRI was used to track the extent and the trajectory of the dust event across the Arabian Peninsula. This was supported by HYSPLIT back trajectory analysis simulated on hourly basis. The modeled results favorably agreed with ground observations of meteorological parameters at several monitoring stations in the UAE. On 2 and 3 April 2015, measurements and WRF-Chem simulations over the UAE showed northwest wind blowing within the range of 11-14 m s-1. Average surface temperature decreased from 33 to 26 ºC and the average radiance dropped by 50% during the peak time of the dust event with consequent reduction of the observed visibility down to 200 m in some UAE's cities. At local level, comparisons between modeled and estimated PM10 concentrations from monitoring stations and satellite data were somewhat biased by the saturated values recorded during the peak time of the dust event on 2 April 2015 with modeled lower limit average PM10 concentrations of 432 mg/m3 that were 25% lower than the ones from monitoring stations. On regional scale, the WRF-Chem model was able to estimate an upper limit values of PM10 concentrations during the dust event.
Emerging ecological datasets with application for modeling North American dust emissions
NASA Astrophysics Data System (ADS)
McCord, S.; Stauffer, N. G.; Garman, S.; Webb, N.
2017-12-01
In 2011 the US Bureau of Land Management (BLM) established the Assessment, Inventory and Monitoring (AIM) program to monitor the condition of BLM land and to provide data to support evidence-based management of multi-use public lands. The monitoring program shares core data collection methods with the Natural Resources Conservation Service's (NRCS) National Resources Inventory (NRI), implemented on private lands nationally. Combined, the two programs have sampled >30,000 locations since 2003 to provide vegetation composition, vegetation canopy height, the size distribution of inter-canopy gaps, soil texture and crusting information on rangelands and pasture lands across North America. The BLM implements AIM on more than 247.3 million acres of land across the western US, encompassing major dust source regions of the Chihuahuan, Sonoran, Mojave and Great Basin deserts, the Colorado Plateau, and potential high-latitude dust sources in Alaska. The AIM data are publicly available and can be used to support modeling of land surface and boundary-layer processes, including dust emission. While understanding US dust source regions and emission processes has been of national interest since the 1930s Dust Bowl, most attention has been directed to the croplands of the Great Plains and emission hot spots like Owens Lake, California. The magnitude, spatial extent and temporal dynamics of dust emissions from western dust source areas remain highly uncertain. Here, we use ensemble modeling with empirical and physically-based dust emission schemes applied to AIM monitoring data to assess regional-scale patterns of aeolian sediment mass fluxes and dust emissions. The analysis enables connections to be made between dust emission rates at source and other indicators of ecosystem function at the landscape scale. Emerging ecological datasets like AIM provide new opportunities to evaluate aeolian sediment transport responses to land surface conditions, potential interactions with disturbances (e.g., fire) and ecological change (e.g., invasive species), and the impacts of anthropogenic land use and land cover change.
Desert Dust Properties, Modelling, and Monitoring
NASA Technical Reports Server (NTRS)
Kaskaoutis, Dimitris G.; Kahn, Ralph A.; Gupta, Pawan; Jayaraman, Achuthan; Bartzokas, Aristides
2013-01-01
This paper is just the three-page introduction to a Special Issue of Advances in Meteorology focusing on desert dust. It provides a paragraph each on 13 accepted papers, most relating to the used of satellite data to assess attributes or distribution of airborne desert dust. As guest Associate Editors of this issue, we organized the papers into a systematic whole, beginning with large-scale transport and seasonal behavior, then to regional dust transport, transport history, and climate impacts, first in the Mediterranean region, then India and central Asia, and finally focusing on transport model assessment and the use of lidar as a technique to constrain dust spatial-temporal distribution.
Dust storms and the risk of asthma admissions to hospitals in Kuwait.
Thalib, Lukman; Al-Taiar, Abdullah
2012-09-01
Arid areas in the Arabian Peninsula are one of the largest sources of global dust, yet there is no data on the impact of this on human health. This study aimed to investigate the impact of dust storms on hospital admissions due to asthma and all respiratory diseases over a period of 5 years in Kuwait. A population-based retrospective time series study of daily emergency asthma admissions and admissions due to respiratory causes in public hospitals in Kuwait was analyzed in relation to dust storm events. Dust storm days were defined as the mean daily PM(10)>200 μg/m(3) based on measurements obtained from all six monitoring sites in the country. During the five-year study period, 569 (33.6%) days had dust storm events and they were significantly associated with an increased risk of same-day asthma and respiratory admission, adjusted relative risk of 1.07 (95% CI: 1.02-1.12) and 1.06 (95% CI: 1.04-1.08), respectively. This was particularly evident among children. Dust storms have a significant impact on respiratory and asthma admissions. Evidence is more convincing and robust compared to that from other geographical settings which highlights the importance of public health measures to protect people's health during dust storms and reduce the burden on health services due to dust events. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Orger, N. C.; Toyoda, K.; Cho, M.
2017-12-01
Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.
Helmet-Cam: tool for assessing miners’ respirable dust exposure
Cecala, A.B.; Reed, W.R.; Joy, G.J.; Westmoreland, S.C.; O’Brien, A.D.
2015-01-01
Video technology coupled with datalogging exposure monitors have been used to evaluate worker exposure to different types of contaminants. However, previous application of this technology used a stationary video camera to record the worker’s activity while the worker wore some type of contaminant monitor. These techniques are not applicable to mobile workers in the mining industry because of their need to move around the operation while performing their duties. The Helmet-Cam is a recently developed exposure assessment tool that integrates a person-wearable video recorder with a datalogging dust monitor. These are worn by the miner in a backpack, safety belt or safety vest to identify areas or job tasks of elevated exposure. After a miner performs his or her job while wearing the unit, the video and dust exposure data files are downloaded to a computer and then merged together through a NIOSH-developed computer software program called Enhanced Video Analysis of Dust Exposure (EVADE). By providing synchronized playback of the merged video footage and dust exposure data, the EVADE software allows for the assessment and identification of key work areas and processes, as well as work tasks that significantly impact a worker’s personal respirable dust exposure. The Helmet-Cam technology has been tested at a number of metal/nonmetal mining operations and has proven to be a valuable assessment tool. Mining companies wishing to use this technique can purchase a commercially available video camera and an instantaneous dust monitor to obtain the necessary data, and the NIOSH-developed EVADE software will be available for download at no cost on the NIOSH website. PMID:26380529
Detecting and tracking dust outbreaks by using high temporal resolution satellite data
NASA Astrophysics Data System (ADS)
Sannazzaro, Filomena; Marchese, Francesco; Filizzola, Carolina; Tramutoli, Valerio; Pergola, Nicola; Mazzeo, Giuseppe; Paciello, Rossana
2013-04-01
A dust storm is a meteorological phenomenon generated by the action of wind, mainly in arid and semi-arid regions of the planet, particularly at subtropical latitudes. Dust outbreaks, of which frequency increases from year to year concurrently with climate change and reduction of moisture in the soil, may strongly impact on human activity as well as on environment and climate. Efficient early warning systems are then required to monitor them and to mitigate their effects. Satellite remote sensing thanks to a global coverage, to a high frequency of observation and low costs of data represents an important tool for studying and monitoring dust outbreaks. Several techniques have been then proposed to detect and monitor these phenomena from space, analyzing signal in different bands of the electromagnetic spectrum. In particular, methods based on the reverse absorption behaviour of silicate particles in comparison with ice crystals and water droplets, at 11 and 12 micron wavelengths, have been largely employed for detecting dust, although some important issues both in terms of reliability and sensitivity still remain. In this work, an optimized configuration of an innovative algorithm for dust detection, based on the largely accepted Robust Satellite Techniques (RST) multi-temporal approach, is then presented. This optimized algorithm configuration is tested here on Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, analyzing some important dust events affecting Mediterranean basin in recent years. Results of this study, assessed on the basis of independent satellite-based aerosol products, generated by using the Total Ozone Mapping Spectrometer (TOMS), the Ozone Monitoring Instrument (OMI), and the Moderate Resolution Imaging Spectroradiometer (MODIS) data, show that when the spectral resolution of SEVIRI is properly exploited dust and meteorological clouds may be better discriminated. These results encourage further experimentations of the proposed algorithm in view of a possible future implementation in operational monitoring systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. This extension gives... Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. In response...
Asian dust events of April 1998
Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.
2001-01-01
On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative analysis for improved air quality and disaster management. Copyright 2001 by the American Geophysical Union.
Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia
NASA Astrophysics Data System (ADS)
DONG, X.; Fu, J. S.; Huang, K.
2014-12-01
Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010, Atmospheric Chemistry and Physics, 12, 7591-7607.
Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
Thorpe, Andrew; Walsh, Peter T
2013-08-01
Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.
NASA Astrophysics Data System (ADS)
Sannazzaro, Filomena; Filizzola, Carolina; Marchese, Francesco; Corrado, Rosita; Paciello, Rossana; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio
2014-01-01
Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used. In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.
Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis
NASA Astrophysics Data System (ADS)
Taghavi, Farahnaz
In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.
Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Wang, S. H.; Hsu, N. C.
2011-01-01
Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust particles enhances the efficiency of fertilization for biological productivity. Compared to the West Pacific, the marine ecosystem in the northern SCS is much more susceptible to the biogeochemical impact of long-range transported Asian dust.
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocker, Anna; Bugiel, Sebastian; Srama, Ralf
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flightmore » mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.« less
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
NASA Astrophysics Data System (ADS)
Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf
2011-09-01
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.
Modeling and observations of dust aerosols during the North American Monsoon
NASA Astrophysics Data System (ADS)
Arellano, A. F.; Raman, A.; Brost, J.; Sorooshian, A.
2016-12-01
Intense dust storms during North American Monsoon (NAM) pose a significant threat to local/regional air quality, economy, and public health. Convection-driven storms (or haboobs) in Arizona and in the southwest US have been given far less attention compared to those in Africa and Middle East. Blowing dusts from these haboobs typically lasts for 3-6 hours and accumulate more than 1000 µg m-3 of PM10 in the atmosphere. However, it is not clear whether haboobs are increasing in intensity and/or frequency in Arizona. Here, we address two science questions: 1) Do haboobs impact the observed trends in aerosol abundance in the NAM region?, 2) What are our current capabilities and limitations in understanding, monitoring, and assessing haboobs and their impacts? For 1), we calculated the trends of enhancements in aerosol optical depth (AOD) from Terra MODIS over dust hotspots in the NAM alley and and surrounding region (dust cluster). Both show similar decreasing trends before the monsoon. However, during the monsoon, a decreasing trend in AOD is more prominent in the dust cluster than in NAM alley. We attribute this to an apparent modulation of dust in the NAM alley by haboobs. Despite increase in rainfall during this period, we infer that the increase in dust sources in the NAM alley obscures the decreasing AOD trend. For 2), we conducted simulations simulations of these haboobs using WRF-Chem with GOCART AFWA scheme at convective resolving scales ( 1 km). Our case study for the 5 July 2011 haboob indicate that the downbursts occurred near Tucson and generated diverging high intensity winds, resulting to cold pools propagating towards Phoenix. We find that WRF-Chem captures the timing of the haboob but severely underestimates the magnitude of dust concentrations that reached as high as 2000 µg m-3 at USEPA Phoenix stations. The impact of the haboob was seen as far as 350 km northwest of Phoenix at an altitude of 2-4 km on 6 July. We find two major limitations in our simulations: 1) lack of dynamic high resolution land cover for prescribing dust sources, and 2) lack of observing system capability especially high temporal resolution, remotely-sensed measurements for monitoring and assessment. Future geostationary missions together with synergistic use of current and future expansion of in-situ measurements can improve these limitations.
Galileo dust data from the jovian system: 2000 to 2003
NASA Astrophysics Data System (ADS)
Krüger, H.; Bindschadler, D.; Dermott, S. F.; Graps, A. L.; Grün, E.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Horányi, M.; Kissel, J.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Moissl, R.; Morfill, G. E.; Polanskey, C.; Roy, M.; Schwehm, G.; Srama, R.
2010-06-01
The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 RJ (jovian radius RJ=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min -1. Surprisingly large impact rates up to 100 min -1 occurred in August/September 2000 when Galileo was far away (≈280RJ) from Jupiter, implying dust ejection rates in excess of 100 kg s -1. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a four-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 RJ jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. Strong electronics degradation of the dust instrument due to the harsh radiation environment of Jupiter led to increased calibration uncertainties of the dust data.
A simplified Suomi NPP VIIRS dust detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan
2017-11-01
Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.
The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.
2014-01-01
On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, dur-ing the government shutdown. The spacecraft impact-ed the lunar surface on April 18, 2014, following a completely successful mission. LADEE's science objectives were twofold: (1) De-termine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for parti-cles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exo-spheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) ac-quired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wave-length range. UVS also performed dust extinction measurements via a separate solar viewer optic. The following are preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longi-tudes. (4) The sodium abundance varies with both lu-nar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization process-es. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent "shroud" of small dust particles between 0.7 and sev-eral micrometers in size, present over the pre-dawn and morning sector of the Moon. This tenuous dust exosphere, with densities of approximately 10(exp -5) m(exp -3), appears to be sustained by the ejecta of micrometeoroid impacts.
NASA Astrophysics Data System (ADS)
Walsh, P. T.; Forth, A. R.; Clark, R. D. R.; Dowker, K. P.; Thorpe, A.
2009-02-01
Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.
NASA Astrophysics Data System (ADS)
Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen
2017-06-01
The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.
NASA Astrophysics Data System (ADS)
Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.
2004-03-01
The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.
NASA Astrophysics Data System (ADS)
Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco
2015-04-01
Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a sampling head, allows the sampling of Martian atmosphere with embedded dust. The captured dust grains are detected by an Optical System and then ejected into the atmosphere. MicroMED is a miniaturization of the instrument MEDUSA, developed for the Humboldt payload of the ExoMars mission. An Elegant Breadboard has been developed and tested and successfully demonstrates the instrument performances. The design and performance test results will be discussed.
30 CFR 74.11 - Tests of the continuous personal dust monitor.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of the continuous personal dust monitor. 74.11 Section 74.11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Requirements for Continuous Personal Dust Monitors § 74.11 Tests of the continuous personal...
30 CFR 74.11 - Tests of the continuous personal dust monitor.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of the continuous personal dust monitor. 74.11 Section 74.11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Requirements for Continuous Personal Dust Monitors § 74.11 Tests of the continuous personal...
The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen
2007-01-01
The Earth s moon presents a hostile environment in which to live and work. There is no atmosphere to protect its surface from the ravages of solar wind and micrometeorite impacts. As a result, the moon s surface is covered with a thin layer of fine, charged, reactive dust capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. During the Apollo missions, lunar dusts were introduced into the crew vehicle, resulting in direct exposure and occasional reports of respiratory, dermal and ocular irritation. In order to study the toxicological effects of lunar dust, NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG). This interdisciplinary group is comprised of leading experts in space toxicology, lunar geology, space medicine and biomedical research. LADTAG has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. These dusts have highly reactive surfaces in the lunar environment; the grains contain surface coatings which are generated by vapor phases formed by hypervelocity impact of micrometeorites. This unique class of dusts has surface properties that are unlike any Earth based analog. These distinctive properties are why lunar dusts are of great toxicological interest. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar dust exposure and produce a lunar health standard. LADTAG s analysis of lunar dusts and lunar dust simulants will include detailed lunar particle characterizations, determining the properties of particle activation, reactivation of lunar dust, the process of dust passivation and discerning the pathology of lunar dust exposure via inhalation, intratracheal instillation, cell culture exposure, dermal exposure and ocular exposure. The resulting health standard will be time-based and will vary by the duration and type of exposure. It may also be necessary to set multiple standards for different types of lunar dust, as well as for dust in its activated form vs. aged & passivated dust. This standard, set to protect the health of our robust astronaut crews, will not only impact NASA medical operations, but engineering designs as well. The data from our multidisciplinary research are vital in developing remediation devices and environmental monitors. Ultimately, the engineering and safety groups will design and develop countermeasures for space vehicles, suits, rovers and habitats that will be sustained within the limits of the health standard.
Slope Streaks on a Dusty Planet
2015-05-06
Mars is a dusty place and in some locations thick blankets of its characteristically red dust can slowly settle out of the atmosphere and accumulate on slopes. This dust is also a lot brighter than the dust-free terrain on Mars; so, if you scrape off the dust, you'll see a darker surface underneath. This particular image shows one of these dusty areas. The dark streaks on the slopes are locations where the dust has slumped downhill revealing a less dusty surface underneath. In some cases, these slope streaks might be triggered by Marsquakes or nearby meteorite impacts. Scientists think they form quickly: more like an avalanche than dust slowly creeping downhill. Look more closely and you'll notice that some streaks are darker than others. Dust is settling out of the atmosphere all the time and these dark streaks get slowly buried by fresh dust so that they fade back into their brighter redder surroundings. It's not certain how long this fading takes to happen, but it's probably close to a few decades. Dust is an important player in the weather and climate on Mars. Images like this are used to monitor slow changes in these streaks over time to better understand how much dust is settling on the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19456
Asian Dust Storm Outbreaks: A Satellite-Surface Perspective
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2006-01-01
Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.
2008-10-01
Chow, J.C. (2006). Feasibility of soil dust source apportionment by the pyrolysis-gas chromatography/mass spectrometry method. J. Air Waste Manage...receptor-oriented source apportionment models. • Develop monitoring methods to determine source and fence line amounts of fugitive dust emissions for...offsite impact, including evaluation with receptor- oriented source apportionment models 76 8.8.1 Background 76 8.8.2 Significance 77 8.8.3
Monitoring An Intensive Dust Event over Northern China Using Multi-satellite Observation
NASA Astrophysics Data System (ADS)
She, L.; Xue, Y.; Guang, J.; Mei, L.; Che, Y.; Fan, C.; Xie, Y.
2017-12-01
The deserts in western/northern China are one of the major mineral dust source regions of the world. Large amount of dust are emitted and blown east and southeast, especially in spring. An intensive dust event occurred over Northern China during May 3 - 8, 2017. The dust storms came from deserts in China and Mongolia. Due to the long-distance transport, more than ten provinces were affected by this dust event, several provinces occurred strong dust storm. In this study, multi-satellite data were employed to analyse the spatial-temporal evolution and dynamic transport behaviour of the dust plume, especially the geostationary satellite data - Himawari8 Advanced Himawari Imager (AHI) data. AHI data was used to estimate hourly Aerosol Optical Depth (AOD) to monitoring the aerosol distribution as well as the dust plume movements, as the dust storms often characterized by high AOD. A simple dust index was also calculated based on AHI VIS and TIR data to estimate the dust intensity. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data and the Ozone Monitoring Instrument (OMI) Aerosol Index were used as additional data sources to monitor the dust vertical distribution and provide independent information of dust presence. MODIS aerosol product and AERONET aerosol measurements were compared with the AHI retrieved AODs, the comparisons show a good agreement. The dust index was compared with the ground measurements as well as the corresponding RGB image. Simulations from HYSPLIT back-trajectory analysis shows similar temporal variation with the calculated AOD and dust index of the dust plume. Those comparisons with other satellite products and ground measurements suggested both the calculated AOD and dust index well depicted the dust events compared.
NASA Astrophysics Data System (ADS)
Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di
2018-02-01
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.
Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission
NASA Astrophysics Data System (ADS)
Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard
2014-11-01
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.
NASA Astrophysics Data System (ADS)
Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.
2017-03-01
Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.
Issues related to dust aerosols in the magnesite industry. I. Chamber exposure.
Reichrtová, E; Takác, L
1992-01-01
The present paper is an overview of the experimental research into the effects of flue magnesite dust in the magnesite industry in which the raw material (magnesite) is processed into refractory magnesite clinker. The issues related to dust are divided into two problem areas: a) dust aerosol arising in the process of ore mining and consisting largely of magnesite (MgCO3) and b) dust aerosol originating during ore baking in rotatory furnaces and made up mostly of MgO. Thus, larger groups of people become exposed to these aerosols as a result of solid particles escaping into the atmosphere than in the case of occupational exposure. Experimental research carried out on laboratory animals after chamber exposure provided findings on the deposition, retention and elimination of magnesite dust, on impaired balance between magnesium and calcium leading to damage of biological membranes, on how the immune profile or reproduction and embryogenesis is impacted as well as on the possible interaction with sodium salicylate as a result of an impaired acid base balance. These findings are followed up by evidence produced in the course of biological monitoring (Part II).
NASA Technical Reports Server (NTRS)
2007-01-01
Among the many components contributing to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative forcing effect on the weather/climate system. As much as one-third to half of the global dust emissions, estimated about 800 Tg, are introduced annually into Earth's atmosphere from various deserts in China. Asian dust storm outbreaks are believed to have persisted for hundreds and thousands years over the vast territory of north and northwest China, but not until recent decades that many studies reveal the compelling evidence in recognizing the importance of these eolian dust particles for forming Chinese Loess Plateau and for biogeochemical cycling in the North Pacific Ocean to as far as in the Greenland ice-sheets through long-range transport. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites and its evolution monitored by satellite and surface network. In this paper, we will demonstrate the capability of a new satellite algorithm, called Deep Blue, to retrieve aerosol properties, particularly but not limited to, over bright-reflecting surfaces such as urban areas and deserts. Recently, many field campaigns were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. We will provide an overview of the outbreak of Asian dust storms, near source/sink and their evolution along transport pathway, from space and surface observations. The climatic effects and societal impacts of the Asian dusts will be addressed in depth. (to be presented in the International Workshop on Semi-Arid Land Surface-
NASA Astrophysics Data System (ADS)
Della Corte, Vincenzo; Rotundi, Alessandra; Fulle, Marco
2016-07-01
GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument onboard Rosetta monitoring the dust environment of comet 67P/Churyumov-Gerasimenko. GIADA is composed of 3 sub-systems: 1) the Grain Detection System, based on particle detection through light scattering; 2) the Impact Sensor, measuring particle momentum; 3) the Micro-Balances System, constituted of 5 quartz crystal microbalances, providing cumulated dust from different directions. From the combination of the measurements performed by the three subsystems we retrieve: the number, the mass, the momentum, the speed of individual dust particles and the cumulative dust flux emitted from the comet nucleus. We will present the coma dust environment as observed by GIADA during the pre-landing and escort phases of the Rosetta space mission. GIADA was able to detect temporal and spatial variation of dust density distribution and to disentangle different types of impacting dust particles. Specific high dust spatial density sectors of the coma have been identified and their evolution with respect to the heliocentric distance was studied. From August 2014 to December 2015, i.e. inbound, at and outbound perihelion, Rosetta performed different trajectories around the nucleus and flybys with different close approach distances, different coordinates of the sub-spacecraft point and different observing geometry (phase angle), allowed GIADA to characterize the dust environment within the 67P/C-G coma and its temporal variation. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site.
The Impacts of Dust Storm Particles on Human Lung Cells - an Analysis at the Single Cell Level
NASA Astrophysics Data System (ADS)
Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G.
2017-12-01
Aerosols particles (Natural and anthropogenic) are a key component of our atmosphere, their presence defines air quality levels and they can affect our health. Small particles penetrate into our lungs and this exposure can cause our lung cells to stress and in some cases leads to the death of the cells and to inflammation. During dust storm events there is an increase in particle concentration, many of them are breathable particles that can penetrate deep into our lungs. Exposure to dust particles can lead to respiratory problems, particularly for people with asthma. Therefore, during and after a dust storm event the number of people who are hospitalized with inflammation and respiratory problems increase. However, the exact mechanism that causes these health problems is still unclear. In this project, we are investigating the impacts that dust storm particles from different sources and of different concentrations (doses) have on human lung cells, performing a new and unique analysis at the single cell level. To accomplish this, each individual lung cell is continuously tracked after being exposed to dust particles. We monitor the behavior of the cell over time, identify the cells time of death and type of death (e.g. cell explosion). With this analysis, we can quantify cell death as a function of dust concertation (doses); to our surprise, an increase in cells death was not observed only as a function of an increase of dust concertation. In addition, we noticed that the way particles come in contact with cells, by sticking to or being engulfed by, and the interaction duration has an effect; cells that interact with dust particles for a longer period died earlier compared to cells with a shorter interaction period. These findings will help us to better understand the health related consequences of exposure to dust storm events and serve as a baseline for when evaluating other aerosol.
Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi
2017-01-01
The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449
Wet Dust Deposition Across Texas, USA
NASA Astrophysics Data System (ADS)
Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.
2016-12-01
Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.
Space Shuttle Environmental Effects: The First 5 Flights
NASA Technical Reports Server (NTRS)
Potter, A. (Editor)
1983-01-01
Environmental effects associated with the first five Space Shuttle flights were monitored by the National Aeronautics and Space Administration (NASA) and the U.S. Air Force (USAF). Results and interpretations from this effort were reported at the December 1982 joint NASA-USAF conference. The conference proceedings are presented in this document. Most of the monitoring activity was focused on the launch cloud, emphasizing surface effects on the biota and air quality, model prediction of surface concentrations of HCl gas and Al2O3 dust, and airborne measurements of cloud composition. In general, assessments and predictions made in the April 1978 Final Environmental Impact Statement for the Space Shuttle Program were verified. Fallout of acidic mist and dust within 3 mi to 5 mi of the launch pad was the only unexpected effect of the launch. Atomization of deluge water in the Shuttle exhaust is considered to be the most probable cause of this effect. Sonic booms were monitored for several landings at Edwards Air Force Base, California; results agreed well with model predictions.
NASA Astrophysics Data System (ADS)
2012-12-01
The paper presents factors determining dust explosion hazards occurring in underground hard coal mines. The authors described the mechanism of transport and deposition of dust in mines entries and previous research on this topic. The paper presents a method of determination of depositing dust distribution during mining and presents the way to use it to assess coal dust explosion risk. The presented method of calculating the intensity of coal dust deposition is based on continuous monitoring of coal dust concentrations with use of optical sensors. Mathematical model of the distribution of the average coal dust concentration was created. Presented method allows to calculate the intensity of coal dust deposition in a continuous manner. Additionally, the authors presented the PŁ-2 stationary optical dust sampler, used in the study, connected to the monitoring system in the mine. The article features the results of studies conducted in the return air courses of the active longwalls, and the results of calculations of dust deposition intensity carried out with the use of the presented method.
Understanding the Activation and Solution Properties of Lunar Dust for Future Lunar Habitation
NASA Technical Reports Server (NTRS)
Wallace, William T.; Jeevarajan, Antony S.
2009-01-01
The decision to return humans to the moon by 2020 makes it imperative to understand the effects of lunar dust on human and mechanical systems.( Bush 2004; Gaier 2005; Mendell 2005) During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused health issues for some of the astronauts.(Gaier 2005; Rowe 2007) It is necessary, therefore, for studies to be carried out in a variety of disciplines in order to mitigate the effects of the dust as completely as possible. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to "activate" the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to "reactivate" the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and exposure to UV radiation in order to mimic some of the processes occurring on the lunar surface. To monitor the reactivity of the dust, we have measured the ability of the dust to produce hydroxyl radicals in solution. These radicals have been measured using a novel fluorescent technique developed in our laboratory,(Wallace et al. 2008) as well as using electron paramagnetic resonance (EPR).
Development of a dust deposition forecast model for a mine tailings impoundment
NASA Astrophysics Data System (ADS)
Stovern, Michael
Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms that influence deposition. Simulation results indicated that particles preferentially deposit in regions of topographic upslope. In addition, turbulent wind fields enhanced deposition in the wake region downwind of the tailings. This study also describes a deposition forecasting model (DFM) that can be used to forecast the transport and deposition of windblown dust originating from a mine tailings impoundment. The DFM uses in situ observations from the tailings and theoretical simulations of aerosol transport to parameterize the model. The model was verified through the use of inverted-disc deposition samplers. The deposition forecasting model was initialized using data from an operational Weather Research and Forecasting (WRF) model and the forecast deposition patterns were compared to the inverted-disc samples through gravimetric, chemical composition and lead isotopic analysis. The DFM was verified over several month-long observing periods by comparing transects of arsenic and lead tracers measured by the samplers to the DFM PM27 forecast. Results from the sampling periods indicated that the DFM was able to accurately capture the regional deposition patterns of the tailings dust up to 1 km. Lead isotopes were used for source apportionment and showed spatial patterns consistent with the DFM and the observed weather conditions. By providing reasonably accurate estimates of contaminant deposition rates, the DFM can improve the assessment of human health impacts caused by windblown dust from the Iron King tailings impoundment.
AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands
NASA Astrophysics Data System (ADS)
Galloza, M.; Webb, N.; Herrick, J.
2015-12-01
Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.
NASA Astrophysics Data System (ADS)
Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.
2016-12-01
The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather, ecosystems) that atmospheric particles have particularly over the greater Caribbean region. The goal of this talk is to acquaint the audience with the SAL phenomena, its impact on urban activities, and current and future research underway to provide improvements in African dust prediction capabilities.
Lunar Dust and Lunar Simulant Activation and Monitoring
NASA Technical Reports Server (NTRS)
Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.
2008-01-01
Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev. Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.
Electron Beam Analysis of Micrometeoroids Captured in Aerogel as Stardust Analogues
NASA Technical Reports Server (NTRS)
Graham, G. A.; Sheffield-Parker, J.; Bradley, P.; Kearsley, A. T.; Dai, Z. R.; Mayo, S. C.; Teslich, N.; Snead, C.; Westphal, A. J.; Ishii, H.
2005-01-01
In January 2004, NASA s Stardust spacecraft passed through the tail of Comet 81P/Wild-2. The on-board dust flux monitor instrument indicated that numerous micro- and nano-meter sized cometary dust particles were captured by the dedicated silica aerogel capture cell. The collected cometary particles will be returned to Earth in January 2006. Current Stardust analogues are: (i) Light-gas-gun accelerated individual mineral grains and carbonaceous meteoritic material in aerogels at the Stardust encounter velocity ca.approximately 6 kilometers per second. (ii) Aerogels exposed in low-Earth orbit (LEO) containing preserved cosmic dust grains. Studies of these impacts offer insight into the potential state of the captured cometary dust by Stardust and the suitability of various analytical techniques. A number of papers have discussed the application of sophisticated synchrotron analytical techniques to analyze Stardust particles. Yet much of the understanding gained on the composition and mineralogy of interplanetary dust particles (IDPs) has come from electron microscopy studies. Here we discuss the application of scanning electron microscopy (SEM) for Stardust during the preliminary phase of post-return investigations.
NASA Astrophysics Data System (ADS)
Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi
2018-07-01
In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.
NASA Astrophysics Data System (ADS)
Meza-Figueroa, Diana; González-Grijalva, Belem; Del Río-Salas, Rafael; Coimbra, Rute; Ochoa-Landin, Lucas; Moreno-Rodríguez, Verónica
2016-08-01
Deeper knowledge on dust suspension processes along semiarid zones is critical for understanding potential impacts on human health. Hermosillo city, located in the heart of the Sonoran Desert was chosen to evaluate such impacts. A one-year survey of Total Suspended Particulate Matter (TSPM) was conducted at two different heights (pedestrian and rooftop level). The minimum values of TSPM were reported during monsoon season and winter. Maximum values showed a bimodal distribution, with major peaks associated with increase and decrease of temperature, as well as decreasing humidity. Concentrations of TSPM were significantly exceeded at pedestrian level (∼44% of analyzed days) when compared to roof level (∼18% of analyzed days). Metal concentrations of As, Pb, Cu, Sb, Be, Mg, Ni, and Co were higher at pedestrian level than at roof level. Pixel counting and interpretations based on scanning electron microscopy of dust filters showed a higher percentage of fine particulate fractions at pedestrian level. These fractions occur mainly as metal-enriched agglomerates resembling coarser particles. According to worldwide guidelines, particulate matter sampling should be conducted by monitoring particle sizes equal and inferior to PM10. However, this work suggests that such procedures may compromise risk assessment in semiarid environments, where coarse particles act as main carriers for emergent contaminants related to traffic. This effect is especially concerning at pedestrian level, leading to an underestimation of potential impacts of human exposure. This study brings forward novel aspects that are of relevance for those concerned with dust suspension processes across semiarid regions and related impact on human health.
NASA Astrophysics Data System (ADS)
Schuerger, A. C.; Tench, B.; Nehr, A.; Emmons, T.; Valbuena, F.; Palaia, J.; Sugars, C.
2014-12-01
Dust emanates year-round from Africa and Asia and impacts air quality in North America. Asian dust plumes deliver up to 64 million tonnes of dust over the NW of the USA, and African dust storms deliver over 50 million tonnes of dust over Florida each year. Several recent studies have demonstrated that human and plant pathogens from Asian [1] African [2] aerosols can be transported to N. America in naturally occurring dust storms. What is unknown is whether these 'presumptive pathogens' impact human, plant, or animal health in the USA. In order to initiate a long-term monitoring program of pathogens in Asian and African dust plumes, we have developed a dust collection system called DART (Dust at Altitude Recovery Technology) (figure). The DART dust sampler can be mounted on a F104 Starfighter jet (figure) and a T6 Texan propeller driven airplane (not shown), and was test flown over FL in Dec. 2013 on the F104 and on the T6 in the summer of 2014. The DART system utilizes a high-volume pump to pass air through 6 separate filtration units where both aerosols and microbial cells are captured. The filtration systems exhibit flow rates from 25-142 L/min depending on the pore size and brand of filters used. Flow rates are directly correlated to increased air speed, and are inversely correlated to increased altitude. Filtration units can be turned on and off individually as required for specific science flight objectives. The DART dust sampler has performed nominally up to 7600 m, 0.92 Mach, and 3.5 +G's. During initial test flights in Dec. 2013, 5 of 8 genera of fungi recovered from the lower atmosphere over FL contained plant pathogens including species in the genera: Acremonium, Aspergillus, Cladosporium, Curvularia, and Fusarium. Numbers of recovered fungi, but not bacteria, increased significantly when 5 or 10 µm filters were used in the DART system compared to filter pore sizes ≤ 1.2 µm. Future sampling programs for both Asian and African dust events will be discussed. References: [1] Smith, D. J., et al., 2012. Microbial Ecology 64,973-985. [2] Griffin, D. W. 2007, Clinical Microbiology Reviews 20, 459-477.
Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)
Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.
2009-01-01
Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Hyslop, N. P.; Schichtel, B. A.; Gill, T. E.
2016-12-01
Mineral dust influences air quality, visibility, health, hydrology, heterogeneous chemistry, biogeochemistry, ecology, and climate. The spatial and seasonal variability of fine (PM2.5) mineral dust (FD, mineral particles with diameters less than 2.5 µm) and coarse mass (CM, mass of particles with diameters between 2.5 and 10 µm) were characterized at over 160 rural and remote sites in the United States from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Monthly, seasonal, and annual means were computed for 2011 through 2014 to investigate the spatial and seasonal variability of FD and CM. Regions with significant FD included the Southwest in spring (≥ 50% contributions to PM2.5 mass) and in the Midwest, Midsouth, and Southeast regions in summer (20-30% of PM2.5 mass). The seasonality of FD and CM decoupled farther from local source regions suggesting long-range transport of FD or non-dust related CM. FD mineralogy was also explored and confirmed the seasonal and regional impacts of long-range transport. Temporal trends in FD from 2000-2014 revealed regions and seasons with significantly increased FD, especially the Southwest during spring months, the central United States during summer and fall, and the Southeast in summer—all regions that were associated with significant contributions of FD to PM2.5 mass. Positive trends in FD contrast negative trends in other major aerosol species over the same time periods, further enhancing the relative importance of FD to PM2.5 mass. Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and causal mechanisms for dust episodes in order to better inform resource management decisions.
NASA Astrophysics Data System (ADS)
Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.
2014-08-01
The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.
NASA Astrophysics Data System (ADS)
Chavez, P. S.; MacKinnon, D. J.; Reynolds, R. L.; Velasco, M. G.
2002-12-01
Wind-induced dust emission from sources in the southwestern United States is not a major contributor to global dust flux, but it is important on a regional and national scale because of its effects on air quality, human health and safety, as well as ecosystem dynamics. Integrated remotely sensed satellite, airborne, and ground-based image data have strong potential to detect and monitor active dust storms and map areas vulnerable to wind erosion in the Southwest. Since 1999, high temporal resolution digital images collected by satellite and a ground-based, automated digital camera station have been used to detect, monitor, and analyze the location, size, frequency, duration, and transport patterns of large dust storms in the central Mojave Desert. One of the biggest dust storms of this past decade occurred on April 15, 2002, when at least several million metric tons of dust were emitted from the central Mojave Desert alone. During this storm, geostationary satellite (GOES) images documented the arrival of two very large dust plumes into the Las Vegas Valley, NV, one from a valley about 40 km to the west and the other from a heavily used area about 170 km to the southwest. Large, rapid increases in levels of PM10 (particulate matter less than 10 micrometers) in the Las Vegas area corresponded with the arrival of these plumes, with PM10 values increasing from a range of approximately 100 to 250 micrograms/m3 to 1,100 to 1,500 micrograms/m3 within 30 minutes. Satellite imaging systems currently available cannot detect and monitor dust storms of the size typically generated in the Southwest on an operational basis or be used to produce models for emission-rate predictions. The satellite imaging system on GOES is the only one available having adequate temporal resolution to detect and monitor active dust storms on a routine basis; however, it can only detect very large dust storms because its spatial and spectral resolutions are very low. A satellite imaging system with three to five spectral bands (with adjustable gain settings) and approximately 100 m spatial and 15 to 20 minutes temporal resolutions is needed to effectively monitor southwestern dust storms and events. Such a system would also be useful in other arid regions.
Ono, Duane; Kiddoo, Phill; Howard, Christopher; Davis, Guy; Richmond, Kenneth
2011-10-01
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).
Coma dust environment observed by GIADA during the Perihelion of 67P/Churyumov-Gerasimenko.
NASA Astrophysics Data System (ADS)
Rotundi, A.; Della Corte, V.; Fulle, M.; Ferrari, M.; Ivanovski, S. L.; Sordini, R.; Mazzotta Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Zakharov, V.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Gruen, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zarnecki, J.; Cosi, M.; Giovane, F.; Gustafson, B.; Herranz, M.; Jeronimo, J. M.; Leese, M.; Lopez-Jimenez, A.; Morales, R.
2015-12-01
GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument mounted onboard Rosetta monitoring the dust environment of comet 67P/Churyumov-Gerasimenko. GIADA is composed of 3 sub-systems: 1) the Grain Detection System, based on particle detection through light scattering; 2) the Impact Sensor, giving momentum measurement; 3) the Micro-Balances System, constituted of 5 quartz crystal microbalances, giving cumulative deposited dust. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the speed distribution of dust particles emitted from the comet nucleus. We will present the coma dust environment as observed by GIADA during the perihelion phase of the Rosetta space mission. Despite the large distance from the nucleus, more than 200 km, GIADA was able to detect temporal and spatial variation of dust density distribution. Specific high dust spatial density sectors of the coma have been identified and their evolution during the perihelion phase was studied. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site.
Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument
NASA Technical Reports Server (NTRS)
Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.
2014-01-01
Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.
[Status of lead exposure and its impact on health of workers in an accumulator factory].
Liang, Jiabin; Zhang, Jian; Guo, Xiaojing; Mai, Jianping; Wang, Zhi; Liu, Yimin
2014-02-01
To identify the occupational hazard factors in an accumulator factory, to analyze the status of internal and external lead exposure and evaluate the impact of lead exposure on the health of workers in the accumulator industry, and to provide a theoretical basis for improved lead exposure criteria and technical support for the control of lead contamination in the accumulator industry. An on-site investigation was carried out to monitor and evaluate the lead fume and dust in the workplaces of an accumulator factory, and occupational health examination was performed in all workers. The occupational hazard safeguards in the accumulator factory were unadvanced. The contamination of lead fume and dust was serious. The abnormal rate of blood lead was up to 79.80%, and many workers developed anemia and mild peripheral nerve disease. Lead contamination is serious in the accumulator factory, leading to poor health of workers. It is essential to take effective control measures, improve the working environment, provide occupational health education, increase workers' self-protection awareness, and periodically conduct occupational hazard monitoring and health surveillance. The government must reinforce occupational health supervision of such enterprises.
'Nuisance Dust' - a Case for Recalibration?
NASA Astrophysics Data System (ADS)
Datson, Hugh; Marker, Brian
2013-04-01
This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over time). 'Custom and practice' acceptance criteria for dust samples obtained by mass or soiling techniques have been developed and are widely applied even though they were not necessarily calibrated thoroughly and have not been reviewed recently. Furthermore, as sampling techniques have evolved, criteria developed for one method have been adapted for another. Criteria and limit values have sometimes been based on an insufficient knowledge of sampler characteristics. Ideally, limit values should be calibrated for the locality to take differences in dust density and visibility into account. Work is needed on the definition of criteria and limit values, and sampling practices for coarse dust fractions, followed by discussion of good practices for securing effective monitoring that is proportionate and fit for purpose. With social changes and the evolution of environmental controls since the 1960s, the public perception of 'nuisance dust' has changed and needs to be addressed by reviewing existing thresholds in relation to the range of monitoring devices currently in use.
Impact and monitoring of dust storms in Taklimakan desert
NASA Astrophysics Data System (ADS)
Feng, G. G.; Li, X.; Zheng, Z.
2012-12-01
The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was determined that the horizontal dust flux was 0.6 to 4.3 kg/m. Dust clouds are formed when the friction from high surface wind speeds (>6 m/s) lifts loose dust particles into the atmospheric boundary layer or above. Analysis shows that a dust storm in the Taklimakan desert on April 23th produced a huge atmospheric dust cloud, it was transported across the Pacific Ocean to reach the West Coast of North America 12 days later, corresponding to 6 m/s average transport speed. The observations in the Pacific Coast indicated that aerosol concentrations were elevated which resulted in Air Quality Index (AQI) to the yellow moderate category.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2012-08-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.
Identifying Dust Sources by Positive Matrix Factorization (PMF)
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.
2010-05-01
This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type. Examples of time series plots of PMF factor contributions for each of six sampling sites (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad) will be discussed. Engelbrecht , J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 1: Ambient sampling: Inhalation Toxicology, v. 21, p. 297-326.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... hearings on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including... miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... comment period on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust...), MSHA published a proposed rule, Lowering Miners' Exposure to Respirable Coal Mine Dust, Including...
Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.
2017-12-01
Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.
The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment
NASA Astrophysics Data System (ADS)
Srama, Ralf
2014-05-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.
Dust devil signatures in infrasound records of the International Monitoring System
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Christie, Douglas
2015-03-01
We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.
Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment
NASA Astrophysics Data System (ADS)
Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.
2015-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.
Corneal permeability for cement dust: prognosis for occupational safety
NASA Astrophysics Data System (ADS)
Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.
2018-02-01
The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.
Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.
2013-12-01
The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Drake, K.; Gruen, E.; Malaspina, D.; Sternovsky, Z.
2013-12-01
We are performing calibration measurements in our laboratory using a dust accelerator to understand the mechanisms how dust impact generated plasma clouds couple into electric field antennas on spacecraft. The S/WAVES electric field instruments on board the twin STEREO spacecraft observed short duration (milliseconds), large amplitude (> 15 mV) voltage spikes associated with the impact of high velocity dust particles on the spacecraft [St. Cyr et al., 2009, MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. These sharp spikes have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The high count rate has lead to the interpretation that S/WAVES is detecting nanometer sized dust particles (nano-dust) generated in the inner solar system and accelerated to close to solar wind velocities before impacting the spacecraft at 1 AU. The S/WAVES nano-dust interpretation is currently based on an incomplete understanding of the charge generated from relevant materials and the coupling mechanism between the plasma cloud and the electric field instrument. Calibration measurements are performed at the dust accelerator facility at the University of Colorado to investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility allows experimental control over target materials, size (micron to sub-micron), and velocity (1-60 km/s) of impacting dust particles, geometry of the impact, the ';spacecraft' potential, and the presence or absence of photoelectrons, allowing each coupling factor to be isolated and quantified. As the first step in this effort, we measure the impact charge generation for materials relevant for the STEREO spacecraft.
Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.
2015-08-01
Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.
Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek; Brownlee, Donald E.; Economou, Thanasis E.; Tuzzolino, Anthony J.; Green, Simon F.
2004-01-01
We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.
Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José
2017-04-01
Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.
Detecting dust hits at Enceladus, Saturn and beyond using CAPS / ELS data from Cassini
NASA Astrophysics Data System (ADS)
Vandegriff, J. D.; Stoneberger, P. J.; Jones, G.; Waite, J. H., Jr.
2016-12-01
It has recently been shown (1) that the impact of hypervelocity dust grains on the Cassini spacecraft can be detected by the Cassini Plasma Spectrometer (CAPS) Electron Spectrometer (ELS) instrument. For multiple Enceladus flybys, fine scale features in the lower energy regime of ELS energy spectra can be explained as short-duration, isotropic plasma clouds due to dust impacts. We have developed an algorithm for detecting these hypervelocity dust impacts, and the list of such impacts during Enceladus flybys will be presented. We also present preliminary results obtained when using the algorithm to search for dust impacts in other regions of Saturn's magnetosphere as well as in the solar wind. (1) Jones, Geraint, Hypervelocity dust impact signatures detected by Cassini CAPS-ELS in the Enceladus plume, MOP Meeting, June 1-5, 2015, Atlanta, GA
A highly dynamical debris disc in an evolved planetary system
NASA Astrophysics Data System (ADS)
Manser, Christopher
2017-08-01
Our HST/COS survey for the photospheric pollution by planetary debris undisputably demonstrates that at least 25% of white dwarfs host an evolved planetary system. The debris discs holding the material that accretes onto the white dwarf are produced by the tidal disruption of asteroids, and are observed in nearly 40 systems by infrared excess emission from micron-sized dust. In a small number of cases, we have also detected double-peaked Ca II 860 nm emission lines from a metal-rich gaseous disc in addition to photospheric pollution and circumstellar dust. Our ground-based monitoring of the brightest of these systems, SDSS J1228+1040, over the last eleven years shows a dramatic morphological change in the emission line profiles on the time-scale of years. The evolution of the line profiles is consistent with the precession of an eccentric disc on a period of 25 years, indicating a recent dynamical interaction within the underlying dust disc. This could either be related to the initial circularisation of the disc, or a secondary impact onto an existing disc. We expect that the accretion rate onto the white dwarf varies on the same timescale as the Ca II emission lines, and there is the tantalising possibility to detect changes in the bulk abundances, if the impact of a planetesimal with a different bulk abundance stirred up the disc. We request a small amount of COS time to monitor the debris abundances over the next three HST Cycles to test this hypothesis, and bolster our understanding of the late evolution of planetary systems.
Emissions from vehicles, tailpipe and vehicle re-entrained road dust
NASA Astrophysics Data System (ADS)
Zhu, Dongzi
Emissions from transportation are some of the largest sources of urban air pollution. Transportation emissions originate from both the engine-through combustion processes and non-tailpipe re-suspended road dust emissions induced by vehicle travel on unpaved and paved roads. Gaseous and particulate emissions from transportation sources have negative impacts on human health, visibility and may influence the global radiation balance. Fugitive dust emissions originating from vehicle travel on paved and unpaved roads constitute a significant fraction of the PM10 in many areas of the western US impacting their attainment status of National Ambient Air Quality Standards. The research used three novel instrument platforms developed at the Desert Research Institute. The In-Plume Emissions Test Stand (IPETS) was designed to provide characterization of exhaust emissions from in-use individual vehicles or engines by analyzing air as close as 1 m from the exhaust port. Real-world emission factors can be quantified by in-plume measurements and provide more realistic measures for emission inventories, source modeling, and receptor modeling than certification measurements. The Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) provides an effective alternate approach to the EPA AP-42 road dust emissions estimation techniques by sampling 1000s of km of roads versus isolated 3 m sections. The Portable Deposition Monitoring Platform (PDMP incorporates PM and meteorological instruments to characterize the downwind change in particle concentrations to define depositional losses in different environments. The research outcome provides important knowledge for understanding diesel engine emissions, road dust emissions and aerosol deposition process near road sources.
Trujillo-González, Juan Manuel; Torres-Mora, Marco Aurelio; Keesstra, Saskia; Brevik, Eric C; Jiménez-Ballesta, Raimundo
2016-05-15
Soil pollution is a key component of the land degradation process, but little is known about the impact of soil pollution on human health in the urban environment. The heavy metals Pb, Zn, Cu, Cr, Cd and Ni were analyzed by acid digestion (method EPA 3050B) and a total of 15 dust samples were collected from streets of three sectors of the city with different land uses; commercial, residential and a highway. The purpose was to measure the concentrations of heavy metals in road sediment samples taken from urban sites under different land uses, and to assess pollution through pollution indices, namely the ecological risk index and geoaccumulation index. Heavy metals concentrations (mg/kg) followed the following sequences for each sector: commercial sector Pb (1289.4)>Cu (490.2)>Zn (387.6)>Cr (60.2)>Ni (54.3); highway Zn (133.3)>Cu (126.3)>Pb (87.5)>Cr (9.4)>Ni (5.3); residential sector Zn (108.3)>Pb (26.0)>Cu (23.7)>Cr (7.3)>Ni (7.2). The geoaccumulation index indicated that the commercial sector was moderately to strongly polluted while the other sectors fell into the unpolluted category. Similarly, using the ecological risk index the commercial sector fell into the considerable category while the other sectors classified as low risk. Road dust increased along with city growth and its dynamics, additionally, road dust might cause a number of negative environmental impacts, therefore the monitoring this dust is crucial. Copyright © 2016 Elsevier B.V. All rights reserved.
Lunar Dust Monitor to BE Onboard the Next Japanese Lunar Mission SELENE-2
NASA Astrophysics Data System (ADS)
Ohashi, Hideo
The next Japanese lunar mission SELENE-2, after a successful mission Kaguya (a project named SELENE), is planned to be launched in mid 2010s and is consisted of a lander, a rover, and an orbiter, as a transmitting satellite to the earth. A dust particle detector LDM (Lunar Dust Monitor) is proposed to be onboard the orbiter. The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a sensor part (LDM-S, upper module) and an electronics part (LDM-E, lower module). The LDM-S has a large target (gold-plated Al) of 400 cm2 , to which a high voltage of +500 V is applied. The LDM-S also has two meshed grids parallel to the target. The grids are etched stainless steel with 90% transparency: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. When a charged dust particle passes through the outer and inner grids, it induces an electric signal on the grids separated by a certain time interval, determined by the velocity of the incident particle and the distance between the outer and inner grids. By measuring the time interval, we can calculate the velocity of the particle, with the ambiguity of its trajectory to the target. When the incident particle impacts on the target, plasma gas of electrons and ions is generated. The electrons of the plasma are collected by the target and the ions are accelerated toward the inner grids as a result of the electric field. Some of the ions drift through the inner grid and reach the outer grid. The outer and inner grids and the target are connected to charge-sensitive amplifiers, which convert charge signals induced by the electrons and ions to voltage signals that are fed to a following flash ADC driven with 10 MHz. The waveforms from two grids and the target can be stored and be sent back to ground for data analysis. We can deduce the mass and velocity information of the incident dust particle from the recorded waveforms. The orbiter of SELENE-2 is planned to be in operation for one year or more, and the LDM will observe circumlunar dust for as long as possible. We report scientific importance of dust measurement around the Moon, and current status of LDM in this conference.
Radiative impact of a heavy dust storm over India and surrounding oceanic regions
NASA Astrophysics Data System (ADS)
Kedia, Sumita; Kumar, Rajesh; Islam, Sahidul; Sathe, Yogesh; Kaginalkar, Akshara
2018-07-01
Efficient management of frequently occurring destructive dust storms requires an in-depth understanding of the extent of impacts of such events. Due to limited availability of observational data, it is difficult to understand/estimate the impact of dust aerosols on the Earth's radiation budget in detail. This study, applies a regional model, Weather Research and Forecasting model with chemistry (WRF-Chem), to investigate the impact of an intense dust storm that originated over the Arabian peninsula during 01-02 April 2015 and transported towards the Indian subcontinent by the westerly winds. Two identical numerical experiments are designed, each for 15 days, one with and another without dust aerosols, to estimate the impact of the dust storm over the Indian subcontinent and adjoining regions. WRF-Chem model reproduced the spatial, temporal as well as the vertical distribution of dust plume reasonably well. Model results show significant changes in aerosol optical, physical and radiative properties due to the dominance of coarse mode aerosols in the atmosphere during the dust storm. Analysis of vertical profiles of particulate matter (PM10) concentration reveals the presence of dust aerosols extending from the surface to altitudes as high as 3-4 km during the dust storm period. The dust storm induced a cooling effect at the surface via reduction in shortwave (SW) radiative flux. A substantial decrease in temperature is also seen at 850 hPa due to dust, indicating a significant impact of dust layer on the atmospheric temperature profile. Atmospheric heating due to dust aerosols in the SW region is found to be compensated up to a large extent by longwave (LW) cooling effect of dust. The net dust induced radiative perturbation at the top of the atmosphere (TOA) over different regions is negative and varied from -2.49 to -0.34 Wm-2, while it is in the range of -0.62 to + 0.32 Wm-2 at the surface.
Testing the sensitivity of past climates to the indirect effects of dust
NASA Astrophysics Data System (ADS)
Sagoo, Navjit; Storelvmo, Trude
2017-06-01
Mineral dust particles are important ice nuclei (IN) and as such indirectly impact Earth's radiative balance via the properties of cold clouds. Using the Community Earth System Model version 1.0.6, and Community Atmosphere Model version 5.1, and a new empirical parameterization for ice nucleation on dust particles, we investigate the radiative forcing induced by dust IN for different dust loadings. Dust emissions are representative of global conditions for the Last Glacial Maximum and the mid-Pliocene Warm Period. Increased dust leads to smaller and more numerous ice crystals in mixed phase clouds, impacting cloud opacity, lifetime, and precipitation. This increases the shortwave cloud radiative forcing, resulting in significant surface temperature cooling and polar amplification—which is underestimated in existing studies relative to paleoclimate archives. Large hydrological changes occur and are linked to an enhanced dynamical response. We conclude that dust indirect effects could potentially have a significant impact on the model-data mismatch that exists for paleoclimates.
Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales
Pointing, Stephen B.; Belnap, Jayne
2014-01-01
This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.
NASA Astrophysics Data System (ADS)
Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.
2015-04-01
On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is related to coupling of subtropical jet and polar jet over the Saudi Arabia region, which leads to massive dust storm generation and dust transport through Rub-Al-Khali, and Persian Gulf over the UAE region. AOD from ground based measurements showed fourfold increase from 0.2 to 1.8 during the event implying an atmospheric forcing of ~ 150 Wm-2. In addition, vertical profile of heating rate showed heating of ~1.5 K/day at 3-4 km during the event. In the view of the above, the present event is discussed in the light of current understanding of dust storm aerosol optical and physical processes and associated dynamics over UAE region.
NASA Astrophysics Data System (ADS)
Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio
2017-04-01
Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local scale. Instead, on Mars the presence of the dust devils has been confirmed at almost every latitude and altitude and it has been indicated as the possible main source of suspended dust outside the storm seasons. Hence, the study of the dust devils becomes of great importance in order to understand the atmospheric dust loading and the global climate of the planet. In addition, the dust lifting phenomena are probably one of the main source of atmospheric electrification on Mars and the measurement and study of the Martian boundary layer electric field is one of the main objectives of the future Martian space missions, such as ExoMars 2020. Indeed, this mission will accommodate "Dust Complex", a suite of sensors that will monitor lifted dust and atmospheric electric field on the surface of Mars. For these reasons, the present work represents a useful tool for the understanding of the dust lifting phenomena and their electrification both on Earth and on Mars.
Surface acoustic wave dust deposition monitor
Fasching, G.E.; Smith, N.S. Jr.
1988-02-12
A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.
Enhancing wind erosion monitoring and assessment for U.S. rangelands
Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott
2017-01-01
On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.
EPA has developed a technology transfer document (case-study) for the EMPACT Syracuse Lead Dust Project. The Lead Dust Project is designed to measure the lead dust content in homes and public buildings within the City of Syracuse, NY. The project also contains an educational comp...
NASA Astrophysics Data System (ADS)
Katsuragi, Hiroaki; Blum, Jürgen
2017-12-01
Dynamic characterization of mechanical properties of dust aggregates has been one of the most important problems to quantitatively discuss the dust growth in protoplanetary disks. We experimentally investigate the dynamic properties of dust aggregates by low-speed (≤slant 3.2 m s-1) impacts of solid projectiles. Spherical impactors made of glass, steel, or lead are dropped onto a dust aggregate with a packing fraction of ϕ = 0.35 under vacuum conditions. The impact results in cratering or fragmentation of the dust aggregate, depending on the impact energy. The crater shape can be approximated by a spherical segment and no ejecta are observed. To understand the underlying physics of impacts into dust aggregates, the motion of the solid projectile is acquired by a high-speed camera. Using the obtained position data of the impactor, we analyze the drag-force law and dynamic pressure induced by the impact. We find that there are two characteristic strengths. One is defined by the ratio between impact energy and crater volume and is ≃120 kPa. The other strength indicates the fragmentation threshold of dynamic pressure and is ≃10 kPa. The former characterizes the apparent plastic deformation and is consistent with the drag force responsible for impactor deceleration. The latter corresponds to the dynamic tensile strength to create cracks. Using these results, a simple model for the compaction and fragmentation threshold of dust aggregates is proposed. In addition, the comparison of drag-force laws for dust aggregates and loose granular matter reveals the similarities and differences between the two materials.
Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula
NASA Astrophysics Data System (ADS)
Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni
2018-01-01
Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).
10 years of Cassini/VIMS observations at Titan
NASA Astrophysics Data System (ADS)
Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
NASA Astrophysics Data System (ADS)
Gobbi, Gian Paolo; Wille, Holger; Sozzi, Roberto; Barnaba, Francesca; Costabile, Francesca; Angelini, Federico; Frey, Steffen; Bolignano, Andrea; Morelli, Matteo
2013-04-01
The contribution of Saharan-dust advections to both daily and annual PM average mass concentrations can be significant all over Southern Europe. The Directive 2008/50/EC allows subtraction of PM10 exceedances caused by natural contributions from the statistic used to determine air-quality levels in Europe. To this purpose, the Commission Staff Working Paper 6771/11 (EC, 2011) provides specific Guidelines on methods to quantify and subtract the contribution of these sources in the framework of the Air Quality Directive. For Saharan dust, the EC methodology is largely based on a thorough analysis performed over the Iberian Peninsula (Escudero et al, 2007), although revision of the current methodology is in progress. In line with the EC Guidelines, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs"), funded under the EC LIFE+ program, has been formulated to provide a robust, user-oriented, and demonstrated method to assess the presence of desert dust and evaluate its contribution to PM10 levels at the monitoring sites. To this end, in addition to satellite-based data and model forecasts already included in the EC Guidelines, DIAPASON will take advantage, in both the Project implementation and demonstration phase, of innovative and affordable technologies (partly prototyped within the project itself), namely operational Polarization Lidar-Ceilometers (PLC) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The PLC prototypes have been already finalized during the initial phase of the Project. Three of them will be networked in relevant air quality monitoring stations located in the Rome metropolitan area (Italy) during the DIAPASON observational phase (one-year long field campaign) starting in March 2013. The Rome region was chosen as the DIAPASON pilot scale area since highly impacted by urban pollution and frequently affected by Saharan dust transport events. In fact, a preliminary assessment of the role of Saharan dust in this area, based on a four-year dataset (2001-2004) has shown average increases of PM10 levels of the order of 11.9 µg/m3 when Saharan dust presence is either predicted by models or observed by a depolarization lidar. Conversely, PM10 increases computed relying only on the Lidar detections (i.e., presence of dust layers actually observed) were of the order of 15.6 µg/m3. Both analyses indicate the annual average contribution of dust advections to the city PM10 mass concentrations to be of the order of 2.3 µg/m3 (Gobbi et al., 2013). These results confirm Saharan advections in the central Mediterranean as important modulators of PM10 loads and exceedances. After the demonstrative pilot scale study, the DIAPASON results will be spatially generalised to a wider area. The final DIAPASON methodology to detect/quantify the Saharan dust contribution to PM10 will be tailored for a national scale application, and easily transferable to other air-quality and meteorological agencies in Europe. In this work, preliminary results from the combined analysis of Saharan dust model predictions, PM10 data and lidar records performed within DIAPASON will be shown, with particular focus on the added-value provided by continuous polarization lidar data in integrating the present EC Methodology. - EC, Commission Staff Working Paper 6771/11 establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe, European Commission, 2011. - Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez, S. and Cuevas, E., A methodology for the quantification of the net African dust load in air quality monitoring networks, Atmos. Envir., 41, 5516-5524, 2007. - Gobbi,G. P., F. Angelini, F. Barnaba, F. Costabile, J. M. Baldasano, S. Basart, R. Sozzi and A. Bolignano, Changes in Particulate Matter Physical Properties During Saharan Advections over Rome (Italy): A Four-Year Study, 2001-2004, Atmos. Chem. Phys., Discus., 2013.
Laboratory investigation of antenna signals from dust impacts on spacecraft
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick
2016-04-01
Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two mechanisms also vary with impact location relative to the antenna. The experimental results obtained are successfully used to improve the interpretation of existing data sets.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.
2013-04-01
Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with combustion emissions) is found to be the major (82%) source of fine Cl in the urban agglomerate; (4) the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu) suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.
The Impact Ejecta Environment of Near Earth Asteroids
NASA Astrophysics Data System (ADS)
Szalay, Jamey R.; Horányi, Mihály
2016-10-01
Impact ejecta production is a ubiquitous process that occurs on all airless bodies throughout the solar system. Unlike the Moon, which retains a large fraction of its ejecta, asteroids primarily shed their ejecta into the interplanetary dust population. These grains carry valuable information about the chemical compositions of their parent bodies that can be measured via in situ dust detection. Here, we use recent Lunar Atmosphere and Dust Environment Explorer/Lunar Dust Experiment measurements of the lunar dust cloud to calculate the dust ejecta distribution for any airless body near 1 au. We expect this dust distribution to be highly asymmetric, due to non-isotropic impacting fluxes. We predict that flybys near these asteroids would collect many times more dust impacts by transiting the apex side of the body compared to its anti-apex side. While these results are valid for bodies at 1 au, they can be used to qualitatively infer the ejecta environment for all solar-orbiting airless bodies.
Dust Observations by Faraday Cups Onboard Spektr-R
NASA Astrophysics Data System (ADS)
Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.
2017-12-01
Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.
78 FR 25308 - Proposed Collection; Comment Request; Coal Mine Dust Sampling Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
...; Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day.... Background Continuous Personal Dust Monitors (CPDMs) determine the concentration of respirable dust in coal mines. CPDMs must be designed and constructed for coal miners to wear and operate without impeding their...
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly
2016-07-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including the Moon, Mercury, and the moons of Mars: Phobos and Deimos.
NASA Astrophysics Data System (ADS)
Horanyi, M.; Munsat, T.
2017-12-01
The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.
Improving Decision-Making Activities for Meningitis and Malaria
NASA Astrophysics Data System (ADS)
Ceccato, P.; Trzaska, S.; Perez, C.; Kalashnikova, O. V.; del Corral, J.; Cousin, R.; Blumenthal, M. B.; Connor, S.; Thomson, M. C.
2012-12-01
Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI) is developing new products to increase the public health community's capacity to understand, use, and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on infectious disease, in particular Meningitis and Malaria. In this paper we present the new and improved products that have been developed for monitoring dust, temperature, rainfall and vectorial capacity model for monitoring and forecasting risks of Meningitis and Malaria epidemics. We also present how the products have been integrated into a knowledge system (IRI Data Library Map room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties
NASA Technical Reports Server (NTRS)
Jeevarajan, A.S.; Wallace, W.T.
2009-01-01
During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure of the lunar dust to UV radiation under vacuum was also found to lead to hydroxyl radical production. After grinding, we have also monitored loss of reactivity of the dusts by exposing them to conditions of known humidity and temperature. From these tests, it was found that the reactivity half-life of lunar simulant is approximately 3 hours, while that of quartz is approximately 2 hours. Placing lunar dust in solution could lead to effects on mechanical and physiological systems, as well as other biological systems. For instance, while it is known that lunar dust is highly abrasive and caused a variety of problems with suits and equipment during Apollo, it is unknown as to how these properties might be affected in the presence of water or other liquids. It is possible that the dust may release minerals (e.g., metallic nanophase Fe) into solution that could speed corrosion or rust. Also, as lunar dust produces hydroxyl radicals (and possibly other reactive oxygen species) in solution, these radicals could also lead to the breakdown of suit or habitat materials. In the body (i.e., in lung solution), the effects could be two-fold. First, if the lunar dust dissolves, it may release an excess of elements (such as zero-valence metallic Fe) that are necessary for bodily functions but only in certain concentration ranges. For lunar dust, the presence of nanophase iron being released into the body is a concern. Secondly, the hydroxyl radicals or other reactive oxygen species produced by the dust in solution could conceivably interact with cells, leading to various problems. We have studied the dissolution of both ground and unground lunar simulant in buffer solutions of different pH. The concentration of a number of species was determined using mass spectrometry. These studies showed that lowering the pH of the solution causes a dramatic increase in the amount of each element released into solution and that grinding also produces higher concentrations. Finally, we have perfmed initial tests aimed at understanding the effects of lunar simulant on cellular systems. Alveolar epithelial cells were cultured and exposed to different concentrations of dust suspended in cell culture media. After predetermined amounts of time, the media was removed and the concentrations of important inflammatory cytokines (IL6, IL8, and TNF-alpha ) were measured. The results of these tests are being used to develop the correct protocols for tests to be performed using lunar dust samples.
Remote sensing of desert dust aerosols over the Sahel : potential use for health impact studies
NASA Astrophysics Data System (ADS)
Deroubaix, A. D.; Martiny, N. M.; Chiapello, I. C.; Marticorena, B. M.
2012-04-01
Since the end of the 70's, remote sensing monitors the desert dust aerosols due to their absorption and scattering properties and allows to make long time series which are necessary for air quality or health impact studies. In the Sahel, a huge health problem is the Meningitis Meningococcal (MM) epidemics that occur during the dry season : the dust has been suspected to be crucial to understand their onsets and dynamics. The Aerosol absorption Index (AI) is a semi-quantitative index derived from TOMS and OMI observations in the UV available at a spatial resolution of 1° (1979-2005) and 0.25° (2005-today) respectively. The comparison of the OMI-AI and AERONET Aerosol Optical thickness (AOT) shows a good agreement at a daily time-step (correlation ~0.7). The comparison of the OMI-AI with the Particle Matter (PM) measurement of the Sahelian Dust Transect is lower (~0.4) at a daily time-step but it increases at a weekly time-step (~0.6). The OMI-AI reproduces the dust seasonal cycle over the Sahel and we conclude that the OMI-AI product at a 0.25° spatial resolution is suitable for health impact studies, especially at a weekly epidemiological time-step. Despite the AI is sensitive to the aerosol altitude, it provides a daily spatial information on dust. A preliminary investigation analysis of the link between weekly OMI AI and weekly WHO epidemiological data sets is presented in Mali and Niger, showing a good agreement between the AI and the onset of the MM epidemics with a constant lag (between 1 and 2 week). The next of this study is to analyse a deeper AI time series constituted by TOMS and OMI data sets. Based on the weekly ratios PM/AI at 2 stations of the Sahelian Dust Transect, a spatialized proxy for PM from the AI has been developed. The AI as a proxy for PM and other climate variables such as Temperature (T°), Relative Humidity (RH%) and the wind (intensity and direction) could then be used to analyze the link between those variables and the MM epidemics in the most concerned countries in Western Africa, which would be an important step towards a forecasting tool for the epidemics risks in Western Africa.
Dust impact effects recorded by the APV-N experiment during Comet Halley encounters
NASA Astrophysics Data System (ADS)
Oberc, P.; Orlowski, D.; Klimov, S.
1986-12-01
During the Vega 1 and 2 comet Halley encounters plasma wave instrument APV-N entered a region of impulsive noise 220,000 km from nucleus. The noise is attributed to dust grain impacts onto spacecraft body. Regression analysis of impact induced effects recorded during flyby shows that from 100,000 km from closest approach most plasma wave spectra measured by APV-N onboard Vega 1 and 2 are significantly influenced by dust impact effects. Signals associated with large dust impacts are directly recorded on the E2 0.1 to 25 Hz electric field waveform channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The coal gasification plant will occupy a 43-acre site, known as the Riverside Site, located along the Delaware River next to Port Richmond between the Betsy Ross and Benjamin Franklin Bridges. The cleared site was previously used for industrial purposes and has a G-2 industrial zoning. Adverse impacts during the construction phase of the project are not expected to be significantly different than those occurring during any major industrial construction project. During operation of the coal gasification facility, specific mitigative measures have been designed into the facility to avoid adverse environmental impacts wherever possible. In addition to these extensive engineeringmore » safeguards, elaborate monitoring and control instrumentation shall be used. The GKT entrained bed, oxygen-blown gasification process provided by Krupp/Koppers was selected because it is a commercially proven system and because of its positive environmental characteristics such as its ability to gasify many coal types and the fact that it does not produce tars, phenols, or ammonia. During gasification of the coal, pollutants such as heavy metals in the coal are concentrated into the slag and ash. None of these pollutants are found in the product gas. The facility will produce 250 tpd of non-hazardous slag and fly ash. The combined slag and fly ash will occupy 347 cubic yards per day of landfill volume. Available haulers and landfills have been identified.A sophisticated health and safety program will include appropriate monitoring instruments for CO, H/sub 2/, H/sub 2/S, polynuclear aromatic hydrocarbons, organic compounds, and coal dust. Air emissions from operation of the coal gasification plant are not considered significant. Dust control systems have been designed into the facility to minimize fugitive dust emissions.« less
The terminal Velocity of the Deep Impact dust Ejecta
NASA Astrophysics Data System (ADS)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.
2009-05-01
The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.
Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha
2013-09-01
The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. Copyright © 2013 Elsevier B.V. All rights reserved.
The Cosmic Dust Analyzer for Cassini
NASA Technical Reports Server (NTRS)
Bradley, James G.; Gruen, Eberhard; Srama, Ralf
1996-01-01
The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.
Flying Through Dust From Asteroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment Explorer mission.From LDEXs measurements of the dust distribution around the Moon, Szalay and Hornyi next calculate how this distribution would change for different grain sizes if the body were instead much smaller i.e., a 10-km asteroid instead of the 1700-km Moon.Optimizing the Geometry for an EncounterThe authors find that the dust ejected from asteroids is distributed in an asymmetric shape around the body, with higher dust densities on the side of the asteroid facing its direction of travel. This is because meteoroid impacts arent isotropic: meteoroid showers tend to be directional, and amajority of meteoroids impact the asteroid from this apex side.Total number of impacts per square meter and predicted dust density for a family of potential trajectories for spacecraft flybys of a 10-km asteroid. [Szalay Hornyi 2016]Szalay and Hornyi therefore conclude that dust-analyzing missions would collect many times more dust impacts by transiting the apex side of the body. The authors evaluate a family of trajectories for a transiting spacecraft to determine the density of dust that the spacecraft will encounter and the impact rates expected from the dust particles.This information can help optimize the encounter geometry of a future mission to maximize the science return while minimizing the hazard due to dust impacts.CitationJamey R. Szalay and Mihly Hornyi 2016 ApJL 830 L29. doi:10.3847/2041-8205/830/2/L29
Dust emissions from unpaved roads on the Colorado Plateau
NASA Astrophysics Data System (ADS)
Duniway, M.; Flagg, C.; Belnap, J.
2013-12-01
On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV), the minimum wind velocity required to initiate erosion, and sediment production were also quantified using a portable wind tunnel at monitoring sites. Additionally, numerous characteristics including gravel cover, particle-size distribution, soil compaction, and loose-erodible material were measured on road surfaces at monitoring sites. Preliminary results suggest that roads are an important regional dust source, as emissions from roads are comparable to non-road, rural sources that are being monitored concurrently. While gravel roads produce more dust per day on average, per vehicle emissions are larger on dirt roads. Dust flux decreases with distance from the road edge on all road types, however this decline is less pronounced on dirt roads. Portable wind tunnel results indicate that TFV is consistently lower on dirt versus gravel roads across all soil types. Fugitive dust flux is generally larger and more variable on dirt roads compared to gravel roads. Initial analyses suggest that several easily measurable road surface characteristics can potentially be used to predict both TFV and sediment production, including: total gravel cover, gravel particle-size classes, clay content, and road compaction. The relation between TFV and total gravel cover in particular appears to be non-linear, with TFV increasing rapidly above ~40% gravel cover.
Determining the spatial variability of personal sampler inlet locations.
Vinson, Robert; Volkwein, Jon; McWilliams, Linda
2007-09-01
This article examines the spatial variability of dust concentrations within a coal miner's breathing zone and the impact of sampling location at the cap lamp, nose, and lapel. Tests were conducted in the National Institute for Safety and Health Pittsburgh Research Laboratory full-scale, continuous miner gallery using three prototype personal dust monitors (PDM). The dust masses detected by the PDMs were used to calculate the percentage difference of dust mass between the cap lamp and the nose and between the lapel and the nose. The calculated percentage differences of the masses ranged from plus 12% to minus 25%. Breathing zone tests were also conducted in four underground coal mines using the torso of a mannequin to simulate a miner. Coal mine dust was sampled with multi-cyclone sampling cans mounted directly in front of the mannequin near the cap lamp, nose, and lapel. These four coal mine tests found that the spatial variability of dust levels and imprecision of the current personal sampler is a greater influence than the sampler location within the breathing zone. However, a one-sample t-test of this data did find that the overall mean value of the cap lamp/nose ratio was not significantly different than 1 (p-value = 0.21). However, when applied to the overall mean value of the lapel/nose ratio there was a significant difference from 1 (p-value < .0001). This finding is important because the lapel has always been the sampling location for coal mine dust samples. But these results suggest that the cap location is slightly more indicative of what is breathed through the nose area.
North African dust emissions and transport
NASA Astrophysics Data System (ADS)
Engelstaedter, Sebastian; Tegen, Ina; Washington, Richard
2006-11-01
The need for a better understanding of the role of atmospheric dust in the climate system and its impact on the environment has led to research of the underlying causes of dust variability in space and time in recent decades. North Africa is one of the largest dust producing regions in the world with dust emissions being highly variable on time scales ranging from diurnal to multiannual. Changes in the dust loading are expected to have an impact on regional and global climate, the biogeochemical cycle, and human environments. The development of satellite derived products of global dust distributions has improved our understanding of dust source regions and transport pathways in the recent years. Dust models are now capable of reproducing more realistic patterns of dust distributions due to an improved parameterization of land surface conditions. A recent field campaign has improved our understanding of the natural environment and emission processes of the most intense and persistent dust sources in the world, the Bodélé Depression in Chad. In situ measurements of dust properties during air craft observations in and down wind of source regions have led to new estimates of the radiative forcing effects which are crucial in predicting future climate change. With a focus on the North African desert regions, this paper provides a review of the understanding of dust source regions, the variability of dust emissions, climatic controls of dust entrainment and transport, the role of human impact on dust emission, and recent developments of global and regional dust models.
Observation of a Dust Storm during 2015 Spring over Beijing, China
NASA Astrophysics Data System (ADS)
Lv, Y.; Li, D.; Li, Z.; Chen, X.; Xu, H.; Liu, Z.; Qie, L.; Zhang, Y.; Li, K.; Ma, Y.
2015-12-01
Dust events bring significant impacts on the regional environment, human health and even climate. There are four major dust explosion areas in the world, such as North America, Australia, Central Asia and Middle East. Located in the Central Asia, North China has a severe desertification because of deforestation and excessive population growth. Beijing is at the fork of three dust transmission paths in Chin, which makes it a dust-prone region for a long history especially in spring. Thanks to the improvement of the ecological environment in Mongolia, the number of dust weather in recent years reduced significantly than before. However, as the spring coming earlier for the relatively high temperature, a severe dust weather process happened suddenly on March 28, 2015 following with the long-term hazy weather, which up to the highest intensity in the nearly two years. A set of ground-based observations for this serious dust event were adopted in this paper. The ground-based remote sensing station is equipped with an automatic CIMEL lidar and an AERONET sun-photometer. Aerosol optical depth (AOD) and aerosol size distribution were measured by sun-photometer. AOD of dust reached 2.0 at 532nm, which was much larger than clear days. And there was an obvious trend that coarse mode increases more significantly and quickly than fine mode when a dust storm occurs. At the same time, data provided by the air quality monitoring and analysis platform of China shown that the PM10 concentration was larger than 1000μg/m3 and PM10 made important contribution to the high AQI. Lidar observation clearly shown the dust spread very tall (higher than 1km) when the dust storm occurrence. After the dust dissipating, the planetary boundary layer roughly from 0 to 3km, aerosol has a very widely vertical distribution. The AOD based on sun-photometer were taken as a constraint, 65 sr were retrieved and analyzed. And the extinction coefficients indicated that the dust had been dissipation near the ground, while some dissolved into the upper air (2-3km) after the dust passed over. Backward trajectory analysis showed those dust was originating from Mongolia (northwest of Beijing). According to the air quality index data, the dust transmission path could be Beijing-Tianjin-Hebei-Shandong-Jiangsu. And then it deposited at Taizhou in Jiangsu province.
Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration
NASA Astrophysics Data System (ADS)
Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
Managing dust on unpaved roads and airports.
DOT National Transportation Integrated Search
2014-10-01
Fugitive dust emanating from vehicle traffic on unpaved roads and runways can have significant impacts on safety, health, quality of life, and the cost : of maintenance. Managing dust provides a means of reducing these impacts. Shearing forces create...
NASA Astrophysics Data System (ADS)
Heidak, Markus O.; Glasmacher, Ulrich A.; Schöler, Heinfried; Trieloff, Mario; Kober, Bernd
2010-05-01
The Laurel Forest is an important and sensitive ecosystem with particular element cycling mechanisms. On Tenerife the distribution is straitened to some parts in the north, north-west and northeast. The NE trade wind ensures a permanently humid climate in the north. Major urban and industrial development is centred on Tenerife, and as a touristy hotspot the Island is exposed to heavy air traffic. Furthermore, the short distance to the African coastline and, therefore, to the Sahara, contribute a regular influence of African Dust emissions. In summary, Laurel Forest is exposed to different climatic conditions, variations in lithology and soils, and aerosols caused by local anthropogenic emissions, Saharan dust, and sea spray. The present study aims to understand geogenic and anthropogenic element transports of K, P, N, and organic components between soils and Laurel Forest. In addition, the element contribution from the aerosols such as the Sahara dust has to be quantified to understand the rock - soil - vegetation coupling system. The Sahara dust as one of the important aerosols has been studied by various researchers (Bustos et al., 1998; Rodrıguez, 1999; Torres et al., 2001; Viana et al., 2002). Viana et al.,(2002) quantified the impacts of African dust outbreaks for Tenerife and Gran Canaria, after the interpretation of the PM10 (thoracis particulate matter) from nineteen air quality monitoring stations. Three types of African dust contributions were identified and characterized (winter, summer and autumn-winter dust outbreaks). Collected samples with and without African dust influence proved that: (a) for the intensive winter African dust outbreaks (daily PM10 levels up to 191 mg/m3) at least 76% of the bulk PM10 levels may be attributable to dust load, whereas the anthropogenic input accounts for only 3-14% and (b) SiO2, Al2O3, Ca, K, Fe, Ti, V, Mn and Ba concentrations are excellent tracers of African origin (Viana et al., 2002).
Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector
NASA Technical Reports Server (NTRS)
Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.;
2012-01-01
Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impacts
Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.
Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin
2016-08-01
Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dulac, François; Nicolas, José B.; Sciare, Jean; Mallet, Marc; Léon, Jean-François; Pont, Véronique; Sicard, Michaël; Renard, Jean-Baptiste; Nabat, Pierre; El Amraoui, Laaziz; Jaumouillé, Elodie; Roberts, Greg; Attié, Jean-Luc; Somot, Samuel; Laurent, Benoît; Losno, Rémi; Vincent, Julie; Formenti, Paola; Bergametti, Gilles; Ravetta, François
2013-04-01
Saharan dust is an usual aerosol over the Mediterranean basin that contributes to the high average aerosol load during summer in the western Mediterranean marine environment. Satellite monitoring shows that dust events were numerous during summer 2012. Even though most of the transport of dust particles occurs in altitude, as shown by surface lidars and airborne data, dust events significantly impact surface PM10 concentrations even in urban traffic type of air quality monitoring stations, and background stations are needed to assess the contribution of desert dust. During the pre-ChArMEx field campaign and associated field campaigns TRAQA and VESSAER in the north-western Mediterranean, a large scale African dust event occurred in late June-early July with optical depth levels in the visible up to 0.5-0.7 rather unusual in that area according to long time remote sensing AERONET or satellite series. We have performed measurements in the dust plume for several days with a particularly large variety of both ground-based and airborne (from sounding balloons, an aircraft and an ultra-light aircraft) remote sensing and in situ instruments. In addition to satellite aerosol products including MSG/SEVIRI, which provides the spatial distribution of the aerosol optical depth over the basin up to 4 times per hour, POLDER and CALIOP, this yields a complete set of unusual quantitative constraints for model simulations of this event, combining data on aerosol optical depth, vertical distribution, particle size distribution, chemical, optical and microphysical properties. We shall provide an overview of the data set that includes original measurements of the vertical profile of the aerosol size distribution with a new small balloon borne OPC called LOAC (Light Optical Aerosol Counter) showing large dust particles (up to 30 µm in diameter) within a thick dust layer between 1 and 5 km above south-eastern France, and original network measurement of weekly dust deposition with a new autonomous deposition sampler called CARAGA (Collecteur Automatique de Retombées Atmosphériques à Grande Autonomie). We shall also present preliminary comparisons of observations with a set of 3D RCM and transport model simulations of dust transport with ALADIN, Meso NH, RegCM, CHIMERE and MOCAGE, and first estimates of the regional and local dust direct SW and LW radiative forcing. Acknowledgements are addressed to CNES for balloon operation, to SAFIRE for ATR42 aircraft operation, to ICARE for satellite products, and to OMP/SEDOO for the ChArMEx data portal. LOAC development has been funded by ANR and CARAGA development by UDDP7. The main sponsors of the campaign were ADEME and INSU for Pre-ChArMEx/TRAQA and EUFAR for VESSAER. Authors are also especially grateful to a long list of scientists who provided technical assistance in this work and to CORSiCA project coordination, INRA and Qualitair Corse for logistic support.
NASA Astrophysics Data System (ADS)
Ulibarri, Z.; Munsat, T.; Dee, R.; Horanyi, M.; James, D.; Kempf, S.; Nagle, M.; Sternovsky, Z.
2017-12-01
Although ice is prevalent in the solar system and the long-term evolution of many airless icy bodies is affected by hypervelocity micrometeoroid bombardment, there has been little experimental investigation into these impact phenomena, especially at the impact speeds encountered in space. For example, there is little direct information about how dust impacts alter the local chemistry, and dust impacts may be an important mechanism for creating complex organic molecules necessary for life. Laser ablation and light-gas gun experiments simulating dust impacts have successfully created amino acid precursors from base components in ice surfaces. Additionally, the Cassini mission revealed CO2 deposits in icy satellites of Saturn, which may have been created by dust impacts. With the creation of a cryogenically cooled ice target for the dust accelerator facility at the NASA SSERVI-funded Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT), it is now possible to study the effects of micrometeoroid impacts in a controlled environment under conditions and at energies typically encountered in nature. Complex ice-target mixtures are created with a flash-freezing target which allows for homogeneous mixtures to be frozen in place even with salt mixtures that otherwise would form inhomogeneous ice surfaces. Coupled with the distinctive capabilities of the IMPACT dust facility, highly valuable data concerning the evolution of icy bodies under hypervelocity bombardment and the genesis of complex organic chemistry on these icy bodies can be gathered in unique and tightly controlled experiments. Results from recent and ongoing investigations will be presented.
Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe
NASA Technical Reports Server (NTRS)
Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.
2013-01-01
We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo
2017-04-01
Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.
NASA Astrophysics Data System (ADS)
Park, Soon-Ung; Ju, Jae-Won; Lee, In-Hye; Joo, Seung Jin
2016-09-01
The optimal regression equations for the dust emission flux parameterized with the friction velocity (u*) only, the friction velocity with the threshold friction velocity (u*t) and the friction velocity together with the flux Richardson number (Rf) in the dust source region are derived using the sonic anemometer measured momentum and kinematic heat fluxes at 8 m height and the two-level (3 m and 15 m height) measured PM10 concentrations from a 20-m monitoring tower located at Naiman in the Asian dust source region in China for the period from March 2013 to November 2014. The analysis period is divided into three sub-periods based on the Normalized Difference Vegetation Index (NDVI) to eliminate the effect of vegetation on the dust emission flux. The dust event is identified as a peak half hourly mean dust concentration (PM10) at 3 m height exceeding the sub-period mean dust concentration plus one standard deviation of the sub-period. The total of 317 dust events is identified with the highest number of dust event of 18.8 times a month in summer. The optimal regression equations of the dust emission flux (Fc) for dust events parameterized with u* and Rf are found to simulate quite well the dust emission flux estimated by the observed data at the site for all periods especially for the unstable stratification, suggesting the potential usefulness of these equations parameterized by u* with Rf rather than those by u* only and u* together with u*t for the estimation of the dust emission flux in the Asian dust source region.
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Malaspina, D.; Gruen, E.; Drake, K.
2013-10-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements is performed to calibrate the impact charge generated from materials specific the STEREO spacecraft and will help to interpret electric field data.
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.
In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.
Systematic on-site monitoring of compliance dust samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grayson, R.L.; Gandy, J.R.
1996-12-31
Maintaining compliance with U.S. respirable coal mine dust standards can be difficult on high-productivity longwall panels. Comprehensive and systematic analysis of compliance dust sample data, coupled with access to the U.S. Bureau of Mines (USBM) DUSTPRO, can yield important information for use in maintaining compliance. The objective of this study was to develop and apply a customized software for the collection, storage, modification, and analysis of respirable dust data while providing for flexible export of data and linking with the USBM`s expert advisory system on dust control. An executable, IBM-compatible software was created and customized for use by the personmore » in charge of collecting, submitting, analyzing, and monitoring respirable dust compliance samples. Both descriptive statistics and multiple regression analysis were incorporated. The software allows ASCH files to be exported and directly links with DUSTPRO. After development and validation of the software, longwall compliance data from two different mines was analyzed to evaluate the value of the software. Data included variables on respirable dust concentration, tons produced, the existence of roof/floor rock (dummy variable), and the sampling cycle (dummy variables). Because of confidentiality, specific data will not be presented, only the equations and ANOVA tables. The final regression models explained 83.8% and 61.1% of the variation in the data for the two panels. Important correlations among variables within sampling cycles showed the value of using dummy variables for sampling cycles. The software proved flexible and fast for its intended use. The insights obtained from use improved the systematic monitoring of respirable dust compliance data, especially for pinpointing the most effective dust control methods during specific sampling cycles.« less
Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2015-01-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184
Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele
2012-11-01
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.
High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.
Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng
2016-07-28
The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team
2017-01-01
The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.
Human Mars Mission Overview and Dust Storm Impacts on Site Selection
NASA Astrophysics Data System (ADS)
Hoffman, S. J.
2017-06-01
This presentation briefly reviews NASA's current approach to human exploration of Mars and key features placed on locations (referred to as Exploration Zones) for these activities. Impacts of dust and dust storms on selecting an EZ are discussed.
The Impact of Mars Atmospheric Dust on Human Health
NASA Astrophysics Data System (ADS)
Kamakolanu, U. G.
2017-06-01
The martian dust impact can be considered as an exposure to ultra fine particles of martian dust. Direct nose to brain pathway of particulate matter can affect the fine motor skills and gross motor skills, cognition may be affected.
Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas
Smirnov, R. D.; Krasheninnikov, S. I.
2017-07-05
The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less
Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, R. D.; Krasheninnikov, S. I.
The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented and discussed their contribution to better understand the impacts of aerosols on regional-to-global climate, hydrological and carbon cycles, and tropospheric chemistry.
Kunz, Bethany K.; Little, Edward E.
2015-01-01
Controlling fugitive dust while protecting natural resources is a challenge faced by all managers of unpaved roads. Unfortunately, road managers choosing between dust control products often have little objective environmental information to aid their decisions. To address this information gap, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collaborated on a field test of three dust control products with the objectives of (a) evaluating product performance under real-world conditions, (b) verifying the environmental safety of products identified as practically nontoxic in laboratory tests, and (c) testing the feasibility of several environmental monitoring techniques for use in dust control tests. In cooperation with refuge staff and product vendors, three products (one magnesium chloride plus binder, one cellulose, and one synthetic fluid plus binder) were applied in July 2012 to replicated road sections at the Hagerman National Wildlife Refuge in Texas. These sections were monitored periodically for 12 months after application. Product performance was assessed by mobile-mounted particulate-matter meters measuring production of fugitive dust and by observations of road conditions. Environmental safety was evaluated through on-site biological observations and leaching tests with samples of treated aggregate. All products reduced dust and improved surface condition during those 12 months. Planned environmental measurements were not always compatible with day-to-day refuge management actions; this incompatibility highlighted the need for flexible biological monitoring plans. As one of the first field tests of dust suppressants that explicitly incorporated biological endpoints, this effort provides valuable information for improving field tests and for developing laboratory or semifield alternatives.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
...The Mine Safety and Health Administration (MSHA) proposes to lower miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners' occupational exposure to respirable coal mine dust. The major provisions of the proposal would lower the existing exposure limit; provide for full-shift sampling; redefine the term ``normal production shift; '' and add reexamination and decertification requirements for persons certified to sample, and maintain and calibrate sampling devices. In addition, the proposed rule would provide for single shift compliance sampling under the mine operator and MSHA's inspector sampling programs, and would establish sampling requirements for use of the Continuous Personal Dust Monitor (CPDM) and expanded requirements for medical surveillance. The proposed rule would significantly improve health protections for this Nation's coal miners by reducing their occupational exposure to respirable coal mine dust and lowering the risk that they will suffer material impairment of health or functional capacity over their working lives.
Jovian dust streams: A monitor of Io's volcanic plume activity
Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.
2003-01-01
Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Simpson, J. A.; Tuzzolino, A. J.
1989-01-01
The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.
An evaluation of the GCA respirable dust monitor 101-1.
Marple, V A; Rubow, K L
1978-01-01
The GCA RDM 101-1 has been evaluated using aerosols of coal, Arizona road dust, silica, potash, and rock (copper ore) particles. The effects of the dust mass concentration, particle size distribution, and dust material on the instrument response were investigated. The instrument was found to measure the mass concentrations of respirable dust aerosols up to about 16 mg/m3 for coal and rock dust and about 20 mg/m3 for silica, potash, and Arizona road dust, providing there is not appreciable mass in the size range below approximateley 0.7 micrometer aerodynamic diameter.
Monitoring Comet 67P/C-G Micrometer Dust Flux: GIADA onboard Rosetta.
NASA Astrophysics Data System (ADS)
Della Corte, Vincenzo; Rotundi, Alessandra; Ivanovski, Stavro; Accolla, Mario; Ferrari, Marco; Sordini, Roberto; Lucarelli, Francesca; Zakharov, Vladimir; Fulle, Marco; Mazzotta Epifani, Elena; López-Moreno, José J.; Rodríguez, Julio; Colangeli, Luigi; Palumbo, Pasquale; Bussoletti, Ezio; Crifo, Jean-Francois; Esposito, Francesca; Green, Simon F.; Grün, Eberhard; Lamy, Philippe L.
2015-04-01
(21)ESA-ESAC, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spagna The MicroBalance System (MBS) is one of the three measurement subsystems of GIADA, the Grain Impact Analyzer and Dust Accumulator on board the Rosetta/ESA spacecraft (S/C). It consists of five Quartz Crystal Microbalances (QCMs) in roughly orthogonal directions providing the cumulative dust flux of grains smaller than 10 microns. The MBS is continuously monitoring comet 67P/CG since the beginning of May 2014. During the first 4 months of measurements, before the insertion of the S/C in the bound orbit phase, there were no evidences of dust accumulation on the QCMs. Starting from the beginning of October, three out of five QCMs measured an increase of the deposited dust. The measured fluxes show, as expected, a strong anisotropy. In particular, the dust flux appears to be much higher from the Sun direction with respect to the comet direction. Acknowledgment: GIADA was built by a consortum led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, in collaboration with the Inst. de Astrofisica de Andalucia, Selex-ES, FI and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with the support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a PI proposal from the University of Kent; sci. & tech. contribution were provided by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their out-standing work. Science support provided was by NASA through the US Rosetta Project managed by the Jet Propulsion Laboratory/ California Institute of Technology. GIADA calibrated data will be available through ESA's PSA web site (www.rssd.esa.int/index.php? project=PSA&page=in dex). We would like to thank Angioletta Coradini for her contribution as a GIADA Co-I.
The Fox Guarding the Chicken Coop: Monitoring Exposure to Respirable Coal Mine Dust, 1969–2000
Weeks, James L.
2003-01-01
Following passage of the Coal Mine Health and Safety Act of 1969, underground coal mine operators were required to take air samples in order to monitor compliance with the exposure limit for respirable dust, a task essential for the prevention of pneumoconiosis among coal workers. Miners objected, claiming that having the mine operators perform this task was like “having the fox guard the chicken coop.” This article is a historical narrative of mining industry corruption and of efforts to reform the program of monitoring exposure to coal mine dust. Several important themes common to the practice of occupational health are illustrated; most prominently, that employers should not be expected to regulate themselves. PMID:12893602
Investigations of Wind/WAVES Dust Impacts
NASA Astrophysics Data System (ADS)
St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.
2017-12-01
The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year lifetime. We found a statistically significant and consistent trend of count rate deficits during the ICMEs compared to the periods immediately before and after the ICMEs. These preliminary results suggest that ICMEs may scatter micron-sized dust, or that they may exclude it during their initiation.
Impact of Asian Dust on Climate and Air Quality
NASA Technical Reports Server (NTRS)
Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin
2010-01-01
Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.
Searching for Biosignatures in Exoplanetary Impact Ejecta.
Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L; Neubeck, Anna; Olofsson, Göran
2017-08-01
With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary dust-Remote sensing. Astrobiology 17, 721-746.
NASA Astrophysics Data System (ADS)
He, Q.; Matimin, A.; Yang, X.
2016-12-01
TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.
Improving Air Pollution Modeling Over The Po Valley Using Saharan Dust Transport Forecasts
NASA Astrophysics Data System (ADS)
Kishcha, P.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Nickovic, S.; Alpert, P.
2012-04-01
Our study shows that Saharan dust can contribute significantly to PM10 concentrations in the Po Valley. This dust contribution should be taken into account when estimating the exceedance of pollution limits. The DREAM dust model has been used for several years for producing operational dust forecasts at Tel-Aviv University, Israel. DREAM has been producing daily forecasts of 3-D distribution of dust concentrations over the Mediterranean region, Middle East, Europe, and over the Atlantic Ocean (http://wind.tau.ac.il/dust8/dust.html). In the current study, DREAM dust forecasts were used to give better model estimates of the contribution of Saharan dust to PM10 concentration over the Po Valley, in Northern Italy. This was carried out by the integration of daily Saharan dust forecasts into a mesoscale Transport Chemical Aerosol Model (TCAM). The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. Our study of TCAM and DREAM integration was carried out for the period May 15 - June 30, 2007, when four significant dust events were observed. The integrated TCAM-DREAM model performance was evaluated by comparing PM10 measurements with modeled PM10 concentrations. First, Saharan dust impact on TCAM performance was analyzed at eleven remote PM10 sites which had the lowest level of air pollution (PM10 ≤ 14 μg/m3) over the period under consideration. For those remote sites, the observed high PM10 concentrations during dust events stood prominently on the background of low PM10 concentrations. At the remote sites, such a strong deviation from the background level can not be attributed to anthropogenic aerosol emissions because of their distance from anthropogenic sources. The observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. During all dust events under consideration, the integrated TCAM-DREAM model produced more accurate PM10 concentrations than the base TCAM model. Then, a comparison between modeled concentrations and PM10 measurements was carried out at 230 PM10 monitoring sites, distributed within the model domain. This model-vs.-measurement comparison showed that the integrated TCAM -DREAM model more accurately reproduced PM10 concentrations than the base TCAM model, both in term of correlation and mean error. Our results are of importance to countries which have to pay a penalty for exceeding the pollution limit. By extracting dust contribution from PM10 measurements, these countries could show lower rates of man-made pollution.
A refined method of modeling atmospheric dust concentrations due to wind erosion was developed using real-time saltation flux measurements and ambient dust monitoring data at Owens Lake, California. This modeling method may have practical applications for modeling the atmospheric...
Laboratory investigation of dust impacts induced signals on antennas in space
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Collette, A.; Malaspina, D.; Gruen, E.; Sternovsky, Z.
2014-12-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements was aimed at the understanding of the charge yield of impact-generated plasmas from common materials used on spacecraft, i.e. BeCu, germanium coated black Kapton, MLI, and solar cells. The measurements show that at 10 km/s these materials yield similar charge signals. At higher speeds (~50 km/s) the variation is with material increases. The impact charge is also found to depend on angle of incidence; the data suggest a maximum at 45 degrees. The second set of measurements investigates the variation of the induced dust signal with bias potential applied on the simulated spacecraft.
Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Nikolich, George; McCurdy, Greg
On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley north east of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DoD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a nonnuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contaminationmore » (Shreve, 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DoD. Various radiological surveys have been performed in the area and in 2007, the DOE expanded the demarked contamination area by posting signs 200 to 400 feet (60 to 120 meters) outside of the original fence. Plutonium in soil is thought to attach preferentially to smaller particles. Therefore, redistribution of soil particulates by wind (dust) is the mechanism most likely to transport plutonium beyond the boundary of the Project 57 contamination area. In 2011, DRI installed two instrumentation towers to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination was detectable in samples of airborne dust and characterize meteorological and environmental parameters that influence dust transport. Collected data also permits comparison of radiological conditions at the Project 57 monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Biweekly samples of airborne particulates are submitted for laboratory assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and environmental parameters. Although winds sufficient to generate significant amounts of dust occur at the Project 57 site, they are infrequent and of short duration. Additionally, the potential for wind transport of dust is dependent on other parameters whose influence have not yet been assessed.« less
Respirable dust measured downwind during rock dust application.
Harris, M L; Organiscak, J; Klima, S; Perera, I E
2017-05-01
The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.
Cauda, Emanuele; Miller, Arthur; Drake, Pamela
2017-01-01
The exposure to respirable crystalline silica (RCS) in the mining industry is a recognized occupational hazard. The assessment and monitoring of the exposure to RCS is limited by two main factors: (1) variability of the silica percent in the mining dust and (2) lengthy off-site laboratory analysis of collected samples. The monitoring of respirable dust via traditional or real-time techniques is not adequate. A solution for on-site quantification of RCS in dust samples is being investigated by the Office of Mine Safety and Health Research, a division of the National Institute for Occupational Safety and Health. The use of portable Fourier transform infrared analyzers in conjunction with a direct-on-filter analysis approach is proposed. The progress made so far, the necessary steps in progress, and the application of the monitoring solution to a small data set is presented. When developed, the solution will allow operators to estimate RCS immediately after sampling, resulting in timelier monitoring of RCS for self-assessment of compliance at the end of the shift, more effective engineering monitoring, and better evaluation of control technologies. PMID:26558490
Mineral Dust Instantaneous Radiative Forcing in the Arctic
NASA Astrophysics Data System (ADS)
Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.
2018-05-01
Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.
Asteroids and Comets Outreach Compilation
NASA Technical Reports Server (NTRS)
1999-01-01
Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.
Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng
2013-06-01
The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.
Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens
Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.
2017-01-01
Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328
Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).
Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien
2017-12-19
Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.
Dust density and mass distribution near comet Halley from Giotto observations
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Alexander, W. M.; Burton, W. M.; Bussoletti, E.; Clark, D. H.; Grard, J. L.; Gruen, E.; Hanner, M. S.; Sekanina, Z.; Hughes, D. W.
1986-01-01
The density and the mass spectrum of the dust near comet Halley have been measured by the Giotto space probe's dust impact detection system. The dust spectrum obtained at 291,000 km from the comet nucleus show depletion in small and intermediate masses; at about 600 km from the nucleus, however, the dust activity rises and the spectrum is dominated by larger masses. Most of the mass striking Giotto is noted to reside in the few large particles penetrating the dust shield. Momentum balances and energy considerations applied to an observed deceleration suggest that a large mass of the spacecraft was detached by an impact.
NASA Astrophysics Data System (ADS)
Marquis, J. W.; Campbell, J. R.; Oyola, M. I.; Ruston, B. C.; Zhang, J.
2017-12-01
This is part II of a two-part series examining the impacts of aerosol particles on weather forecasts. In this study, the aerosol indirect effects on weather forecasts are explored by examining the temperature and moisture analysis associated with assimilating dust contaminated hyperspectral infrared radiances. The dust induced temperature and moisture biases are quantified for different aerosol vertical distribution and loading scenarios. The overall impacts of dust contamination on temperature and moisture forecasts are quantified over the west coast of Africa, with the assistance of aerosol retrievals from AERONET, MPL, and CALIOP. At last, methods for improving hyperspectral infrared data assimilation in dust contaminated regions are proposed.
Hypervelocity Dust Impacts in Space and the Laboratory
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team
2013-10-01
Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.
Halterman, Andrew; Sousan, Sinan; Peters, Thomas M
2017-12-15
In 2016, the Mine Safety and Health Administration required the use of continuous monitors to measure respirable dust in mines and better protect miner health. The Personal Dust Monitor, PDM3700, has met stringent performance criteria for this purpose. In a laboratory study, respirable mass concentrations measured with the PDM3700 and a photometer (personal DataRam, pDR-1500) were compared to those measured gravimetrically for five aerosols of varying refractive index and density (diesel exhaust fume, welding fume, coal dust, Arizona road dust (ARD), and salt [NaCl] aerosol) at target concentrations of 0.38, 0.75, and 1.5 mg m-3. For all aerosols except coal dust, strong, near-one-to-one, linear relationships were observed between mass concentrations measured with the PDM3700 and gravimetrically (diesel fume, slope = 0.99, R2 = 0.99; ARD, slope = 0.98, R2 = 0.99; and NaCl, slope = 0.95, R2 = 0.99). The slope deviated substantially from unity for coal dust (slope = 0.55; R2 = 0.99). Linear relationships were also observed between mass concentrations measured with the pDR-1500 and gravimetrically, but one-to-one behavior was not exhibited (diesel fume, slope = 0.23, R2 = 0.76; coal dust, slope = 0.54, R2 = 0.99; ARD, slope = 0.61, R2 = 0.99; NaCl, slope = 1.14, R2 = 0.98). Unlike the pDR-1500, mass concentrations measured with the PDM3700 appear independent of refractive index and density, suggesting that it could have applications in a variety of occupational settings. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.
Impact-Mobilized Dust in the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.
2002-01-01
We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.
NASA Astrophysics Data System (ADS)
Champlain, A.; Matéo-Vélez, J.-C.; Roussel, J.-F.; Hess, S.; Sarrailh, P.; Murat, G.; Chardon, J.-P.; Gajan, A.
2016-01-01
Recent high-altitude observations, made by the Lunar Dust Experiment (LDEX) experiment on board LADEE orbiting the Moon, indicate that high-altitude (>10 km) dust particle densities are well correlated with interplanetary dust impacts. They show no evidence of high dust density suggested by Apollo 15 and 17 observations and possibly explained by electrostatic forces imposed by the plasma environment and photon irradiation. This paper deals with near-surface conditions below the domain of observation of LDEX where electrostatic forces could clearly be at play. The upper and lower limits of the cohesive force between dusts are obtained by comparing experiments and numerical simulations of dust charging under ultraviolet irradiation in the presence of an electric field and mechanical vibrations. It is suggested that dust ejection by electrostatic forces is made possible by microscopic-scale amplifications due to soil irregularities. At low altitude, this process may be complementary to interplanetary dust impacts.
A planetary dust ring generated by impact-ejection from the Galilean satellites
NASA Astrophysics Data System (ADS)
Sachse, Manuel
2018-03-01
All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
A STUDY OF DUST AND GAS AT MARS FROM COMET C/2013 A1 (SIDING SPRING)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis
Although the nucleus of comet C/2013 A1 (Siding Spring) will safely pass Mars in 2014 October, the dust in the coma and tail will more closely approach the planet. Using a dynamical model of comet dust, we estimate the impact fluence. Based on our nominal model no impacts are expected at Mars. Relaxing our nominal model's parameters, the fluence is no greater than ∼10{sup –7} grains m{sup –2} for grain radii larger than 10 μm. Mars-orbiting spacecraft are unlikely to be impacted by large dust grains, but Mars may receive as many as ∼10{sup 7} grains, or ∼100 kg of total dust.more » We also estimate the flux of impacting gas molecules commonly observed in comet comae.« less
Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling
NASA Technical Reports Server (NTRS)
Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten
2017-01-01
Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... be appropriate to use on a short-term basis. 13. The proposed rule addresses (1) which occupations... for respirable coal mine dust, provide for full- shift sampling, redefine the term ``normal production... respect to their availability. If shorter or longer timeframes are recommended, please provide the...
Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates
Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y.; Sáez, A. Eduardo; Betterton, Eric A.
2014-01-01
Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (> 4 m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193
Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2018-02-01
The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.
Study of dust in the vicinity of Dione using the Voyager 1 plasma wave instrument
NASA Technical Reports Server (NTRS)
Tsintikidis, D.; Kurth, W. S.; Gurnett, D. A.; Barbosa, D. D.
1995-01-01
The flyby of Voyager 1 at Saturn yielded the detection of a large variety of plasma waves, for example, chorus, hiss, and electron cyclotron harmonics. Just before the outbound equator crossing, the Voyager 1 plasma wave instrument detected a strong, well-defined low-frequency enhancement in signal levels. Initially, it was thought that this enhancement was due to plasma waves, but more recently it was suggested that dust impacts might be at least partial contributors. In this report we present evidence that dust impacts are partly responsible for the low-frequency enhancement. A new method of analysis which relies mainly on the 16-channel spectrum analyzer has been used to derive the dust impact rate. The available wideband waveform observations (which have been used previously to study dust impacts) were useful for calibrating the impact rate from the spectrum analyzer data. The mass and hence size of the dust particles were also obtained by analyzing the response of the plasma wave spectrum and analyzer. The results show that the region sampled by Voyager 1 is populated by dust particles that have rms masses of up to a few times 10(exp -11) g and sizes of up to a few microns. The dust particle number density is of the order of 10(exp -3)/cu m. The optical depth of the region sampled by the spacecraft is approximately 10(exp -6). The particle population is centered at 2470 (+/- 150) km south of the equatorial plane and has a north-south FWHM (full-width, half-maximum) thickness of 4130 (+/- 450) km. The dust may be part of the E ring or a localized ringlet assoicated with Dione.
Miller, David M.; Amoroso, Lee
2007-01-01
Introduction As part of a U.S. Geological Survey (USGS) monitoring plan to evaluate the environmental impact of off-highway vehicle (OHV) use on Bureau of Land Management (BLM) land in California, this report presents results of geologic studies in the Dove Spring OHV Open Area. This study produced baseline data, which when combined with historic and current patterns of land use, forms the basis for vegetation and wildlife monitoring designed to address the following questions: 1. Is the density and length of OHV routes increasing? 2. Are there cumulative effects of past and current OHV use associated with changes in the environmental integrity of soils, plants, and wildlife? 3. Is the spread of invasive species associated with levels of OHV use? 4. Is there a threshold of OHV impact that might be translated to management action by the BLM? The monitoring studies will be used to collect baseline environmental information to determine levels of environmental impact of OHV use. This approach will use a low-impact area as a proxy for pre-impact conditions (substituting space for time) to determine thresholds of OHV impacts beyond which environmental integrity is affected. Indicators of environmental integrity will emphasize factors that are fundamental to ecosystem structure and function and likely to be sensitive to OHV impacts. Surficial geology is studied because material properties such as texture and chemistry strongly control soil moisture and nutrient availability and therefore affect plant growth and distribution. An understanding of surficial geology can be used to predict and extrapolate soil properties and improve understanding of vegetation assemblages and their distribution. In the present study, vegetation associations may be examined as a function of surficial geology as well as other environmental variables such as slope, aspect, NRCS (National Resources Conservation Service) soil classification, elevation, and land-use history. Ground measurements of vegetation, biological soil crusts, compaction, and other information may be correlated with land use to identify possible ecological thresholds in OHV use that require monitoring. Surficial geology is relevant for several other studies of OHV impact, such as soil compaction, dust emissions, and acceleration of erosion. Compaction, reduced infiltration, and accelerated erosion have been documented in Dove Spring Canyon because of OHV use (Snyder and others, 1976) and elsewhere in the Mojave Desert (e.g., Webb, 1983; Langdon, 2000). A surficial geologic map enables the use of geomorphic process models, which when combined with measured soil properties, such as texture, nutrient chemistry, and bulk density, allows spatial extrapolation of the properties. Maps can be produced that predict compaction susceptibility, moisture conditions, dust emissions, flood hazards, and erodibility, among other applications.
NASA Astrophysics Data System (ADS)
Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.
2017-12-01
Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.
Dust on Snow Processes and Impacts in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Skiles, M.; Painter, T. H.; Okin, G. S.
2015-12-01
In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.
The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet
NASA Astrophysics Data System (ADS)
Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.
2017-12-01
With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.
NASA Astrophysics Data System (ADS)
Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.
2015-12-01
An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in regional climate modeling and the potential impact on climate predictions, and is the first large scale climate model-measurement verification of aerosols over Africa that we are aware of. CCAM is widely used for regional climate modeling applications, and we also discuss further improvements to the aerosol parameterizations based on our results.
Development of A Dust Climate Indicator for the US National Climate Assessment
NASA Astrophysics Data System (ADS)
Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.
2016-12-01
Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
NASA Technical Reports Server (NTRS)
Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.
2013-01-01
We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.
NASA Astrophysics Data System (ADS)
Szalay, Jamey Robert
Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.
The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)
NASA Astrophysics Data System (ADS)
Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.
2017-12-01
Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.
NASA Astrophysics Data System (ADS)
Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.
2015-12-01
Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.
A smart dust biosensor powered by kinesin motors.
Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry
2009-03-01
Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.
Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D
2016-01-01
The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.
Desert dust hazards: A global review
NASA Astrophysics Data System (ADS)
Middleton, N. J.
2017-02-01
Dust storms originate in many of the world's drylands and frequently present hazards to human society, both within the drylands themselves but also outside drylands due to long-range transport of aeolian sediments. Major sources of desert dust include the Sahara, the Middle East, central and eastern Asia, and parts of Australia, but dust-raising occurs all across the global drylands and, on occasion, beyond. Dust storms occur throughout the year and they vary in frequency and intensity over a number of timescales. Long-range transport of desert dust typically takes place along seasonal transport paths. Desert dust hazards are here reviewed according to the three phases of the wind erosion system: where dust is entrained, during the transport phase, and on deposition. This paper presents a synthesis of these hazards. It draws on empirical examples in physical geography, medical geology and geomorphology to discuss case studies from all over the world and in various fields. These include accelerated soil erosion in agricultural zones - where dust storms represent a severe form of accelerated soil erosion - the health effects of air pollution caused by desert aerosols via their physical, chemical and biological properties, transport accidents caused by poor visibility during desert dust events, and impacts on electricity generation and distribution. Given the importance of desert dust as a hazard to human societies, it is surprising to note that there have been relatively few attempts to assess their impact in economic terms. Existing studies in this regard are also reviewed, but the wide range of impacts discussed in this paper indicates that desert dust storms deserve more attention in this respect.
Skinner, Charles H [Lawrenceville, NJ
2006-05-02
An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.
Bhattachan, Abinash; D'Odorico, Paolo
2014-01-01
The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts. PMID:25109703
NASA Astrophysics Data System (ADS)
Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.
2015-12-01
Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.
Monitoring pulsating giant stars in M33: star formation history and chemical enrichment
NASA Astrophysics Data System (ADS)
Javadi, A.; van Loon, J. Th
2017-06-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].
Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2
NASA Astrophysics Data System (ADS)
Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.
2003-10-01
The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.
2012-04-11
warning of seal leakage or deterioration of air filters, thereby reducing engine damage and improving vehicle operational readiness. To be effective , the...for a comprehensive early warning and health management solution. To address the need for an effective dust detector for the AGT1500 engine and M1...an optical dust sensor for real-time continuous monitoring, and its effectiveness in quantitatively measuring dust penetration in the AGT1500 engine
NASA Astrophysics Data System (ADS)
Stephens, G.; McNamara, D.; Taylor, J.
2002-12-01
Wind blown dust can be a hazard to transportation, industrial, and military operations, and much work has been devoted to its analysis and prediction from a meteorological viewpoint. The detection and forecasting of dust outbreaks in near real time is difficult, particularly in remote desert areas with sparse observation networks. The Regional Haze Regulation, passed by Congress in 1999, mandates a reduction in man made inputs to haze in 156 Class I areas (national parks and wilderness areas). Studies have demonstrated that satellite data can be useful in detection and tracking of dust storms. Environmental satellites offer frequent coverage of large geographic areas. The National Environmental Satellite, Data, and Information Service (NESDIS) of the U.S. National Oceanic and Atmospheric Administration (NOAA) operates a system of polar orbiting and geostationary environmental satellites, which sense data in two visible and three infrared channels. Promising results in the detection of airborne dust have been obtained using multispectral techniques to combine information from two or more channels to detect subtle spectral differences. One technique, using a ratio of two thermal channels, detects the presence of airborne dust, and discriminates it from both underlying ground and meteorological clouds. In addition, NESDIS accesses and is investigating for operational use data from several other satellites. The Total Ozone Mapping Spectrometer on board NASA's Earth Probe mission provides an aerosol index product which can detect dust and smoke, and the Moderate Resolution Imaging Spectroradiometer on NASA's Terra and Aqua satellites provide several channels which can detect aerosols in multispectral channel combinations. NESDIS, in cooperation with NOAA's Air Resources Laboratory, produces a daily smoke transport forecast, combining satellite derived smoke source points with a mathematical transport prediction model; such a scheme could be applied to other aerosol particles such as dust. Techniques effective for the monitoring of airborne dust are used operationally by NESDIS and the National Centers for Environmental Prediction at the Washington Volcanic Ash Advisory Center, which monitors the presence of airborne volcanic ash, optically similar to airborne dust.
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Nichol, Janet Elizabeth; Lee, Kwon Ho
2010-10-01
Hong Kong, a commercial and financial city located in south-east China has suffered serious air pollution for the last decade due largely to rapid urban and industrial expansion of the cities of mainland China. However, the potential sources and pathways of aerosols transported to Hong Kong have not been well researched due to the lack of air quality monitoring stations in southern China. Here, an integrated method combining the AErosol RObotic NETwork (AERONET) data, trajectory and Potential Source Contribution Function (PSCF) modeling is used to identify the potential transport pathways and contribution of sources from four characteristic aerosol types. Four characteristic aerosol types were defined using a total of 730 AERONET data measurements between 2005 and 2008. They are coastal urban, polluted urban, dust (likely to be long distance desert dust), and heavy pollution. Results show that the sources of polluted urban and heavy pollution are associated with industrial emissions in southern China, whereas coastal urban aerosols have been affected both from natural marine aerosol and emissions. The PSCF map of dust shows a wide range of pathways followed by east- and south-eastwards trajectories from northwest China to Hong Kong. Although the contribution from dust sources is small compared to the anthropogenic aerosols, a serious recent dust outbreak has been observed in Hong Kong with an elevation of the Air Pollution Index to 500, compared with 50-100 on normal days. Therefore, the combined use of clustered AERONET data, trajectory and the PSCF models can help to resolve the longstanding issue about source regions and characteristics of pollutants carried to Hong Kong.
Mesospheric dust observations during the MAXIDUSTY campaign
NASA Astrophysics Data System (ADS)
Antonsen, Tarjei; Havnes, Ove; Fredriksen, Åshild; Friedrich, Martin; Sternovsky, Zoltan; Plane, John; Hartquist, Tom; Olsen, Sveinung; Eilertsen, Yngve; Trondsen, Espen; Mann, Ingrid; Hedin, Jonas; Gumbel, Jörg; Moen, Jøran; Latteck, Ralph; Baumgarten, Gerd; Höffner, Josef; Williams, Bifford; Hoppe, Ulf-Peter; Karlberg, Jan-Ove
2017-04-01
The MAXIDUSTY rocket payloads, launched from Andøya June 30 and July 8 2016, were equipped with dust impact detectors aiming to characterize mesospheric dust charge state, mass distribution of impact fragments and NLC/PMSE structure. One of the main scientific objectives for the campaign was to confirm that material of meteoric origin is abundant inside the icy mesospheric dust particles. The rockets were launched simultaneously with PMSE and NLC (MAXIDUSTY-1) and PMSE (MAXIDUSTY-1B) respectively, and radar measurements were made coincident with the rocket flight path. We report here on the initial results from the rocket probes and remote soundings, with emphasis on the dust impact detector results. Results from the Multiple Dust Detector (MUDD) confirm that NLC ice particles probably have a relatively high content of meteoric smoke particles with a filling factor of up to several percent. Comparisons of the DUSTY faraday bucket and PMSE show that there is no simple correlation between the two.
Tungsten dust impact on ITER-like plasma edge
Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...
2015-01-12
The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less
The composition and plasma signature of a large dust impact on the Giotto spacecraft
NASA Technical Reports Server (NTRS)
Goldstein, R.; Goldstein, B. E.; Balsiger, H.; Coates, A. J.; Curdt, W.
1991-01-01
At about 14,800 km from the Comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief (about 30 to 500 ms) event: the ion-mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors. The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large (5 mg or more) dust-particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. The report combines direct measurements of the composition and dynamics of a dust-impact plasma cloud, the dust particle mass, and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compared, and was composed of one or more of: carbon, nitrogen, and silicon.
Physics of spacecraft-based interplanetary dust collection by impact into low-density media
NASA Technical Reports Server (NTRS)
Anderson, William W.; Ahrens, T. J.
1994-01-01
A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.
NASA Astrophysics Data System (ADS)
Jasmin Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus
2016-10-01
Impact ionization experiments have been performed since more than 40 years for calibrating cosmic dust detectors. A linear Van de Graaff dust accelerator was used to accelerate the cosmic dust analogues of submicron to micron-size to speeds up to 80 km s^-1. Different materials have been used for calibration: iron, carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, a comparative analysis of dust impacts of equal material but different density is necessary: porous or aggregate-like particles are increasingly found to be present in the solar system: e.g. dust from comet 67P Churyumov-Gerasimenko [Fulle et al 2015], aggregate particles from the plumes of Enceladus [Gao et al 2016], and low-density interstellar dust [Westphal 2014 et al, Sterken et al 2015]. These recalibrations are relevant for measuring the size distributions of interplanetary and interstellar dust and thus mass budgets like the gas-to-dust mass ratio in the local interstellar cloud.We report about the calibrations that have been performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge. We used the Cassini Cosmic Dust Analyzer for the target, and compared hollow versus compact silica particles in our study as a first attempt to investigate experimentally the influence of dust density on the signals obtained. Also, preliminary tests with carbon aerogel were performed, and (unsuccessful) attempts to accelerate silica aerogel. In this talk we explain the motivation of the study, the experiment set-up, the preparation of — and the materials used, the results and plans and recommendations for future tests.Fulle, M. et al 2015, The Astrophysical Journal Letters, Volume 802, Issue 1, article id. L12, 5 pp. (2015)Gao, P. et al 2016, Icarus, Volume 264, p. 227-238Westphal, A. et al 2014, Science, Volume 345, Issue 6198, pp. 786-791 (2014)Sterken, V.J. et al 2015, The Astrophysical Journal, Volume 812, Issue 2, article id. 141, 24 pp. (2015)
Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products
NASA Astrophysics Data System (ADS)
Torres, Omar; Bhartia, Pawan K.; Jethva, Hiren; Ahn, Changwoo
2018-05-01
Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor's viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI's spatial coverage. It currently affects about half of the instrument's 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved aerosol optical depth (AOD), single scattering albedo (SSA) and the UV Aerosol Index (UVAI) using the 2005-2007 three-year period prior to the onset of the row anomaly. Regional monthly average values calculated using viewing positions 1 through 30 were compared to similarly obtained values using positions 31 through 60, with the expectation of finding close agreement between the two calculations. As expected, mean monthly values of AOD and SSA obtained with these two scattering-angle dependent subsets of OMI observations agreed over regions where carbonaceous or sulphate aerosol particles are the predominant aerosol type. However, over arid regions, where desert dust is the main aerosol type, significant differences between the two sets of calculated regional mean values of AOD were observed. As it turned out, the difference in retrieved desert dust AOD between the scattering-angle dependent observation subsets was due to the incorrect representation of desert dust scattering phase function. A sensitivity analysis using radiative transfer calculations demonstrated that the source of the observed AOD bias was the spherical shape assumption of desert dust particles. A similar analysis in terms of UVAI yielded large differences in the monthly mean values for the two sets of calculations over cloudy regions. On the contrary, in arid regions with minimum cloud presence, the resulting UVAI monthly average values for the two sets of observations were in very close agreement. The discrepancy under cloudy conditions was found to be caused by the parameterization of clouds as opaque Lambertian reflectors. When properly accounting for cloud scattering effects using Mie theory, the observed UVAI angular bias was significantly reduced. The analysis discussed here has uncovered important algorithmic deficiencies associated with the model representation of the angular dependence of scattering effects of desert dust aerosols and cloud droplets. The resulting improvements in the handling of desert dust and cloud scattering have been incorporated in an improved version of the OMAERUV algorithm.
1991-04-01
AD-A239 132 PL -TR-91-2065 A CHARACTERIZATION OF THE HOT INFRARED BACKGROUND: THE INFRARED CIRRUS, ZODIACAL DUST BANDS, AND SOLAR SYSTEM DUST TRAILS F...addressee is no longer employed by your organization, please notify OL-AA PL /IMA, Hanscom AFB, MA 01731. This will assist us in maintaining a current...DECLASSIFICATION /DOWNGRADING SCHEDULE Distribution unlimited 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) PL -TR-91-2065 6a
LED mini-lidar as minimum setup
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo
2014-10-01
The LED mini-lidar has been designed and demonstrated as the near range atmosphere monitoring, dust and gas detections. The LED lamp is used as a lidar light source. It is not a special one, and just used as a small status indicator or a spot luminaire. For the atmospheric monitoring in the near range of a few hundreds meters, the energy of 1nJ (=100mW/10ns) is enough for lidar observation in the nighttime. The LED lamp is excited at the high repetition frequency of < 1MHz. The signal-to-noise ratio can be increased by this high frequency even if the receiving photons are a little at each pulse. It is adequate because the spatiotemporal scale of the low-altitude atmosphere is small of a ten seconds and a few tens meters. To pursue such quick motion of the atmosphere and dust, the high-speed photon counter has been developed. It can act with BIN width of 4ns (Spatial resolution 0.6m) at the repetition frequency of <500kHz. The LED mini-lidar has been demonstrated to monitor the actual atmosphere of the observation range of <500m in the nighttime and <100m in the daytime with the receiving lens of 200mmφ. The interest approach is tired to distinguish the dust characteristics by using the counting rate of dust echoes. It is effective in the case that the dust material is given. And for trial, the LED mini-Raman-lidar is developed to monitor certain gas detection in near distance, too.
High velocity collisions between large dust aggregates at the limit for growing planetesimals
NASA Astrophysics Data System (ADS)
Wurm, G.; Teiser, J.; Paraskov, G.
2007-08-01
Planetesimals are km-size bodies supposed to be formed in protoplanetary disks as planetary precursors [1]. The most widely considered mechanism for their formation is based on mutual collisions of smaller bodies, a process which starts with the aggregation of (sub)-micron size dust particles. In the absence of events that lithify the growing dust aggregates, only the surface forces between dust particles provide adhesion and internal strength of the objects. It has been assumed that this might be a disadvantage as dust aggregates are readily destroyed by rather weak collisions. In fact, experimental research on dust aggregation showed that for collisions in the m/s range (sub)-mm size dust aggregates impacting a larger body do show a transition from sticking to rebound and/or fragmentation in collisions and no growth occurs at the large velocities [2, 3]. This seemed to be incompatible with typical collision velocities of small dust aggregates with m-size bodies which are expected to be on the order 50 m/s in protoplanetary disks [4]. We recently found that the experimental results cannot be scaled from m/s to tens of m/s collisions. In contrast to the assumptions and somewhat counterintuitive, it is the fragility of dust aggregates that allows growth at higher collision velocities. In impact experiments Wurm et al. [5] showed that between 13 m/s and 25 m/s a larger compact (target) body consisting of micron-size SiO2 dust particles accreted 50 % of the mass of a 1 cm dust projectile consisting of the same dust. For slower impacts the projectile only rebounded or fragmented slightly.
Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory
NASA Astrophysics Data System (ADS)
Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.
2008-09-01
Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.
Dust Ejection Induced by Small Meteoroids Impacting Martian Surface
NASA Technical Reports Server (NTRS)
Shuvalov, Valery
2001-01-01
The objective of this study is numerical modeling of meteoroid impact on the martian surface and determination of the resulting dust cloud parameters. Additional information is contained in the original extended abstract.
Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.
1990-01-01
This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.
High Latitude Dust Sources, Transport Pathways and Impacts
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Baddock, M. C.; Darlington, E.; Mockford, T.; Van-Soest, M.
2017-12-01
Estimates from field studies, remote sensing and modelling all suggest around 5% of global dust emissions originate in the high latitudes (≥50°N and ≥40°S), a similar proportion to that from the USA (excluding Alaska) or Australia. This paper identifies contemporary sources of dust within the high latitudes and their role within local, regional and hemispherical environmental systems. Field data and remote sensing analyses are used to identify the environmental and climatic conditions that characterize high latitude dust sources in both hemispheres. Examples from Arctic and sub-Arctic dust sources are used to demonstrate and explain the different regional relationships among dust emissions, glacio-fluvial dynamics and snow cover. The relative timing of dust input to high latitude terrestrial, cryospheric and marine systems determines its short to medium term environmental impact. This is highlighted through quantifying the importance of locally-redistributed dust as a nutrient input to high latitude soils and lakes in West Greenland.
Searching for Biosignatures in Exoplanetary Impact Ejecta
NASA Astrophysics Data System (ADS)
Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L.; Neubeck, Anna; Olofsson, Göran
2017-08-01
With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future.
The Regional Environmental Impacts of Atmospheric Aerosols over Egypt
NASA Astrophysics Data System (ADS)
Zakey, Ashraf; Ibrahim, Alaa
2015-04-01
Identifying the origin (natural versus anthropogenic) and the dynamics of aerosols over Egypt at varying temporal and spatial scales provide valuable knowledge on the regional climate impacts of aerosols and their ultimate connections to the Earth's regional climate system at the MENA region. At regional scale, Egypt is exposed to air pollution with levels exceeding typical air-quality standards. This is particularly true for the Nile Delta region, being at the crossroads of different aerosol species originating from local urban-industrial and biomass-burning activities, regional dust sources, and European pollution from the north. The Environmental Climate Model (EnvClimA) is used to investigate both of the biogenic and anthropogenic aerosols over Egypt. The dominant natural aerosols over Egypt are due to the sand and dust storms, which frequently occur during the transitional seasons (spring and autumn). In winter, the maximum frequency reaches 2 to 3 per day in the north, which decreases gradually southward with a frequency of 0.5-1 per day. Monitoring one of the most basic aerosol parameters, the aerosol optical depth (AOD), is a main experimental and modeling task in aerosol studies. We used the aerosol optical depth to quantify the amount and variability of aerosol loading in the atmospheric column over a certain areas. The aerosols optical depth from the model is higher in spring season due to the impacts of dust activity over Egypt as results of the westerly wind, which carries more dust particles from the Libyan Desert. The model result shows that the mass load of fine aerosols has a longer life-time than the coarse aerosols. In autumn season, the modelled aerosol optical depth tends to increase due to the biomass burning in the delta of Egypt. Natural aerosol from the model tends to scatter the solar radiation while most of the anthropogenic aerosols tend to absorb the longwave solar radiation. The overall results indicate that the AOD is lowest in winter due to airborne particles washed out by rain events. Conversely, the AOD increases in summer because particle accumulation is favored by the absence of precipitation during this season. Moreover, in summer, photochemical processes in the atmosphere lead to slight increases in the values of aerosol optical characteristics, despite lower wind speeds [hence less wind-blown dust] relative to other seasons. This study has been conducted under the PEER 2-239 research project titled "the Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website: CleanAirEgypt.org
Possible influence of dust on hurricane genesis
NASA Astrophysics Data System (ADS)
Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike
2014-05-01
Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned a more influencing role on TC genesis in the simulations with active dust. Despite dust is seeming to have a negative influence on TC genesis, the relative importance of dust compared to the sea surface temperature (SST) cannot be determined thoroughly. This is largely due to a similar pattern of SST and dust off the west coast of Africa, so that possible effects of dust and SST could hardly be separated.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.;
2005-01-01
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh
2010-01-01
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
Silica dust exposure: Effect of filter size to compliance determination
NASA Astrophysics Data System (ADS)
Amran, Suhaily; Latif, Mohd Talib; Khan, Md Firoz; Leman, Abdul Mutalib; Goh, Eric; Jaafar, Shoffian Amin
2016-11-01
Monitoring of respirable dust was performed using a set of integrated sampling system consisting of sampling pump attached with filter media and separating device such as cyclone or special cassette. Based on selected method, filter sizes are either 25 mm or 37 mm poly vinyl chloride (PVC) filter. The aim of this study was to compare performance of two types of filter during personal respirable dust sampling for silica dust under field condition. The comparison strategy focused on the final compliance judgment based on both dataset. Eight hour parallel sampling of personal respirable dust exposure was performed among 30 crusher operators at six quarries. Each crusher operator was attached with parallel set of integrated sampling train containing either 25 mm or 37 mm PVC filter. Each set consisted of standard flow SKC sampler, attached with SKC GS3 cyclone and 2 pieces cassette loaded with 5.0 µm of PVC filter. Samples were analyzed by gravimetric technique. Personal respirable dust exposure between the two types of filters indicated significant positive correlation (p < 0.05) with moderate relationship (r2 = 0.6431). Personal exposure based on 25 mm PVC filter indicated 0.1% non-compliance to overall data while 37 mm PVC filter indicated similar findings at 0.4 %. Both data showed similar arithmetic mean(AM) and geometric mean(GM). In overall we concluded that personal respirable dust exposure either based on 25mm or 37mm PVC filter will give similar compliance determination. Both filters are reliable to be used in respirable dust monitoring for silica dust related exposure.
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; Egert, Smadar; Uzan, Leenes
2017-04-01
On 7 Sep 2015 an unprecedented huge dust plume approached the SE Mediterranean basin from the northeast- Syria region. According to the Israeli meteorological service it is the first time in 75 years of measurements, that a dust storm reaches Israel early September, lasts several days and dust concentrations reach values 100 times the normal (1700µg/m3). Dust storms are normally monitored in the east Mediterranean using satellites and surface PM data. Obviously, these cannot show the vertical evolution of the dust including penetration, sinking and cleaning since vertical profiles are not available. High-resolution, micro Lidar Ceilometer network is gradually established in Israel. A few instruments of this network were already operational during the dust storm. The most crucial vertical information, monitored by these Ceilometers with 10m resolution vertically, every 16s, is analyzed. The difference in the cloud-layers allow the investigation of the high altitude of 1000m dust penetration, its sinking into the complex structured 250-500m mixed layer and the gradual 3D cleaning. This finding contradicts the conventional understanding that cleaning is due to gradual descent and shows not only the vertical fluctuation during the entire event but also the vertical rise to 2000m at the end of the event. The vertical information showed that the actual event period duration was 7 days, compared to only 90 hours based on traditional detectors. Is it a new dust source in the E. Mediterranean-long and short term trends?
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Evans, G. C.; Evans, S. T.; Alexander, W. M.; Burton, W. M.; Firth, J. G.; Bussoletti, E.; Grard, R. J. L.; Hanner, M. S.; Sekanina, Z.
1987-01-01
Analyses are presented of Giotto's Dust Impact Detection System experiment measurements of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on March 13 and 14, 1986. Ground-based CCD imagery of the inner coma dust continuum at the time of the encounter are used to derive the area of grains intercepted by Giotto. Data obtained at large masses show clear evidence of a decrease in the mass distribution index at these masses within the coma; it is shown that such a value of the mass index can furnish sufficient mass for consistency with an observed deceleration.
NASA Astrophysics Data System (ADS)
Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.
2017-12-01
Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.
Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust
Chubb, Lauren G.; Cauda, Emanuele G.
2017-01-01
Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139
Atmospheric Pressure Patterns Before and During Dust Storm
2012-11-27
This graph compares a typical daily pattern of changing atmospheric pressure blue with the pattern during a regional dust storm hundreds of miles away red. The data are by the Rover Environmental Monitoring Station REMS on NASA Curiosity rover.
POTENTIAL ENVIRONMENTAL IMPACTS OF DUST SUPPRESSANTS: "ADVOIDING ANOTHER TIMES BEACH"
In the past decade, there has been an increased use of chemical dust suppressants such as i water, salts, asphalt emulsion, vegetable oils, molasses, synthetic polymers, mulches, and lignin 1 products. Dust suppressants abate dust by changing the physical properties of the soil s...
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa
NASA Astrophysics Data System (ADS)
Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric
2016-04-01
One of the most important activities of the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization's Sand and Dust Storm Warning Advisory and Assessment System (WMO SDS-WAS, http://sds-was.aemet.es) is the dust model intercomparison and forecast evaluation, which is deemed an indispensable service to the users and an invaluable tool to assess model skills. Currently, the Regional Center collects daily dust forecasts from models run by nine partners (BSC, ECMWF, NASA, NCEP, SEEVCCC, EMA, CNR-ISAC, NOA and UK Met Office). A multi-model ensemble has also been set up in an effort to provide added-value products to the users. The first problem to address the dust model evaluation is the scarcity of suitable routine observations near the Sahara, the world's largest source of mineral dust. The present contribution presents preliminary results of dust model evaluation using new observational datasets. The current routine evaluation of dust predictions is focused on total-column dust optical depth (DOD) and uses remote-sensing retrievals from sun-photometric (AERONET) and satellite (MODIS) measurements. However, most users of dust forecasts are interested in the concentration near the surface (in the air we breathe) rather than in the total column content. Therefore, evaluation of the predicted surface concentration is also necessary. In this context, the initiative of the African Monsoon Interdisciplinary Analysis (AMMA) International Program to establish permanent measuring stations in the Sahel is extremely important. Tapered Element Oscillating Microbalance (TEOM) monitors continuously record PM10 in M'Bour (Senegal); Cinzana (Mali) and Banizoumbou (Niger). This surface model evaluation is complemented with the PM10 observation from the Air Quality Control and Monitoring Network (AQCMN) of the Canary Islands (Spain). The region, located in the sub-tropical Eastern Atlantic (roughly 100 km west of the Moroccan coast), is frequently affected by intrusions of Saharan dust. Regional Node are evaluated during two years (2013-2014) with observations recorded in the Sahelian region and Canary Islands. Additionally, since the data sets of weather records have an excellent spatial and temporal coverage, observations of horizontal visibility included in meteorological reports are used as an alternative way to monitor dust events in near-real-time (NRT). Recently, a new visibility product that includes more than 1,500 METAR stations has implemented in the SDS-WAS NAMEE Regional Center. The present contribution also will demonstrate how the visibility can complement the information provided by other observing systems (air quality monitoring stations, sun photometers, vertical profilers or satellite products) and numerical simulations presenting its application in tracking several dust episodes. Otherwise, the vertical distribution of aerosol also influences the radiative effect at the top of the atmosphere, especially when aerosols have strong absorption of shortwave radiation. The free troposphere contribution to aerosol optical depth (AOD) and the altitude of lofted layers are provided thanks to the vertical profiling capability of the lidar/ceilomenter technique. Currently, a lidar located in Dakar (Senegal) and a ceilometer in Santa Cruz de Tenerife (Canary Islands, Spain) provide near-real-time (NRT) vertical profiles of aerosols, which are compared with those simulated by models.
Impact Produced and Mobilized Dust in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.
2001-12-01
The objective of this work is to study possible mechanisms of new dust production and existing dust entrainment after impacts of meteoroids onto Mars and to assess the possible relationship to dust clouds. We use detailed numerical simulations based on the SOVA multi-dimensional multi-material hydrocode [1]. In the first run of simulations, partially described in [2], only the dust ejected from the crater was taken into account. In the process of ejection soil density decreases near the cavity boundary. At the moment when the density falls below some critical value the solid material is replaced by a set of discrete particles (dust, boulders) of equivalent mass [3]. The distribution of particles by sizes was taken according experimental data obtained in the course of large-scale TNT and nuclear explosions on the Earth's ground [4]. The radius of impactor was varied from 1 to 100 m. The lowest value corresponds to high strength meteoroids passing through the rarefied Martian atmosphere without substantial fragmentation and deceleration. The impact velocity was taken to be 11 and 20 km/s. In all the variants the mass of the dust ejected from the forming craters was about 10 M, where M is the impactor mass. It was suggested [5] that the dust may be mobilized even if the impactor does not reach the ground surface. To check this idea the code was modified to take into account blast produced impulsive winds blowing the preexisting dust from the surface by mechanism similarly to that of the stationary winds [6]. Turbulent viscosity and diffusion were taken into acount. Some portions of dust are deposited on the surface due to gravity. The particles striking the surface increase a flux of the suspended dust. The saltation thresholds were taken according [7-8]. For a 1 m radius stony asteroid releasing its energy (0.15 kt TNT) at an altitude of about 100 m above the surface after first two seconds the mass of the dust in the air was 3.5 M, and after 15 s it decreased to 2.8 M. For a disrupted meteoroid releasing 3/4 of its energy in a long cylindrical channel with the diameter of 17 m the dust is removed at a distance of 700 m from the impact point. At 20 s after the impact the lifted mass is about 0.1 M. In both cases the size of the columnar shaped dust cloud exceeded 1 km. The risen mass in the air is larger than that in a typical dust devil [8-9]. Addition mechanisms such as thermal layer effect due to radiation, explosion of the upper soil layer under decompression, interaction between the ballistic wave and the surface [5,10], interactions between the natural convective and impact generated plumes, impact induced and natural winds and others may produce vortices and increase the amount of mass in the impact produced clouds. The work was supported by NASA Grant NRA 98-OSS-08 JURISS. References:[1] Shuvalov V.V. 1999. Shock Waves 9(6), 391-390[2] Nemtchinov I.V., et al., 1999 5th Int. Conf. on Mars, abstract #6081[3] Teterev A.V. 1999. J. Impact Engn. 23, 921-927[4] Adushkin V.V. and Spivak A.A. 1992. Geomechanics of large scale explosions. Nedra, Moscow, 320 p (in Russian)[5] Rybakov V.A., et al., 1997. JGR 102(E4), 9211-9220.[6] Greeley R. and Iversen J.D. 1985. Wind as a geological process. Cambridge Univ. Press, New York, 330p.[7] Greeley r., et al., 1980. GRL, 7, 121-124[8] Greeley R, et al., 1992. Mars (Eds. Kieffer H.H. et al.) Univ. Arizona Press, Tucson and London, 770-788 [9] Thomas P. and Gierasch P. 1985. Science, 230, 175-177[10] Kosarev I.B. et al. 2000. Meteoritics and Planetary Sci., 3115, Supplement, A91-A92
Construction dust amelioration techniques.
DOT National Transportation Integrated Search
2012-04-01
Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, N.T.
1990-03-01
This document reports data collected as part of the Ecological Monitoring Program (EMP) at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, for Calendar Year 1987. Also included are data from the last quarter (October through December) of 1986. This report divides data collection activities into two parts. Part A covers general environmental monitoring which includes meteorology, aerial photography, air quality monitoring, water quality monitoring, and wildlife population surveillance. Part B focuses on the special studies being performed to evaluate the impacts of salt dispersal from the site on the surrounding ecosystem. The fourth year of salt impact monitoringmore » was completed in 1987. These studies involve the monitoring of soil chemistry, soil microbiota, and vegetation in permanent study plots. None of the findings indicate that the WIPP project is adversely impacting environmental quality at the site. As in 1986, breeding bird censuses completed this year indicate changes in the local bird fauna associated with the WIPP site. The decline in small mammal populations noted in the 1986 census is still evident in the 1987 data; however, populations are showing signs of recovery. There is no indication that this decline is related to WIPP activities. Rather, the evidence indicates that natural population fluctuations may be common in this ecosystem. The salt impact studies continue to reveal some short-range transport of salt dust from the saltpiles. This material accumulates at or near the soil surface during the dry seasons in areas near the saltpiles, but is flushed deeper into the soil during the rainy season. Microbial activity does not appear to be affected by this salt importation. Vegetation coverage and density data from 1987 also do not show any detrimental effect associated with aerial dispersal of salt.« less
Application of the Gillette model for windblown dust at Owens Lake, CA
NASA Astrophysics Data System (ADS)
Ono, Duane
Windblown dust can have significant impacts on local air pollution levels, and in cases such as dust from Africa or Asia, can have global impacts on our environment. Models to estimate particulate matter emissions from windblown dust are generally based on the local wind speed, the threshold wind speed to initiate erosion, and the soil texture of a given surface. However, precipitation, soil crusting, and soil disturbance can dramatically change the threshold wind speed and erosion potential of a surface, making modeling difficult. A low-cost sampling and analysis method was developed to account for these surface changes in a wind erosion model. Windblown dust emissions measured as PM 10 (particulate matter less than a nominal 10 μm aerodynamic diameter) have been found to be generally proportional to sand flux (also known as saltation flux). In this study, a model was used to estimate sand flux using the relationship Q=AρG/g, where Q is horizontal sand flux, A is a surface erosion potential factor, ρ is air density, g is the gravitational constant, and G=∫ u*(u*2-u*t2)dt, where u* is friction velocity and u is the threshold friction velocity of the surface. The variable A in the model was derived by comparing the measured sand flux for a given period and area to G for the same period. Sand flux was monitored at Owens Lake, CA using low-cost Cox Sand Catchers (CSCs) for monthly measurements, and more expensive electronic sensors (Sensits) to measure hourly flux rates and u. Monitors were spaced 1 km apart at 114 sites, covering one clay and three sand-dominated soil areas. Good model results relied primarily on the erosion potential A, which could be determined from CSC measurements and wind speed data. Annual values for A were found to range from 1.3 to 3.5 in the three sand areas. The value of A was an order of magnitude lower (0.2) in the less erodible clay area. Previous studies showed similar values for A of 0.7 and 2.9 for a sandy site at Owens Lake, and 1.1 for a site in the Chihuahuan desert in New Mexico. The model performed well using annual values for A and better with monthly values, with R2 ranging from 0.74 to 0.87 for hourly sand flux rates in the four study areas. Monthly changes in A accounted for temporal surface changes, such as precipitation and surface crusting in the model predictions. This study demonstrated that low-cost periodic sand flux sampling using CSCs can provide a practical method to determine values for A in a simple wind erosion model, and that this model can provide good hourly and monthly estimates of sand flux rates in windblown dust areas.
Construction dust amelioration techniques : [executive summary].
DOT National Transportation Integrated Search
2012-04-01
Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Multiple impacts of dusty projectiles
NASA Astrophysics Data System (ADS)
Kothe, Stefan; Güttler, Carsten; Blum, Jurgen
In the context of early stages of planetesimal formation we performed laboratory and drop tower experiments to study multiple impacts of small dust-aggregate projectiles into solid sintered dust targets. Both collision partners consisted of 1.5 µm monodisperse spherical SiO2 monomers with volume filling factors of 0.15 (projectiles) and 0.35 (targets), respectively. The fragile projectiles were accelerated by a solenoid accelerator with a linear projectile magazine, which enabled us to perform 25 impacts within 4.5 s of microgravity time in the Bremen drop tower. We measured the mass-accretion efficiency for different impact velocities between 3 and 5 m s-1 , using an analytical balance and imaging methods. Furthermore, we observed random collisions among small dust aggregates with sizes around 1 mm and collision velocities of the order of 0.25 m s-1 and used them to improve the dust-aggregate collision model of Güttler et al. (2010). u
Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.
2008-01-01
The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.
Small Impacts on Mars: Atmospheric Effects
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Nemtchinov, Ivan V.
2002-01-01
The objectives of this investigation were to study the interaction of the atmosphere with the surface of Mars through the impact of small objects that would generate dust and set the dust into motion in the atmosphere. The approach involved numerical simulations of impacts and experiments under controlled conditions. Attachment: Atmospheric disturbances and radiation impulses caused by large-meteoroid impact in the surface of Mars.
NASA Astrophysics Data System (ADS)
Wiggs, G. F.; O'Hara, S.; Wegerdt, J.; van der Meer, J.; Small, I.; Hubbard, R.
2003-12-01
Over the last 40 years over 36,000 km2 of the former Aral Sea bed have been exposed creating a potentially significant aeolian dust source. It is widely believed, but little researched, that increased dust storm activity in the region has had a major impact on human health. In this paper we report the findings of a study into the link between dust exposure and respiratory health amongst children in the Autonomous Republic of Karakalpakstan, located on the southern shore of the Aral Sea. Data were collected over a 12 month period at 16 sites located within a broad transect running north to south through Karakalpakstan. At each site monthly measurements of dust deposition were undertaken linked with daily meteorological data at 6 stations. At 3 sites weekly measurements of PM10 were also carried out. Approximately 100 children (aged 7-10 years) were randomly selected within 5 km of each dust trap site and data were collected on their respiratory health and environmental exposures. Lung function data were also collected using a handheld spirometer. A linear regression model was used to predict lung function for the children incorporating variables for Forced Expiratory Volume in one second (FEV1), age, gender, height and weight and we estimated the impact of dust deposition rates on the odds of having abnormal lung function using logistic regression. The findings indicate that dust deposition rates across the region are high with sites located near the former shore of the sea being the worst affected. For these northerly regions the former Aral Sea bed is the most likely source of dust. The situation for the rest of the country seems to be far more complex. In these regions it appears that local sources (agricultural fields, abandoned irrigation grounds, overgrazed dunes, and unpaved roads) and more distant sources to the south and south-west represent significant sediment providers, particularly in the early summer when agricultural fields are ploughed. We found some evidence of a dose-related impact of dust levels on lung function. These associations were statistically significant for all measures of dust exposure but were most marked for levels of winter dust exposure and level of PM2.5 exposure. The results from this study suggest that aeolian dust dynamics in the region are spatially and temporally highly variable and, counter to local and regional perceptions, the former bed of the Aral Sea does not appear to be the only significant source. Nevertheless, there is also evidence of a dose-related impact of airborne dust on the risk of having abnormally low lung function in children living in the Aral Sea Area.
Composition of Plasma Formed from Hypervelocity Dust Impacts
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.
2012-12-01
Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment at Enceladus and other airless bodies in the solar system. Measurements of net current from impact plasmas. The horizontal axis is normalized to particle mass based on time of flight. The red trace is from an impact on a positively biased surface, ejecting positive ions toward the sensor. The blue trace is from an impact on a negatively biased surface, ejecting electrons and negative ions toward the sensor. The first positive peak is from electrons causing secondary emission off the sensor. The subsequent negative peaks are from negative ions.
NASA Astrophysics Data System (ADS)
Shang, X.; Lee, M.; LIM, S.; Gustafsson, O.; Lee, G.; Chang, L.
2017-12-01
In East Asia, dust is prevalent and used to be mixed with various pollutants during transportation, causing a large uncertainty in estimating the climate forcing of aerosol and difficulty in making environmental policy. In order to diagnose the influence of dust particles on aerosol, we conducted a long-term measurement of PM10, PM2.5 and PM1 for mass, water-soluble ions, and carbonaceous compounds at Gosan Climate Observatory, South Korea from August 2007 to February 2012. The result of principle component analysis reveals that anthropogenic, typical soil dust, and saline dust impact explain 46 %, 16 %, and 9 % of the total variance for all samples, respectively. The mode analysis of mass distributions provides the criteria to distinguish these principle factors. The anthropogenic impact was most pronounced in PM1 and diagnosed by the PM1 mass higher than mean+σ. If PM10 mass was greater than mean+σ, it was highly likely to be affected by typical soil dust. This criterion is also applicable for PM2.5 mass, which was enhanced by both haze and dust particles, though. In the present study, saline dust was recognized by relatively high concentrations of Na and Cl ions in PM1.0. However, their existence was not manifested by increased mass in any of three PM types.
N. S. Wagenbrenner; S. H. Chung; B. K. Lamb
2017-01-01
Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...
Lunar Dust Characterization for Exploration Life Support Systems
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2007-01-01
Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.
LADEE Search for a Dust Exosphere: A Historical Perspective
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Stubbs, T. J.; Elphic, R.
2014-01-01
The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.
NASA Astrophysics Data System (ADS)
Querol, X.; Pandolfi, M.; Pey, J.; Alastuey, A.; Cusack, M.; Pérez, N.; Amato, F.; Moreno, T.; Viana, M.; Mihalopoulos, N.
2009-04-01
The aim of the present study is quantifying African dust contributions to mean PM10 levels recorded across the Mediterranean basin (2001-2008, 1995-2008 in one case) and evidencing spatial variations and seasonal trends. To this end the same methodology has been applied to a number of data sets on PM levels recorded in aerosol research monitoring sites (Montseny-EUSAAR, Spain, Finokalia-EUSAAR, Greece) and from a number of regional background (RB) monitoring sites from the Co-operative Program for Monitoring and Evaluation of the Long-Range Transmission of Air pollutants in Europe (EMEP) and regional air quality monitoring networks available from Airbase-EEA data set. Around 20 data series spread across the whole Mediterranean and bordering regions have been selected and analyzed in the present study. Once the PM data were obtained the days under the influence of African dust outbreaks were identified (using HYSPLIT, DREAM-BSC, SKIRON and NAAPS tools) for each receptor site. Subsequently, a method (Escudero et al., 2007) based on the statistical data treatment of time series of PM levels, without a need of chemical analysis, was used for the quantification of the daily African PM load during dust outbreaks at each site. Finally, PM speciation data available at MSY and FKL were used to differentiate the local/regional from the African mineral contributions across the Mediterranean Basin. Results show a clear W to E and N to S increasing gradients, both on annual PM levels and annual African dust load. In the Eastern Mediterranean the episodes are more intense and are relatively frequent in spring and summer period. However in the western side of the basin, African dust outbreaks are more frequent in summer and winter. In the N, NW and NE sides of the basin 1-2 µgPM10/m3 of mean annual dust contribution was quantified, whereas in the S, SE, SW this annual contribution ranges from 6 to 10 µgPM10/m3. The number of exceedances of the PM10 daily limit value attributable to the African dust contributions was also evaluated fro the whole Mediterranean. Comparison of the African dust annual load with PM10 speciation allowed quantifying regional dust contributions. Thus, in urban areas we are able to discriminate the contribution of African, regional, urban and road dust. References Escudero M. et al., (2007). Atmos. Environ., 41, 5516- 5524. Acknowledgements This study was supported by the Ministry of Science and Innovation (CGL2005-03428-C04-03/CLI, CGL2007-62505/CLI, GRACCIE- CSD2007-00067), the European Union (6th framework CIRCE IP, 036961, EUSAAR RII3-CT-2006-026140). Finally, we would like to express our gratitude to Airbase-EEA for allowing free access to ambient PM levels recorded at a large number of sites in Europe.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.
1992-01-01
Hypervelocity impact features from very small particles (less than 3 microns in diameter) on several of the electro-active dust sensors used in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microscope. The same analytical techniques were applied to impact and containment features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on tray B12. Very little unambiguously identifiable impactor debris was found in the central craters or shatter zones of small impacts in this crystalline surface. The surface contamination, ubiquitous on the surface of the Long Duration Exposure Facility, has greatly complicated data collection and interpretation from microparticle impacts on all surfaces.
Different relationships between personal exposure and ambient concentration by particle size.
Guak, Sooyoung; Lee, Kiyoung
2018-04-06
Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.
Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to publi...
Applying Dust-on-Snow Research to Colorado Water Management
NASA Astrophysics Data System (ADS)
Landry, C. C.; Painter, T. H.; Barrett, A. P.
2008-12-01
Snowmelt runoff from seasonal snowpacks in Western mountains provides a high proportion of regional water supplies and represents a critical resource subject to complex management imperatives at all levels of local, state, and federal government. Recent research performed in the San Juan Mountains of Southwest Colorado has revealed that deposition of desert dust from the Colorado Plateau onto Colorado mountain snowpacks is playing a hitherto underestimated forcing role in snowmelt timing and intensity. In spring 2006, embedded dust layers forced a 4-5 week advance in complete snowpack ablation at the Senator Beck Basin Study Area, near Red Mountain Pass, and professional water managers throughout Colorado were surprised by an early and compressed snowmelt runoff. Presentations of our preliminary findings during the summer of 2006 at local water district meetings and at a statewide forum resonated with Colorado water managers and resulted in direct stakeholder engagement in the ongoing research program during the subsequent winter. In spring 2007 the research team issued periodic Dust Alerts describing dust-on-snow conditions extant within the study area, as well as anecdotal reports of conditions elsewhere in the state, and discussed the snowmelt ramifications of those dust conditions in the coming 7-15 days, given mid-range NWS weather forecasts. Another round of presentations at district and state-wide stakeholder meetings in summer 2007 resulted in additional districts and agencies engaging in the program and expanding the dust-on-snow monitoring and Dust Alert analysis efforts in spring 2008 to additional sites distributed throughout the state. The original research project is ongoing and the team is now developing a Colorado Dust-on-Snow Program, CODOS, designed to serve all stakeholders in Colorado snowmelt with increasingly intensive monitoring and analysis of snowmelt forcing by dust, and with ongoing research regarding dust-driven mountain snowmelt processes. In this instance, basic science preceded stakeholder engagement and, through active outreach, a consequential, stakeholder-supported program implementing operational application of the research is emerging.
NASA Astrophysics Data System (ADS)
Aarons, S. M.; Aciego, S.; McConnell, J.
2017-12-01
Dust emissions and transport are linked to spatial and temporal climate variability, with dust provenance providing clues to past climate and climate impacts. The penultimate interglacial period (MIS 5e) has been suggested as an analog to Holocene climate change. We present the first evaluation of the MIS 5e ice archive developed at Taylor Glacier, East Antarctica and provide a record of dust transported to Taylor Glacier during MIS 5e. Our record shows significant differences between MIS 5e, Holocene, and pre-industrial dust transported to East Antarctica. The MIS 5e dust is sourced from New Zealand and southern South America (SSA), while the Holocene dust is sourced from local Antarctic, SSA, and potentially Australian sources. This profound change in composition suggests a variation in atmospheric transport pathways and/or paleo-environmental conditions between the interglacial periods, and indicates that MIS 5e should be reassessed as an analog for climate change and associated impacts.
Dust emission: small-scale processes with global consequences
Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.
2011-01-01
Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.
Dust: Small-scale processes with global consequences
Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.
2011-01-01
Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.
High-resolution dust modelling over complex terrains in West Asia
NASA Astrophysics Data System (ADS)
Basart, S.; Vendrell, L.; Baldasano, J. M.
2016-12-01
The present work demonstrates the impact of model resolution in dust propagation in a complex terrain region such as West Asia. For this purpose, two simulations using the NMMB/BSC-Dust model are performed and analysed, one with a high horizontal resolution (at 0.03° × 0.03°) and one with a lower horizontal resolution (at 0.33° × 0.33°). Both model experiments cover two intense dust storms that occurred on 17-20 March 2012 as a consequence of strong northwesterly Shamal winds that spanned over thousands of kilometres in West Asia. The comparison with ground-based (surface weather stations and sunphotometers) and satellite aerosol observations (Aqua/MODIS and MSG/SEVIRI) shows that despite differences in the magnitude of the simulated dust concentrations, the model is able to reproduce these two dust outbreaks. Differences between both simulations on the dust spread rise on regional dust transport areas in south-western Saudi Arabia, Yemen and Oman. The complex orography in south-western Saudi Arabia, Yemen and Oman (with peaks higher than 3000 m) has an impact on the transported dust concentration fields over mountain regions. Differences between both model configurations are mainly associated to the channelization of the dust flow through valleys and the differences in the modelled altitude of the mountains that alters the meteorology and blocks the dust fronts limiting the dust transport. These results demonstrate how the dust prediction in the vicinity of complex terrains improves using high-horizontal resolution simulations.
Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Zhang, X. Y.; Sun, J. Y.; Zhang, X. C.; Che, H. Z.; Li, Y.
2015-06-01
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET (China Atmosphere Watch Network) from 2006 to 2014 using GRIMM 180 dust monitors. The highest particulate matter (PM) concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Hua Bei Plain (HBP). The second highest PM concentrations were observed in northeast China, followed by southern China. According to the latest air quality standards of China, 14 stations reached the PM10 standard and only 7 stations, mainly rural and remote stations, reached the PM2.5 standard. The PM2.5 and PM10 ratios showed a clear increasing trend from northern to southern China, because of the substantial contribution of coarse mineral aerosol in northern China. The PM1 and PM2.5 ratios were higher than 80% at most stations. PM concentrations tended to be highest in winter and lowest in summer at most stations, and mineral dust impacts influenced the results in spring. A decreasing interannual trend was observed in the HBP and southern China from 2006 to 2014, but an increasing trend occurred at some stations in northeast China. Also diurnal variations of PM concentrations and meteorological factors effects were investigated.
Anthropogenic- and natural sources of dust in peatland during the Anthropocene
NASA Astrophysics Data System (ADS)
Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.
2016-12-01
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.
Anthropogenic- and natural sources of dust in peatland during the Anthropocene
Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.
2016-01-01
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat. PMID:27995953
Volcanic Loading: The Dust Veil Index (1985) (NDP-013)
Lamb, H. H. [University of East Anglia, Norwich, United Kingdom; Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory; Watts, Julia A. [Oak Ridge National Laboratory
1985-09-01
Lamb's Dust Veil Index (DVI) is a numerical index that quantifies the impact of a particular volcanic eruption's release of dust and aerosols over the years following the event, especially the impact on the Earth's energy balance. DVIs have been calculated for eruptions occurring from 1500 through 1983. The methods used to calculate the DVI have been intercalibrated to give a DVI of 1000 for the eruption of Krakatoa in 1883. The DVI for any volcanic eruption is based on a review of the observational, empirical, and theoretical studies of the possible impact on climate of volcanic dust veils. The DVI allows one to compare volcanic eruptions by a single numerical index. The data base includes the name of the erupting volcano, year of eruption, volcano latitude and longitude, maximum extent of the dust veil, veil duration, DVI for the entire globe, DVI for the Northern Hemisphere, and DVI for the Southern Hemisphere. The data are in one file (22.6 kB).
Anthropogenic- and natural sources of dust in peatland during the Anthropocene.
Fiałkiewicz-Kozieł, B; Smieja-Król, B; Frontasyeva, M; Słowiński, M; Marcisz, K; Lapshina, E; Gilbert, D; Buttler, A; Jassey, V E J; Kaliszan, K; Laggoun-Défarge, F; Kołaczek, P; Lamentowicz, M
2016-12-20
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.
Zibret, Gorazd
2012-05-01
This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.
Craters formed in mineral dust by hypervelocity microparticles.
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1972-01-01
As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.
From intensive care monitoring to personal health monitoring to ambient intelligence.
Rienhoff, Otto
2013-01-01
The historical roots of IT-based monitoring in health care are described. Since the 1970ies monitoring has been spreading to more and more domains of health care and public health. Today one can observe monitoring of persons in many environments and regarding widely different questions. While these monitoring applications have been introduced ethical questions have been raised to balance the possible positive and negative outcomes of the approaches. Today IT-technology is entering many parts of our life - IT eventually became what had been coined already in the last century by IBM as "electronic dust" which one can find in every part of our environment. As most of these "dust-particles" are able to observe something one can also understand this development as a development into ubiquitous monitoring of nearly everything at any time. The foreseen ambient intelligence worlds are also spaces of ambient monitoring. This article describes this historical development. It emphasizes why ethical and data protection questions are an absolute must in most IT activities today.
NASA Technical Reports Server (NTRS)
Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.
2014-01-01
On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.
NASA Astrophysics Data System (ADS)
Hoshyaripour, A.; Vogel, B.; Vogel, H.
2017-12-01
Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.
Assessment of respirable dust and its free silica contents in different Indian coalmines.
Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N
2005-04-01
Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.
Will new horizons see dust clumps in the Edgeworth-Kuiper Belt?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitense, Christian; Krivov, Alexander V.; Löhne, Torsten, E-mail: vitense@astro.uni-jena.de
2014-06-01
Debris disks are thought to be sculptured by neighboring planets. The same is true for the Edgeworth-Kuiper debris disk, yet no direct observational evidence for signatures of giant planets in the Kuiper Belt dust distribution has been found so far. Here we model the dust distribution in the outer solar system to reproduce the dust impact rates onto the dust detector on board the New Horizons spacecraft measured so far and to predict the rates during the Neptune orbit traverse. To this end, we take a realistic distribution of trans-Neptunian objects to launch a sufficient number of dust grains ofmore » different sizes and follow their orbits by including radiation pressure, Poynting-Robertson and stellar wind drag, as well as the perturbations of four giant planets. In a subsequent statistical analysis, we calculate number densities and lifetimes of the dust grains in order to simulate a collisional cascade. In contrast to the previous work, our model not only considers collisional elimination of particles but also includes production of finer debris. We find that particles captured in the 3:2 resonance with Neptune build clumps that are not removed by collisions, because the depleting effect of collisions is counteracted by production of smaller fragments. Our model successfully reproduces the dust impact rates measured by New Horizons out to ≈23 AU and predicts an increase of the impact rate of about a factor of two or three around the Neptune orbit crossing. This result is robust with respect to the variation of the vaguely known number of dust-producing scattered disk objects, collisional outcomes, and the dust properties.« less
Health effects from Sahara dust episodes in Europe: literature review and research gaps.
Karanasiou, A; Moreno, N; Moreno, T; Viana, M; de Leeuw, F; Querol, X
2012-10-15
The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... http://www.msha.gov/REGS/FEDREG/PROPOSED/2010PROP/2010-25249.pdf . The proposed rule would revise the.../PROPOSED/2010PROP/2010-25249.pdf . The following error in the preamble to the proposed rule is corrected to...
Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...
Studying the Fading Infrared Evolution of SN 1978K
NASA Astrophysics Data System (ADS)
Smith, Ian
2018-05-01
SN 1978K in the nearby barred spiral galaxy NGC 1313 is a remarkable Type IIn supernova that remains bright at X-ray through radio wavelengths 40 years after its explosion. Our long-term program of multi-wavelength observations is probing the dense medium that was ejected by the progenitor star, possibly a Luminous Blue Variable. Only SN 1978K was detected in a search for warm dust in supernovae in the transitional phase (age 10-100 years). Thus SN 1978K is a prime target for studying whether supernovae such as this are important contributors to the Universal dust budget and how the dust reacts to the strong and varying UV and X-ray emissions. Our analysis of the previous Spitzer observations shows a rapid fading of the warm dust emission. Here we request one Spitzer observation at 3.6 and 4.5 microns to continue to monitor the infrared evolution. This will serve as a bridge to future monitoring with JWST.
Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
NASA Technical Reports Server (NTRS)
Price, M. C.; Kearsley, A. T.; Burchell, M. J.; Horz, Friedrich; Cole, M. J.
2009-01-01
Micrometre and smaller scale dust within cometary comae can be observed by telescopic remote sensing spectroscopy [1] and the particle size and abundance can be measured by in situ spacecraft impact detectors [2]. Initial interpretation of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft [3] appears to show that very fine dust contributes not only a small fraction of the solid mass, but is also relatively sparse [4], with a low negative power function describing grain size distribution, contrasting with an apparent abundance indicated by the on-board Dust Flux Monitor Instrument (DFMI) [5] operational during the encounter. For particles above 10 m diameter there is good correspondence between results from the DFMI and the particle size inferred from experimental calibration [6] of measured aerogel track and aluminium foil crater dimensions (as seen in Figure 4 of [4]). However, divergence between data-sets becomes apparent at smaller sizes, especially submicrometre, where the returned sample data are based upon location and measurement of tiny craters found by electron microscopy of Al foils. Here effects of detection efficiency tail-off at each search magnification can be seen in the down-scale flattening of each scale component, but are reliably compensated by sensible extrapolation between segments. There is also no evidence of malfunction in the operation of DFMI during passage through the coma (S. Green, personal comm.), so can the two data sets be reconciled?
NASA Technical Reports Server (NTRS)
Sandford, Scott A.
2004-01-01
On January 2,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the fly by the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. In addition to its aerogel dust collector, the STARDUST spacecraft was also equipped with instruments that made in situ measurements of the comet during the flyby. These included several dust impact monitors, a mass spectrometer, and a camera. The spacecraft's communication system was also used to place dynamical constraints on the mass of the nucleus and the number of impacts the spacecraft had with large particles. The data taken by these instruments indicate that the spacecraft successfully captured coma samples. These instruments, particularly the camera, also demonstrated that Wild 2 is unlike any other object in the Solar System previously visited by a spacecraft. During my talk I will discuss the scientific goals of the STARDUST mission and provide an overview of its design and flight to date. I will then end with a description of the exciting data returned by the spacecraft during the recent encounter with Wild 2 and discuss what these data tell us about the nature of comets. It will probably come as no surprise that the encounter data raise as many (or more) new questions as they answer old ones.
Telecommunications in cometary environments
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
Propagation effects on telecommunications in a cometary environment include those due to dust, the inhomogeneous plasma of the coma and tail, and ionization generated by impact of neutral molecules and dust on the spacecraft. Attenuation caused by dust particles is estimated to be on the order of 10 to the minus 5th power dB for the Halley Intercept Mission. Ionization generated by impact on the spacecraft is estimated to result in an electron content of 10 to the 12th power to 10 to the 13th power el/sq meters (3 eV electrons) along the telecommunications path. An estimate of the electron content due to Comet Halley itself is 10 to the 16th power to 10 to the 17th power el/sq meters, compared to a content of 10 to the 16th power to 10 to the 18th power el/sq meters for the Earth's ionosphere and 10 to the 17th power to 10 to the 18th power el/sq meters for the interplanetary medium. The electron content of the plasma near Comet Halley will cause excess range delay, and a Doppler shift of the signal from the spacecraft will occur in propagation to the rate of change of the path electron content. It is recommended that S and X down-link frequencies by employed to monitor the path electron content and amplitude scintillation and spectral broadening of the received signals. These measurements will provide a quantitative base of knowledge that will be valuable for radio science and telecommunications system design purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Sijia; Russell, Lynn M.; Yang, Yang
We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leadsmore » to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of large-scale precipitation induced by the feedback of EAWM-related changes in wind on dust emissions increase by 10-30% in winter because of the increase in surface air temperature and the anomalous circulation.« less
Understanding the impact of saharan dust aerosols on tropical cyclones
NASA Astrophysics Data System (ADS)
Naeger, Aaron
Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 hPa higher when the aerosols interactions were activated as opposed to deactivated in the model.
SMART-1 SPEDE: Results and Legacy after 10 Years
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Mälkki, Anssi
2014-05-01
The Spacecraft Potential, Electron and Dust Experiment (SPEDE) [1], one of the instruments on the SMART-1 spacecraft, the European Space Agency's first Lunar mission, was part of the monitoring instruments supervising the propulsion system and supporting corrective actions to its operation when needed. During mission phases with inactive propulsion system the plasma instrument measured electron and ion densities and temperatures of the natural plasma in the vicinity of the spacecraft. While the spacecraft was slowly spiraling out of an Earth orbit towards a Moon trajectory it spent many months inside the Earth radiation belt. During this time SPEDE recorded the plasma parameters as a function of altitude and solar conditions and monitored also the effects of the major solar CME of October 28, the so-called "Halloween Storm" [2], [3]. After reaching the Moon on November 15, 2004, it continued to monitor the plasma and dust impacts onto the spacecraft until the end of the mission on September 3, 2006. Most of the Moon orbits lasted about 5 hours with an initial perilune distance of 2208 and an apolune distance of 4618 km, changing to 300 km and 3000km, respectively towards the end of the mission with a controlled impact onto the Lunar surface. A total of over 200 orbits were covered [4]. Covered by the SPEDE instrument are three areas of scientific interest: - A detailed altitude profile of the plasma parameters inside the radiation belt under different environmental condition - SPEDE was one of the few instruments active inside the radiation belt while normally all instruments on space missions are kept off to prevent damage, - a plasma parameter map in Lunar orbit with the Moon inside and outside the Earth magnetosphere, - plasma wave measurements around the moon with signatures of dust impacts onto the spacecraft monitoring the dust lifting processes on the Moon surface to escape velocities under certain solar wind conditions. Technical legacy: The Langmuir Probe sensor area treatment was optimized for SPEDE and used in all subsequent Langmuir probe designs of IRF/Uppsala. The algorithm implemented inside the SPEDE on-board software to analyze the plasma wave measurements was optimized during the SMART-1 mission and later uplinked to the ESA Rosetta spacecraft lander Philae, where it is now used to analyze and compress the data of the permittivity probe, also used as a plasma wave monitor with W.Schmidt as PI. The experience gained from the FPGA-implementation of a self-developed processor was later used in preparation of ESA's ExoMars 2016 pressure sensor controller and the Swedish plasma instrument LINA for a Russian Lunar mission as well as for the ESA JUICE mission to the Jupiter system. Reference: [1] Mälkki, A., Schmidt, W., Laakso, H., Grard, R., Escoubet, C.P., Wahlund, J.-E., Blomberg, L., Marklund, G. and Johlander, B., 2003: The SPEDE experiment on SMART-1: Instrument, mission, and science objectives. Geophysical Research Abstracts, Vol 5., 10004, 2003. [2] Mälkki, A., Schmidt, W., Laakso, H., Johlander, B., Wahlund, J.E., Blomberg, L., Marklund, G., Grard, R., Escoubet, C.P. and Lebreton, J.P., 2004: First results from SMART-1/ SPEDE plasma experiment. European Geophysical Union EGU-2004, EGU04-A-02543. Invited oral presentation [3] Mälkki, A., Schmidt, W., Genzer, M., Merikallio, S., Laakso, H., Gonzales del Amo, J., Estublier, D., Gengembre, E., Hilgers, A., Capacci, M., Koppel, C. and Tajmar, M., 2005: Spacecraft-plasma interaction analysis using data from SPEDE on SMART-1. 10th Scientific Assembly of IAGA, Toulouse, France, July 2005, paper IAGA2005-A-01401 [4] Mälkki, A., Schmidt, W., Kallio, E. and Merikallio, S., 2006: Interaction of Solar Wind With the Moon: Results From Hybrid Modeling and the SPEDE Instrument on SMART-1. Geophysical Research Abstracts, Vol. 8, 07632, 2006 [5] M.Backrud, 2007: Evaluation of the SPEDE instrument on SMART-1, Royal Institute of Technology (KTH) Report - TRITA-EE 2007:023
Zota, Ami R.; Riederer, Anne M.; Ettinger, Adrienne S.; Schaider, Laurel A.; Shine, James P.; Amarasiriwardena, Chitra J.; Wright, Robert O.; Spengler, John D.
2017-01-01
Infant exposures to metals are a concern for mining-impacted communities, although limited information is available to assess residential exposures over the first year of life. We measured lead (Pb), manganese, arsenic, and cadmium in indoor air, house dust, yard soil, and tap water from 53 infants’ homes near the Tar Creek Superfund Site (Oklahoma, USA) at two time points representing developmental stages before and during initial ambulation (age 0–6 and 6–12 months). We measured infant metal biomarkers in: umbilical cord blood (n = 53); 12- (n = 43) and 24- (n = 22) month blood; and hair at age 12 months (n = 39). We evaluated cross-sectional and longitudinal associations between infant residential and biomarker concentrations. A doubling of mean dust Pb concentration was consistently associated with 36–49% higher 12-month blood Pb adjusting for cord blood Pb (P≤ 0.05). Adjusted dust concentration explained 29–35% of blood Pb variance, and consistent associations with other media were not observed. Although concentrations in dust and blood were generally low, strong and consistent associations between dust and body burden suggest that house dust in mining-impacted communities may impact children’s health. These relationships were observed at a young age, typically before blood Pb levels peak and when children’s development may be particularly vulnerable to toxic insult. PMID:26648247
Zota, Ami R; Riederer, Anne M; Ettinger, Adrienne S; Schaider, Laurel A; Shine, James P; Amarasiriwardena, Chitra J; Wright, Robert O; Spengler, John D
2016-09-01
Infant exposures to metals are a concern for mining-impacted communities, although limited information is available to assess residential exposures over the first year of life. We measured lead (Pb), manganese, arsenic, and cadmium in indoor air, house dust, yard soil, and tap water from 53 infants' homes near the Tar Creek Superfund Site (Oklahoma, USA) at two time points representing developmental stages before and during initial ambulation (age 0-6 and 6-12 months). We measured infant metal biomarkers in: umbilical cord blood (n=53); 12- (n=43) and 24- (n=22) month blood; and hair at age 12 months (n=39). We evaluated cross-sectional and longitudinal associations between infant residential and biomarker concentrations. A doubling of mean dust Pb concentration was consistently associated with 36-49% higher 12-month blood Pb adjusting for cord blood Pb (P⩽0.05). Adjusted dust concentration explained 29-35% of blood Pb variance, and consistent associations with other media were not observed. Although concentrations in dust and blood were generally low, strong and consistent associations between dust and body burden suggest that house dust in mining-impacted communities may impact children's health. These relationships were observed at a young age, typically before blood Pb levels peak and when children's development may be particularly vulnerable to toxic insult.
NASA Astrophysics Data System (ADS)
Yano, H.; Hirai, T.; Arai, K.; Fujii, M.
2017-12-01
The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.
Exploring dust emission responses to land cover change using an ecological land classification
NASA Astrophysics Data System (ADS)
Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon
2018-06-01
Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.
Cosmic dust or other similar outer-space particles location detector
NASA Technical Reports Server (NTRS)
Aver, S.
1973-01-01
Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.
Processing of atmospheric particles caught in the act via STXM/NEXAFS
NASA Astrophysics Data System (ADS)
Steimer, S.; Lampimäki, M.; Grzinic, G.; Coz, E.; Watts, B.; Raabe, J.; Ammann, M.
2012-12-01
Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Among their main constituents are mineral dust and organic particles. Both types of particles directly and indirectly affect our climate through scattering and absorption of radiation and through acting as cloud condensation nuclei respectively. Organic particles are also of significant concern with respect to their health effects. Mineral dust particles in addition serve as a primary external iron source to the open ocean and the bioavailability of iron from these particles is highly dependent on the oxidation state of the metal. The environmental impact of atmospheric particles depends on their physical and chemical properties, which might change upon chemical ageing. In this study we therefore investigated the changes in chemical composition and morphology of mineral dust and organic particle proxies (Arizona test dust and shikimic acid, respectively) upon in situ exposure to ozone or nitrogen oxides in presence of humidity. This was achieved by monitoring changes at the C and O K-edges as well as the metal L-edges via scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Measurements were conducted at the PolLux beamline at Swiss Light Source. All experiments were conducted in an environmental micro reactor, designed specifically for the end station, to enable the investigation in situ. We observed oxidation of shikimic acid particles in situ during exposure to ozone at different humidities, whereby humidity was found to be a critical factor controlling the rate of the reaction. We also obtained well resolved iron distribution maps from the individual submicrometer size mineral dust particles before and after exposure to nitrogen oxides.
Atmospheric imaging results from the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Lemmon, M.; Athena Science Team
The Athena science payload of the Spirit and Opportunity Mars Exploration Rovers contains instruments capable of measuring radiometric properties of the Martian atmosphere in the visible and the thermal infrared. Remote sensing instruments include Pancam, a color panoramic camera covering 0.4-1.0 microns, and Mini-TES, a thermal infrared spectrometer covering 5-29 microns. Results from atmospheric imaging by Pancam will be covered here. Visible and near-infrared aerosol opacity is monitored by direct solar imaging. Early results show dust opacity near 1 when both rovers landed. Both Spirit and Opportunity have seen dust opacity fall with time, somewhat faster at Spirit's Gusev crater landing site. Diurnal variations are also being monitored at both sites. There is no direct probe of the dust's vertical distribution, but images of the Sun near the horizon and of the twilight will provide constraints on the dust distribution. Dust optical properties and a cross-section weighted aerosol size will be estimated from Pancam images of the sky at varying geometries and times of day. A series of sky imaging sequences has been run with varying illumination geometry. The observations are similar to those reported for Mars Pathfinder.
NASA Technical Reports Server (NTRS)
Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.
2012-01-01
Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted
NASA Technical Reports Server (NTRS)
Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.
2014-01-01
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
Interactions Between Mineral Dust, Climate, and Ocean Ecosystems
NASA Technical Reports Server (NTRS)
Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.
2010-01-01
Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.
The East and Southeast Asia Initiatives: Aerosol Column Measurements
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hsu, Christina N.; Li, Zhanqing
2003-01-01
Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring- time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3,Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented and discussed their contribution to better understand the impacts of aerosols on regional-to- global climate, hydrological and carbon cycles, and tropospheric chemistry.
Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle
2012-01-01
In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Temperature and Humidity Calibration of a Low-Cost Wireless Dust Sensor for Real-Time Monitoring.
Hojaiji, Hannaneh; Kalantarian, Haik; Bui, Alex A T; King, Christine E; Sarrafzadeh, Majid
2017-03-01
This paper introduces the design, calibration, and validation of a low-cost portable sensor for the real-time measurement of dust particles within the environment. The proposed design consists of low hardware cost and calibration based on temperature and humidity sensing to achieve accurate processing of airborne dust density. Using commercial particulate matter sensors, a highly accurate air quality monitoring sensor was designed and calibrated using real world variations in humidity and temperature for indoor and outdoor applications. Furthermore, to provide a low-cost secure solution for real-time data transfer and monitoring, an onboard Bluetooth module with AES data encryption protocol was implemented. The wireless sensor was tested against a Dylos DC1100 Pro Air Quality Monitor, as well as an Alphasense OPC-N2 optical air quality monitoring sensor for accuracy. The sensor was also tested for reliability by comparing the sensor to an exact copy of itself under indoor and outdoor conditions. It was found that accurate measurements under real-world humid and temperature varying and dynamically changing conditions were achievable using the proposed sensor when compared to the commercially available sensors. In addition to accurate and reliable sensing, this sensor was designed to be wearable and perform real-time data collection and transmission, making it easy to collect and analyze data for air quality monitoring and real-time feedback in remote health monitoring applications. Thus, the proposed device achieves high quality measurements at lower-cost solutions than commercially available wireless sensors for air quality.
30 CFR 74.9 - Quality assurance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Quality assurance. 74.9 Section 74.9 Mineral... DUST SAMPLING DEVICES Requirements for Continuous Personal Dust Monitors § 74.9 Quality assurance. (a) General requirements. The applicant shall establish and maintain a quality control system that assures...
Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days
He, Hong; Wang, Yuesi; Ma, Qingxin; Ma, Jinzhu; Chu, Biwu; Ji, Dongsheng; Tang, Guiqian; Liu, Chang; Zhang, Hongxing; Hao, Jiming
2014-01-01
Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated. PMID:24566871
Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach
NASA Technical Reports Server (NTRS)
Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.
2015-01-01
Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF-Chem model simulations. After validating the capability of the WRF-Chem in realistically simulating the aerosol-cloud precipitation interactions, we conduct sensitivity studies where the AOD is doubled to diagnose whether an increasing concentration of Asian aerosols over the western United States will lead to further impacts on the cloud and precipitation processes over California. We also perform sensitivity studies where the aerosols will be partitioned into dust-only and pollution-only in order to separate the impacts of the differing Asian aerosol species. The results of our WRF-Chem model simulations aim to show that the trans-Pacific transport of Asian aerosols influence the precipitation associated with atmospheric river events that can ultimately impact the regional climate of the western United States. 1 University
Palaeo-dust records: A window to understanding past environments
NASA Astrophysics Data System (ADS)
Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik
2018-06-01
Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with reorganisation of Australian dust source areas occurring during the mid to late Holocene. Dust emissions are shown to sensitively map the structure of the Last Glacial Maximum in Australia, demonstrating that this period was associated with enhanced, but also variable dust emissions, driven by changing sources area conditions. Finally we show how dust emissions have responded to the arrival of Europeans and the associated onset of broad-scale agriculture across the Australian continent.
Hypervelocity Microparticle Impact Studies: Simulating Cosmic Dust Impacts on the Dustbuster
NASA Technical Reports Server (NTRS)
Austin, D. E.; Manning, H. L. K.; Bailey, C. L.; Farnsworth, J. T.; Ahrens, T. J.; Beauchamp, J. L.
2002-01-01
Iron and copper microparticles accelerated to 2-20 km/s in a 2 MV Van de Graaff accelerator were used to test a recently-developed cosmic dust mass spectrometer, known as the Dustbuster. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.
2000-10-01
We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.
Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain
NASA Astrophysics Data System (ADS)
Long, X.; Tie, X.; Li, G.; Junji, C.
2017-12-01
With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.
NASA Astrophysics Data System (ADS)
Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.
2017-12-01
Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.
NASA Astrophysics Data System (ADS)
Jha, Vandana
In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases, the response is non-monotonical, and when CCN affects are dominant, reductions in precipitation are found.
2017-12-08
A piece of Africa—actually lots of them—began to arrive in the Americas in June 2014. On June 23, a lengthy river of dust from western Africa began to push across the Atlantic Ocean on easterly winds. A week later, the influx of dust was affecting air quality as far away as the southeastern United States. This composite image, made with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP, shows dust heading west toward South America and the Gulf of Mexico on June 25, 2014. The dust flowed roughly parallel to a line of clouds in the intertropical convergence zone, an area near the equator where the trade winds come together and rain and clouds are common. In imagery captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), the dust appeared to be streaming from Mauritania, Senegal, and Western Sahara, though some of it may have originated in countries farther to the east. Saharan dust has a range of impacts on ecosystems downwind. Each year, dust events like the one pictured here deliver about 40 million tons of dust from the Sahara to the Amazon River Basin. The minerals in the dust replenish nutrients in rainforest soils, which are continually depleted by drenching, tropical rains. Research focused on peat soils in the Everglades show that African dust has been arriving regularly in South Florida for thousands of years as well. In some instances, the impacts are harmful. Infusion of Saharan dust, for instance, can have a negative impact on air quality in the Americas. And scientists have linked African dust to outbreaks of certain types of toxic algal blooms in the Gulf of Mexico and southern Florida. Read more: 1.usa.gov/1snkzmS NASA images by Norman Kuring, NASA’s Ocean Color web. Caption by Adam Voiland. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Hoffman, A.; Forest, C. E.; Kemanian, A.
2016-12-01
A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.
Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.
Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado
2017-07-01
A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, S.; Gong, S.
2010-12-01
A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust Episode"), Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443, 2007.
Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin
Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard L.; Goldstein, Harland L.; Lin, J.
2015-01-01
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
NASA Astrophysics Data System (ADS)
Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao
2016-02-01
Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.
Health impacts of garage workers: A preliminary study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muttamara, S.; Alwis, K.U.
1994-05-01
This research study was carried out in two automobile repair garages situated in the Bangkok metropolitan area, employing 47 and 12 workers respectively. Air sampling, biological monitoring (blood, urine), noise monitoring, and audiometry of workers were done to assess the occupational environment and its impact on the workers. The occupational hygiene survey was carried out to observe the working conditions of both garages. It was found that conditions at both sites have a strong negative impact on the health of workers. The lead in air of Garage 1 was 0.20 mg/m[sup 3] which is the same as the threshold limitmore » value (TLV) for lead in air for a working environment. The level of lead in blood of four workers of each garage was above the exposed level. According to the occupational hygiene survey carried out at both garages, 79% of workers of Garage 1 and 70% of workers of Gage 2 suffered from redness of the eyes (eye pain, gritty feeling), and 5% and 2% of workers of Garage 1 and Garage 2 respectively, complained about breathing difficulties. Control measures should be taken to minimize pollution due to dust, fumes, and noise which would reduce the health impacts and lead to a healthier workforce.« less
30 CFR 27.40 - Test to determine resistance to dust.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine resistance to dust. 27.40 Section 27.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.40 Test to...
Dust formation in Nova Oph 2017 (TCP J17394608-2457555)
NASA Astrophysics Data System (ADS)
Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit
2017-06-01
Ongoing NIR observations of Nova Oph 2017 indicate the possible onset of dust formation in Nova Oph 2017. Monitoring in the JHKs bands shows a steady rise in the J-K color from around 1.4 on 5 June 2017 to 2.0 on 13 June 2017.
The mechanics of large meteoroid impacts in the earth's oceans
NASA Technical Reports Server (NTRS)
Melosh, H. J.
1982-01-01
The sequence of events subsequent to the impact of a large meteoroid in an ocean differs in several respects from an impact on land. Even if the meteoroid is large enough to produce a crater on the sea floor (that is, larger than a few km in diameter), the presence of water affects the character of the early-time events. The principal difference between land and oceanic impacts is the expansion of shock-vaporized water following an oceanic impact. A steam explosion follows the meteoroid's deposition of energy in the target. Shocked water expands from an initial pressure of 3 to 6 Mbar for 20-30 km/second impacts, ejecting water vapor and dust from the vaporized meteoroid several hundred km into the atmosphere. The violent vapor plume thus formed may explain how dust with a dominantly meteoritic composition can be dispersed to form a world-wide dust layer, as required by the Alvarez hypothesis.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram
1999-01-01
Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.
Migration of tungsten dust in tokamaks: role of dust-wall collisions
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.
2013-12-01
The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.
Air Quality Monitoring: Risk-Based Choices
NASA Technical Reports Server (NTRS)
James, John T.
2009-01-01
Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.
NASA Astrophysics Data System (ADS)
Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.
2017-07-01
Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
Comparison of the mixing state of long-range transported Asian and African mineral dust
NASA Astrophysics Data System (ADS)
Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.
2015-08-01
Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.
Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.
Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S
2016-01-01
Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.
2018-06-10
This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter spacecraft. The blue dot shows the approximate location of Opportunity. The storm was first detected on June 1. The MARCI camera has been used to monitor the storm ever since. Full dust storms like this one are not surprising, but are infrequent. They can crop up suddenly but last weeks, even months. During southern summer, sunlight warms dust particles, lifting them higher into the atmosphere and creating more wind. That wind kicks up yet more dust, creating a feedback loop that NASA scientists still seek to understand. https://photojournal.jpl.nasa.gov/catalog/PIA22329
Evaluation of atmospheric dust prediction models using ground-based observations
NASA Astrophysics Data System (ADS)
Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco
2013-04-01
An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for April 2011, when several dust episodes where recorded. In regions devoid of air quality stations (as Saharan and Arabian deserts), model forecasts are regularly evaluated for 38 dust-prone sites through the use of an empirical relationship between visibility data (obtained from meteorological reports) and dust surface concentration. Finally, active remote sensing with lidar or ceilometers is the only way to inquire about the dust vertical distribution. Analysis of selected cases comparing model forecasts and lidar observations at Santa Cruz de Tenerife (Canary Islands) yields promising results regarding the identification of the dust plume thickness. From the results of this pilot trial, the convenience of a regular evaluation will be assessed.
NASA Astrophysics Data System (ADS)
Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.
2009-04-01
As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust aerosol is involved in many important processes in Earth's climate system, with important implications for air quality, climate, atmospheric chemistry, and the biosphere, and different impacts on human health. The relative importance of mineral dust in particulate matter depends on location, season and particle size, mainly concentrated in the coarse fraction. Its impacts on climate and environment have increased years after years and needs to be more understood. In the present work, the relationships between the meteorological conditions and dust transport phenomena from the Saharan regions of north Africa and their transport, deposition in both modes, dry and wet deposition in the Mediterranean region, and the Atlantic Ocean, during two dust events namely: case I (01/03/04 - 06/03/04), case II (29/05/05 - 03/06/05), that have been analysed and their major characteristics have been discussed. This analysis has been performed with the aid of the SKIRON modelling system of the University of Athens. The dust module of SKIRON/Eta model incorporates the state of the art parameterization of all the major phases of the desert dust cycle such as production, diffusion, advection and removal. Model results have been compared with TOMS-AI (Total Ozone Mapping Spectrophotometer Aerosol Index) data for a qualitative comparison of the model. The work has been conducted at the framework of TEMPUS project MADEPODIM.
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.
2015-01-01
The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
Martian Dust Devils: 2 Mars Years of MGS MOC Observations
NASA Astrophysics Data System (ADS)
Cantor, B. A.; Edgett, K. S.
2002-12-01
Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide and narrow angle images have captured more than 1000 active dust devils over 2 Mars years. In the most recent Mars year, we repeatedly imaged (and are continuing to image) several areas to monitor dust devil occurrence. Some Mars dust devils are as small as a few to 10s of meters across, others are 100s of meters across and over 6 km high. Each Martian hemisphere has a "dust devil season" that generally follows the subsolar latitude. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer (probably every afternoon; observations are acquired 2-3 times a week). The Amazonis and other MOC observations show no evidence that dust devils cause, lead to, or have a systematic relationship with dust storms. However, dust devils sometimes do occur near small, localized storms; and one specific relation occurred during the onset of the global dust events of 2001: slightly elevated levels of atmospheric dust (an optically thin cloud) triggered a very short period of dust devil activity in NW Amazonis in early northern autumn. The redistribution of dust by the 2001 global events may have also affected subsequent spring and summer dust devil activity in Hellas, where considerably fewer dust devils occurred in 2001-2002 than 1999-2000. In SW Syria, frequent, large dust devils occurred after the 2001 global events and persisted through southern summer. While dust devils have no specific relation to dust storms, they might play a role in the seasonal "wave of darkening" at middle and high latitudes by removing or disrupting thin veneers of dust. Dust devils have been observed to create thin, filamentary streaks. Some streaks are darker than their surroundings, while others are lighter. Some dust devils do not create streaks. At mid-latitudes, surfaces darken in spring as 100s of crisscrossing streaks form on widely-varied terrain. Some rare streaks exhibit cycloidal patterns similar to those created on Earth by tornadoes with multiple sub-vortices. The streaks occur at nearly all latitudes and elevations, from north polar dunes to the south polar layered terrain, from the summit of Olympus Mons to the floor of Hellas. During "dust devil season" at a given latitude, tremendous changes in streak patterns occur in periods as short as 1 month. These observations, along with repeated imaging in NW Amazonis and SW Syria, provide some idea of the frequency of dust devils. Uncertain is whether dust devils are responsible for all thin, filamentary streaks: while active vortices have been seen creating the plethora of streaks at southern mid-latitudes, none have been observed on the northern plains, despite observation of similar streak patterns. Perhaps northern plains dust devils occur at a different time of day relative to the MGS 1400 LT orbit, or perhaps dust devils did not form them. We monitored removal of dust from surfaces after the 2001 global dust events in several locations. Of particular interest was western Syrtis Major, which had brightened considerably after the 2001 storms. We observed this area for several months while very little change occurred. Finally, in January 2002, the surface was swept clean of most of its 2001 veneer of dust in a period of about 1 week. Dust devils played no role in this process; instead, regional surface winds were responsible.
Quantitative detection of settled coal dust over green canopy
NASA Astrophysics Data System (ADS)
Brook, Anna; Sahar, Nir
2017-04-01
The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and subsequently develop dedicated tools and measures to control and monitor pollutants in the free environment. The earliest effect of settled polluted dust particles is not always reflected through poor conditions of vegetation or soils, or any visible damages. In most of the cases, it has a quite long accumulation process that graduates from a polluted condition to long-term environmental and health related hazard. Although conducted experiments with pollutant analog powders under controlled conditions have tended to con- firm the findings from field studies (Brook, 2014; Brook and Ben-Dor 2016; Brook, 2016), a major criticism of all these experiments is their short duration. The resulting conclusion is that it is difficult, if not impossible, to determine the implications of long-term exposure to realistic concentrations of pollutants from such short-term studies. In general, the task of unmixing is to decompose the reflectance spectrum into a set of endmembers or principal combined spectra and their corresponding abundances (Bioucas-Dias et al., 2012). This study suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify coal dust settled over/upon green vegetation canopy using in situ spectral data collected by portable spectrometer. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error. The suggested practical approach includes the following stages: 1. In situ spectral measurements, 2. Near-real-time spectral data analysis, 3. Estimated concentration of coal dust reported as mg/sq m. The stage 2 is completed by calculating: 1. Unmixing between the green canopy and the settle dust extraction only coal dust fraction, 2. Converting spectral feature of coal dust to concentration via PLSR spectral model. The spectral model was trained and validated PLSR model developed at laboratory using spectra across MIR (FTIR reflectance spectra) and NIR regions and XRD analysis. The obtained RMSE was satisfying for both spectral regions. Thus, it was concluded that field spectroscopy can be used for this purpose, and it can provide fully quantitative measures of settle coal dust. Nowadays this approach (both spectrometer and algorithm) has been accepted as a practical operational tool for environmental monitoring near power station Orot Rabin in Hadera and will be used by the Sharon-Carmel Districts Municipal Association for Environmental Protection, Israel as a regulatory tool. In summary, this work shows that coal dust can be assessed using in situ spectroscopy, making it a potentially powerful tool for environmental studies. References Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Brook, A. and Ben-Dor, E. (2016). Quantitative detection of settled dust over Green Canopy using sparse unmixing of airborne hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), pp.884-897. Brook, A. (2016). Quantitative Detection and Long-Term Monitoring of Settle Dust Using Semisupervised Learning for Spectral Data. Water, Air, & Soil Pollution, 227(3), pp.1-9. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P. and Chanussot, J. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), pp.354-379. Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Bioucas-Dias et al. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 -379.
Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates
NASA Astrophysics Data System (ADS)
Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo
2015-07-01
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M. M.; Craven, P. D.; LeClair, A. C.
2010-08-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.
Aeolian Processes and the Biosphere
NASA Astrophysics Data System (ADS)
Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.
2011-08-01
Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.
Evidence of Mineral Dust Altering Cloud Microphysics and Precipitation
NASA Technical Reports Server (NTRS)
Min, Qilong; Li, Rui; Lin, Bing; Joseph, Everette; Wang, Shuyu; Hu, Yongxiang; Morris, Vernon; Chang, F.
2008-01-01
Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. It is clearly evident that for a given convection strength,small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation process of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation.
On the health effects of transported and resuspended dusts
NASA Astrophysics Data System (ADS)
Rudich, Yinon
2017-04-01
In the Mediterranean area people are often exposed to high levels of both transported mineral dust and to resuspended urban dust. High exposure to particulate matter is a known risk factor to exposed population, but the detailed understanding of how these dusts affect health remain elusive. In this talk I will describe two aspects of how dust may impact health. First, transport of bacteria by desert dust and its effects on the local microbiome will be described. Then, we will describe the biological effects due to exposing water soluble extracts of fresh and aged dust particles from the Israeli Negev Desert to alveolar macrophages.
Dust measurements in tokamaks (invited).
Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C
2008-10-01
Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
The importance of the diurnal cycle of Aerosol Optical Depth in West Africa
NASA Astrophysics Data System (ADS)
Kocha, Cécile; Tulet, Pierre; Lafore, Jean-Philippe; Flamant, Cyrille; Banks, Jamie; Marnas, Fabien; Brindley, Helen; Marsham, Jonh
2013-04-01
High resolution atmospheric simulations with the AROME model coupled with a dust module over West Africa for the whole of June 2006 and 2011 were used to calculate Aerosol Optical Depth (AOD). But the simulations showed a significant diurnal cycle of 0.2 in the dust AOD that could not be inferred from the MODIS Deep Blue satellite retrievals due to their time of overpass. The AROME AOD diurnal cycle have been compared to the new SEVIRI AOD retrievals in June 2011 and shows simlar AOD diurnal cycle. In fact, dust sources are mainly driven by the breakdown of the early morning low-level jet and by moist convection in the afternoon, leading to opposite diurnal cycles. The contribution in dust production is calculated for each processes. Moreover, simulations show that cloud cover significantly prevents the observation of AOD in convective areas. The under-sampling of the diurnal cycle by satellites like MODIS plus the impact of cloud masks on the space-borne AOD retrievals induce an underestimation of 0.28 (~40%) over the convective regions and an overestimation of 0.1 (17%) over morning source areas like Bodélé. Finally, the vertical dust distribution is explored via CALIPSO monthly mean from 2006 to 2011. The vertical dust distribution is a clue element to determine the dust raciative impact. Over the June month, the dust radiative impact affect the atmospheric energetic budget by an absorption of the short wave of 58W/m²/AOD into the atmosphere and a reduction of 50W/m²/AOD at the surface.
Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon
NASA Astrophysics Data System (ADS)
Hermalyn, B.; Schultz, P. H.
2011-12-01
Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging from 11,000 to 500,000 frames per second) to allow measurement of particle velocity over the large dynamic range required for early-time, high-speed components of ejecta. Preliminary results for impacts into sand (Hermalyn and Schultz, 2010, 2011) reveal that early in the cratering process, ejection velocities are higher than assumed by dimensional scaling laws (Housen, et al., 1983). Moreover, the ejection angles of this early-time component are initially low (~30°) and gradually increase to reach nominal ejection angles (~45° for impacts into sand). In this study, we assess the expected ejecta velocities on the moon from the current impact flux and the possible effects of the secondary impacts of ejecta dust particles. By convolving these ejecta measurements with the lunar impact flux rate, an estimate can be derived for the amount and ballistic flight time of dust lofted above the surface of the moon over a given year.
Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.
2016-12-01
An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.
Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike
2017-11-01
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-26
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM 2.5 ) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO 2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m 3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM 2.5 pollution.
NASA Astrophysics Data System (ADS)
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-01-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166
Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación
2016-01-01
The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks. PMID:27775100
Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment
NASA Astrophysics Data System (ADS)
Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.
2017-12-01
All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.
NASA Astrophysics Data System (ADS)
Gobbi, Gian Paolo; Barnaba, Francesca; Bolignano, Andrea; Costabile, Francesca; Di Liberto, Luca; Dionisi, Davide; Drewnick, Frank; Lucarelli, Franco; Manigrasso, Maurizio; Nava, Silvia; Sauvage, Laurent; Sozzi, Roberto; Struckmeier, Caroline; Wille, Holger
2015-04-01
The EC LIFE+2010 DIAPASON Project (Desert dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs, www.diapason-life.eu) intends to contribute new methodologies to assess the role of aerosol advections of Saharan dust to the local PM loads recorded in Europe. To this goal, automated Polarization Lidar-Ceilometers (PLCs) were prototyped within DIAPASON to certify the presence of Saharan dust plumes and support evaluating their mass loadings in the lowermost atmosphere. The whole process also involves operational dust forecasts, as well as satellite and in-situ observations. Demonstration of the Project is implemented in the pilot region of Rome (Central Italy) where three networked DIAPASON PLCs started, in October 2013 a year-round, 24h/day monitoring of the altitude-resolved aerosol backscatter and depolarization profiles. Two intensive observational periods (IOPs) involving chemical analysis and detailed physical characterization of aerosol samples have also been carried out in this year-long campaign, namely in Fall 2013 and Spring 2014. These allowed for an extensive interpretation of the PLC observations, highlighting important synergies between the PLC and the in situ data. The presentation will address capabilities of the employed PLCs, observations agreement with model forecasts of dust advections, retrievals of aerosol properties and methodologies developed to detect Saharan advections and to evaluate the relevant mass contribution to PM10. This latter task is intended to provide suggestions on possible improvements to the current EC Guidelines (2011) on this matter. In fact, specific Guidelines are delivered by the European Commission to provide the Member States a common method to asses the Saharan dust contribution to the currently legislated PM-related Air Quality metrics. The DIAPASON experience shows that improvements can be proposed to make the current EC Methodology more robust and flexible. The methodology DIAPASON recommends has been designed and validated taking advantage of the PLC observations and highlights the benefits of the operational use of such systems in routine Air Quality applications. Concurrently, PLC activities are contributing to the COST Action "TOPROF", an European effort aiming at the setup and operational use of Lidar-Ceilometers networks for meteorological and safety purposes.
NASA Astrophysics Data System (ADS)
Wu, M.; Liu, X.; Luo, T.; Wang, Z.; Yang, K.; Wu, C.; Wang, H.; Zhang, K.
2017-12-01
Mineral dust plays an important role in the Earth's climate system due to its effects on radiation budgets, clouds, chemistry and biosphere. However, modeled dust aerosol is not well constrained and large uncertainties exist in modeled dust lifecycles. We evaluate dust spatial distributions in the Community Earth System Model (CESM) with new dust extinction retrievals (Luo et al., 2015a, b) based on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and CloudSat measurement, with special focus on the Asian dust transport across the Pacific. It is shown that the default CESM underestimates the dust extinction over the Pacific by 1-2 order of magnitude. Especially, the model fails to capture the observed high values of dust extinction occurring from 850 to 500 hPa across the North Pacific (20°N-50°N). Modeled dust optical depth (DOD) decreases faster across the Pacific compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) observations. Sensitivity experiments with altered emission, vertical transport and deposition schemes have been conducted to identify the key process impacting dust transport. For that purpose, two new dust emission schemes by Kok et al. (2014a, b) and Ginoux et al. (2001), a new dry deposition scheme by Petroff and Zhang (2010) are implemented to the CESM. In addition, a new unified scheme for convective transport and wet removal of aerosols (Wang et al., 2013) is implemented to the same version of CESM to examine the influence of convective transport and wet deposition on dust transport. It is found that changes in wet scavenging and convective transport can strongly impact dust transport over the Pacific compared to changes in other processes. One of the new emission schemes further decreases the dust extinction across the Pacific. Dust extinction across the Pacific slightly increases when dry deposition velocity for fine particles is reduced.
NASA Astrophysics Data System (ADS)
Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime
2014-10-01
The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU on the IKAROS inbound orbit. It was found that ALADDIN has ability to measure spatial densities of interplanetary dust particles larger than 10 μm in size by setting the sensor threshold to an output voltage of 1 V.
Overview of Dust Model Inter-comparison (DMIP) in East Asia
NASA Astrophysics Data System (ADS)
Uno, I.
2004-12-01
Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.
Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments.
Uni, Daphna; Katra, Itzhak
2017-11-15
Dust storms are a major source of global atmospheric particulate matter (PM), having significant impacts on air pollution and human health. During dust storms, daily averages of atmospheric PM concentrations can reach high levels above the World Health Organization (WHO) guideline for air quality. The objective of this study was to explore the impact of forests on PM distribution following dust events in a region that is subjected to frequent dust storms (Northern Negev, Israel). Dust was measured in a forest transect including urban environments that are nearby the forest and at a distal location. During a background period, without dust events, the forest with its surrounding areas were characterized by lower monthly average of PM concentrations (38μg/m 3 ) compared with areas that are not affected by the forest (54μg/m 3 ). Such difference can be meaningful for long-term human health exposure. A reduction in PM levels in the forest transect was evident at most measured dust events, depending on the storm intensity and the locations of the protected areas. A significant reduction in PM 2.5 /PM 10 during dust events, indicates the high efficiency of the forest trees to absorb airborne PM 2.5 . Analysis of dust particles absorbed on the foliage revealed a total dust deposits of 8.1-9.2g/m 2 , which is equal to a minimum of 418.2tons removed from the atmosphere per a forest foliage area (30km 2 ). The findings can support environmental strategies to enhance life quality in regions that are subjected to dust storms, or under potential risk of dust-related PM due to land use and/or climate changes. Copyright © 2017 Elsevier B.V. All rights reserved.
Meteorological Situations Favouring the Development of Dust Plumes over Iceland
NASA Astrophysics Data System (ADS)
Schepanski, K.; Szodry, K.
2017-12-01
The knowledge on mineral dust emitted at high latitudes is limited, but its impact on the polar environments is divers. Within a warming climate, dust emitted from regions in cold climates is expected to increase due to the retreat of the ice sheet and increasing melting rates. Therefore, and for its extensive impacts on different aspects of the climate system, a better understanding of the atmospheric dust life-cycle at high latitudes/cold climates in general, and the spatio-temporal distribution of dust sources in particular, are essential. At high-latitudes, glacio-fluvial sediments as found on river flood plains e.g. supplied by glaciers are prone to wind erosion when dry and bare. In case of the occurrence of strong winds, sediments are blown out and dust plumes develop. As dust uplift is controlled by soil surface characteristics, the availability of suitable sediments, and atmospheric conditions, an interannual variability in dust source activity is expected. We investigated atmospheric circulation patterns that favour the development of dust plumes over Iceland, which presents a well-known dust source at high latitudes. Using the atmosphere model COSMO (COnsortium for Small-scale MOdeling), we analysed the wind speed distribution over the Iceland region for identified and documented dust cases. As one outcome of the study, the position of the Icelandic low, the anticyclones located over Northern Europe, and the resulting pressure gradients are of particular relevance. The interaction of the synoptic-scale winds with the Icelandic orography may locally enhance the wind speeds and thus foster local dust emission. Results from this study suggest that the atmospheric circulation determined by the pressure pattern is of particular relevance for the formation of dust plumes entering the North Atlantic.
Far-Reaching Impacts of African Dust- A Calipso Perspective
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Prospero, Joseph; Omar, Ali; Remer, Lorraine; Winker, David; Yang, Yuekui; Zhang, Yan;
2014-01-01
African dust can transport across the tropical Atlantic and reach the Amazon basin, exerting far-reaching impacts on climate in downwind regions. The transported dust influences the surface-atmosphere interactions and cloud and precipitation processes through perturbing the surface radiative budget and atmospheric radiative heating and acting as cloud condensation nuclei and ice nuclei. Dust also influences biogeochemical cycle and climate through providing nutrients vital to the productivity of ocean biomass and Amazon forests. Assessing these climate impacts relies on an accurate quantification of dust transport and deposition. Currently model simulations show extremely large diversity, which calls for a need of observational constraints. Kaufman et al. (2005) estimated from MODIS aerosol measurements that about 144 Tg of dust is deposited into the tropical Atlantic and 50 Tg of dust into the Amazon in 2001. This estimated dust import to Amazon is a factor of 3-4 higher than other observations and models. However, several studies have argued that the oversimplified characterization of dust vertical profile in the study would have introduced large uncertainty and very likely a high bias. In this study we quantify the trans-Atlantic dust transport and deposition by using 7 years (2007-2013) observations from CALIPSO lidar. CALIPSO acquires high-resolution aerosol extinction and depolarization profiles in both cloud-free and above-cloud conditions. The unique CALIPSO capability of profiling aerosols above clouds offers an unprecedented opportunity of examining uncertainties associated with the use of MODIS clear-sky data. Dust is separated from other types of aerosols using the depolarization measurements. We estimated that on the basis of 7-year average, 118142 Tg of dust is deposited into the tropical Atlantic and 3860 Tg of dust into the Amazon basin. Substantial interannual variations are observed during the period, with the maximum to minimum ratio of about 1.6 and 2.5 for the deposition to the tropical Atlantic and Amazon, respectively. The MODIS-based estimates appear to fall within the range of CALIPSO-based estimates; and the difference between MODIS and CALIPSO estimates can be largely attributed to the interannual variability, which is corroborated by long-term surface dust concentration observations in the tropical Atlantic. Considering that CALIPSO generally tends to underestimate the aerosol loading, our estimate is likely to represent a low bound for the dust transport and deposition estimate. The finding suggests that models have substantial biases and considerable effort is needed to improve model simulations of dust cycle.
Integrating Windblown Dust Forecasts with Public Safety and Health Systems
NASA Astrophysics Data System (ADS)
Sprigg, W. A.
2014-12-01
Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.
A new physically-based windblown dust emission parametrization in CMAQ
Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a phys...
NASA Astrophysics Data System (ADS)
O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.
2014-03-01
Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.
30 CFR 56.5002 - Exposure monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Air Quality and Physical Agents Air Quality § 56.5002 Exposure monitoring. Dust, gas, mist, and fume surveys shall be conducted as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudakov, D. L.; Yu, J. H.; Boedo, J. A.
Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers,more » visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.« less
VLTI monitoring of the dust formation event of the Nova V1280 Scorpii
NASA Astrophysics Data System (ADS)
Chesneau, O.; Banerjee, D. P. K.; Millour, F.; Nardetto, N.; Sacuto, S.; Spang, A.; Wittkowski, M.; Ashok, N. M.; Das, R. K.; Hummel, C.; Kraus, S.; Lagadec, E.; Morel, S.; Petr-Gotzens, M.; Rantakyro, F.; Schöller, M.
2008-08-01
Context: We present the first high spatial-resolution monitoring of the dust-forming nova V1280 Sco, performed with the Very Large Telescope Interferometer (VLTI). Aims: These observations promise to improve the distance determination of such events and constrain the mechanisms leading to very efficient dust formation under the harsh physical conditions encountered in novae ejecta. Methods: Spectra and visibilities were regularly acquired between the onset of dust formation, 23 days after discovery (or 11 days after maximum), and day 145, using the beam-combiner instruments AMBER (near-IR) and MIDI (mid-IR). These interferometric observations were complemented by near-infrared data from the 1.2 m Mt. Abu Infrared Observatory, India. The observations are initially interpreted in terms of simple uniform models; however more complex models, probably involving a second shell, are required to explain data acquired following t=110 d after outburst. This behavior is in accordance with the light curve of V1280 Sco, which exhibits a secondary peak at about t=106 d, followed by a new, steep decline, suggesting a new dust-forming event. Spherical dust shell models generated with the DUSTY code are used to investigate the parameters of the main dust shell. Results: Using uniform disk models, these observations allow us to determine an apparent linear expansion rate for the dust shell of 0.35 ± 0.03 mas day-1 and the approximate ejection time of the matter in which dust formed of t_ejec = 10.5 ± 7 d, i.e. close to the maximum brightness. This information, combined with the expansion velocity of 500 ± 100 km s-1, implies a distance estimate of 1.6 ± 0.4 kpc. The sparse uv coverage does not enable deviations from spherical symmetry to be clearly discerned. The dust envelope parameters were determined. The dust mass generated was typically 2-8 × 10-9 M_⊙ day-1, with a probable peak in production at about 20 days after the detection of dust and another peak shortly after t=110 d, when the amount of dust in the shell was estimated as 2.2 × 10-7 M_⊙. Considering that the dust-forming event lasted at least 200-250 d, the mass of the ejected material is likely to have exceeded 10-4 M_⊙. The conditions for the formation of multiple shells of dust are also discussed. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 278.D-5053, 279.D-5014 and 079.D-0415.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
NASA Astrophysics Data System (ADS)
Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan
2017-04-01
Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants sources, and using a soil properties database is able to model Dust emissions (Laurent B. et al., JGR, 2005). Satellite products are available to evaluate and improve our simulations, as for example the AOD and Angstrom coefficient from the MODIS instrument. Mineral dust pollution represents one of the most important sources of atmospheric pollutant over Chinese territories, but dust emissions and transport present important seasonal variabilities. To evaluate impacts of dust pollutants on inhabited areas' pollutions, we compute dust emissions (Marticorena and Bergametti, JGR, 1995) and transport. Using MODIS instrument information over dust source regions, we control that AOD amplitudes and temporal variations simulated with CHIMERE correspond. We attempt to quantify the impact of mineral dust pollution each month over several urbanized areas using multi-annual simulations (2011, 2013, and 2015). We also investigate the impact of heavy dust events within inhabited areas' pollution. This work is also part of the French funded project "Pollution in Eastern Asia: towards better air quality prevision and impacts' evaluation".
East Asian dust storm in May 2017: observations, modelling and its influence on Asia-Pacific region
USDA-ARS?s Scientific Manuscript database
A severe dust storm event originated from the Gobi Desert in Central and East Asia during 2-7 May, 2017. Based on moderate resolution imaging spectroradiometer (MODIS) satellite products, hourly environmental monitoring measurements from 367 Chinese cities and more than 2000 East Asian meteorologica...
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Szalay, Jamey
2017-10-01
The lunar regolith has been formed, and remains continually reworked, by the intermitten impacts of comets, asteroids, meteoroids, and the continual bombardment by interplanetary dust particles (IDP). Thick atmospheres protect Venus, Earth, and Mars, ablating the incoming IDPs into “shooting stars” that rarely reach the surface. However, the surfaces of airless bodies near 1 AU are directly exposed to the high-speed (>> 1 km/s) IDP impacts. The Moon is expected to be bombarded by 5x103 kg/day of IDPs arriving with a characteristic speed of ~ 20 km/s. The IDP sources impacting the Moon at high latitudes remain largely uncharacterized due to the lack of optical and radar observations in the polar regions on Earth. These high latitude sources have very large impact speeds in the range of 30 < v < 50 km/ hence they are expected to have a significant effect on the lunar surface, including the removal and burial of volatile deposits in the lunar polar regions.Water is thought to be continually delivered to the Moon through geological timescales by water-bearing comets and asteroids, and produced continuously in situ by the impacts of solar wind protons of oxygen rich minerals exposed on the surface. IDPs are an unlikely source of water due to their long UV exposure in the inner solar system, but their high-speed impacts can mobilize secondary ejecta dust particles, atoms and molecules, some with high-enough speed to escape the Moon. Other surface processes that can lead to mobilization, transport and loss of water molecules and other volatiles include solar heating, photochemical processes, and solar wind sputtering. Since none of these are at work in permanently shadowed regions (PSR), dust impacts remain the dominant process to dictate the evolution of volatiles in PSRs. The competing effects of dust impacts are: a) ejecta production leading to loss out of a PSR; b) gardening and overturning the regolith; and c) the possible accumulation of impact ejecta, leading to the burial of the volatiles. This talk will summarize the expected effects of dust impacts on volatile accumulation in the lunar PSRs based on theoretical models, recent laboratory results, and observations by the LADEE spacecraft.
Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin
2017-03-20
A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.
Mid-infrared Flux Variability in an Awakening AGN
NASA Astrophysics Data System (ADS)
Yeh, Sherry
We propose FORCAST spectroscopic observations between 8 um to 40 um near the nucleus of NGC 660. NGC 660 underwent an AGN outburst 6 years ago, which is an ideal case for studying AGN astrophysics in a rather quiecent system. However, this rare event has not yet been monitored. Our immidiate goal is to verify the MIR spectroscipic variabilitiy in NGC 660, and to study the AGN effects on dust destruction and ISM. We will compare the FORCAST spectra with the Spitzer IRS spectra (taken before the AGN outburst), including dust continuum, PAH emission, and high- and low-ionization emission lines. FORCAST's slit width is a close match to the IRS slit width, allowing a direct comparison of the spectra between FORCAST and IRS. Our single-slit Subaru COMICS spectrum taken after the outburst shows significantly weakened PAH emission and dust continuum, suggesting dust destruction. However, it is difficult to draw robust intepretations due to systematic uncertainties in the Subaru data. If dust destruction is confirmed in the post-outburst FORCAST observaitons, we will evaluate the energy budget using the MIR line ratio diagnostics, with archival X-ray and radio data. We will then propose cadence observations of MGC 660's nucleus to monitor the MIR flux variability, and employ the reverberation mapping technique to study NGC 660's AGN.
Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files
NASA Technical Reports Server (NTRS)
McBride, M. J.; Williams, David R.; Hills, H. Kent
2012-01-01
We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures.
Impact of traffic intensity and pavement aggregate size on road dust particles loading
NASA Astrophysics Data System (ADS)
Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X.
2013-10-01
Road dust emissions severely hamper PM10 urban air quality and their burden is expected to increase relatively to primary motor exhaust emissions. Beside the large influence of climate and meteorology, the emission potential varies widely also from one road to another due to numerous factors such as traffic conditions, pavement type and external sources. Nevertheless none of these factors is sufficiently known for a reliable description in emission modelling and for decision making in air quality management. In this study we carried out intensive road dust measurement campaigns in South Spain, with the aim of investigating the relationship between emission potential (i.e. road dust load) and traffic intensity, pavement aggregate size and distance from braking zones. Results indicate that, while no impact from braking activity can be drawn on the bulk road dust mass, an increase in traffic intensity or mean pavement aggregate size clearly reduce the single vehicle emission potential.
Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East
NASA Astrophysics Data System (ADS)
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin; Mohammadi, GholamHasan; Sehatkashani, Saviz
2018-01-01
Dust events in the Middle East are becoming more frequent and intense in recent years with impacts on air quality, climate, and public health. In this study, the relationship between dust, as determined from Aerosol Optical Depth (AOD) and meteorological parameters (precipitation, temperature, pressure and wind field) are examined using monthly data from 2000 to 2015 for desert areas in two areas, Iraq-Syria and Saudi Arabia. Bivariate regression analysis between monthly temperature data and AOD reveals a high correlation for Saudi Arabia (R = 0.72) and Iraq-Syria (R = 0.64). Although AOD and precipitation are correlated in February, March and April, the relationship is more pronounced on annual timescales. The opposite is true for the relationship between temperature and AOD, which is evident more clearly on monthly time scales, with the highest temperatures and AOD typically between August and September. Precipitation data suggest that long-term reductions in rainfall promoted lower soil moisture and vegetative cover, leading to more intense dust emissions. Superimposed on the latter effect are more short term variations in temperature exacerbating the influence on the dust storm genesis in hot periods such as the late warm season of the year. Case study analysis of March 2012 and March 2014 shows the impact of synoptic systems on dust emissions and transport in the study region. Dust storm activity was more intense in March 2012 as compared to March 2014 due to enhanced atmospheric turbulence intensifying surface winds.
Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"
NASA Technical Reports Server (NTRS)
Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.
2013-01-01
Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).
NASA Astrophysics Data System (ADS)
Wolkenberg, Paulina; Giuranna, Marco; Aoki, Shohei; Scaccabarozzi, Diego; Saggin, Bortolino; Formisano, Vittorio
2016-04-01
More than 2,500,000 spectra have been collected by the Planetary Fourier Spectrometer aboard Mars Express spacecraft after 12 years of activity. The data span more than six Martian years, from MY26, Ls = 331°, to MY 33, Ls = 78°. This huge dataset has been used to build a new database of atmospheric parameters, including atmospheric and surface temperatures, and dust and water ice opacity. Dust aerosols suspended in the atmosphere affect its thermal structure and are a major driver of the circulation. They are always present in the Martian atmosphere, but the amount varies greatly depending on location and season. We analyze dust opacities at 1075 cm-1 retrieved from the PFS long-wavelength channel spectra to characterize the dust activity on Mars for the relevant period. The dust storm season (Ls= 185° - 310°) is monitored for each Martian year. All dust observations show a seasonal pattern, which is ruled by the occurrence of regional and/or global dust storms. Regional dust storms are observed every year, while a planet encircling dust storm occurred in MY 28, when the highest values of dust opacity are also observed (~ 2.45). We characterize the spatial and temporal evolution of these regional and global dust events and investigate the effect of dust on surface and atmospheric temperatures.
40 CFR 279.82 - Use as a dust suppressant.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Use as a dust suppressant. 279.82 Section 279.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES..., such programs must minimize the impacts of use as a dust suppressant on the environment. (c) List of...
Dust Storms and Mortality in the United States, 1995-2005
Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...
Biological effects of desert dust in respiratory epithelial cells and a murine model.
Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...
Improving the simulation of convective dust storms in regional-to-global models
Convective dust storms have significant impacts on atmospheric conditions and air quality and are a major source of dust uplift in summertime. However, regional-to-global models generally do not accurately simulate these storms, a limitation that can be attributed to (1) using a ...
Monitoring and reducing exposure of infants to pollutants in house dust.
Roberts, John W; Wallace, Lance A; Camann, David E; Dickey, Philip; Gilbert, Steven G; Lewis, Robert G; Takaro, Tim K
2009-01-01
The health risks to babies from pollutants in house dust may be 100 times greater than for adults. The young ingest more dust and are up to ten times more vulnerable to such exposures. House dust is the main exposure source for infants to allergens, lead, and PBDEs, as well as a major source of exposure to pesticides, PAHs, Gram-negative bacteria, arsenic, cadmium, chromium, phthalates, phenols, and other EDCs, mutagens, and carcinogens. Median or upper percentile concentrations in house dust of lead and several pesticides and PAHs may exceed health-based standards in North America. Early contact with pollutants among the very young is associated with higher rates of chronic illness such as asthma, loss of intelligence, ADHD, and cancer in children and adults. The potential of infants, who live in areas with soil contaminated by automotive and industrial emissions, can be given more protection by improved home cleaning and hand washing. Babies who live in houses built before 1978 have a prospective need for protection against lead exposures; homes built before 1940 have even higher lead exposure risks. The concentration of pollutants in house dust may be 2-32 times higher than that found in the soil near a house. Reducing infant exposures, at this critical time in their development, may reduce lifetime health costs, improve early learning, and increase adult productivity. Some interventions show a very rapid payback. Two large studies provide evidence that home visits to reduce the exposure of children with poorly controlled asthma triggers may return more than 100% on investment in 1 yr in reduced health costs. The tools provided to families during home visits, designed to reduce dust exposures, included vacuum cleaners with dirt finders and HEPA filtration, allergy control bedding covers, high-quality door mats, and HEPA air filters. Infants receive their highest exposure to pollutants in dust at home, where they spend the most time, and where the family has the most mitigation control. Normal vacuum cleaning allows deep dust to build up in carpets where it can be brought to the surface and become airborne as a result of activity on the carpet. Vacuums with dirt finders allow families to use the three-spot test to monitor deep dust, which can reinforce good cleaning habits. Motivated families that receive home visits from trained outreach workers can monitor and reduce dust exposures by 90% or more in 1 wk. The cost of such visits is low considering the reduction of risks achieved. Improved home cleaning is one of the first results observed among families who receive home visits from MHEs and CHWs. We believe that proven intervention methods can reduce the exposure of infants to pollutants in house dust, while recognizing that much remains to be learned about improving the effectiveness of such methods.
NASA Astrophysics Data System (ADS)
Kourtidis, Konstantinos; Georgoulias, Aristeidis
2017-04-01
We studied the impact of anthropogenic aerosols, fine mode natural aerosols, Saharan dust, atmospheric water vapor, cloud fraction, cloud optical depth and cloud top height on the magnitude of fair weather PG at the rural station of Xanthi. Fair weather PG was measured in situ while the other parameters were obtained from the MODIS instrument onboard the Terra and Aqua satellites. All of the above parameteres were found to impact fair weather PG magnitude. Regarding aerosols, the impact was larger for Saharan dust and fine mode natural aerosols whereas regarding clouds the impact was larger for cloud fraction while less than that of aerosols. Water vapour and ice precipitable water were also found to influence fair weather PG. Since aerosols and water are ubiquitous in the atmosphere and exhibit large spatial and temporal variability, we postulate that our understanding of the Carnegie curve might need revision.
NASA Technical Reports Server (NTRS)
Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Kassel, Philip C.; Wortman, Jim J.; Montague, Nancy L.; Kinard, William H.
1991-01-01
During the first 12 months of the Long Duration Exposure Facility (LDEF) mission, the Interplanetary Dust Experiment (IDE) recorded over 15,000 total impacts on six orthogonal faces with a time resolution on the order of 15 to 20 seconds. When combined with the orbital data and the stabilized configuration of the spacecraft, this permits a detailed analysis of the micro-particulate environment. The functional status of each of the 459 detectors was monitored every 2.4 hours, and post-flight analyses of these data has now permitted an evaluation of the effective active detection area as a function of time, panel by panel and separately for the two sensitivity levels. Thus, total impacts were transformed into areal fluxes, and are presented here for the first time. Also discussed are possible effects of these fluxes on previously announced results: apparent debris events, meteor stream detections, and beta meteoroids in observationally significant numbers.
An Ongoing Program for Monitoring the Moon for Meteoroid Impacts (Abstract)
NASA Astrophysics Data System (ADS)
Cudnik, B.; Saganti, S.; Ali, F.; Ali, S.; Beharie, T.; Anugwom, B.
2017-12-01
(Abstract only) Lunar meteor impacts are surprisingly frequent phenomena, with well over one hundred observable events occurring each year. Of these a little over half arise from members of annual meteor showers (e.g. Perseids, Leonids, etc.), with the rest being sporadic in origin. Five years ago, I (BC) introduced to the SAS Symposium the idea of observing lunar meteoroid impact phenomena and applying these observations to a space mission (LADEE-Lunar Atmosphere and Dust Environment Explorer) that launched the following year. Now, five years later I revisit and reintroduce the activities of the Association of Lunar and Planetary Observers-Lunar Meteoritic Impact Search (ALPO-LMIS) section and share some of the latest observations that have been received. For over 17 years now, ALPO has hosted the LMIS section, for which I have served as coordinator since its inception. In this paper, I will revisit the main ideas of the earlier paper, share some recent observations of lunar meteors, and provide new initiatives and projects interested persons can participate in.
30 CFR 57.5002 - Exposure monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure monitoring. 57.5002 Section 57.5002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... monitoring. Dust, gas, mist, and fume surveys shall be conducted as frequently as necessary to determine the...
Global Monitoring of Martian Surface Albedo Changes from Orbital Observations
NASA Astrophysics Data System (ADS)
Geissler, P.; Enga, M.; Mukherjee, P.
2013-12-01
Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place relentlessly in all seasons as bright dust and dark sand battle to dominate the landscape. Elsewhere, gradual processes steadily shift albedo boundaries between bright and dark terrain. Dark terrain near the Spirit rover landing site is gradually spreading to the north, driven by seasonal southerly winds. A bright fringe of newly deposited dust appears ahead of the moving boundary, populated by wind streaks and dust avalanches. Dark terrain at higher latitudes gradually creeps towards the equator by the dust cleaning action of dust devils, for example at Nilosytis (43°N, 85°E). Much less obvious is the deposition and erosion of dust on already bright, dust-covered terrain. Changes in the distribution of fresh dust take place frequently in the region surrounding the Tharsis Montes. Dust in this high altitude zone is constantly on the move as faint dark streaks mark the removal of recently deposited dust that is only slightly brighter than the dust already settled on the surface. Dramatic deposition of dust onto dusty terrain took place at much lower elevations in northwestern Amazonis between 2002 and 2005. Since then, the dust has been energetically eroded by towering dust devils that cluster here each summer.
Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC
NASA Astrophysics Data System (ADS)
Abdel Kader, M.; Astitha, M.; Lelieveld, J.
2012-04-01
This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance will be briefly discussed as it is a subject of future work.
NASA Astrophysics Data System (ADS)
Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.
2018-04-01
To aid early engineering and mission design efforts, the NESC held a workshop on the atmospheric dust and its impact on the human exploration of Mars. Of great interest is the possible Mars Sample Return contribution that will help to answer pertinent questions.
Lidar Measurements for Desert Dust Characterization: An Overview
NASA Technical Reports Server (NTRS)
Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.
2012-01-01
We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper
Global distribution of minerals in arid soils as lower boundary condition in dust models
NASA Astrophysics Data System (ADS)
Nickovic, Slobodan
2010-05-01
Mineral dust eroded from arid soils affects the radiation budget of the Earth system, modifies ocean bioproductivity and influences human health. Dust aerosol is a complex mixture of minerals. Dust mineral composition has several potentially important impacts to environment and society. Iron and phosphorus embedded in mineral aerosol are essential for the primary marine productivity when dust deposits over the open ocean. Dust also acts as efficient agent for heterogeneous ice nucleation and this process is dependent on mineralogical structure of dust. Recent findings in medical geology indicate possible role of minerals to human health. In this study, a new 1-km global database was developed for several minerals (Illite, Kaolinite, Smectite, Calcite, Quartz, Feldspar, Hematite and Gypsum) embedded in clay and silt populations of arid soils. For the database generation, high-resolution data sets on soil textures, soil types and land cover was used. Tin addition to the selected minerals, phosphorus was also added whose geographical distribution was specified from compiled literature and data on soil types. The developed global database was used to specify sources of mineral fractions in the DREAM dust model and to simulate atmospheric paths of minerals and their potential impacts on marine biochemistry and tropospheric ice nucleation.
Impact of Saharan dust particles on hospital admissions in Madrid (Spain).
Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina
2014-01-01
Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.
Simulating southwestern U.S. desert dust influences on supercell thunderstorms
NASA Astrophysics Data System (ADS)
Lerach, David G.; Cotton, William R.
2018-05-01
Three-dimensional numerical simulations were performed to evaluate potential southwestern U.S. dust indirect microphysical and direct radiative impacts on a real severe storms outbreak. Increased solar absorption within the dust plume led to modest increases in pre-storm atmospheric stability at low levels, resulting in weaker convective updrafts and less widespread precipitation. Dust microphysical impacts on convection were minor in comparison, due in part to the lofted dust concentrations being relatively few in number when compared to the background (non-dust) aerosol population. While dust preferentially serving as cloud condensation nuclei (CCN) versus giant CCN had opposing effects on warm rain production, both scenarios resulted in ample supercooled water and subsequent glaciation aloft, yielding larger graupel and hail. Associated latent heating from condensation and freezing contributed little to overall updraft invigoration. With reduced rain production overall, the simulations that included dust effects experienced slightly reduced grid-cumulative precipitation and notably warmer and spatially smaller cold pools. Dust serving as ice nucleating particles did not appear to play a significant role. The presence of dust ultimately reduced the number of supercells produced but allowed for supercell evolution characterized by consistently higher values of relative vertical vorticity within simulated mesocyclones. Dust radiative and microphysical effects were relatively small in magnitude when compared to those from altering the background convective available potential energy and vertical wind shear. It is difficult to generalize such findings from a single event, however, due to a number of case-specific environmental factors. These include the nature of the low-level moisture advection and characteristics of the background aerosol distribution.
Integrated spatiotemporal characterization of dust sources and outbreaks in Central and East Asia
NASA Astrophysics Data System (ADS)
Darmenova, Kremena T.
The potential of atmospheric dust aerosols to modify the Earth's environment and climate has been recognized for some time. However, predicting the diverse impact of dust has several significant challenges. One is to quantify the complex spatial and temporal variability of dust burden in the atmosphere. Another is to quantify the fraction of dust originating from human-made sources. This thesis focuses on the spatiotemporal characterization of sources and dust outbreaks in Central and East Asia by integrating ground-based data, satellite multisensor observations, and modeling. A new regional dust modeling system capable of operating over a span of scales was developed. The modeling system consists of a dust module DuMo, which incorporates several dust emission schemes of different complexity, and the PSU/NCAR mesoscale model MM5, which offers a variety of physical parameterizations and flexible nesting capability. The modeling system was used to perform for the first time a comprehensive study of the timing, duration, and intensity of individual dust events in Central and East Asia. Determining the uncertainties caused by the choice of model physics, especially the boundary layer parameterization, and the dust production scheme was the focus of our study. Implications to assessments of the anthropogenic dust fraction in these regions were also addressed. Focusing on Spring 2001, an analysis of routine surface meteorological observations and satellite multi-sensor data was carried out in conjunction with modeling to determine the extent to which integrated data set can be used to characterize the spatiotemporal distribution of dust plumes at a range of temporal scales, addressing the active dust sources in China and Mongolia, mid-range transport and trans-Pacific, long-range transport of dust outbreaks on a case-by-case basis. This work demonstrates that adequate and consistent characterization of individual dust events is central to establishing a reliable climatology, ultimately leading to improved assessments of dust impacts on the environment and climate. This will also help to identify the appropriate temporal and spatial scales for adequate intercomparison between model results and observational data as well as for developing an integrated analysis methodology for dust studies.
2010-01-01
Background Despite indoor home environments being where people spend most time, involving residents in testing those environments has been very limited, especially in marginalized communities. We piloted participatory testing and reporting that combined relatively simple tests with actionable reporting to empower residents in Main South/Piedmont neighborhoods of Worcester, Massachusetts. We answered: 1) How do we design and implement the approach for neighborhood and household environments using participatory methods? 2) What do pilot tests reveal? 3) How does our experience inform testing practice? Methods The approach was designed and implemented with community partners using community-based participatory research. Residents and researchers tested fourteen homes for: lead in dust indoors, soil outdoors, paint indoors and drinking water; radon in basement air; PM2.5 in indoor air; mold spores in indoor/outdoor air; and drinking water quality. Monitoring of neighborhood particulates by residents and researchers used real-time data to stimulate dialogue. Results Given the newness of our partnership and unforeseen conflicts, we achieved moderate-high success overall based on process and outcome criteria: methods, test results, reporting, lessons learned. The conflict burden we experienced may be attributable less to generic university-community differences in interests/culture, and more to territoriality and interpersonal issues. Lead-in-paint touch-swab results were poor proxies for lead-in-dust. Of eight units tested in summer, three had very high lead-in-dust (>1000 μg/ft2), six exceeded at least one USEPA standard for lead-in-dust and/or soil. Tap water tests showed no significant exposures. Monitoring of neighborhood particulates raised awareness of environmental health risks, especially asthma. Conclusions Timely reporting back home-toxics' results to residents is ethical but it must be empowering. Future work should fund the active participation of a few motivated residents as representatives of the target population. Although difficult and demanding in time and effort, the approach can educate residents and inform exposure assessment. It should be considered as a core ingredient of comprehensive household toxics' testing, and has potential to improve participant retention and the overall positive impact of long-term environmental health research efforts. PMID:20604953
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
A Fresh Crater Drills to Tharsis Bedrock
NASA Technical Reports Server (NTRS)
2007-01-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of a newly formed impact crater in the Tharsis region of Mars at 1316 UTC (8:16 a.m. EST) on Jan. 13, 2007, near 17.0 degrees north latitude, 246.4 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point. The Tharsis region is a high volcanic plateau that stands about 5 kilometers (3 miles) above the surrounding plains. The rocks forming Tharsis are younger than in most parts of mars, as evidenced by their low density of craters. The best estimate of their age is comparable to the age of Shergotty-class meteorites thought to originate from Mars. However, Tharsis is covered by a nearly unbroken, meters-thick layer of dust that has frustrated all attempts to measure its bedrock composition remotely, and to determine if it matches the composition of Shergotty-class meteorites. The recent discovery of dark, newly formed impact craters on Mars has provided the CRISM team a chance, finally, to measure the rocks that make up Tharsis. Over the lifetime of the Mars Global Surveyor mission, its high-resolution Mars Orbiter Camera monitored the surface and documented the very recent formation of some two dozen small impact craters. Several of them are in Tharsis and pierce the plateau's dust blanket to expose bedrock. MRO's instruments have been trained on these 'drill holes' into Mars' volcanic crust, including the crater shown here. The top image was constructed from three infrared wavelengths that usually highlight compositional variations. This image shows the impact crater, a ring of dark, excavated rock (inset), and a surrounding system of rays. Crater rays are common around young impact craters, and they form when ejected boulders reimpact the surface and stir up the local rock and soil. The colors are bland because the scene is dominated by dust except for the dark crater and the ejecta immediately surrounding it. The bottom image is a spectral map constructed using measurements of the 544-color spectra that separate dust and rock. The bright, deep orange areas are undisturbed dust. The crater rays' chocolate color in this rendition shows that they are slightly darker, more packed-down soil that was exposed by reimpacting boulders. The bright green color immediately around the new crater (inset) is where mafic rock (rock rich in the iron- and magnesium-containing minerals pyroxene and olivine) have been exposed. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.Impact-generated dust clouds around planetary satellites: asymmetry effects
NASA Astrophysics Data System (ADS)
Sremčević, Miodrag; Krivov, Alexander V.; Spahn, Frank
2003-06-01
In a companion paper (Krivov et al., Impact-generated dust clouds around planetary satellites: spherically symmetric case, Planet. Space. Sci. 2003, 51, 251-269) an analytic model of an impact-generated, steady-state, spherically symmetric dust cloud around an atmosphereless planetary satellite (or planet - Mercury, Pluto) has been developed. This paper lifts the assumption of spherical symmetry and focuses on the asymmetry effects that result from the motion of the parent body through an isotropic field of impactors. As in the spherically symmetric case, we first consider the dust production from the surface and then derive a general phase-space distribution function of the ensemble of ejected dust motes. All quantities of interest, such as particle number densities and fluxes, can be obtained by integrating this phase-space distribution function. As an example, we calculate an asymmetric distribution of dust number density in a cloud. It is found that the deviation from the symmetric case can be accurately described by a cosine function of the colatitude measured from the apex of the satellite motion. This property of the asymmetry is rather robust. It is shown that even an extremely asymmetric dust production at the surface, when nearly all dust is ejected from the leading hemisphere, turns rapidly into the cosine modulation of the number density at distances larger than a few satellite radii. The amplitude of the modulation depends on the ratio of the moon orbital velocity to the speed of impactors and on the initial angular distribution of the ejecta. Furthermore, regardless of the functional form of the initial angular distribution, the number density distribution of the dust cloud is only sensitive to the mean ejecta angle. When the mean angle is small - ejection close to the normal of the surface - the initial dust production asymmetry remains persistent even far from the satellite, but when this angle is larger than about 45°, the asymmetry coefficient drops very rapidly with the increasing distance. The dependence of the asymmetric number density on other parameters is very weak. On the whole, our results provide necessary theoretical guidelines for a dedicated quest of asymmetries in the dust detector data, both those obtained by the Galileo dust detector around the Galilean satellites of Jupiter and those expected from the Cassini dust experiment around outer Saturnian moons.
NASA Astrophysics Data System (ADS)
Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina
2015-04-01
Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.
Some Dust/Ocean Connections - Past, Present, and Future
NASA Astrophysics Data System (ADS)
Duce, R. A.
2015-12-01
Atmospheric dust has been the subject of communications for more than 3000 years, since the ancient Chinese book Chronicles Reported on Bamboo Shoots in 1150 BC. Similar reports of hwangsa and woo-tou in ancient Korean and kosa in ancient Japanese literature also indicated major Asian dust events in those areas. Western observers noted dust storms in India and Afghanistan in the early 1800s, while in the 1840s Darwin surmised that Sahara dust could be an important component of marine sedimentation in the North Atlantic. More recent interest has focused on the importance of dust as a source of the nutrients iron and phosphorus in the global ocean and the role of iron as a limiting nutrient in many areas of the surface ocean. While significant progress has been made in the past 25 years in identifying important dust/ocean connections, many issues remain. Included are the relative dearth of long-term measurements of atmospheric dust (and iron and phosphorus) over and deposition to the ocean, especially in the southern hemisphere; comparisons between modeled and measured deposition of dust to the ocean; and the solubility of iron and phosphorus (and thus their availability as nutrients) after the mineral matter enters the ocean. Addressing these problems will certainly help to provide more accurate estimates of the input of dust to the ocean and its impacts. However, future changes in dust emissions in a warmer world as well as changes in the acid/base environment that mineral dust experiences during its transport and deposition as a result of emission controls on atmospheric NOx and SO2 are two facors that may change the input of these nutrients to the ocean and their impacts in the coming years. These and other issues will be reviewed in this paper.
Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalenderski, S.; Stenchikov, G.; Zhao, Chun
2013-02-20
We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, andmore » mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.« less
Physicochemical classification of dust particles observed at Gosan ABC superstation in East Asia
NASA Astrophysics Data System (ADS)
Shang, X.; Lee, M.; Chung, C. E.
2013-12-01
We identified different types of dust particles from long-term measurements of mass and ionic and carbonaceous compositions of PM1.0, PM2.5 and PM10 at Gosan ABC superstation on Jeju Island, Korea from August 2007 to February 2012. The concentration of PM1.0, PM10 mass and PM10 Ca2+ showed clear bimodal distributions, which provided robust criteria to distinguish atmospheric particles in different physiochemical regimes. Dust impacted particles were clearly separated by high PM10 mass over 29μg/m3. Some dust storm often passed over heavily populated areas in China, which made dust particles mixed with pollutants. This type of aerosol showed enhanced concentration of PM1.0 over 22μg/m3. We also recognized high Ca2+ concentration in PM1.0 when air came from northeastern China where salt deposit spreads in dry lakes. The Ca2+ concentration in PM10 was found to be a good indicator for the saline dust particles. In addition, the ratios of mass, SO42-, Mg2+ and organic carbon (OC) to Ca2+ turned out to be useful to distinguish different types of dust-impacted particles.
Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission
NASA Astrophysics Data System (ADS)
James, David; Horanyi, Mihaly; Poppe, Andrew
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.
Interannual variability of planet-encircling dust storms on Mars
NASA Technical Reports Server (NTRS)
Zurek, Richard W.; Martin, Leonard J.
1993-01-01
A recent review of earth-based telescopic observations of Mars together with Viking orbiter and lander data are employed to estimate the frequency of occurrence of planet-encircling dust storms over the past century and to test whether the period spanned by the Mariner 9 and Viking missions to Mars is representative of the decades prior to 1950. Both spacecraft and earth-based observations suggest that planet-encircling dust storms on Mars occur during a 'dust storm season' in southern spring and summer. Viking data show that planet-encircling dust storms could have occurred in the past on Mars without being detected from earth during years in which Mars was far from earth during the dust storm season. Planet-encircling storms were absent during the dust storm seasons monitored during several favorable oppositions prior to 1956 and after 1986. The change of a planet-encircling dust storm occurring in any arbitrary Mars year is estimated to be approximately one in three, if this occurrence is random from year to year and yet restricted seasonally to southern spring and summer.
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Moosmüller, Hans; Pincock, Samuel; Jayanty, R. K. M.; Lersch, Traci; Casuccio, Gary
2016-08-01
This paper promotes an understanding of the mineralogical, chemical, and physical interrelationships of re-suspended mineral dusts collected as grab samples from global dust sources. Surface soils were collected from arid regions, including the southwestern USA, Mali, Chad, Morocco, Canary Islands, Cabo Verde, Djibouti, Afghanistan, Iraq, Kuwait, Qatar, UAE, Serbia, China, Namibia, Botswana, Australia, and Chile. The < 38 µm sieved fraction of each sample was re-suspended in a chamber, from which the airborne mineral dust could be extracted, sampled, and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size analyzer, and a three-wavelength (405, 532, 781 nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sampling media included Teflon® membrane and quartz fiber filters for chemical analysis and Nuclepore® filters for individual particle analysis by scanning electron microscopy (SEM). The < 38 µm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 75, < 125 µm soil fractions were mineralogically assessed by optical microscopy. Presented here are results of the optical measurements, showing the interdependency of single-scattering albedos (SSA) at three different wavelengths and mineralogical content of the entrained dust samples. To explain the elevated concentrations of iron (Fe) and Fe / Al ratios in the soil re-suspensions, we propose that dust particles are to a large extent composed of nano-sized particles of micas, clays, metal oxides, and ions of potassium (K+), calcium (Ca2+), and sodium (Na+) evenly dispersed as a colloid or adsorbed in amorphous clay-like material. Also shown are differences in SSA of the kaolinite/hematite/goethite samples from Mali and those from colloidal soils elsewhere. Results from this study can be integrated into a database of mineral dust properties, for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and impact on equipment.
Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface
NASA Astrophysics Data System (ADS)
Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.
2016-10-01
As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.
Asian anthropogenic dust and its climate effect (Invited)
NASA Astrophysics Data System (ADS)
Huang, J.; Liu, J.; Chen, B.
2013-12-01
Anthropogenic dust originates mainly from areas of localized human disturbance, such as traffic-on-roads, agricultural fields, grazing, military installations, construction sites, and off-road vehicle areas. To understand historical and possible future changes in dust emissions, the percentage of atmospheric dust load originating from anthropogenic source and its distribution must be quantified. CALIPSO lidar, which shoots a laser into the atmosphere, provides new insight into the detection of anthropogenic dust emission. Here, we present the distribution of Asian anthropogenic dust emissions and its relation to human activity by using CALIPSO lidar measurements. We found that the local anthropogenic dust aerosols account for significant portion of the total dust burden in the atmosphere. The anthropogenic dust emissions mainly occur over the heavy human activity and poor ecosystem region, such as semi-arid region. The impact of Asian anthropogenic dust on regional climate will also be discussed in this talk.
NASA Astrophysics Data System (ADS)
Schlatter, Daniel C.; Schillinger, William F.; Bary, Andy I.; Sharratt, Brenton; Paulitz, Timothy C.
2018-07-01
Wind erosion is a significant threat to the productivity and sustainability of agricultural soils. In the dryland winter wheat (Triticum aestivum L.)-fallow region of Inland Pacific Northwest of the USA (PNW), farmers increasingly use conservation tillage practices to control wind erosion. In addition, some farmers in this dry region apply municipal biosolids to soils as fertilizer and a source of stable organic matter. The impacts of soil management practices on emissions of dust microbiota to the atmosphere are understudied. We used high-throughput DNA sequencing to examine the impacts of conservation tillage and biosolids amendments on the transport of dust-associated fungal and bacterial communities during simulated high-wind events over two years at Lind, WA. The fungal and bacterial communities contained in windblown dust differed significantly with tillage (conservation vs. conventional) and fertilizer (synthetic vs. biosolids) treatments. However, the richness and diversity of fungal and bacterial communities of dust did not vary significantly with tillage or fertilizer treatments. Taxa enriched in dust from fields under conservation tillage represented many plant-associated taxa that likely grow on residue left on the soil surface, whereas taxa that were more abundant with conventional tillage were those that likely grow on buried plant residue. Dust from biosolids-amended fields harbored greater abundances of taxa that likely feed on introduced carbon. Most human-associated taxa that may pose a health risk were not present in dust after biosolids amendment, although members of Clostridiaceae were enriched with this treatment. Results show that tillage and fertilizer management practices impact the composition of bioaerosols emitted during high-wind events and have potential implications for plant and human health.
Summer variability of Saharan dust transport events in mountain areas north and south of Po basin
NASA Astrophysics Data System (ADS)
Landi, Tony C.; Marinoni, Angela; Cristofanelli, Paolo; Putero, Davide; Duchi, Rocco; Alborghetti, Marcello; Bonafè, Ubaldo; Calzolari, Francescopiero; Pietro Verza, Gian; Bonasoni, Paolo
2013-04-01
Mineral dust intrusions from northern African desert regions have a strong impact on the Mediterranean areas and Italian peninsula as they can cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at ground level. The estimate of Saharan dust contribution to aerosols concentrations is therefore a key issue in air quality assessment and policy formulation, since can cause air quality exceedances of the PM10 daily limits (50 μg m-3) set by the European Union (EU/2008/50). This study presents a first identification and characterization of Saharan dust outbreaks observed during summer season at two high mountain stations located both South (Mt. Cimone, 2165 m asl) and North (Rifugio Guasti, Stelvio National Park, 3285 m asl) of Po valley. An estimation of their impact on PM10 concentrations in both sites, and in urban and rural areas of the Po basin is provided. Joining specific measurements (ground and satellite based) and numerical modeling, an investigation into the vertical structure of dust load will be presented. Actually, methodologies conceived for distinguishing dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition are currently still lacking. Basically, the approach proposed in this work includes a deep analysis of in-situ measurements starting from long-term observation of Saharan dust carried out at the Mt. Cimone and more recent measurements performed in the framework of SHARE Stelvio Project, as well as the usage of ad hoc model chain (meteorological processor, chemical transport model, and aerosols optical properties calculation) to describe emission, transport and deposition dynamics of mineral dust that - in summertime - often affect the North Italy.
The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation
NASA Astrophysics Data System (ADS)
Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.
2015-12-01
Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.
Interpretation of high rate dust measurements with the Cassini dust detector CDA
NASA Astrophysics Data System (ADS)
Kempf, Sascha
2008-03-01
For two years the cosmic dust analyser (CDA) onboard the Cassini spacecraft has been exploring the dust environment of Saturn [Srama, R., Kempf, S., Moragas-Klostermeyer, G., Helfert, S., Ahrens, T. J., Altobelli, N., Auer, S., Beckmann, U., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Green, S.F., Grande, M., Havnes, O., Hillier, J.K., Horanyi, M., Igenbergs, E., Jessberger, E.K., Johnson, T.V., Krüger, H., Matt, G., McBride, N., Mocker, A., Lamy, P., Linkert, D., Linkert, G., Lura, F., McDonnell, J.A.M., Möhlmann, D., Morfill, G.E., Postberg, F., Roy, M., Schwehm, G.H., Spahn, F., Svestka, J., Tschernjawski, V., Tuzzolino, A.J., Wäsch, R., Grün, E., 2006. In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54, 967-987]. One major goal of the CDA instruments is to investigate Saturn's enigmatic E ring - the largest known planetary ring of the solar system. The sophisticated main detector (dust analyser - DA) of CDA is rather slow when processing the impact data, and limits the detectable number of impacts to 60min-1 [Srama, R., Ahrens, T., Altobelli, N., Auer, S., Bradley, J., Burton, M., Dikarev, V., Economou, T., Fechtig, H., Görlich, M., Grande, M., Graps, A., Grün, E., Havnes, O., Helfert, S., Horányi, M., Igenbergs, E., Jeßberger, E., Johnson, T., Kempf, S., Krivov, A., Krüger, H., Mocker-Ahlreep, A., Moragas-Klostermeyer, G., Lamy, P., Landgraf, M., Linkert, D., Linkert, G., Lura, F., McDonnel, J., Möhlmann, D., Morfill, G., Müller, M., Roy, M., Schäfer, G., Schlotzhauer, G., Schwehm, G., Spahn, F., Stübig, M., Svestka, J., Tschernjawski, V., Tuzzolino, A., Wäsch, R., Zook, H., 2004. The Cassini cosmic dust analyser. Space Sci. Rev. 114, 465-518]. However, measurements by the CDA high rate detector (HRD) imply that the DA impact rates in the inner core of the E ring exceed 1000min-1. Clearly, to investigate dust-rich environments with the DA requires knowledge about the instrument performance at high impact rates. In this paper, we study the dependence of the number of detected impacts on the average impact rate arising from a Poisson process. We demonstrate the validity of the resulting expressions by comparing them with Monte Carlo (MC) simulations of the DA performance. We argue that DA measurements provide meaningful impact rate estimates even if the DA detects slightly less than 60 impacts per minute. Finally, we apply the derived expressions to a DA E ring measurement.
NASA Astrophysics Data System (ADS)
Hermalyn, B.; Colaprete, A.
2013-12-01
A considerable body of evidence indicates the presence of lofted regolith dust above the lunar surface. These observations range from multiple in-situ and orbital horizon glow detections to direct measurement of dust motion on the surface, as by the Apollo 17 Lunar Ejecta and Meteorites (LEAM) experiment. Despite this evidence, the specific mechanisms responsible for the lofting of regolith are still actively debated. These include impact ejection, electrostatic lofting, effects of high energy radiation, UV/X- rays, and interplay with solar wind plasma. These processes are highly relevant to one of the two main scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (due to launch September, 2013): to directly measure the lunar exospheric dust environment and its spatial and temporal variability towards the goal of better understanding the dust flux. Of all the proposed mechanisms taking place on the lunar surface, the only unequivocal ongoing process is impact cratering. Hypervelocity impact events, which mobilize and redistribute regolith across planetary surfaces, are arguably the most pervasive geologic process on rocky bodies. While many studies of dust lofting state that the impact flux rate is orders of magnitude too low to account for the lunar horizon glow phenomenon and discount its contribution, it is imperative to re-examine these assumptions in light of new data on impact ejecta, particularly from the contributions from mesoscale (impactor size on the order of grain size) and macroscale (impactor > grain size) cratering. This is in large part due to a previous lack of data, for while past studies have established a canonical ejecta model for main-stage ejection of sand targets from vertical impacts, only recent studies have been able to begin quantitatively probing the intricacies of the ejection process outside this main-stage, vertical regime. In particular, it is the high-speed early-time ejecta that will reach significant altitude above the surface and remain aloft ballistically for hours. In addition, ejecta dynamics in the transition regime between microcratering and macro scale events is not yet well understood. As such, there is no currently accepted encompassing model of impact ejecta delivery to the lunar exosphere. It is important to note that the work described here is not to duplicate or exclude other lofting mechanisms -- in reality, the lofting of dust is almost definitely a complex combination of processes -- but instead to provide essential constraints on the impact contribution. This study attempts to constrain the expected contributions from cratering to the lunar exosphere by assessing the ejecta 'background' signal lofted above the surface and the effects of transient focused events (meteor showers) which can produce significant increases in ejecta. In particular, this work couples scaling of previous ejecta studies with Monte-Carlo and ballistics models and will present LADEE data analysis (particularly from the UVS and LDEX instruments) and interpretation in context of constraining the ejected mass distribution. These results are relevant to both our understanding of exospheric dust and for constraint of hazards for future human habitation.
Emerging ecological datasets with application for modeling North American dust emissions
USDA-ARS?s Scientific Manuscript database
In 2011 the US Bureau of Land Management (BLM) established the Assessment, Inventory and Monitoring (AIM) program to monitor the condition of BLM land and to provide data to support evidence-based management of multi-use public lands. The monitoring program shares core data collection methods with t...
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.
2018-01-01
The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.
2013-12-01
Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).
NASA Astrophysics Data System (ADS)
Economou, T. E.; Tuzzolino, A. J.; Green, S. F.
On January 2nd, 2004, the Stardust spacecraft successfully encountered the Wild 2 comet. The Dust Flux Monitor Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distribution throughout the entire flythrough. The DFMI consists of two different dust detector systems --- a polyvinylidene fluoride (PVDF) dust sensor unit (SU), which measures particles in the 10-11 to 10-4 mass, and a dual acoustic sensor system (DASS), which utilizes two piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux ofparticles with mass larger than 10-4 g. The DFMI on the stardust mission was designed, built and tested at the University of Chicago. The Open University provided the calibration and will perform the analysis of the data from the acoustic sensors. The DFMI instrument was turned on 15 minutes before the estimated closest approach. It started to detect the first dust particles just a few minutes before the closest approach with both types of the sensors in the instrument. As the S/C was departing the comet several more dust particle streams were encountered some 2-12 minutes after the closest approach. The time distribution of dust particles detected by DFMI is not uniform and they seem to come in closely spaced swarms of particles separated by many seconds with no events. The source of these particles is believed to be several of the jet streams that were observed in many of the images obtained by the navigation camera on the STARDUST spacecraft. Data flux rates and dust particle mass distribution are currently being evaluated and will be presented at the meeting. The instrument detected thousands of small particles and a few of them were large enough to even penetrate the first layer of the Whipple bumper shield. From the DFMI data it has been estimated that more than several thousands particles larger than 20 μ in diameter have been collected in the aerogel collector that will returned back to Earth in January 2006.
Electrical Evolution of a Dust Plume from a Low Energy Lunar Impact: A Model Analog to LCROSS
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Jackson, T. L.; Colaprete, A.; Heldmann, J. L.; Schultz, P. H.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Marshall, J. R.;
2011-01-01
A Monte Carlo test particle model was developed that simulates the charge evolution of micron and sub-micron sized dust grains ejected upon low-energy impact of a moderate-size object onto a lunar polar crater floor. Our analog is the LCROSS impact into Cabeus crater. Our primary objective is to model grain discharging as the plume propagates upwards from shadowed crater into sunlight.
Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1
NASA Astrophysics Data System (ADS)
Ansari, A.; ISPE Team; 29,000 Stardust@home Dusters
2011-12-01
The Interstellar Dust Collector onboard NASA's Stardust Mission - the first to return solid extraterrestrial material to Earth from beyond the Moon - was exposed to the interstellar dust stream for a total of 229 days prior to the spacecraft's return in 2006 [1]. Aluminum foils and aerogel tiles on the collector may have captured the first samples of contemporary interstellar dust. Interstellar Preliminary Examination (ISPE) focuses in part on crater identification and analysis of residue within the craters to determine the nature and origin of the impacting particles. Thus far, ISPE has focused on nine foils and found a total of 20 craters. The number density of impact craters on the foils exceeds by far estimates made from interstellar flux calculations [2]. To identify craters, foil I1033N,1 was scanned with the Field Museum's Evo 60 Scanning Electron Microscope (SEM) at a resolution of 52 nm/pixel with a 15 kV and 170-240 pA beam. Contamination was monitored according to the ISPE protocol: four 4 μm × 3 μm areas of C layers of different thicknesses on a Stardust-type Al foil were irradiated 20 times for 50 s each, while the C and Al signals were recorded with energy-dispersive X-ray spectroscopy (EDS). The C/Al ratio did not increase after 20 repetitions on each of the four areas. The same experiment repeated 7 months later yielded identical results. Thus, analysis with the SEM results in no detectable contamination. Crater candidates were manually selected from SEM images, then reimaged at higher resolution (17 nm/pixel) in order to eliminate false detections. The foil was then sent to Washington University for Auger Nanoprobe elemental analysis of crater 11_175 (diam. 1.1 μm), and to the Naval Research Laboratory for focused ion beam work and transmission electron microscopy and EDS. Twelve crater candidates (diam. 0.28 - 1.1 μm), both elliptical and circular, were identified. The number density of craters on foil 1033N is 15.8 cm^-2. Auger measurements of crater 11_175 revealed the presence of C, O, Al, Si, a small amount of Na, and possibly Ce and Zn [3] - both components of solar cell cover glass - indicating that this particular crater resulted from a particle that impacted the spacecraft's solar panels. TEM/EDS analysis determined the presence of solar cell glass.
Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario
Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...
Comparison of conventional and bio-treated methods as dust suppressants.
Naeimi, Maryam; Chu, Jian
2017-10-01
Dust is an environmental, geotechnical, health, and economical hazard. Fugitive dust emanating along transportation systems such as roads, railways, and airports especially can have significant impacts on health, safety, material loss, cost of maintenance, and interfere with the facilities. Quantitative studies on the effectiveness of the proper dust palliatives and their environmental impact have been studied with a number of biological and chemical methods. The objective of this study was to establish a method for using the microbial Induced calcium carbonate precipitation (MICP) approach to reduce the percent of mass loss against erosive force of wind regarding to the concentration and characteristics of aggregate used, climate, and traffic amounts. The results of this study showed that the required precipitation for dust control of sand by 70% is less than 15 g CaCO 3 /m 2 between sand grains in bio-treated sand. The wind tunnel test results of this study also indicate that the effectiveness of the bio-treatment method for dust control depends on many variables, such as the percent of precipitated calcium carbonate and tensile strength.
McConnell, Joseph R.; Aristarain, Alberto J.; Banta, J. Ryan; Edwards, P. Ross; Simões, Jefferson C.
2007-01-01
Crustal dust in the atmosphere impacts Earth's radiative forcing directly by modifying the radiation budget and affecting cloud nucleation and optical properties, and indirectly through ocean fertilization, which alters carbon sequestration. Increased dust in the atmosphere has been linked to decreased global air temperature in past ice core studies of glacial to interglacial transitions. We present a continuous ice core record of aluminum deposition during recent centuries in the northern Antarctic Peninsula, the most rapidly warming region of the Southern Hemisphere; such a record has not been reported previously. This record shows that aluminosilicate dust deposition more than doubled during the 20th century, coincident with the ≈1°C Southern Hemisphere warming: a pattern in parallel with increasing air temperatures, decreasing relative humidity, and widespread desertification in Patagonia and northern Argentina. These results have far-reaching implications for understanding the forces driving dust generation and impacts of changing dust levels on climate both in the recent past and future. PMID:17389397
Badirdast, Phateme; Salehpour, Soussan; Ghadjari, Ali; Khodakarim, Soheila; Panahi, Davod; Fadaei, Moslem; Rahimi, Abolfazl
2017-01-01
Background: Occupational exposure to dust leads to acute and chronic respiratory diseases, occupational asthma, and depressed lung function. In the light of a lack of comprehensive studies on the exposure of Iranian workers to wood dusts, the objective of this study was to monitor the occupational exposure to wood dust and bioaerosol, and their correlation with the lung function parameters in chipboard manufacturing industry workers. Materials and Methods: A cross-sectional study was conducted on chipboard workers in Golestan Province; a total of 150 men (100 exposed cases and 50 controls) were assessed. Workers were monitored for inhalable wood dust and lung function parameters, i.e., FVC, FEV1, FEV1/FVC, and FEF25–75%. The workers’ exposure to bioaerosols was measured using a bacterial sampler; a total of 68 area samples were collected. The analysis was performed using the Mann-Whitney, Kruskal-Wallis, and regression statistical tests. Results: The geometric mean value and geometric standard deviation of inhalable wood dust for the exposed and control groups were 19 ± 2.00 mg/m3 and 0.008 ± 0.001 mg/m3, respectively. A statistically significant correlation was observed between the lung parameters and cumulative exposure to inhalable wood dust, whereas a statistically significant correlation was not observed between the lung parameters and bioaerosol exposure. However, the exposure of Iranian workers to bioaerosols was higher, compared to their foreign coworkers. Conclusion: Considering the high level of exposure among workers in this study along with their lung function results, long-term exposure to wood dust may be detrimental to the workers’ health and steps to limit their exposure should be considered seriously. PMID:28638425
Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris
2017-07-13
The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... Eastern Daylight Saving Time on June 20, 2011. ADDRESSES: Comments must be identified with ``RIN 1219-AB64... commenters additional time to review and comment on the proposed rule. DATES: The comment period for the... providing additional time for interested parties to submit comments. MSHA is extending the comment period...
Remote sensing of aerosols by synergy of caliop and modis
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Higurashi, Akiko; Oikawa, Eiji
2018-04-01
For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.
The formulation of Lamb's Dust Veil Index
NASA Technical Reports Server (NTRS)
Kelly, P. M.; Sear, C. B.
1982-01-01
A catalog of the major explosive volcanic eruptions since 1500 AD and formulated the Dust Veil Index (DVI) is presented. The DVI quantifies the impact on the Earth's energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI for a particular eruption quantifies the climatic impact of the dust and aerosol injection from the eruption integrated over the years following the event. The formulation of the DVI is described. All references are to Lamb (1970). A distinction is made between the catalog of volcanic activity, and the tabulation of the northern hemisphere DVI apportioned over the years. The DVI data are updated to 1975 for any particular eruption, the catalog gives three DVI values: global, Southern Hemisphere, and Northern Hemisphere. The global DVI given in the catalog is considered. The other two DVIs relate to the impact on the hemispheres considered separately and their estimation involves an additional factor apportioning the dust veil between the hemispheres on the basis of the latitude of injection.
Endotoxins in cotton: washing effects and size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olenchock, S.A.; Mull, J.C.; Jones, W.G.
1983-01-01
Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.
First-Time Analysis of Completely Restored DTREM Instrument Data from Apollo 14 and 15
NASA Technical Reports Server (NTRS)
McBride, Marie J.; Williams, David R.; Hills, H. Kent; Turner, Niescja
2013-01-01
The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages (figure 1) mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The monitors returned data for up to almost 8 years from the lunar surface.
Najafpour, Ali; Aghaz, Faranak; Roshankhah, Shiva; Bakhtiari, Mitra
2018-06-26
Pollutants during haze and Asian dust storms are transported out of the Asian continent, affecting the regional climate and the hydrological and biogeochemical cycles. Nonetheless, no specific studies evaluated the dust particles influence on semen quality in a specific geographical area. In this article, we investigated the effect of dust particles on semen quality and sperm parameters among infertile men. A descriptive-analytic study was conducted among 850 infertile men between 2011 and 2015 years. Semen quality was assessed according to the WHO 2010 guidelines, including sperm concentration, progressive motility, and morphology. Four-year average dust particle concentrations were estimated at each participant's address using the Air Pollution Monitoring Station affiliated with the Department of Environment of Kermanshah city were gathered. Dust particle levels were highest in the summer months, in Kermanshah province. Our results show that, dust pollution was found to be significantly negatively correlated with sperm morphology and sperm concentration before and after lab-processing, but sperm progressive motility is low sensitive to dust particles. Our findings showed that exposures to dust particle may influence sperm quantity in infertile men, consistent with the knowledge that sperm morphology and concentration are the most sensitive parameters of dust pollution.
Intensified dust storm activity and Valley fever infection in the southwestern United States
NASA Astrophysics Data System (ADS)
Tong, Daniel Q.; Wang, Julian X. L.; Gill, Thomas E.; Lei, Hang; Wang, Binyu
2017-05-01
Climate models have consistently projected a drying trend in the southwestern United States, aiding speculation of increasing dust storms in this region. Long-term climatology is essential to documenting the dust trend and its response to climate variability. We have reconstructed long-term dust climatology in the western United States, based on a comprehensive dust identification method and continuous aerosol observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. We report here direct evidence of rapid intensification of dust storm activity over American deserts in the past decades (1988-2011), in contrast to reported decreasing trends in Asia and Africa. The frequency of windblown dust storms has increased 240% from 1990s to 2000s. This dust trend is associated with large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation. We further investigate the relationship between dust and Valley fever, a fast-rising infectious disease caused by inhaling soil-dwelling fungus (Coccidioides immitis and C. posadasii) in the southwestern United States. The frequency of dust storms is found to be correlated with Valley fever incidences, with a coefficient (r) comparable to or stronger than that with other factors believed to control the disease in two endemic centers (Maricopa and Pima County, Arizona).
Frontiers in In-Situ Cosmic Dust Detection and Analysis
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng
2011-11-01
In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.
Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.
1998-01-01
Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
Sorption of Organophosphorus Flame-Retardants on Settled ...
Dust is an important sink for indoor air pollutants, such as organophosphorus flame-retardants (OPFRs) that are used as additives in industrial and consumer products including electrical and electronic products, furniture, plastics, textile, and building/construction materials. This research investigated the sorption of OPFRs, tris(2-chloroethyl) phosphate (TCEP), tris(1-chlor-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on settled Arizona Test Dust (ATD) using a dual small chamber system. During the test, seven free film release paper dust trays covered with ATD were placed in the sink test chamber. Constant gas phase OPFRs from the source chamber were dosed into the test chamber. The dust evenly spread on each dust tray was removed from the test chamber at different exposure times to determine the amount of OPFRs absorbed by the dust. The ATD has been characterized for a nominal particle size and surface area. The mass of dust on each of seven dust trays was weighed before the dust was placed inside the sink chamber. OPFRs concentrations at the inlet and faceplate of the test chamber were monitored by collecting polyurethane foam (PUF) samples. The OPFR exposed dust and PUF samples were extracted by 1:1 ethyl acetate/methylene chloride and analyzed on GC/MS. The data were used to calculate the OPFR sorption concentration on the dust through dust/air partition. Settled dust can adsorb OPFR from air. The sorption concentration wa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Sijia; Russell, Lynn M.; Yang, Yang
We use 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of the East Asian Monsoon strength on interannual variations of springtime dust concentrations over China. The simulated interannual variations in March-April-May (MAM) dust column concentrations range between 20–40% and 10–60% over eastern and western China, respectively. The dust concentrations over eastern China correlate negatively with the East Asian Monsoon (EAM) index, which represents the strength of monsoon, with a regionally averaged correlation coefficient of 0.64. Relative to the strongest EAM years, MAMdust concentrations in the weakest EAM years are higher over China, with regionalmore » relative differences of 55.6%, 29.6%, and 13.9% in the run with emissions calculated interactively and of 33.8%, 10.3%, and 8.2% over eastern, central, and western China, respectively, in the run with prescribed emissions. Both interactive run and prescribed emission run show the similar pattern of climate change between the weakest and strongest EAM years. Strong anomalous northwesterly and westerly winds over the Gobi and Taklamakan deserts during the weakest EAM years result in larger transport fluxes, and thereby increase the dust concentrations over China. These differences in dust concentrations between the weakest and strongest EAM years (weakest-strongest) lead to the change in the net radiative forcing by up to 8 and 3Wm2 at the surface, compared to 2.4 and +1.2Wm2 at the top of the atmosphere over eastern and western China, respectively.« less
NASA Astrophysics Data System (ADS)
Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank
2017-07-01
Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.
Exploring the Longwave Radiative Effects of Dust Aerosols
NASA Technical Reports Server (NTRS)
Hansell, Richard A., Jr.
2012-01-01
Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39.082N, 100.276E), a semi-arid region between the Taklimakan and Gobi deserts. NASA Goddards Giovanni system is used to help map out the spatial distribution of retrieved aerosol optical depths across the latter desert regions. 1-D radiative transfer model constrained by local measurements, including spectral photometry/interferometry and lidar for characterizing the spatiotemporal variability in dust properties and atmospheric conditions, is employed to evaluate the local instantaneous LW DARE of dust both at the surface and at the top of the atmosphere along with heating rate profiles for cloud-free atmospheres. The efficiency in LW DARE and its significance relative to the diurnally averaged SW effects are explored and compared in both studies. Found to be non-negligible, LW DARE is an important component in the study of regional climate variation with important implications for more detailed global assessments.
Quantitative detection of settled dust over green canopy
NASA Astrophysics Data System (ADS)
Brook, Anna
2016-04-01
The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing in order to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semi-supervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Atmospheric dust transports a variety of chemicals, some of which pose a risk to the ecosystem and human health (Kaskaoutis, et al., 2008). Many studies deal with the impact of dust on particulate matter (PM) and atmospheric pollution. Considering the potential impact of industrial pollutants, one of the most important considerations is the fact that suspended PM can have both a physical and a chemical impact on plants, soils, and water bodies. Not only can the particles covering surfaces cause physical distortion, but particles of diverse origin and different chemistries can also serve as chemical stressors and cause irreversible damage. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature of a forthcoming environmental hazard are of key interest when considering the effects of pollution. According to the most basic distribution dynamics, dust consists of suspended particulate matter in a fine state of subdivision that are raised and carried by wind. In this context, it is increasingly important to first, understand the distribution dynamics of pollutants, and subsequently develop dedicated tools and measures to control and monitor pollutants in the free environment. The earliest effect of settled polluted dust particles is not always reflected through poor conditions of vegetation or soils, or any visible damages. In most of the cases, it has a quite long accumulation process that graduates from a polluted condition to long-term environmental hazard. Although conducted experiments with pollutant analog powders under controlled conditions have tended to confirm the findings from field studies (Brook, 2014), a major criticism of all these experiments is their short duration. The resulting conclusion is that it is difficult, if not impossible, to determine the implications of long-term exposure to realistic concentrations of pollutants from such short-term studies. Hyperspectral remote sensing (HRS) has become a common tool for environmental and geoscience applications. HRS has promoted new opportunities for exploring a wide range of materials and evaluating a variety of natural processes due to its detailed, specific, and extensive information on spectral and spatial disseminations. Hyperspectral unmixing (HU) is the technique of presuming the category type, which constitutes the mix-pixel, and its mixing ratio (Keshava and Mustard, 2002). In general, the task of unmixing is to decompose the reflectance spectrum of each pixel into a set of endmembers or principal combined spectra and their corresponding abundances (Bioucas-Dias et al., 2012). This study suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Among the available techniques, this study present results of seven linear and non-linear unmixing algorithms: 1) Non-negative Matrix Factorization (NMF), 2) L1 sparsity-constrained NMF (L1-NMF), 3) L1/2 sparsity-constrained NMF (L1/2-NMF), 4) Graph regularized NMF (G-NMF), 5) Structured Sparse NMF (SS-NMF), 6) Alternating Least-Square (ALS), and 2) Lin's Projected Gradient (LPG). The performance is evaluated on real hyperspectral imagery data via detailed experimental assessment. The study showed that in certain compression tasks content-adapted sparse representation is provided by state-of-the-art solutions. The NMF algorithm estimates endmembers that are used to remove spurious information. If computationally feasible, it should include interaction terms to make the model more flexible. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error on the test set. In summary, this work shows that sediment dust can be assessed using airborne HSI data, making it a potentially powerful tool for environmental studies. References Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Bioucas-Dias et al. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 -379.
Effects of dust on forest tree health in Zagros oak forests.
Moradi, A; Taheri Abkenar, K; Afshar Mohammadian, M; Shabanian, N
2017-10-10
Dust is one of the most devastating factors for the environment threatening all animal and plant species. In many regions, the ecological and economic impact of microdust on scarce species is critical. In the western region of Iran, the Zagros forests have been exposed to dust storms for many years. In this study, the effect of dust on oak trees, the most important trees of Zagros forests, is investigated. For this purpose, 3-year-old seedlings of three species of oak trees under natural conditions were exposed to dust during spring and summer months. Seedlings were divided into two groups; one group was assigned as dust treatment and the other as control that the control group washed regularly to remove dust. Anatomical characteristics of leaves and dust deposits on leaves during the study period were examined by scanning electron microscope (SEM). The rate of photosynthesis and gas exchange in control and treated plants was examined by IRGA, LCI. SEM images showed that stomata structure, trichome density, and epicuticular waxes of leaves are different in all three species. This difference in micromorphology of species influences the effects of dust deposited on the leaves. A comparison of leaf species images in control and dust treatment showed that in dust treatment the percentage of stomata blocked by dust in three species (per unit area) of Quercus infectoria, Q. libni, and Q. brantii were 61/6, 48/4, and 38/1%, respectively. The results of leaf gas exchange investigation indicated that stomatal occlusion by dust had a negative impact on the examined parameters of three oak species (P ≤ 0.01). Thus, gas exchange and photosynthetic rates of the treated species were significantly reduced. The results of both parts of the study showed the vulnerability of the three species to dust as Q. infectoria > Q. libni > Q. brantii. Therefore, based on these findings, dust can disrupt the physiological activities of the studied species and the continuation of the exposure to dust will accelerate the process of destruction of these forests.
Gómez-Amo, J L; Estellés, V; Marcos, C; Segura, S; Esteve, A R; Pedrós, R; Utrillas, M P; Martínez-Lozano, J A
2017-12-01
The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements
NASA Astrophysics Data System (ADS)
Lin, Yunlong
Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.
Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.
Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A
2015-06-01
Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components.
Fan, Shoubin; Tian, Gang; Cheng, Shuiyuan; Qin, Jianping
2013-07-01
The USEPA emission factor (AP-42) of fugitive road dust (FRD) is widely used in establishing emission inventories. However, road silt loading sampling for AP-42 is expensive, time consuming, and dangerous. Therefore, a new method for establishing emission inventories based on road dust-fall (DF) monitors is described. Between January 2006 and December 2010, DF was monitored at 40 sites (80 samples), and background dust fall (DF) was monitored at 14 sites in the Beijing metropolitan area. Also during this period, 58 samples of road silt loadings were taken and used in the AP-42 emission factor equation to calculate FRD with particulate matter ≤10 μm in diameter [FRD(PM)] emission from the roads. Simultaneous measurement of FRD(PM) emissions calculated by AP-42 and ΔDF (i.e., the difference between the DF and DF) measured using gauges showed that the FRD(PM) emission for road dust was proportional to the ΔDF ( = 0.92). The FRD(PM) emission (kg km × 30 d) was calculated using the monitored ΔDF (t km × 30 d) by the formulation FRD(PM) = 278.3 × ΔDF - 1151.2. The ΔDF showed a general decline from 2006 to 2010. In particular, there was a sharp decline in August, September, and October 2008 due to strict dust controls enforced during the 2008 Olympic Games. Although there was a small increase in ΔDF after the Games, by the end of 2010 values were still lower than those before the Games. Using the 2006 ΔDF value as a benchmark, ΔDF values declined by 24.7, 33.0, 38.3, and 31.4% in 2007, 2008, 2009, and 2010, respectively. Based on using AP-42 calculations from silt loading and traffic information in 2007, the FRD(PM) emission distribution in the Beijing metropolitan area was mapped, and there were 2.05 × 10 tons of FRD(PM) emitted in 2007. The FRD(PM) from 2006 to 2010 was calculated by the ΔDF values. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
NASA Astrophysics Data System (ADS)
Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas
2017-03-01
Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.
Field and laboratory comparison of PM10 instruments in high winds
NASA Astrophysics Data System (ADS)
Sharratt, Brenton; Pi, Huawei
2018-06-01
Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.
Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.;
2012-01-01
Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.
Aerosol Absorption Measurements from LANDSAT and CIMEL
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.
1999-01-01
Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horanyi, M.; Colette, A.; Drake, K.
2011-11-29
The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.
Microbes and Microstructure: Dust's Role in the Snowpack Evolution
NASA Astrophysics Data System (ADS)
Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.
2017-12-01
Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.
Wang, Hao; Cheng, Weimin; Sun, Biao; Yu, Haiming; Jin, Hu
2018-03-01
To understand the impacts of the axial-to-radial airflow quantity ratio (denoted as R) and the suction distance (denoted as D s ) on air curtain dust control in a fully mechanized coal face, the 3 down 610 coal face in Jiangzhuang coal mine was numerically simulated in this study. A mathematic model was established to describe the airflow migration and dust diffusion in a coal face, and a scaled physical model was constructed. The comparison between simulation results and field measurements validated the model and the parameter settings. Furthermore, the airflow migration and dust diffusion at various R and D s are analyzed using Ansys CFD. The results show that a reduction of R and D s is conducive to the formation of an effective axial dust control air curtain; the dust diffusion distance decreases with the decrease of both R and D s . By analyzing the simulation results, the optimal parameter for air curtain dust control in the 3 down 610 coal face and those faces with similar production conditions is determined as R = 1/9 and D s = 2 m. Under the optimal parameter condition, the high-concentration dust can be confined in front of the mining driver within a space 5.8 m away from the coal face.
NASA Astrophysics Data System (ADS)
Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun
2018-03-01
Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.
NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim
2008-01-01
The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.
NASA Astrophysics Data System (ADS)
Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.
2015-12-01
The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.
Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains
NASA Astrophysics Data System (ADS)
Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.
2015-04-01
Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust-on-snow produced little compounding effects, due to the relatively exclusive nature of their impacts. Potential changes in water yield and peak streamflow timing have important implications for regional water management decisions.
NASA Astrophysics Data System (ADS)
Shepherd, Mark A.
Short-term and long-term health risks associated with fossil fuel power production can be grouped into three broad categories: risks to the surrounding community, the natural environment and to plant workers. The results of three studies examining the primary short-term or long-term impacts of fossil fuel power plants are presented within this dissertation. The first study estimates the plausible community health effects associated with peak SO2 emissions from three coal-fired power plants in the Baltimore, Maryland area. Concentrations from mobile and stationary air monitoring were compared to human clinical studies that demonstrated respiratory morbidity. Results indicate that exposure concentrations are below levels associated with respiratory symptoms. A single measurement at one monitoring site, however, may indicate risk of asymptomatic lung function decrement for SO2-sensitive asthmatics. The second study estimates the relationship between operational, environmental and temporal factors at a Texas coastal power plant and fish and shellfish impingement. Impingement is a long-term risk to fish populations near power plants. When large quantities of water are withdrawn from water bodies for cooling, fish and shellfish may be harmed if impinged against screens intended to remove debris. In this study, impingement of fish and shellfish was best explained by dissolved oxygen concentration, sampling month and sampling time. When examined separately, temperature and sampling month were most important in explaining fish impingement, while for shellfish, sampling month and sampling time were most important. Operational factors were not significant predictors of impingement. The third study examines whether the number of worker similar exposure groups classified using observation methods was the same as groups classified using personal exposure monitoring. Using observational techniques and personal monitoring, power plant workers were grouped according to exposure similarity for respirable silica, respirable particulates, total dust, chromium and arsenic. For respirable particulates, the number of groups estimated using observational techniques is similar to the number estimated using personal monitoring. For respirable silica, total dust, and arsenic, observational techniques indicated more groups than indicated using personal monitoring. No significant exposure differences to chromium were found. Except for respirable silica, the number of similarly exposed groups among power plants is comparable.
The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.
Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina
2017-05-01
Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.
NASA Technical Reports Server (NTRS)
Pallmann, A. J.
1976-01-01
A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
A 3D model of polarized dust emission in the Milky Way
NASA Astrophysics Data System (ADS)
Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques
2018-05-01
We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.
NASA Astrophysics Data System (ADS)
James, D.; Poppe, A.; Horanyi, M.
2008-12-01
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.
Assessment for the impact of dust events on measles incidence in western China
NASA Astrophysics Data System (ADS)
Ma, Yuxia; Zhou, Jianding; Yang, Sixu; Zhao, Yuxin; Zheng, Xiaodong
2017-05-01
Dust events affect human health in both drylands and downwind environments. In this study, we used county-level data during the period of 1965-2005 to assess the impact of dust events on measles incidence in Gansu province in Western China. We used Fast Fourier Transform (FFT) to set up the cyclical regression model; in particular, we set the model to downwind direction for the typical cities in the Hexi Corridor as well as the capital city Lanzhou. The results showed that Spring measles incidence was the highest in the Hexi Corridor, where dust events occur the most frequently over Gansu province. Measles incidence declined on the pathway of dust storms from west to east due to the weakening of both intensity and duration in dust storms. Measles incidence was positively correlated with monthly wind speed and negatively correlated with rainfall amount, relative humidity, and air pressure. Measles incidence was significantly (p ≤ 0.01) positively correlated with daily coarse particles, e.g., TSP and PM10. According to the cyclical regression model, average monthly excess measles that is related to dust events was 39.1 (ranging from 17.3 to 87.6), 149.9 (ranging from 7.1 to 413.4), and 31.3 (ranging from 20.6 to 63.5) in Zhangye, Lanzhou, and Jiuquan, respectively.
NASA Astrophysics Data System (ADS)
Péré, J.-C.; Rivellini, L.; Crumeyrolle, S.; Chiapello, I.; Minvielle, F.; Thieuleux, F.; Choël, M.; Popovici, I.
2018-01-01
The aim of this work is to estimate optical and radiative properties of dust aerosols and their potential feedbacks on atmospheric properties over Western Africa for the period 20 March-28 April 2015, by using numerical simulations and different sets of remote-sensing and in-situ measurements. Comparisons of simulations made by the on-line coupled meteorological-chemistry model WRF-CHEM with MODIS, AERONET and in-situ observations result in a general agreement for the spatio-temporal variations of aerosol extinction at both local and regional scales. Simulated SSA reached elevated values between 0.88 and 0.96 along the visible/near-infrared in close agreement with AERONET inversions, suggesting the predominance of dust over Western Africa during this specific period. This predominance of dust is confirmed by in-situ measurements of the aerosol size distribution, fitting well with the aerosols size distribution simulated by WRF-CHEM. The impact of this large dust load on the radiative fluxes leads to large modifications of the shortwave and longwave radiative budget both at the ground and at the top of the atmosphere. In return, the response of the atmosphere to these dust-induced radiative changes is the alteration of the surface air temperature and wind fields, with non-negligible impact on the dust emission and transport.
Dust from mineral extraction: regulation of emissions in England
NASA Astrophysics Data System (ADS)
Marker, Brian
2013-04-01
The United Kingdom, which includes England, has fairly high levels of rainfall but sporadic droughts occur especially in the east. Mineral working gives rise to dust. Concerns about dust soiling are major source of public objections to new minerals extraction operations. Dust emissions from mineral workings are a significant cause of public concern in the United Kingdom and are recognised as sources of health concerns and nuisance. Emissions are controlled through a number of complementary sets of regulations that are generally well observed by the industry and well enforced by the relevant public authorities. comprehensive system of regulation, based on European and national law, to deal with all aspects of these operations including pollution control, planning, occupational health and safety and statutory nuisances. Most minerals applications are subject to EIA which forms that basis for planning and environmental conditions and monitoring of operations. There are limit values on PM10 and PM2.5 in air, and for potentially harmful elements (PHEs) in soils and water, derived from European regulations but, as yet, no limit values for PHEs (other than radioactive materials) in air. Stakeholder engagement is encouraged so that members of the public can express concerns during minerals operations and operators can quickly deal with these. While some effects inevitably remain, the levels of dust emissions are kept low through good site design and management, proper use of machinery which is equipped to minimise emissions, and good training of the workforce. Operational sites are required to have dust monitoring equipment located outside the site boundary so that any emerging problems can be detected and addressed quickly.
Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon
2015-01-01
Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240
Small-Scale Dust Structures in Halley's Coma: Evidence from the Vega-2 Electric Field Records
NASA Astrophysics Data System (ADS)
Oberc, P.
1999-07-01
Owing to simultaneous dust and plasma wave observations onboard the Vega mission to Comet Halley, previous studies have found that the two double probe antennas, short (of APV-N experiment) and long (APV-V), (i) responded to plasma clouds induced by impacts of relatively large particles, (ii) the target area was comparable to the whole spacecraft projection, and (iii) the mass thresholds depended on the ambient plasma conditions. Subsequently, the response mechanisms have been identified, and it was shown that if impacts became continuous, the sensitivity of the antennas to individual plasma clouds was reduced or even cancelled. In the present paper, about 30 short-time events of continuous impact (CIEs), recognized in the Vega-2 records from the two experiments mostly near the closest approach to (at ∼104 km from) the nucleus, are investigated. The high-resolution APV-N waveforms reveal that the respective dust formations were structured. A few types of structure, all belonging to one family, have been distinguished. The basic structure, as seen along the Vega-2 pass, is a sequence of particle clouds. CIEs have time scales shorter than or comparable to the time resolution of the dust experiments (spatial scale less than 200 km) and do not correlate with the SP-1 observations (m≤10-10 g) nor with the published SP-2 fluxes (m≤5.8×10-8 g). But, these dust data, combined with an integral criterion for continuous impact, provide a constraint which implies that the particles responsible were bigger than 10-9-10-8 g. The data from the DUCMA V-detector confirm positively this inference for about 1/3 (∼10) of CIEs and indicate that particles (much) bigger than 10-7 g were decisive in generating several other events. Using an argument from the dusty gas dynamics, it is shown that the small-scale dust structures were not jets but have originated from the disintegration of particle aggregates. An estimate of the total mass contained within a dust structure leads to values of 1-10 kg. Besides CIEs near closest approach, a pair of exceptionally prolonged events has been recorded by APV-V at relatively large distances (∼4×104 km). The dust data show that the mass distribution across the respective dust formations was highly variable.
NASA Technical Reports Server (NTRS)
Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas
2012-01-01
The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.
Transparent self-cleaning dust shield
Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.
2005-06-28
A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.
Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J
2014-01-01
Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.
Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R; Fireman, Elizabeth
2016-01-01
The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time.
NASA Astrophysics Data System (ADS)
Rey, D.; Rodríguez-Germade, I.; Mohamed Falcon, K. J.; Rubio, B.; Garcia, A.
2014-12-01
Monthly monitoring of the magnetic properties of Platanus hispanica tree leaves to assess atmospheric pollution in Madrid (Spain) and its suburban town of Pozuelo de Alarcon showed anthropogenic time-related klf enhancement of tree leaves. We established a significant correlation between metal concentration (leaching) in the leaves with Klf and IRM1T. This relationship was not as high as those found in other studies carried out on airborne dust, sediments and soils. Further analyses pointed out that local humidity played a dual roll, controlling availability of airborne lithogenic dust and the incorporation of trace metals in the leaf tissue, modulating the magnetic enhancement. Further to these findings, the comparison between cities of different climatic regimes showed that air humidity is the major factor controlling the interaction of the atmosphere and tree leaves, thus their magnetic properties. The relative influence of pollutants, lithogenic dust and biological effects depends not only on local meteorology but also on climate. Their influence should be most seriously considered to design methodological approaches that are appropriate to the environmental characteristics of each study area, if the magnetic properties of tree leaves are intended as an atmospheric pollution-monitoring tool.
NASA Astrophysics Data System (ADS)
Debell, L. J.; Vozzella, M. E.; Talbot, R. W.; Dibb, J. E.
2002-12-01
The Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program is operating 4 monitoring sites in New Hampshire, located at Fort Constitution (FC)(43.07oN, 70.71oW, 5m elevation), Thompson Farm (TF) (43.11oN, 70.95oW, 21m elevation), Castle Springs (CS) (43.75oN,71.35oW, 406m elevation) and Mount Washington (MW)(44.267oN, 71.30oW, 1909m elevation). Three chemically distinct, statistically extreme, regional scale dust aerosol events were observed at all four AIRMAP monitoring stations in NH between 4/18/01 and 5/13/01 (UTC). All three events, at all four sites, had days where the 24 hr bulk aerosol samples had Ca2+ concentrations that exceeded at least the 95th percentile of the site-specific, multi-year datasets. NO3- and SO42- were also enhanced above typical levels, ranging from above the 75th to above the 99th percentile. During all three events, mixing ratios of the gas phase pollutants O3 and CO were compared to mixing ratios on either side of the events. During event 1,enhancements above background levels were approximately 130 ppbv for CO and 30 ppbv for O3, very similar to the CO values in apparent Asian dust plumes sampled over Colorado at 6-7 km by aircraft measurements (http://www.cmdl.noaa.gov/info/asiandust.html); enhancements during events 2 and 3 were similar to event 1. The maximum elemental carbon value ever observed at TF, 0.97 μg/m3, occurred during the peak day of event 1. Elemental carbon was not substantially elevated during event 2 and no data were collected during event 3. Elemental ratios, determined by PIXE, on filters from events 1 and 3 were compared pairwise to each other and to published samples attributed to Asian dust storms. The AIRMAP samples collected on the same date at different sites showed good statistical agreement whereas samples collected at the same site on different dates show only moderate correlation. Of 17 published samples of Asian dust storm aerosol, collected well outside of the major desert and loess source regions, 15 showed good statistical agreement with at least 2 of our samples. In addition, at least 2 of our samples have good agreement with 1 published aerosol sample collected in the Gobi desert and for 1 published soil sample collected in the Takla Makan desert; indicating that the Asian dust storms are a possible source for our events. We also compared elemental ratios in our dust impacted samples to the IMPROVE dataset from Acadia, ME. Acadia was chosen for the longevity and completeness of its record and downwind location from the AIRMAP stations. Out of the over 1400 IMPROVE aerosol samples collected between 1988 and 2001, 476 have both Al, Fe and Ca above detection limit, and 120 show good agreement with at least 1 AIRMAP sample. The 120 samples selected above occurred primarily in spring: 52 samples from 3/1-5/15, 37 samples from 2/15-3/1 or 5/15-6/31. All three events are clearly discernible in the Acadia dataset both in timing and chemical similarity with the AIRMAP samples. A U.S. source cannot be ruled out chemically, but there are no reports in the National Climatic Data Centers Storm Publication that indicated large-scale dust storms in the period 4/10/01-5/10/01. TOMS images and the NRL-NAAPS model results also support an Asian source for the 3 events.
Seasonal evolution of the Martian cryptic region: influence of the atmospheric opacity
NASA Astrophysics Data System (ADS)
Portyankina, G.; Markiewicz, W. J.; Kossacki, K. J.
2005-08-01
Mars Orbiter Camera (MOC) performed repeated observations of chosen areas in polar regions to monitor seasonal and/or annual changes. Images E09-00028 and R08-01730 centered at 82.5°S, 41°E were taken in years 2001 and 2003 respectively. They show the same morphological features, however differ significantly in surface albedo, the image from 2001 shows a lower albedo than the one from 2003. Imaged areas lie inside the cryptic region and show spider patterns. The observed interannual variability may be related to the global dust storm that happened in 2001 and finished around Ls=230°, i.e. just before image E09-00028 was taken. Here we model the seasonal ice sublimation/condensation cycle to show that the evolution of this particular area of the cryptic region was affected by the dust storm during year 2001. The model used for the present work has been described in Kossacki and Markiewicz, (2004). It includes self-consistent treatment of the sublimation and condensation of CO2 and H2O ices, and was used to calculate surface temperatures and thicknesses of CO2 and H2O ice layers for the corresponding conditions of these two years. Our modelling shows that the dust storm lowered surface temperatures, and thus caused later than usual seasonal sublimation of both CO2 and water ices. It also considerably decreased surface albedo and these two important effects almost cancel: the solar flux is reduced during a dust storm but at the same time the dust that precipitates onto the surface reduces the albedo and thus allows a bigger fraction of the solar radiation to be absorbed. The surface temperature stays at about 146K for almost half of the Martian year, both during 2001 and 2003. We also considered impact of the surface roughness: it results in some smoothing of the average temperature rise that is associated with the defrosting of the surface.
Goudarzi, G; Daryanoosh, S M; Godini, H; Hopke, P K; Sicard, P; De Marco, A; Rad, H D; Harbizadeh, A; Jahedi, F; Mohammadi, M J; Savari, J; Sadeghi, S; Kaabi, Z; Omidi Khaniabadi, Y
2017-07-01
This study assessed the effects of particulate matter (PM), equal or less than 10 μm in aerodynamic diameter (PM 10 ), from the Middle-Eastern Dust events on public health in the megacity of Kermanshah (Iran). This study used epidemiological modeling and monitored ambient air quality data to estimate the potential PM 10 impacts on public health. The AirQ2.2.3 model was used to calculate mortality and morbidity attributed to PM 10 as representative of dust events. Using Visual Basic for Applications, the programming language of Excel software, hourly PM 10 concentrations obtained from the local agency were processed to prepare input files for the AirQ2.2.3 model. Using baseline incidence, defined by the World Health Organization, the number of estimated excess cases for respiratory mortality, hospital admissions for chronic obstructive pulmonary disease, for respiratory diseases, and for cardiovascular diseases were 37, 39, 476, and 184 persons, respectively, from 21st March, 2014 to 20th March, 2015. Furthermore, 92% of mortality and morbidity cases occurred in days with PM 10 concentrations lower than 150 μg/m 3 . The highest percentage of person-days occurred for daily concentrations range of 100-109 μg/m 3 , causing the maximum health end-points among the citizens of Kermanshah. Calculating the number of cumulative excess cases for mortality or morbidity attributed to PM 10 provides a good tool for decision and policy-makers in the field of health care to compensate their shortcomings particularly at hospital and healthcare centers for combating dust storms. To diminish these effects, several immediate actions should be managed in the governmental scale to control dust such as spreading mulch and planting new species that are compatible to arid area. Copyright © 2017 The Royal Society for Public Health. All rights reserved.
Bowker, M.A.; Miller, M.E.; Belote, R.T.
2012-01-01
Increasingly, dry rangelands are being valued for multiple services beyond their traditional value as a forage production system. Additional ecosystem services include the potential to store carbon in the soil and plant biomass. In addition, dust emissions from rangelands might be considered an ecosystem detriment, the opposite of an ecosystem service. Dust emitted may have far-reaching impacts, for example, reduction of local air quality, as well as altering regional water supplies through effects on snowpack. Using an extensive rangeland monitoring dataset in the greater Canyonlands region (Utah, USA), we developed a method to estimate indices of the provisioning of three ecosystem services (forage production, dust retention, C storage) and one ecosystem property (nativeness), taking into account both ecosystem type and alternative states within that ecosystem type. We also integrated these four indices into a multifunctionality index. Comparing the currently ungrazed Canyonlands National Park watersheds to the adjacent Dugout Ranch pastures, we found clearly higher multifunctionality was attained in the Park, and that this was primarily driven by greater C-storage and better dust retention. It is unlikely to maximize all benefits and minimize all detriments at the same time. Some goods and services may have synergistic interactions; for example, managing for carbon storage will increase plant and biocrust cover likely lowering dust emission. Likewise, some may have antagonistic interactions. For instance, if carbon is consumed as biomass for livestock production, then carbon storage may be reduced. Ultimately our goal should be to quantify the monetary consequences of specific land use practices for multiple ecosystem services and determine the best land use and adaptive management practices for attaining multiple ecosystem services, minimizing economic detriments, and maximizing economic benefits from multi-commodity rangelands. Our technique is the first step toward this goal, allowing the simultaneous consideration of multiple targeted ecosystem services and properties.
The ESA mission to Comet Halley
NASA Technical Reports Server (NTRS)
Reinhard, R.
1981-01-01
The Europeon Space Agency's approximately Giotto mission plans for a launch in July 1985 with a Halley encounter in mid-March 1986 4 weeks after the comet's perihelion passage. Giotto carries 10 scientific experiments, a camera, neutral, ion and dust mass spectrometers, a dust impact detector system, various plasma analyzers, a magnetometer and an optical probe. The instruments are described, the principles on which they are based are described, and the experiment key performance data are summarized. The launch constraints the helicentric transfer trajectory, and the encounter scenario are analyzed. The Giotto spacecraft major design criteria, spacecraft subsystem and the ground system are described. The problem of hypervelocity dust particle impacts in the innermost part of the coma, the problem of spacecraft survival, and the adverse effects of impact-generated plasma aroung the spacecraft are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, Natalie J.; Reeder, Matthew; Veloski, Garret A.
The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and themore » National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM 10 and PM 2.5, respectively), ozone, methane (CH 4), carbon dioxide (CO 2), carbon isotopes of CH 4 and CO 2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO 2).« less
Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels; Nakatsu, J; Mehaffy, John
2009-01-01
The health of persons engaged in agricultural activities are often related or associated with environmental exposures in their workplace. Accurately measuring, analyzing, and reporting these exposures is paramount to outcomes interpretation. This paper describes issues related to sampling air in poultry barns with a cascade impactor. Specifically, the authors describe how particle bounce can affect measurement outcomes and how the use of impaction grease can impact particle bounce and laboratory analyses such as endotoxin measurements. This project was designed to (1) study the effect of particle bounce in Marple cascade impactors that use polyvinyl chloride (PVC) filters; (2) to determine the effect of impaction grease on endotoxin assays when sampling poultry barn dust. A pilot study was undertaken utilizing six-stage Marple cascade impactors with PVC filters. Distortion of particulate size distributions and the effects of impaction grease on endotoxin analysis in samples of poultry dust distributed into a wind tunnel were studied. Although there was no significant difference in the overall dust concentration between utilizing impaction grease and not, there was a greater than 50% decrease in the mass median aerodynamic diameter (MMAD) values when impaction grease was not utilized. There was no difference in airborne endotoxin concentration or endotoxin MMAD between filters treated with impaction grease and those not treated. The results indicate that particle bounce should be a consideration when sampling poultry barn dust with Marple samplers containing PVC filters with no impaction grease. Careful consideration should be given to the utilization of impaction grease on PVC filters, which will undergo endotoxin analysis, as there is potential for interference, particularly if high or low levels of endotoxin are anticipated.
The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)
NASA Technical Reports Server (NTRS)
Moorhead, A.; Wiegert, P.; Blaauw, R.; McCarty, C.; Kingery, A.; Cooke, W.
2014-01-01
Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We will discuss our coma model and nominal fluence taking the latest observations into account.
NASA Astrophysics Data System (ADS)
Becker, A.; Wotawa, G.; Zähringer, M.
2009-04-01
Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), airborne radioactivity is measured by means of high purity Germanium gamma ray detectors deployed in a global monitoring network. Almost 60 of the scheduled 80 stations have been put in provisional operations by the end of 2008. Each station daily sends the 24 hour samples' spectroscopic data to the Vienna based Provisional Technical Secretariat (PTS) of the CTBT Organization (CTBTO) for review for treaty-relevant nuclides. Cs-137 is one of these relevant isotopes. Its typical minimum detectable concentration is in the order of a few Bq/m3. However, this isotope is also known to occur in atmospheric trace concentrations, due to known non CTBT relevant processes and sources related to, for example, the re-suspension of cesium from historic nuclear tests and/or the Chernobyl reactor disaster, temporarily enhanced by bio-mass burning (Wotawa et al. 2006). Properly attributed cesium detections can be used as a proxy to detect Aeolian dust events (Igarashi et al, 2001) that potentially carry cesium from all aforementioned sources but are also known to play an important role for the radiative forcing in the atmosphere (shadow effect), at the surface (albedo) and the carbon dioxide cycle when interacting with oceanic phytoplankton (Mikami and Shi, 2005). In this context this paper provides a systematic attribution of recent Cs-137 detections in the PTS monitoring network in order to Characterize those stations which are regularly affected by Cs-137 Provide input for procedures that distinguish CTBT relevant detection from other sources (event screening) Explore on the capability of certain stations to use their Cs-137 detections as a proxy to detect aeolian dust events and to flag the belonging filters to be relevant for further investigations in this field (-> EGU-2009 Session CL16/AS4.6/GM10.1: Aeolian dust: initiator, player, and recorder of environmental change). References Igarashi, Y., M. Aoyama, K. Hirose,M. Takashi and S. Yabuki, 2001: Is It Possible to Use 90Sr and 137Cs As Tracers for the Aeolian Dust Transport? Water, Air, & Soil Pollution 130, 349-354. Mikami, M. and G. Shi, 2005: Preliminary summary of aeolian dust experiment on climate impact -Japan-Sino joint project ADEC. Geophysical Research Abstracts, 7, 05985 Wotawa, G., L.-E. De Geer, A. Becker, R.D'Amours, M. Jean, R. Servranck and K. Ungar, 2006: Inter- and intra-continental transport of radioactive cesium released by boreal forest fires, Geophys. Res. Lett. 33, L12806, doi: 10.1029/2006GL026206 Disclaimer The views expressed in this publication are those of the author and do not necessarily reflect the views of the CTBTO Preparatory Commission.
MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour
NASA Astrophysics Data System (ADS)
Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team
2009-07-01
Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.
Relating Optical Properties of Dusts to their Mineralogical and Physical Interrelationships
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; Moosmuller, H.; Jayanty, R. K. M.; Casuccio, G.; Pincock, S. L.
2015-12-01
The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will be discussed. Our goal is to establish a database of the optical, mineralogical, and chemical properties of dust samples collected at multiple global dust sources. These data can be for applications in climate modeling, remote sensing, visibility, health (medical geology), ocean fertilization, and damage to equipment.
Response of Colorado river runoff to dust radiative forcing in snow
Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.
2010-01-01
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.
Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; Hahn, Joseph M.
2015-01-01
Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.
Classification of Dust Days by Satellite Remotely Sensed Aerosol Products
NASA Technical Reports Server (NTRS)
Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.
2013-01-01
Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary variables, demonstrated 93.2 percent correct classifications of DD and NDD. Evaluation of the combined CART-logistic regression scheme in an adjacent geographical region (Gush Dan) demonstrated good results. Using SRS aerosol products for DD and NDD, identification may enable us to distinguish between health, ecological, and environmental effects that result from exposure to these distinct particle populations.
Global Scale Remote Sensing Monitoring of Endorheic Lake Systems
NASA Astrophysics Data System (ADS)
Scuderi, L. A.
2010-12-01
Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.
Asian dust exposure triggers acute myocardial infarction.
Kojima, Sunao; Michikawa, Takehiro; Ueda, Kayo; Sakamoto, Tetsuo; Matsui, Kunihiko; Kojima, Tomoko; Tsujita, Kenichi; Ogawa, Hisao; Nitta, Hiroshi; Takami, Akinori
2017-11-14
To elucidate whether Asian dust is associated with the incidence of acute myocardial infarction (AMI) and to clarify whether patients who are highly sensitive to Asian dust will develop AMI. Twenty-one participating institutions located throughout Kumamoto Prefecture and capable of performing coronary intervention were included in the study. Data for ground-level observations of Asian dust events were measured at the Kumamoto Local Meteorological Observatory. Data collected between 1 April 2010 and 31 March 2015 were analysed, and 3713 consecutive AMI patients were included. A time-stratified case-crossover design was applied to examine the association between Asian dust exposure and AMI. The occurrence of Asian dust events at 1 day before the onset of AMI was associated with the incidence of AMI [odds ratio (OR), 1.46; 95% confidence interval (CI), 1.09-1.95] and especially, non-ST-segment elevation myocardial infarction was significant (OR 2.03; 95% CI, 1.30-3.15). A significant association between AMI and Asian dust was observed in patients with age ≥75 years, male sex, hypertension, diabetes mellitus, never-smoking status, and chronic kidney disease (CKD). However, Asian dust events had a great impact on AMI onset in patients with CKD (P < 0.01). A scoring system accounting for several AMI risk factors was developed. The occurrence of Asian dust events was found to be significantly associated with AMI incidence among patients with a risk score of 5-6 (OR 2.45; 95% CI: 1.14-5.27). Asian dust events may lead to AMI and have a great impact on its onset in patients with CKD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Stenchikov, G. L.; Osipov, S.
2016-12-01
This study focuses on the Middle East regional climate response to the dust aerosol radiative forcing. MODIS and SEVIRI satellite observations show extremely high (exceeding 1) dust optical depths over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. The radiative forcing of dust at the sea surface exceeds 120 Wm-2. The effect of this forcing to the Red Sea thermal regime and circulations is not well quantified yet. Therefore here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.5-0.7K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, fresh water and heat budgets are significantly perturbed. This indicates that dust plays an important role in formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in the future modeling studies.
A decade of infrared versus visible AOD analysis within the dust belt
NASA Astrophysics Data System (ADS)
Capelle, Virginie; Chédin, Alain; Pondrom, Marc; Crevoisier, Cyril; Armante, Raymond; Crépeau, Laurent; Scott, Noëlle
2017-04-01
Aerosols represent one of the dominant uncertainties in radiative forcing, partly because of their very high spatiotemporal variability, a still insufficient knowledge of their microphysical and optical properties, or of their vertical distribution. A better understanding and forecasting of their impact on climate therefore requires precise observations of dust emission and transport. Observations from space offer a good opportunity to follow, day by day and at high spatial resolution, dust evolution at global scale and over long time series. In this context, infrared observations, by allowing retrieving simultaneously dust optical depth (AOD) as well as the mean dust layer altitude, daytime and nighttime, over oceans and over continents, in particular over desert, appears highly complementary to observations in the visible. In this study, a decade of infrared observations (Metop-A/IASI and AIRS/AQUA) has been processed pixel by pixel, using a "Look-Up-Table" (LUT) physical approach. The retrieved infrared 10µm coarse-mode AOD is compared with the Spectral Deconvolution Algorithm (SDA) 500nm coarse mode AOD observed at 50 ground-based Aerosol RObotic NETwork (AERONET) sites located within the dust belt. Analyzing their brings into evidence an important geographical variability. Lowest values are found close to dust sources ( 0.45 for the Sahel or Arabian Peninsula, 0.6-0.7 for the Northern part of Africa or India), whereas the ratio increases for transported dust with values of 0.9-1 for the Caribbean and for the Mediterranean basin. This variability is interpreted as a marker of clays abundance, and might be linked to the dust particle illite to kaolinite ratio, a recognized tracer of dust sources and transport. More generally, it suggests that the difference between the radiative impact of dust aerosols in the visible and in the infrared depends on the type of particles observed. This highlights the importance of taking into account the specificity of the infrared when considering the role of mineral dust on the Earth's energy budget.
Can dust emission mechanisms be determined from field measurements?
NASA Astrophysics Data System (ADS)
Klose, Martina; Webb, Nicholas; Gill, Thomas E.; Van Pelt, Scott; Okin, Gregory
2017-04-01
Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sediment supply- and transport-limited conditions. This variability, which is caused by heterogeneity of the surface and the atmosphere, cannot be fully captured in either field measurements or models. However, uncertainty in dust emission modeling can be reduced through more detailed observational data on the dust emission mechanism itself. To date, most measurements do not provide enough information to allow for a determination of the mechanisms leading to dust emission and often focus on a small variety of soil and atmospheric settings. Additionally, data sets are often not directly comparable due to different measurement setups. As a consequence, the calibration of dust emission schemes has so far relied on a selective set of observations, which leads to an idealization of the emission process in models and thus affects dust budget estimates. Here, we will present results of a study which aims to decipher the dust emission mechanism from field measurements as an input for future model development. Detailed field measurements are conducted, which allow for a comparison of dust emission for different surface and atmospheric conditions. Measurements include monitoring of the surface, loose erodible material, transported sediment, and meteorological data, and are conducted in different environmental settings in the southwestern United States. Based on the field measurements, a method is developed to differentiate between the different dust emission mechanisms.
A multiyear dust devil vortex survey using an automated search of pressure time series
NASA Astrophysics Data System (ADS)
Jackson, Brian; Lorenz, Ralph
2015-03-01
Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multiyear in situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a posthoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate possible seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (>1000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values.
The Tranisiting Dust of Boyajian's Star
NASA Astrophysics Data System (ADS)
Bodman, Eva; Ellis, Tyler G.; Boyajian, Tabetha S.; Wright, Jason
2018-06-01
From May to October of 2017, Boyajian's Star displayed four days-long dips in observed flux, which are referred to as “Elsie,” “Celeste,” “Skara Brae,” and “Angkor” (Boyajian et al. 2018). This Elsie family dip event was monitored with the Las Cumbres Observatory in three bands, B, r', and i'. Looking at each dip individually, we analyze the multi-band photometry for wavelength dependency in dip depth to constrain properties of the transiting material. We find that all of the dips show non-grey extinction and are consistent with optically thin dust. Interpreting the dips as transiting dust clouds, we constrain the properties of the dust grains and find that the average grain radius is <1 micron, assuming silicate composition. This wavelength dependency and grain size is inconsistent with observed properties of the long-term “secular” dimming (Meng et al. 2017), suggesting that the dust causing the dips is from a separate population.
Schlosser, Joseph S; Braun, Rachel A; Bradley, Trevor; Dadashazar, Hossein; MacDonald, Alexander B; Aldhaif, Abdulmonam A; Aghdam, Mojtaba Azadi; Mardi, Ali Hossein; Xian, Peng; Sorooshian, Armin
2017-08-27
This study examines major wildfires in the western United States between 2005 and 2015 to determine which species exhibit the highest percent change in mass concentration on day of peak fire influence relative to preceding nonfire days. Forty-one fires were examined using the Environmental Protection Agency (EPA) Interagency Monitoring of Protected Visual Environments (IMPROVE) data set. Organic carbon (OC) and elemental carbon (EC) constituents exhibited the highest percent change increase. The sharpest enhancements were for the volatile (OC1) and semivolatile (OC2) OC fractions, suggestive of secondary organic aerosol formation during plume transport. Of the noncarbonaceous constituents, Cl, P, K, NO 3 - , and Zn levels exhibited the highest percent change. Dust was significantly enhanced in wildfire plumes, based on significant enhancements in fine soil components (i.e., Si, Ca, Al, Fe, and Ti) and PM coarse (i.e., PM 10 -PM 2.5 ). A case study emphasized how transport of wildfire plumes significantly impacted downwind states, with higher levels of fine soil and PM coarse at the downwind state (Arizona) as compared to the source of the fires (California). A global model (Navy Aerosol Analysis and Prediction System, NAAPS) did not capture the dust influence over California or Arizona during this case event because it is not designed to resolve dust dynamics in fires, which motivates improved treatment of such processes. Significant chloride depletion was observed on the peak EC day for almost a half of the fires examined. Size-resolved measurements during two specific fires at a coastal California site revealed significant chloride reductions for particle aerodynamic diameters between 1 and 10 μm.
NASA Astrophysics Data System (ADS)
Schlosser, Joseph S.; Braun, Rachel A.; Bradley, Trevor; Dadashazar, Hossein; MacDonald, Alexander B.; Aldhaif, Abdulmonam A.; Aghdam, Mojtaba Azadi; Mardi, Ali Hossein; Xian, Peng; Sorooshian, Armin
2017-08-01
This study examines major wildfires in the western United States between 2005 and 2015 to determine which species exhibit the highest percent change in mass concentration on day of peak fire influence relative to preceding nonfire days. Forty-one fires were examined using the Environmental Protection Agency (EPA) Interagency Monitoring of Protected Visual Environments (IMPROVE) data set. Organic carbon (OC) and elemental carbon (EC) constituents exhibited the highest percent change increase. The sharpest enhancements were for the volatile (OC1) and semivolatile (OC2) OC fractions, suggestive of secondary organic aerosol formation during plume transport. Of the noncarbonaceous constituents, Cl, P, K, NO3-, and Zn levels exhibited the highest percent change. Dust was significantly enhanced in wildfire plumes, based on significant enhancements in fine soil components (i.e., Si, Ca, Al, Fe, and Ti) and PMcoarse (i.e., PM10-PM2.5). A case study emphasized how transport of wildfire plumes significantly impacted downwind states, with higher levels of fine soil and PMcoarse at the downwind state (Arizona) as compared to the source of the fires (California). A global model (Navy Aerosol Analysis and Prediction System, NAAPS) did not capture the dust influence over California or Arizona during this case event because it is not designed to resolve dust dynamics in fires, which motivates improved treatment of such processes. Significant chloride depletion was observed on the peak EC day for almost a half of the fires examined. Size-resolved measurements during two specific fires at a coastal California site revealed significant chloride reductions for particle aerodynamic diameters between 1 and 10 μm.
Schlosser, Joseph S.; Braun, Rachel A.; Bradley, Trevor; Dadashazar, Hossein; MacDonald, Alexander B.; Aldhaif, Abdulmonam A.; Aghdam, Mojtaba Azadi; Mardi, Ali Hossein; Xian, Peng; Sorooshian, Armin
2017-01-01
This study examines major wildfires in the western United States between 2005 and 2015 to determine which species exhibit the highest percent change in mass concentration on day of peak fire influence relative to preceding nonfire days. Forty-one fires were examined using the Environmental Protection Agency (EPA) Interagency Monitoring of Protected Visual Environments (IMPROVE) data set. Organic carbon (OC) and elemental carbon (EC) constituents exhibited the highest percent change increase. The sharpest enhancements were for the volatile (OC1) and semivolatile (OC2) OC fractions, suggestive of secondary organic aerosol formation during plume transport. Of the noncarbonaceous constituents, Cl, P, K, NO3−, and Zn levels exhibited the highest percent change. Dust was significantly enhanced in wildfire plumes, based on significant enhancements in fine soil components (i.e., Si, Ca, Al, Fe, and Ti) and PMcoarse (i.e., PM10–PM2.5). A case study emphasized how transport of wildfire plumes significantly impacted downwind states, with higher levels of fine soil and PMcoarse at the downwind state (Arizona) as compared to the source of the fires (California). A global model (Navy Aerosol Analysis and Prediction System, NAAPS) did not capture the dust influence over California or Arizona during this case event because it is not designed to resolve dust dynamics in fires, which motivates improved treatment of such processes. Significant chloride depletion was observed on the peak EC day for almost a half of the fires examined. Size-resolved measurements during two specific fires at a coastal California site revealed significant chloride reductions for particle aerodynamic diameters between 1 and 10 μm. PMID:28955601
Rossi, Enrico; McLaughlin, Virginia; Joseph, John; Bulsara, Max; Coleman, Kerryn; Douglas, Charles; Robertson, Andrew
2012-04-01
To assess the impact of airborne lead dust on blood lead levels in residents of Esperance, a regional Western Australian town, with particular reference to preschool children. Following identification of significant airborne lead contamination, residents were notified that a blood lead clinic was available to all, with testing of preschool children encouraged. About 40% (333 children) of the preschool group and about 20% of the remaining population were tested. The main measures were blood lead levels, prevalence of elevated results and comparisons to other Western Australian surveys. In preschoolers, 2.1% (seven children) had blood lead levels exceeding the current 10 μg/dL level of concern. This was not significantly different to two previous community-based surveys elsewhere in Western Australia. However, at a lower cut-off of 5 μg/dL, the prevalence of elevated lead levels was 24.6%, significantly higher than children tested in a previous Western Australian survey. The prevalence of blood lead levels of 10 μg/dL or greater in adults was 1.3% (26 adults), not significantly different from a previous Western Australian survey. The prevalence of preschool children with blood lead levels exceeding the current level of concern was not significantly increased. However, the increased prevalence of children with lead levels at or above 5 μg/dL demonstrates exposure to lead dust pollution. This episode of lead dust contamination highlights the need for strict adherence to environmental controls and effective monitoring processes to ensure the prevention of future events. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.
Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles
NASA Technical Reports Server (NTRS)
Allen, Carlton; Sans Tresseras, Juan-Angel; Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack;
2014-01-01
The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere.
NASA Astrophysics Data System (ADS)
Gurnett, D. A.
2017-12-01
Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.
NASA Astrophysics Data System (ADS)
Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.
2012-04-01
Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
NASA Technical Reports Server (NTRS)
Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.
1994-01-01
The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.
An overview of mineral dust modeling over East Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Siyu; Huang, Jianping; Qian, Yun
Dust aerosol, one of the most abundant aerosol species in the atmosphere, has significant impacts on the energy balance and climatic feedback of the Earth system through its influence on solar and terrestrial radiation as well as clouds. East Asia is the one of prominent regions of dust generation. The East Asia dust life cycle and associated radiative and climatic effects are the outstanding science issues in understanding climate change at regional and even global scale. In the past decades, numerous dust models have been developed and applied to comprehend a series of dust-related processes studies, including emission, transport, andmore » deposition, and to understand the effects of dust aerosol on the radiation and climate over East Asian. In this paper, we review the recent achievements and progresses in East Asian dust modeling research and discuss the potential challenges in future studies.« less
NASA Astrophysics Data System (ADS)
Ridgwell, Andy
Dust, micron to submicron particles and mostly comprising soil mineral fragments, affects a multitude of climatic and biogeochemical processes during its journey from its sources on land to sinks on land and in the ocean. Suspended in the atmosphere, the presence of dust can alter both shortwave and longwave radiation balances, enhance cloud nucleation, and affect photochemical reaction rates. Deposited to the land surface, dust has beneficial impacts on soil quality but detrimental implications for human health. At the interface of surface ocean and lower atmosphere, dust deposited to seawater supplies plankton with the essential micronutrient iron and hence provides an important control on marine ecosystems. This chapter reviews these various roles of dust in the Earth system; summarizes the factors controlling the production, transport, and deposition of dust; and, because the causes and consequences of dust are interlinked via climate and atmospheric CO2, discusses the potential importance of dusty feedback in past and future climate change.
NASA Astrophysics Data System (ADS)
Murray, Jon E.; Brindley, Helen E.; Bryant, Robert G.; Russell, Jacqui E.; Jenkins, Katherine F.
2013-04-01
Understanding the processes governing the availability and entrainment of mineral dust into the atmosphere requires dust sources to be identified and the evolution of dust events to be monitored. To achieve this aim a wide range of approaches have been developed utilising observations from a variety of different satellite sensors. Global maps of source regions and their relative strengths have been derived from instruments in low Earth orbit (e.g. Total Ozone Monitoring Spectrometer (TOMS) (Prospero et al., 2002), MODerate resolution Imaging Spectrometer (MODIS) (Ginoux et al., 2012)). Instruments such as MODIS can also be used to improve precise source location (Baddock et al., 2009) but the information available is restricted to the satellite overpass times which may not be coincident with active dust emission from the source. Hence, at a regional scale, some of the more successful approaches used to characterise the activity of different sources use high temporal resolution data available from instruments in geostationary orbit. For example, the widely used red-green-blue (RGB) dust scheme developed by Lensky and Rosenfeld (2008) (hereafter LR2008) makes use of observations from selected thermal channels of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) in a false colour rendering scheme in which dust appears pink. This scheme has provided the basis for numerous studies of north African dust sources and factors governing their activation (e.g. Schepanski et al., 2007, 2009, 2012). However, the LR2008 imagery can fail to identify dust events due to the effects of atmospheric moisture, variations in dust layer height and optical properties, and surface conditions (Brindley et al., 2012). Here we introduce a new method designed to circumvent some of these issues and enhance the signature of dust events using observations from SEVIRI. The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time-step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with low levels of dust emission. Different channel combinations are then rendered in false colour imagery to better identify dust source locations and activity. We have applied this new clear-sky difference (CSD) algorithm over three key source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case studies indicate that advantages associated with the CSD approach include an improved ability to detect dust and distinguish multiple sources, the observation of source activation earlier in the diurnal cycle, and an improved ability to pinpoint dust source locations. These advantages are confirmed by a survey of four-years of data, comparing the results obtained using the CSD technique with those derived from LR2008 dust imagery. On average the new algorithm more than doubles the number of dust events identified, with the greatest improvement for the Makgadigkadi Basin and coastal regions. We anticipate exploiting this new activation record derived using the CSD approach to better understand the surface and meteorological conditions controlling dust uplift and subsequent atmospheric transport.
Lunar dust charging by photoelectric emissions
NASA Astrophysics Data System (ADS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-05-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.