Science.gov

Sample records for dust lane galaxy

  1. Molecular gas in elliptical galaxies with dust lanes

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Kenney, Jeffrey D. P.; Ishizuki, Sumio

    1992-01-01

    We have searched for CO(1-0) line emission in eight dust lane elliptical and lenticular galaxies using the Nobeyama 45 m telescope. Five of the eight galaxies, including the well-studied elliptical NGC 1052, have CO emission at above the 5-sigma level, with inferred molecular gas masses ranging from 10 exp 8 to a few times 10 exp 9 solar masses. Our selection criterion differs from previous surveys in that it does not depend on the FIR fluxes, and thus is less sensitive to the sizes and distances of the host galaxies or to the degree to which dust is heated. The relatively high detection rate of CO in these ellipticals suggests a close correlation between molecular mass and cold dust. Compared with previously studied samples of FIR selected early-type galaxies, our sample has on average four times more CO emission per unit FIR (40-120 microns) luminosity. If the intrinsic gas-to-dust ratio of these galaxies as similar to that of the Milky Way, then only about 5 percent of the dust mass in dust lane ellipticals radiates substantially at 60 and 100 microns, and the remaining dust must be colder than about 30 K.

  2. The Formation of Dust Lanes: Implications for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Yoachim, Peter; Bernstein, Rebecca A.

    2004-06-01

    From a survey of edge-on disks, we find that disk galaxies show a sharp, mass-dependent transition in the structure of their dusty ISM. In more massive, rapidly rotating disks with Vc>120kms-1, we see the well-defined dust lanes traditionally associated with edge-on galaxies. However, in more slowly rotating, lower mass galaxies with Vc<120kms-1, we find no dust lanes. Instead, the distribution of dust in these galaxies has a much larger scale height and thus appears more diffuse. Evidence suggests that the change in scale height is due primarily to changes in the turbulent velocities supporting the gas layer rather than to sharp changes in the gas surface density. A detailed analysis of our sample reveals that the decrease in the dust scale height is associated with the onset of disk instabilities, evaluated for a mixed star+gas disk. Specifically, we find that all of the high-mass galaxies with dust lanes are gravitationally unstable and thus are prone to fragmentation and gravitational collapse along spiral arms. Empirically, our data imply that turbulence has lower characteristic velocities in the presence of disk instabilities, leading to smaller gas scale heights and the appearance of narrow dust lanes. The drop in velocity dispersion may be due either to a switch in the driving mechanism for turbulence from supernovae to gravitational instabilities or to a change in the response of the ISM to supernovae after the ISM has collapsed to a dense layer. We hypothesize that the drop in gas scale height may lead to significant increases in the star formation rate when disk instabilities are present. First, the collapse of the gas layer increases the typical gas density, reducing the star formation timescale. Second, the star formation efficiency increases because of lower turbulent velocities. These two effects can combine to produce a sharp increase in the star formation rate with little change in the gas surface density and may therefore provide an explanation

  3. An extremely low gas-to-dust ratio in the dust-lane lenticular galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Allaert, Flor; Sarzi, Marc; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Hughes, Thomas M.; Puerari, Ivânio; Smith, Matthew W. L.; Viaene, Sébastien

    2014-10-01

    Evidence is mounting that a significant fraction of the early-type galaxy population contains substantial reservoirs of cold interstellar gas and dust. We investigate the gas and dust in NGC 5485, an early-type galaxy with a prominent minor-axis dust lane. Using new Herschel PACS and SPIRE imaging data, we detect 3.8 × 106 M⊙ of cool interstellar dust in NGC 5485, which is in stark contrast with the non-detection of the galaxy in sensitive H I and CO observations from the ATLAS3D consortium. The resulting gas-to-dust ratio upper limit is Mgas/Md < 14.5, almost an order of magnitude lower than the canonical value for the Milky Way. We scrutinize the reliability of the dust, atomic gas and molecular gas mass estimates, but these do not show systematic uncertainties that can explain the extreme gas-to-dust ratio. Also a warm or hot ionized gas medium does not offer an explanation. A possible scenario could be that NGC 5485 merged with an SMC-type metal-poor galaxy with a substantial CO-dark molecular gas component and that the bulk of atomic gas was lost during the interaction, but it remains to be investigated whether such a scenario is possible.

  4. Embedded star formation in S{sup 4}G galaxy dust lanes

    SciTech Connect

    Elmegreen, Debra M.; Teich, Yaron; Popinchalk, Mark; Elmegreen, Bruce G.; Erroz-Ferrer, Santiago; Knapen, Johan H.; Comerón, Sébastien; Laine, Jarkko; Laurikainen, Eija; Gadotti, Dimitri A.; Kim, Taehyun; De Paz, Armando Gil; Hinz, Joannah L.; Ho, Luis C.; Holwerda, Benne; Menéndez-Delmestre, Karín; Mizusawa, Trisha [National Radio Astronomy Observatory and others

    2014-01-01

    Star-forming regions that are visible at 3.6 μm and Hα but not in the u, g, r, i, z bands of the Sloan Digital Sky Survey are measured in five nearby spiral galaxies to find extinctions averaging ∼3.8 mag and stellar masses averaging ∼5 × 10{sup 4} M {sub ☉}. These regions are apparently young star complexes embedded in dark filamentary shock fronts connected with spiral arms. The associated cloud masses are ∼10{sup 7} M {sub ☉}. The conditions required to make such complexes are explored, including gravitational instabilities in spiral-shocked gas and compression of incident clouds. We find that instabilities are too slow for a complete collapse of the observed spiral filaments, but they could lead to star formation in the denser parts. Compression of incident clouds can produce a faster collapse but has difficulty explaining the semi-regular spacing of some regions along the arms. If gravitational instabilities are involved, then the condensations have the local Jeans mass. Also in this case, the near-simultaneous appearance of equally spaced complexes suggests that the dust lanes, and perhaps the arms too, are relatively young.

  5. Organic dust in galaxies

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi

    2016-07-01

    Recent space infrared telescopes, Infrared Space Observatory, Spitzer Space Telescope, and AKARI have made significant progress in our understanding of organic dust in the Universe. In this review, we discuss recent observations with these space telescopes of the unidentified infrared emission (UIE) features in the near to mid-infrared, which come from very small organic dust, and the absorption features from 3 to 7 µm, which characterize large organic dust. They provide us with a new view of organic dust in galaxies. We also briefly discuss latest AKARI observations of H2O and CO2 ices in 2.5-5 µm in the Large Magellanic Cloud in comparison with observations in our Galaxy, which suggests the importance of dust surface chemistry in the formation of organic matters in the Universe.

  6. A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane

    NASA Technical Reports Server (NTRS)

    Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.

    1993-01-01

    Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.

  7. Differential dust attenuation in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Cid Fernandes, R.; Amorim, A. L.; Lacerda, E. A. D.; Schlickmann, M.; Wild, V.; Kennicutt, R. C.

    2016-06-01

    Dust attenuation has long been treated as a simple parameter in SED fitting. Real galaxies are, however, much more complicated: The measured dust attenuation is not a simple function of the dust optical depth, but depends strongly on galaxy inclination and the relative distribution of stars and dust. We study the nebular and stellar dust attenuation in CALIFA galaxies, and propose some empirical recipes to make the dust treatment more realistic in spectral synthesis codes. By adding optical recombination emission lines, we find better constraints for differential attenuation. Those recipes can be applied to unresolved galaxy spectra, and lead to better recovered star formation rates.

  8. Cold dust in elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Wiklind, T.; Henkel, C.

    1995-05-01

    We have observed the λ1250 µm flux in 8 elliptical galaxies using the MPIfR 7-channel bolometer system attachet to the IRAM 30-m telescope. Five of the galaxies are detected at more than 3σ, two are tentatively detected and for one we obtained an upper limit. For two of the detected galaxies, the CO(2-1) line makes a significant contribution to the measured λ1250 µm flux. A comparison of the λ1250 µm fluxes, corrected for the CO(2-1) line contribution, with IRAS 60 and 100µm data shows that there is a colt dust component (Td~<20K) in two of the ellipticals. The other galaxies have λ1250 µm fluxes consistent with a one-temperature component, with Td typically between 20-30K.

  9. The Sombrero galaxy. I. Modelling the dust content.

    NASA Astrophysics Data System (ADS)

    Emsellem, E.

    1995-11-01

    We present high resolution ground based B, V, R_C_, I_C_ band images of the Sombrero Galaxy (M104), which enable us to build a spatial photometric model using the Multi-Gaussian Expansion technique. Assuming the dust is distributed in a series of concentric rings, we model the variation of the optical depth with radius in this galaxy. Discrepancies between this model and the observed absorption profiles perpendicular to the dust lane lead us to conclude that light scattering by dust grains has a crucial effect on the observed galactic properties. Using Monte Carlo simulations by Witt et al. (1992), we calculate an order of magnitude correction for the scattered light contribution. This is used to demonstrate that the observed attenuation integrated along the line of sight requires nearly twice the dust originally expected from models neglecting scattering effects. If the Sombrero had been viewed face-on, it would have appeared "dust free", although the face-on optical depth τ^0^_V_ reaches 0.8 mag and has a mean value of 0.3 for cylindrical radii between 100 and 200 arcseconds. We derive a total dust mass of about 3.2 d_18.5_10^7^ Msun_, which is probably a lower limit, although it is already 6 times higher than the dust mass predicted from the IRAS fluxes. We conclude that there must be a cold dust component (T_d_ < 20K) which is not detected by IRAS, but represents the major part (> 85%) of the total dust mass. We propose that the gas and dust rings observed in the Sombrero are due to the gravitational interaction of the interstellar medium with a now dissolved bar. This mechanism could also explain the possible presence of a central dark mass and the mild activity of the nucleus. This hypothesis may be tested by mapping the ionized gas in the central region.

  10. SPITZER OBSERVATIONS OF COLD DUST GALAXIES

    SciTech Connect

    Willmer, C. N. A.; Rieke, G. H.; Hinz, J. L.; Engelbracht, C. W.; Le Floc'h, Emeric; Marcillac, Delphine; Gordon, K. D.

    2009-07-15

    We combine new Spitzer Space Telescope observations in the mid-infrared and far-infrared (FIR) with SCUBA 850 {mu}m observations to improve the measurement of dust temperatures, masses, and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey. By fitting dust models we measure typical dust masses of 10{sup 7.9} M {sub sun} and dust luminosities of {approx}10{sup 10} L {sub sun}, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter FIR {nu}F{sub {nu}}(160 {mu}m)/{nu}F{sub {nu}}(850 {mu}m) slopes than the larger Spitzer Infrared Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.

  11. New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most

  12. On the dust content of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gutiérrez, C. M.; López-Corredoira, M.

    2014-11-01

    Context. Most of the contribution to dust emission in clusters of galaxies comes from late-type galaxies. However, several ejection processes of material from these galaxies could introduce dust in the intracluster media. Even a relatively low abundance of this dust could act as an efficient cooling agent and have a relevant role in the evolution of clusters. Aims: We present a study to estimate the dust content in galaxy clusters. Methods: This was done by using one the most complete existing catalogues of galaxy clusters based on Sloan Digital Sky Survey (SDSS) data and following two methods: the first one compares the colours of samples of galaxies in the background of clusters with those of galaxies in the field. Using this method, we have explored clustercentric distances up to 6 Mpc; this covers at least 2 × R200 for all the clusters in the sample. The galaxies used in this first method were selected from the SDSS-DR9, among those having reliable photometry and accurate estimation of photometric redshifts. Using the colours of background galaxies, we analyzed several regions at galactic latitudes | b | > 20° and >50°. The results are largely independent of the galactic cut applied. At | b | > 20°, the sample contains 56 985 clusters in the redshift range 0.05 galaxies. The second method computes the contribution of dust in clusters of galaxies to the far infrared sky. That is estimated indirectly by measuring the effect of clusters in the E(B - V) extinction map. Results: Using the first method, we did not find any dependence with clustercentric distance in the colours of background galaxies. As representative of the whole results, the surface integral of the excess of colour g - i in three rings centred in the clusters and with radius 0-1, 0-2, and 0-3 Mpc is -3.7 ± 3.5, + 3.2 ± 6.8, and -4.5 ± 10.1 milimag Mpc2, respectively. This allows us to constrain the mass of dust in the intracluster media

  13. Dust Attenuation in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.; Witt, A. N.; Gordon, K. D.

    2002-05-01

    In order to determine the star formation history of the universe from deep surveys at UV/optical rest frame wavelengths, one must have a reliable estimate of the attenuation factor for galaxies at high redshifts. That star formation is heavily enshrouded in dust is no longer in doubt. The exact nature, geometry and the amount of this dust/attenuation needs to be known out to high redshifts. We present an analysis of UV attenuation of a large (N=906) sample of Lyman Break Galaxies (LBGs) (data provided by Charles C. Steidel, Caltech) by internal dust. Using spectral energy distributions (SEDs) from the PEGASE stellar evolutionary synthesis model we apply dust corrections to the G - R colours using the Witt & Gordon (2000) dust attenuation models, to arrive at the UV attenuation factors. We show that the dust in the LBG sample exhibits SMC-like characteristics rather than MW type, and that the dust geometry is best represented by a clumpy shell configuration. The dust attenuation in individual LBGs is found to be proportional to their rest frame UV luminosities, i.e. their current star formation rate. We find that the average luminosity-weighted dust attenuation factor at 1600 Å is in the range 10-40 which agrees with the upper limit set by the FIR background. We also find that most of the star formation at 2 < z < 4 occurs in galaxies with luminosity ~ 1011-1012Lsun, equivalent to of the present day Luminous Infra-Red Galaxies and the Ultra Luminous Infra-Red Galaxies. This work has been supported by NASA grants NAG5-9376 and NAG5-9202, which we acknowledge with gratitude.

  14. NGC 4370: a case study for testing our ability to infer dust distribution and mass in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Viaene, S.; De Geyter, G.; Baes, M.; Fritz, J.; Bendo, G. J.; Boquien, M.; Boselli, A.; Bianchi, S.; Cortese, L.; Côté, P.; Cuillandre, J.-C.; De Looze, I.; di Serego Alighieri, S.; Ferrarese, L.; Gwyn, S. D. J.; Hughes, T. M.; Pappalardo, C.

    2015-07-01

    Context. A segment of the early-type galaxy population hosts a prominent dust lane, often decoupled from its stellar body. Methods of quantifying the dust content of these systems based on optical imaging data usually yield dust masses that are an order of magnitude lower than dust masses derived from the observed far-IR (FIR) emission. The discrepancy is often explained by invoking a diffuse dust component that is hard to trace in the UV or optical. Aims: High-quality optical data from the Next Generation Virgo cluster Survey (NGVS) and FIR/sub-mm observations from the Herschel Virgo Cluster Survey (HeViCS) allow us to revisit previous methods of determining the dust content in galaxies and explore new ones. NGC 4370 is an edge-on, early-type galaxy with a conspicuous dust lane and regular morphology, making it suitable for several (semi-)analytical modelling techniques. We aim to derive the dust mass from both optical and FIR data and to investigate the need to invoke a putative diffuse dust component. Methods: We used different methods to determine the total dust mass in the dust lane. We used our exquisite optical data to create colour and attenuation maps, which are converted to approximate dust mass maps based on simple dust geometries. Dust masses were also derived from SED fits to FIR to sub-mm observations. Finally, inverse radiative transfer fitting was performed to investigate more complex dust geometries, such as an exponential dust disc and a dust ring and to treat the dust-starlight interaction in a self-consistent way. Results: We find that the empirical methods applied to the optical data yield lower limits of 3.4 × 105 M⊙, an order of magnitude below the total dust masses derived from SED fitting. In contrast, radiative transfer models yield dust masses that are slightly lower, but fully consistent with the FIR-derived mass. We find that the effect of a nuclear stellar disc on the derivation of the total dust mass is minor. Conclusions: Dust is

  15. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Martini, Paul; Dicken, Daniel; Storchi-Bergmann, Thaisa

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  16. Dust and ionized gas in elliptical galaxies: Signatures of merging collisions

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Dejong, Teije

    1993-01-01

    Traditionally elliptical galaxies were thought to be essentially devoid of interstellar matter. However, recent advances in instrumental sensitivity have caused a renaissance of interest in dust and gas in - or associated with - elliptical galaxies. In particular, the technique of co-adding IRAS survey scans has led to the detection of more than half of all ellipticals with BT less than 11 mag. in the Revised Shapley-Ames catalog, indicating the presence of 10(exp 7) - 10(exp 8) solar mass of cold interstellar matter (Jura et al. 1987). In addition, CCD multi-color surface photometry shows dust patches in about 30 percent of the cases studied to date (e.g., Veron-Cetty & Veron 1988). Thorough study of the gas and dust in ellipticals is important to (1) determine its origin (mass-loss from late-type stars, merging collisions with other galaxies or accretion inflows from cooling X-ray gas), and (2) investigate the 3-D shape of ellipticals, as can be derived from the orientation of the dust lanes and the 2-D velocity field of the gas. An important result of our comprehensive CCD imaging program is that a relevant fraction (approximately 40 percent) of the sample objects exhibits dust patches within extended H-alpha+(NII) line-emitting filaments. This common occurrence can be easily accounted for if the dust and gas have an external origin, i.e., mergers or interactions with gas-rich galaxies. Evidence supporting this suggestion: (1) the ionized gas is usually dynamically decoupled from the stellar velocity field (see, e.g., Sharples et al. 1983, Bertola & Bettoni 1988); (2) it is shown in a companion paper (Goudfrooij et al. 1992) that internal stellar mass loss alone can not account for the dust content of elliptical galaxies.

  17. The Origin of Dust in High-z Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2010-01-01

    The discovery of massive amounts of dust in the high-redshift galaxy Jl148+5251, when the universe was merely'" 900 Myr old, presents a unique opportunity for studying the role of massive stars in the formation and destruction of dust grains, and the potential role of AGB as dust sources as well. In this talk I will review the different models for the presence of dust and the origin of the infrared emission in these galaxies.

  18. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    SciTech Connect

    Bekki, Kenji

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  19. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. Cosmological Galaxy Formation Model with New Dust SED Model

    NASA Astrophysics Data System (ADS)

    Makiya, R.; Totani, T.; Nagashima, M.; Kobayashi, M. A. R.; Takeuchi, T. T.

    2015-12-01

    Understanding the dust emission from a galaxy is very important to obtain a full picture of galaxy formation, since it contains rich information about hidden star formation activity and physical properties of interstellar dust. Recent observations revealed that several physical quantities such as star formation rate, cold gas density, and dust surface brightness, are tightly correlated with each other (e.g., Totani et al. 2011; Sun & Hirashita 2011; Kennicutt & Evans 2012; Makiya et al. 2014). Based on those recent observational findings, we newly introduced the dust radiation process into our cosmological galaxy formation model (νGC model; Nagashima et al. 2005; Makiya et al. 2015 in prep.).

  1. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H.; Dunne, L.; Aragon-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) with complete photometry from the UV-submillimetre. Models with dust produced only by low-intermediate mass stars fall a factor 240 short of the observed dust masses of SMGs, the well-known ‘dust-budget crisis’. Adding an extra source of dust from supernovae can account for the dust mass in 19% of the sample. After accounting for dust produced by supernovae the remaining deficit in the dust mass provides support for higher supernova yields or substantial grain growth in the interstellar medium. Efficient destruction of dust by supernova shocks increases the tension between the model and observed dust masses. Models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction.

  2. Modelling dust scattering in our Galaxy

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2016-06-01

    I have used Monte Carlo models with multiple scattering to predict the dust scattered light from our Galaxy and have compared the predictions with data in two ultraviolet bands from the Galaxy Evolution Explorer spacecraft. I find that 90 per cent of the scattered light arises from less than 1000 stars with 25 per cent from the 10 brightest. About half of the diffuse radiation originates within 200 pc of the Sun with a maximum distance of 600 pc. Multiple scattering is important at any optical depth with 30 per cent of the flux being multiply scattered even at zero reddening. I find that the global distribution of the scattered light is insensitive to the dust distribution with grains of 0.3 < a < 0.5 and g < 0.6. There is an offset between the model and the data of 100 and 200 ph cm-2 s-1 sr-1 Å-1 in the FUV and NUV, respectively, at the poles rising to 200-400 ph cm-2 s-1 sr-1 Å-1 at lower latitudes. The Monte Carlo code and the models of diffuse radiation for different values of the optical constants are available for download.

  3. ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS

    SciTech Connect

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-20

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  4. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  5. Dust formation in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark

    2016-04-01

    We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals on to existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at z = 0, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at z = 0 originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for z ≳ 5. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.

  6. The relation of dust and atomic gas properties of galaxies

    NASA Technical Reports Server (NTRS)

    Spitzak, John G.; Schneider, Stephen E.

    1992-01-01

    The way in which the neutral atomic hydrogen and far-IR emission from galaxies relate to their environments is shown. It is found that isolated and interacting galaxies display a fairly narrow range of a temperature-adjusted 'H I/100-micron index', suggesting that atomic gas-to-dust ratios are relatively constant among most galaxies. Isolated normal galaxies are used to develop a fiducial standard for the H I/100-micron index, against which galaxies in other environments are compared. Galaxies undergoing tidal interactions prove to have the same value for the index once the proper temperature adjustment is applied according to their FIR color. Applied to clusters, the H I/100-micron index shows a clear discrimination between galaxies whose H I is 'stripped' or 'unstripped', implying that there is about 6 times less H I in stripped galaxies relative to the 100-micron-emitting dust. The stripped galaxies also appear to have a slightly lower mean dust temperature, which is surprising since the stripping process might be expected to remove preferentially cooler than average dust from the outer disk.

  7. Herschel Dust Measurements of SDSS Supernovae Host Galaxies

    NASA Astrophysics Data System (ADS)

    Trinh, Donald; Cooray, Asantha R.; Nayyeri, Hooshang; Herschel Hermes and h-atlas Collaboration

    2016-01-01

    We use Herschel Spectral and Photometric Imaging Receiver (SPIRE) far-infrared observations of Supernova host galaxies to study the cosmological distant measurement from Hubble diagrams. We investigate the dust content of SN host galaxy from the Sloan Digital Sky Survery (SDSS) using the far-infrared stacks of Herschel in the Equatorial Stripe using , Herschel Multi-Tiered Extragalactic Survey (HELMS), and the Herschel Stripe 82 Survey (HERS). Cosmic dust may contribute to much more obscuring of standard candles than previously thought. Measuring the average flux values of stacks from dim Type-Ia supernovae provides a measure of the dust content of galaxies as a function of deviation of those sources from the Hubble diagram given a standard cosmology. Using the optical to far infrared stacked data of the galaxies we also measure the physical properties of the standard candles as a function of dust content.

  8. The warm molecular gas and dust of Seyfert galaxies: two different phases of accretion?

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.; Fernández-Ontiveros, J. A.; Tristram, K.; Neumayer, N.; Kotilainen, J. K.

    2015-10-01

    The distribution of warm molecular gas (1000-3000 K), traced by the near-IR H2 2.12 μm line, has been imaged with a resolution <0.5 arcsec in the central 1 kpc of seven nearby Seyfert galaxies. We find that this gas is highly concentrated towards the central 100 pc and that its morphology is often symmetrical. Lanes of warm H2 gas are observed only in three cases (NGC 1068, NGC 1386 and Circinus) for which the morphology is much wider and extended than the dust filaments. We conclude that there is no one-to-one correlation between dust and warm gas. This indicates that, if the dust filaments and lanes of warm gas are radial streaming motions of fuelling material, they must represent two different phases of accretion: the dust filaments represent a colder phase than the gas close to the nucleus (within ˜100 pc). We predict that the morphology of the nuclear dust at these scales should resemble that of the cold molecular gas (e.g. CO at 10-40 K), as we show for CenA and NGC 1566 by Atacama Large Millimeter/submillimeter Array (ALMA) observations, whereas the inner H2 gas traces a much warmer phase of material identified with warmer (40-500 K) molecular gas such as CO(6-5) or HCN (as shown by ALMA for NGC 1068 and NGC 1097). We also find that X-ray heating is the most likely dominant excitation mechanism of the H2 gas for most sources.

  9. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1galaxies is far from clear because of their extreme distances. The study of their local analogs helps us to improve understanding of the drivers of the intense star formation activity at high redshift. The submillimeter data on the 'Rayleigh-Jeans' side of the infrared spectral energy distributions (SEDs) of these galaxies are crucial for deriving the physical parameters of the dust content. We therefore conduct a submillimeter survey of local dust-obscured galaxies (DOGs) with the Caltech Submillimeter Observatory and the Submillimeter Array to study their dust properties. We determine the dust masses and temperatures for 16 local DOGs from the SED fit, and compare them with other dusty galaxies to understand a possible evolutionary link among them.

  10. MAPPING DUST THROUGH EMISSION AND ABSORPTION IN NEARBY GALAXIES

    SciTech Connect

    Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Meidt, Sharon E.; Tabatabaei, Fatemeh S.; Johnson, Benjamin D.; Aniano, Gonzalo; Calzetti, Daniela; Croxall, Kevin V.; Draine, Bruce T.; Gordon, Karl D.; Crocker, Alison F.; Smith, J. D. T.; Dale, Daniel A.; Hunt, Leslie K.; Kennicutt, Robert C.

    2013-07-01

    Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and {approx}1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest H II regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated A{sub V} measures to infer global dust properties.

  11. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H. L.; Dunne, L.; Aragón-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    2014-06-01

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) from the literature, with complete photometry from ultraviolet to the submillimetre. We show that dust produced only by low-intermediate-mass stars falls a factor 240 short of the observed dust masses of SMGs, the well-known `dust-budget crisis'. Adding an extra source of dust from supernovae can account for the dust mass in 19 per cent of the SMG sample. Even after accounting for dust produced by supernovae the remaining deficit in the dust mass budget provides support for higher supernova yields, substantial grain growth in the interstellar medium or a top-heavy IMF. Including efficient destruction of dust by supernova shocks increases the tension between our model and observed SMG dust masses. The models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction. Alternatively, invoking a top-heavy IMF or significant changes in the dust grain properties can solve the dust budget crisis only if dust is produced by both low-mass stars and supernovae and is not efficiently destroyed by supernova shocks.

  12. Chemical evolution of galaxies with radiation-driven dust wind

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Tsujimoto, Takuji

    2014-11-01

    We discuss how the removal of interstellar dust by radiation pressure of stars influences the chemical evolution of galaxies by using a new one-zone chemical evolution models with dust wind. The removal efficiency of an element (e.g. Fe, Mg, and Ca) through radiation-driven dust wind in a galaxy is assumed to depend both on the dust depletion level of the element in interstellar medium and the total luminosity of the galaxy in the new model. We particularly focus on the time evolution of [α/Fe] and its dependence on model parameters for dust wind in this study. The principal results are as follows. The time evolution of [Ca/Fe] is significantly different between models with and without dust wind in the sense that [Ca/Fe] can be systematically lower in the models with dust wind. The time evolution of [Mg/Fe], on the other hand, cannot be so different between the models with and without dust wind owing to the lower level of dust depletion for Mg. As a result of this, [Mg/Ca] can be systematically higher in the models with dust wind. We compare these results with the observed elemental features of stars in the Large Magellanic Cloud (LMC), because a growing number of observational studies on [α/Fe] for the LMC have been recently accumulated for a detailed comparison. Based on the present new results, we also discuss the origins of [α/Fe] in the Fornax dwarf galaxy and elliptical galaxies in the context of radiation-driven dust wind.

  13. Far-reaching dust distribution in galaxy discs

    NASA Astrophysics Data System (ADS)

    Smith, Matthew W. L.; Eales, Stephen A.; De Looze, Ilse; Baes, Maarten; Bendo, George J.; Bianchi, Simone; Boquien, Médéric; Boselli, Alessandro; Buat, Veronique; Ciesla, Laure; Clemens, Marcel; Clements, David L.; Cooray, Asantha R.; Cortese, Luca; Davies, Jonathan I.; Fritz, Jacopo; Gomez, Haley L.; Hughes, Thomas M.; Karczewski, Oskar Ł.; Lu, Nanyao; Oliver, Seb J.; Remy-Ruyer, Aurélie; Spinoglio, Luigi; Viaene, Sebastien

    2016-10-01

    In most studies of dust in galaxies, dust is only detected from its emission to approximately the optical radius of the galaxy. By combining the signal of 110 spiral galaxies observed as part of the Herschel Reference Survey, we are able to improve our sensitivity by an order of magnitude over that for a single object. Here we report the direct detection of dust from its emission that extends out to at least twice the optical radius. We find that the distribution of dust is consistent with an exponential at all radii with a gradient of ˜-1.7 dex R_{25}^{-1}. Our dust temperature declines linearly from ˜25 K in the centre to 15 K at R25 from where it remains constant out to ˜2.0 R25. The surface density of dust declines with radius at a similar rate to the surface density of stars but more slowly than the surface density of the star-formation rate. Studies based on dust extinction and reddening of high-redshift quasars have concluded that there are substantial amounts of dust in intergalactic space. By combining our results with the number counts and angular correlation function from the SDSS, we show that with Milky Way-type dust we can explain the reddening of the quasars by the dust within galactic discs alone. Given the uncertainties in the properties of any intergalactic dust, we cannot rule out its existence, but our results show that statistical investigations of the dust in galactic haloes that use the reddening of high-redshift objects must take account of the dust in galactic discs.

  14. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-01

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  15. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-01

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated. PMID:24317694

  16. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; Sloan, G. C.; Van Loon, Jacco Th.; Zijlstra, Albert

    2015-01-01

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ≲ [Fe/H] ≲ –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 μm post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  17. Connecting The Interstellar Gas And Dust Properties Of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha

    The properties of interstellar gas and dust in distant galaxies are fundamental parameters in constraining galaxy evolution models. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous background quasars, provide invaluable tools to directly study gas and dust in distant normal galaxies. Recent studies of QASs have found interesting trends in both gas and dust properties, such as correlations in metallicity with redshift and dust depletions. Our Spitzer spectroscopic studies also indicate that silicate dust grains are present in QASs, and in fact, at a level higher than expected for diffuse gas in the Milky Way. Moreover, the silicate dust grains in these distant galaxies may be substantially more crystalline than those in the Milky Way interstellar medium. We now propose a comprehensive study of the gas and dust properties of all QASs with strong Ly-alpha and/or metal absorption lines that have adequate archival IR data to probe the study of dust. Our analysis will include data primarily from the NASA-supported Spitzer, Herschel, HST, and Keck Observatory archives, along with a small amount of VLT/SDSS archival data. Our specific goals are as follows: (1) We will measure a large range of metal absorption lines in high-resolution quasar spectra from Keck, HST, and VLT archives to uniformly determine the metallicity, dust depletions, ionization, and star formation rates in the foreground QASs. In particular, we will study the variations in these quantities with gas velocity, using Voigt profile fitting techniques to determine the velocity structure. This analysis will also allow us to quantify the kinematics of the absorbing gas. (2) We will use archival Spitzer IRS quasar spectra to search for and measure the strengths of the 10 and 18 micron silicate dust absorption features for a much larger sample of QASs than previously studied. (3) We will fit the observed silicate absorption features in the Spitzer archival

  18. Observations of Cold Dust in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Leeuw, Lerothodi L.; Sansom, Anne E.; Robson, E. Ian; Haas, Martin; Kuno, Nario

    2004-09-01

    Spectral energy distribution (SED) analyses that include new millimeter to far-infrared (FIR) observations obtained with continuum instruments on the Nobeyama and James Clerk Maxwell Telescopes and the Infrared Space Observatory are presented for seven nearby (<45 Mpc) FIR-bright elliptical galaxies. These are analyzed together with archival FIR and shortwave radio data obtained from the NASA/IPAC Extragalactic Database (NED). The radio to infrared SEDs are best-fitted by power law plus graybody models of dust residing in the central galactic regions within a 2.4 kpc diameter and with temperatures between ~21 and 28 K, emissivity index ~=2, and masses from ~1.6 to 19×105Msolar. The emissivity index is consistent with dust constituting amorphous silicate and carbonaceous grains previously modeled for stellar-heated dust observed in the Galaxy and other nearby extragalactic sources. Using updated dust absorption coefficients for this type of dust, dust masses are estimated that are similar to those determined from earlier FIR data alone, even though the latter results implied hotter dust temperatures. Fluxes and masses that are consistent with the new FIR and submillimeter data are estimated for dust cooler than 20 K within the central galactic regions. Tighter physical constraints for such cold, diffuse dust (if it exists) with low surface brightness will need sensitive FIR to submillimeter observations with the Spitzer Space Telescope, SCUBA2, or ALMA.

  19. Dust In Hell: Discovery Of Dust In Hot Gas Around Group-Centered Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Brighenti, F.; Mathews, W. G.

    2007-05-01

    Observations with the Spitzer infrared telescope reveal extended internally produced dust in the hot gas (KT 1 KeV) atmospheres surrounding two optically normal galaxies, NGC 5044 and NGC 4636. We interpret this as a dusty buoyant outflow resulting from energy released by gas accretion onto supermassive black holes in the galaxy cores. Both galaxies have highly disturbed, transient activities in the hot gas and contain strong dust emission at 70 and 160 microns in excess of what expected from normal stellar mass loss. The 70 micron image is clearly extended. The lifetime of dust in hot (KT=1KeV) interstellar gas to destruction by sputtering (ion impacts), 10 million years, establishes the time when the dust first entered the hot gas. Remarkably, in NGC 5044 we observe interstellar PAH dust-molecular emission at 8 microns out to about 5 Kpc that is spatially coincident with extended Halpha+[NII] emission from warm gas. We propose that this dust comes from the destruction and heating of dusty disks in the nuclei of these galaxies, followed by buoyant transport. A simple calculation shows that dust-assisted cooling in outflowing buoyant gas in NGC 5044 can cool the gas within a few Kpc in about 10 million years, explaining the optical line emission observed.

  20. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  1. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J. E-mail: sandrews@cfa.harvard.edu

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  2. Dust in the Circumgalactic Medium of Low-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Peek, J. E. G.; Ménard, Brice; Corrales, Lia

    2015-11-01

    Using spectroscopically selected galaxies from the Sloan Digital Sky Survey we present a detection of reddening effects from the circumgalactic medium of galaxies which we attribute to an extended distribution of dust. We detect the mean change in the colors of “standard crayons” correlated with the presence of foreground galaxies at z˜ 0.05 as a function of angular separation. Following Peek & Graves, we create standard crayons using passively evolving galaxies corrected for Milky Way reddening and color-redshift trends, leading to a sample with as little as 2% scatter in color. We devise methods to ameliorate possible systematic effects related to the estimation of colors, and we find an excess reddening induced by foreground galaxies at a level ranging from 10 to 0.5 mmag on scales ranging from 30 kpc to 1 Mpc. We attribute this effect to a large-scale distribution of dust around galaxies similar to the findings of Ménard et al. We find that circumgalactic reddening is a weak function of stellar mass over the range 6× {10}9 {M}⊙ -6× {10}10 {M}⊙ and note that this behavior appears to be consistent with recent results on the distribution of metals in the gas phase. We also find that circumgalactic reddening has no detectable dependence on the specific star formation rate of the host galaxy.

  3. A physical model for z ~ 2 dust-obscured galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Dey, Arjun; Hayward, Christopher C.; Cox, Thomas J.; Bussmann, R. Shane; Brodwin, Mark; Jonsson, Patrik; Hopkins, Philip F.; Groves, Brent; Younger, Joshua D.; Hernquist, Lars

    2010-09-01

    We present a physical model for the origin of z ~ 2 dust-obscured galaxies (DOGs), a class of high-redshift ultraluminous infrared galaxies (ULIRGs) selected at 24μm which are particularly optically faint (F24μm/FR > 1000). By combining N-body/smoothed particle hydrodynamic simulations of high-redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 >~ 0.3mJy at z ~ 2) are well modelled as extreme gas-rich mergers in massive (~5 × 1012-1013Msolar) haloes, with elevated star formation rates (SFR; ~500-1000Msolaryr-1) and/or significant active galactic nuclei (AGN) growth , whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a `bump' to a power-law (PL) shaped mid-IR (Infrared Array Camera, IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a `bump' SED with bluer colours and lower SFRs. While canonically PL galaxies are associated with being AGN dominated, we find that the PL mid-IR SED can owe both to direct AGN contribution and to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus, PL galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers or by massive (Mbaryon ~ 5 × 1011Msolar) secularly evolving gas-rich disc galaxies (with SFR >~ 50Msolaryr-1). By utilizing similar models as those employed in the submillimetre galaxy (SMG) formation study of Narayanan et al., we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger-driven DOGs can be selected as submillimetre galaxies, while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria. The model SEDs from the simulated galaxies match observed data reasonably well, though Mrk 231 and Arp 220 templates provide

  4. Extreme Dust Heating in Optically Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    O'Connor, Jessica

    A complete census of supermassive black holes in the local universe is important, especially in low mass (log(stellar mass/solar masses) < 10) galaxies. It provides observational constraints on the black hole occupation fractions of low mass galaxies and broadens our understanding of the co-evolution of active galactic nuclei (AGN) and their host galaxies. Infrared selection criteria including [3.4]-[4.6] micron (W1-W2) color provides a useful method for detecting obscured AGN which may be missed in X-ray or optical surveys. Recent work has found that not only are there more AGN in low mass galaxies than would be predicted using optical selection criteria, but that the fraction of high W1-W2 (>0.5) galaxies is actually highest in the lowest mass galaxies. This could be evidence of a significant population of obscured AGN in low mass galaxies, but it is still unclear whether the dust heating that causes high W1-W2 color can only be caused by AGN or if stars alone are sufficient. This dissertation is a study of the demographics of high W1-W2 galaxies in the local universe and the AGN or star-forming nature of their nuclear activity. First, the number density of z0.3, 0.5 and 0.8 are calculated as a function of r-band luminosity and stellar mass. Not only does the number density of high W1-W2 galaxies rise toward the lowest host mass regime in stark contrast to the mass distribution of optical AGN, but the red WISE population displays a bimodality in its luminosity and stellar mass functions. They are a combination of a high mass optical AGN and a low mass optically star-forming component. One optically normal, IR-red (W1-W2>1) galaxy (SDSS J1224+5555) was included in a pilot study of bulgeless, high W1-W2 galaxies which found that its X-ray flux is much lower than would be expected if it hosted an AGN. Decomposing its photometry with multiwavelength spectral energy distribution (SED) modeling revealed that it is impossible to reproduce the galaxy's mid

  5. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  6. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-11-01

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies

  7. Peek-a-boo: Mapping Dust in Galaxies with Spitzer IRAC Imaging of Back-lit Galaxy Pairs

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha; Higdon, Sarah; Higdon, James

    2010-06-01

    Interstellar dust affects the chemistry and energy budget of galaxies, and can profoundly affect studies of the distant universe. However, very little is known about the nature of interstellar dust in normal galaxies beyond the Milky Way and the Magellanic Clouds. A direct way to probe dust in galaxies is by using partially overlapping (backlit) pairs of galaxies. While this technique has been applied to a few galaxy pairs, it has been used primarily with optical data in B and I bands (and occasionally K band), which are all subject to substantial amounts of dust extinction. Here we propose to observe 15 backlit pairs/polar ring galaxies in IRAC 3.6 and 4.5 micron bands which are much less affected by dust. Our goals are: (1) to obtain essentially un-extinguished reference images for comparison with the existing optical images and thus to determine dust extinction more accurately across different parts of the foreground galaxies; (2) to determine the opacity of some nearby spiral disks and examine whether dust grain sizes decrease in outer parts of disks; (3) to probe large-scale dust structure in some elliptical galaxies; (4) to examine whether dust exhibits fractal structure; and (5) to map star formation rate across the galaxies using the 3.6/4.5 micron flux ratio. The very local nature of our sample allows a detailed look at dust properties at different positions within the galaxies, and examine what galaxy properties drive the variation in dust properties. Our study will provide new implications for observations of the distant universe that are necessarily affected by the presence of dust in foreground galaxies.

  8. DUST ATTENUATION IN HIGH REDSHIFT GALAXIES: 'DIAMONDS IN THE SKY'

    SciTech Connect

    Scoville, Nick; Capak, Peter; Steinhardt, Charles; Faisst, Andreas; Kakazu, Yuko; Li, Gongjie

    2015-02-20

    We use observed optical to near-infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2-6.5. The presence of the C IV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 Å bump feature which is present in the Milky Way and Large Magellanic Cloud extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or polycyclic aromatic hydrocarbons. No significant dependence is seen with redshift between sub-samples at z = 2-4 and z = 4-6.5. The 'extinction' curve obtained here provides a firm basis for color and extinction corrections of high redshift galaxy photometry.

  9. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  10. Modeling Dust Evolution in Galaxies with a Multiphase, Inhomogeneous ISM

    NASA Astrophysics Data System (ADS)

    Zhukovska, Svitlana; Dobbs, Clare; Jenkins, Edward B.; Klessen, Ralf S.

    2016-11-01

    We develop a model of dust evolution in a multiphase, inhomogeneous interstellar medium (ISM) using hydrodynamical simulations of giant molecular clouds in a Milky Way–like spiral galaxy. We improve the treatment of dust growth by accretion in the ISM to investigate the role of the temperature-dependent sticking coefficient and ion–grain interactions. From detailed observational data on the gas-phase Si abundances [{{Si}}{gas}/{{H}}] measured in the local Galaxy, we derive a relation between the average [{{Si}}{gas}/{{H}}] and the local gas density n({{H}}) that we use as a critical constraint for the models. This relation requires a sticking coefficient that decreases with the gas temperature. The relation predicted by the models reproduces the slope of ‑0.5 for the observed relation in cold clouds, which is steeper than that for the warm medium and is explained by dust growth. We find that growth occurs in the cold medium for all adopted values of the minimum grain size a min from 1 to 5 nm. For the classical cutoff of {a}\\min =5 {nm}, the Coulomb repulsion results in slower accretion and higher [{{Si}}{gas}/{{H}}] than the observed values. For {a}\\min ≲ 3 {nm}, the Coulomb interactions enhance the growth rate, steepen the slope of the [{{Si}}{gas}/{{H}}]–n({{H}}) relation, and provide a better match to observations. The rates of dust re-formation in the ISM by far exceed the rates of dust production by stellar sources. After the initial 140 Myr, the cycle of matter in and out of dust reaches a steady state, in which the dust growth balances the destruction on a similar timescale of 350 Myr.

  11. Temperature distribution of dust in luminous IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Carico, David P.

    1989-01-01

    Work is currently in progress to obtain temperature distributions of dust in the most infrared-luminous galaxies. The results presented are of a preliminary nature, representing a zeroth-order approximation. The objects which have been analyzed so far are all galaxies from the Infrared Astronomy Satellite (IRAS) Bright Galaxy Sample with infrared luminosities L sub IR greater than or equal to 10(exp 11) solar luminosity. They are: Arp 220, Mrk 231, Mrk 273, NGC 1614, NGC 3690, NGC 6285/6, and Zw 049.057. The analysis utilized 3.7 micron data from the Palomar 5 m Hale telescope, IRAS data at 12, 25, 60, and 100 microns, and 1 mm continuum data from the CalTech Submillimeter Observatory on Mauna Kea.

  12. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    SciTech Connect

    Casey, C. M.; Cooray, A.; Scoville, N. Z.; Sanders, D. B.; Lee, N.; Finkelstein, S. L.; Capak, P.; Conley, A.; De Zotti, G.; Farrah, D.; Fu, H.; Le Floc'h, E.; Ilbert, O.; Ivison, R. J.; Takeuchi, T. T.

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  13. Radio polarization and sub-millimeter observations of the Sombrero galaxy (NGC 4594). Large-scale magnetic field configuration and dust emission

    NASA Astrophysics Data System (ADS)

    Krause, M.; Wielebinski, R.; Dumke, M.

    2006-03-01

    We observed the nearby early-type spiral galaxy NGC 4594 (M 104, Sombrero galaxy) with the Very Large Array at 4.86 GHz, with the Effelsberg 100-m telescope at 8.35 GHz as well as with the Heinrich Hertz Telescope at 345 GHz in radio continuum. The 4.86 and 8.35 GHz data contain polarization information and hence information about the magnetic fields: we detected a large-scale magnetic field which is to our knowledge the first detection of a large-scale magnetic field in an Sa galaxy in the radio range. The magnetic field orientation in M 104 is predominantly parallel to the disk but has also vertical components at larger z-distances from the disk. This field configuration is typical for normal edge-on spiral galaxies. The 345 GHz data pertain to the cold dust content of the galaxy. Despite the optical appearance of the object with the huge dust lane, its dust content is smaller than that of more late-type spirals.

  14. Clustering of Dust-Obscured Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Brodwin, Mark; Dey, Arjun; Brown, Michael J. I.; Pope, Alexandra; Armus, Lee; Bussmann, Shane; Desai, Vandana; Jannuzi, Buell T.; Le Floc'h, Emeric

    2008-11-01

    We present the angular autocorrelation function of 2603 dust-obscured galaxies (DOGs) in the Boötes field of the NOAO Deep Wide-Field Survey. DOGs are red, obscured galaxies, defined as having R - [ 24] >= 14 (F24/FRgtrsim 1000). Spectroscopy indicates that they are located at 1.5 lesssim z lesssim 2.5. We find strong clustering, with r0 = 7.40-0.84+1.27 h-1 Mpc for the full F24 > 0.3 mJy sample. The clustering and space density of the DOGs are consistent with those of submillimeter galaxies, suggestive of a connection between these populations. We find evidence for luminosity-dependent clustering, with the correlation length increasing to r0 = 12.97-2.64+4.26 h-1 Mpc for brighter (F24 > 0.6 mJy) DOGs. Bright DOGs also reside in richer environments than fainter ones, suggesting these subsamples may not be drawn from the same parent population. The clustering amplitudes imply average halo masses of log M = 12.2-0.2+0.3 M⊙ for the full DOG sample, rising to log M = 13.0-0.3+0.4 M⊙ for brighter DOGs. In a biased structure formation scenario, the full DOG sample will, on average, evolve into ~3L* present-day galaxies, whereas the most luminous DOGs may evolve into brightest cluster galaxies.

  15. What can the occult do for you? Understanding dust geometry in other galaxies from overlapping galaxy pairs.

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne Willem

    2015-08-01

    Interstellar dust is still the dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. My STARSMOG program uses HST observation of occulting galaxy pairs to accurately map the distribution of dust in foreground galaxies in fine (<100 pc) detail.The primary motivation is threefold: first, almost half of the light from stars in spiral galaxies is absorbed by the interstellar dust grains and re-emitted at longer wavelengths. To model this accurately, one needs to know the distribution and detailed geometry of dust in galaxies. The travel of light through an inhomogeneous medium is radically different from the smooth one and depends strongly on the medium’s inner structure. Secondly, the model for our Universe today includes dark energy, inferred from the distances to supernova, which themselves may be dimmed by intervening dust. An accurate model for the dust extinction in supernova host galaxies is critical to evolve this technique to the next level of accuracy needed to map dark energy. And finally, the fine-scale maps of dust extinction in occuling galaxies can be used to trace the molecular cloud sizes and the role of turbulence in the ISM of these disks. Furthermore, Integral Field Unit observations of such pairs will map the effective extinction curve in these occulting galaxies, disentangling the role of fine-scale geometry and grain composition on these curves.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: the dust geometry, a probability function of the amount of dimming as a function of galaxy type, its dependence on wavelength and

  16. HST Morphologies of z ˜ 2 Dust Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, A.

    2009-10-01

    We present high spatial resolution Cycle~15 HST imaging of 31 z ˜ 2 Dust Obscured Galaxies (DOGs) in the Boötes Field of the NOAO Deep Wide-Field Survey. Although this subset of DOGs have mid-IR spectral features typical of AGN, all but one of the galaxies are spatially extended and not dominated by an unresolved component at rest-frame optical wavelengths. Sérsic profile fitting indicates effective radii of 1-5~kpc, roughly intermediate between SMGs and quiescent BzKs and DRGs. DOG morphologies suggest they are more dynamically relaxed than local ULIRGs. HST imaging of a different sample of DOGs in Boötes observed during Cycle~16 shows qualitative evidence for a higher rate of interaction compared to the Cycle~15 sample. If major mergers are the progenitors of DOGs, then our observations suggest that DOGs may represent various stages of a post-merger evolutionary phase.

  17. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).

  18. The cycle of interstellar dust in galaxies of different morphological types

    NASA Astrophysics Data System (ADS)

    Calura, F.; Pipino, A.; Matteucci, F.

    2008-03-01

    Aims:We used chemical evolution models for galaxies of different morphological type to perform a detailed study of the evolution of the cosmic dust properties in different environments: the solar neighbourhood, elliptical galaxies and dwarf irregular galaxies. Thanks to the uptodate observations available in the solar vicinity, we intend to study the effects of dust in the chemical evolution of different types of galaxies and, at the same time, to refine investigation of the parameter space to satisfactorily fine-tune the parameters in our study. Methods: We have considered dust production from low and intermediate mass stars, supernovae Ia, supernovae II, and both dust destruction and dust accretion processes in a detailed model of chemical evolution for the solar vicinity. Then, by means of the same dust prescriptions, but adopting different galactic models (different star formation histories and the presence of galactic winds), we extended our study to ellipticals and dwarf irregular galaxies. In all these systems, dust evolution was calculated by means of chemical evolution models that relax the instantaneous recycling approximation and already reproduce the main features of the various galaxies. Results: We have investigated how the assumption of different star formation histories affects the dust production rates, dust depletion, the dust accretion, and destruction rates. We predict dust-to-gas and dust-to-metal ratios in very good agreement with those observed in the solar vicinity. We show how the inclusion of the dust treatment is helpful in solving the so-called Fe discrepancy, as observed in the hot gaseous halos of local ellipticals, and in reproducing the chemical abundances observed in the Lyman Break Galaxies. Finally, our new models can be very useful in future detailed spectro-photometric studies of galaxies.

  19. Dust-obscured Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Geller, Margaret J.

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ~ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S 12 μm/S 0.22 μm >= 892 and S 12 μm > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 1010 (L ⊙) <~ L IR <~ 7.0 × 1011 (L ⊙) with a median L IR of 2.1 × 1011 (L ⊙). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S 12 μm/S 0.22 μm but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  20. Dust-obscured galaxies in the local universe

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J. E-mail: mgeller@cfa.harvard.edu

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1 × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  1. Linking dust emission to fundamental properties in galaxies: the low-metallicity picture

    NASA Astrophysics Data System (ADS)

    Rémy-Ruyer, A.; Madden, S. C.; Galliano, F.; Lebouteiller, V.; Baes, M.; Bendo, G. J.; Boselli, A.; Ciesla, L.; Cormier, D.; Cooray, A.; Cortese, L.; De Looze, I.; Doublier-Pritchard, V.; Galametz, M.; Jones, A. P.; Karczewski, O. Ł.; Lu, N.; Spinoglio, L.

    2015-10-01

    Aims: In this work, we aim to provide a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. Methods: We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and the Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel (KINGFISH), totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties: dust mass, total-IR luminosity, polycyclic aromatic hydrocarbon (PAH) mass fraction, dust temperature distribution, and dust-to-stellar mass ratio. Results: Using a different SED model (modified black body), different dust composition (amorphous carbon in lieu of graphite), or a different wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. We find half as much dust with the amorphous carbon dust composition. For eight galaxies in our sample, we find a rather small excess at 500 μm (≤1.5σ). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and dust temperature distribution are found to be driven mostly by the specific star formation rate, sSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing sSFR. The relation is more complex for low-metallicity galaxies with high

  2. Spatially resolved dust emission of extremely metal-poor galaxies*

    NASA Astrophysics Data System (ADS)

    Zhou, Luwenjia; Shi, Yong; Diaz-Santos, Taino; Armus, Lee; Helou, George; Stierwalt, Sabrina; Li, Aigen

    2016-05-01

    We present infrared (IR) spectral energy distributions (SEDs) of individual star-forming regions in four extremely metal-poor (EMP) galaxies with metallicity Z ≲ Z⊙/10 as observed by the Herschel Space Observatory. With the good wavelength coverage of the SED, it is found that these EMP star-forming regions show distinct SED shapes as compared to those of grand design Spirals and higher metallicity dwarfs: they have on average much higher f70μm/f160 μm ratios at a given f160 μm/f250 μm ratio; single modified blackbody (MBB) fittings to the SED at λ ≥ 100 μm still reveal higher dust temperatures and lower emissivity indices compared to that of Spirals, while two MBB fittings to the full SED with a fixed emissivity index (β = 2) show that even at 100 μm, about half of the emission comes from warm (50 K) dust, in contrast to the cold (˜20 K) dust component. Our spatially resolved images furthermore reveal that the far-IR colours including f70 μm/f160 μm, f160 μm/f250 μm and f250 μm/f350 μm are all related to the surface densities of young stars as traced by far-UV, 24 μm and star formation rates (SFRs), but not to the stellar mass surface densities. This suggests that the dust emitting at wavelengths from 70 to 350 μm is primarily heated by radiation from young stars.

  3. The nature of dust-obscured galaxies at z~2

    NASA Astrophysics Data System (ADS)

    Bussmann, Robert Shane

    I use observational evidence to examine the nature and role in galaxy evolution of a population of dust-obscured galaxies (DOGs) at z ˜ 2. These objects are selected with the Spitzer Space Telescope, are bright in the mid-infrared (mid-IR) but faint in the optical, and contribute a significant fraction of the luminosity density in the universe at z ˜ 2. The first component of my thesis is a morphological study using high spatial resolution imaging with the Hubble Space Telescope of two samples of DOGs. One set of 33 DOGs have mid-IR spectral features typical of an obscured active galactic nucleus (AGN) (called power-law DOGs), while the other set of 20 DOGs have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6microm associated with stellar emission (called bump DOGs). The host galaxy dominates the light profile in all but two of these DOGs. In addition, bump DOGs are larger than power-law DOGs and exhibit more diffuse and irregular morphologies; these trends are consistent with expectations from simulations of major mergers in which bump DOGs evolve into power-law DOGs. The second component of my thesis is a study of the dust properties of DOGs, using sub-mm imaging of 12 power-law DOGs. These power-law DOGs are hyper-luminous (2 x 1013 L⊙ ) and have predominantly warm dust (Tdust > 35 -- 60 K). These results are consistent with an evolutionary sequence in which power-law DOGs represent a brief but important phase when AGN feedback heats the interstellar medium and quenches star-formation. The third component of my thesis is a study of the stellar masses and star-formation histories of DOGs, using stellar population synthesis models and broadband photometry in the rest-frame ultra-violet, optical, and near-IR. The best-fit quantities indicate bump DOGs are less massive than power-law DOGs. The relatively low stellar masses found from this line of analysis favor a merger-driven origin for ULIRGs at z ˜ 2.

  4. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  5. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  6. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    SciTech Connect

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch; Roussel, H.; Sauvage, M.; Lebouteiller, V.; Madden, S.; Baes, M.; De Looze, I.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Clements, D. L.; Cooray, A.; Galametz, M.; and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  7. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  8. THE EMISSION BY DUST AND STARS OF NEARBY GALAXIES IN THE HERSCHEL KINGFISH SURVEY

    SciTech Connect

    Skibba, Ramin A.; Engelbracht, Charles W.; Hinz, Joannah; Dale, Daniel; Zibetti, Stefano; Groves, Brent; Meidt, Sharon; Crocker, Alison; Calzetti, Daniela; Hunt, Leslie; Johnson, Benjamin D.; Galametz, Maud; Kennicutt, Robert C.; Murphy, Eric; Armus, Lee; Appleton, Philip; Bolatto, Alberto; Brandl, Bernhard; Croxall, Kevin; Gordon, Karl D.

    2011-09-01

    Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10{sup -2.2} to 10{sup 0.5}). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity log(f{sub dust}/f{sub *})-bar = -0.66{+-}0.08 and -0.22 {+-} 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by {approx}0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense

  9. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  10. Dust properties of Lyman-break galaxies at z ~ 3

    NASA Astrophysics Data System (ADS)

    Álvarez-Márquez, J.; Burgarella, D.; Heinis, S.; Buat, V.; Lo Faro, B.; Béthermin, M.; López-Fortín, C. E.; Cooray, A.; Farrah, D.; Hurley, P.; Ibar, E.; Ilbert, O.; Koekemoer, A. M.; Lemaux, B. C.; Pérez-Fournon, I.; Rodighiero, G.; Salvato, M.; Scott, D.; Taniguchi, Y.; Vieira, J. D.; Wang, L.

    2016-03-01

    Context. Since the mid-1990s, the sample of Lyman-break galaxies (LBGs) has been growing thanks to the increasing sensitivities in the optical and in near-infrared telescopes for objects at z> 2.5. However, the dust properties of the LBGs are poorly known because the samples are small and/or biased against far-infrared (far-IR) or submillimeter (submm) observations. Aims: This work explores from a statistical point of view the far-IR and submm properties of a large sample of LBGs at z ~ 3 that cannot be individually detected from current far-IR observations. Methods: We select a sample of 22, 000 LBGs at 2.5 galaxies included in the sample allows us to split it into several bins as a function of UV luminosity (LFUV), UV continuum slope (βUV), and stellar mass (M∗) to better sample their variety. We stack in PACS (100 and 160 μm) images from PACS Evolution Probe survey (PEP), SPIRE (250, 350 and 500 μm) images from the Herschel Multi-tied Extragalactic Survey (HerMES) programs, and AzTEC (1.1 mm) images from the Atacama Submillimeter Telescope Experiment (ASTE). Our stacking procedure corrects the biases induced by galaxy clustering and incompleteness of our input catalogue in dense regions. Results: We obtain the full infrared spectral energy distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as a function of LFUV, βUV, and M∗. The average IRX (or dust attenuation) is roughly constant over the LFUV range, with a mean of 7.9 (1.8 mag). However, it is correlated with βUV, AFUV = (3.15 ± 0.12) + (1.47 ± 0.14) βUV, and stellar mass, log (IRX) = (0.84 ± 0.11)log (M∗/ 1010.35) + 1.17 ± 0.05. We investigate using a statistically controlled stacking analysis as a function of (M∗, βUV), the dispersion of the IRX-βUV and IRX-M∗ plane. On the one hand, the dust attenuation shows a departure of up to 2.8 mag above the mean IRX-βUV relation when log (M

  11. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  12. Dust Heating By Low-mass Stars in Massive Galaxies at z< 1

    NASA Astrophysics Data System (ADS)

    Kajisawa, M.; Morishita, T.; Taniguchi, Y.; Kobayashi, M. A. R.; Ichikawa, T.; Fukui, Y.

    2015-03-01

    Using the Hubble Space Telescope/Wide Field Camera 3 imaging data and multi-wavelength photometric catalog, we investigated the dust temperature of passively evolving and star-forming galaxies at 0.2\\lt z\\lt 1.0 in the CANDELS fields. We estimated the stellar radiation field by low-mass stars from the stellar mass and surface brightness profile of these galaxies and then calculated their steady-state dust temperature. At first, we tested our method using nearby early-type galaxies with the deep far-IR data by the Herschel Virgo cluster survey and confirmed that the estimated dust temperatures are consistent with the observed temperatures within the uncertainty. We then applied the method to galaxies at 0.2\\lt z\\lt 1.0, and found that most passively evolving galaxies with {{M}star}\\gt {{10}10} {{M}⊙ } have relatively high dust temperatures of {{T}dust}\\gt 20 K, for which the formation efficiency of molecular hydrogen on the surface of dust grains in the diffuse ISM is expected to be very low from the laboratory experiments. The fraction of passively evolving galaxies strongly depends on the expected dust temperature at all redshifts and increases rapidly increasing temperature around {{T}dust}˜ 20 K. These results suggest that the dust heating by low-mass stars in massive galaxies plays an important role in the continuation of their passive evolution because the lack of the shielding effect of the molecular hydrogen on the UV radiation can prevent the gas cooling and formation of new stars.

  13. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    NASA Astrophysics Data System (ADS)

    Gioannini, L.; Matteucci, F.; Vladilo, G.; Calura, F.

    2016-09-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by AGB stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to Damped Lyman-α systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are: i) we can reproduce the observed gas to dust ratio in dwarf galaxies. ii) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. iii) Concerning Damped Lyman-α systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. iv) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nano-particles.

  14. MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946

    SciTech Connect

    Aniano, G.; Draine, B. T.; Calzetti, D.; Crocker, A.; Dale, D. A.; Engelbracht, C. W.; Gordon, K. D.; Hunt, L. K.; Kennicutt, R. C.; Galametz, M.; Krause, O.; Rix, H.-W.; Sandstrom, K.; Walter, F.; Leroy, A. K.; Roussel, H.; Sauvage, M.; Bolatto, A. D.; Donovan Meyer, J. E-mail: draine@astro.princeton.edu; and others

    2012-09-10

    We characterize the dust in NGC 628 and NGC 6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6 {mu}m to 500 {mu}m, dust models are strongly constrained. Using the Draine and Li dust model (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082 {+-} 0.0017 for NGC 628, and 0.0063 {+-} 0.0009 for NGC 6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor of three) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) 'delta function' component. We find no evidence for significant masses of cold dust (T {approx}< 12 K). Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70, and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.

  15. Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy distribution of dwarf galaxies using LABOCA

    NASA Astrophysics Data System (ADS)

    Galametz, M.; Madden, S.; Galliano, F.; Hony, S.; Schuller, F.; Beelen, A.; Bendo, G.; Sauvage, M.; Lundgren, A.; Billot, N.

    2009-12-01

    Aims. We study the dust properties of four low metallicity galaxies by modelling their spectral energy distributions. This modelling enables us to constrain the dust properties such as the mass, the temperature or the composition to characterise the global ISM properties in dwarf galaxies. Methods: We present 870 μm images of four low metallicity galaxies (NGC 1705, Haro 11, Mrk 1089 and UM 311) observed with the Large APEX BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope. We modeled their spectral energy distributions combining the submm observations of LABOCA, 2MASS, IRAS, Spitzer photometric data, and the IRS data for Haro 11. Results: We found that the PAH mass abundance is very low in these galaxies, 5 to 50 times lower than the PAH mass fraction of our Galaxy. We also found that a significant mass of dust is revealed when using submm constraints compared to that measured with only mid-IR to far-IR observations extending only to 160 μm. For NGC 1705 and Haro 11, an excess in submillimeter wavelengths was detected when we used our standard dust SED model. We rerun our SED procedure adding a cold dust component (10 K) to better describe the high 870 μm flux derived from LABOCA observations, which significantly improves the fit. We found that at least 70% of the dust mass of these two galaxies can reside in a cold dust component. We also showed that the subsequent dust-to-gas mass ratios, considering HI and CO observations, can be strikingly high for Haro 11 in comparison with what is usually expected for these low-metallicity environments. Furthermore, we derived the star formation rate of our galaxies and compared them to the Schmidt law. Haro 11 falls anomalously far from the Schmidt relation. These results may suggest that a reservoir of hidden gas could be present in molecular form not traced by the current CO observations. While there can be a significant cold dust mass found in Haro 11, the SED peaks at exceptionally short

  16. The Dust Content and Opacity of Actively Star-Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-01-01

    We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1

  17. Fitting the full SED of galaxies to put constraints on dust attenuation and star formation determinations

    NASA Astrophysics Data System (ADS)

    Buat, Veronique; Giovannoli, Elodie; Boquien, Mederic; Heinis, Sébastien

    2012-08-01

    The combination of far-IR and UV-optical rest-frame data has proved to be very efficient to extract physical parameters from the SEDs of galaxies. Using Herschel and ancillary data from the Herschel Reference Survey and GOODS-Herschel Key Projects, we show how dust attenuation properties can be estimated inside local galaxies as well as in the distant Universe.

  18. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  19. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems. PMID:26108853

  20. The Star Formation Histories of z ~ 2 Dust-obscured Galaxies and Submillimeter-selected Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Armus, L.; Brown, M. J. I.; Desai, V.; Gonzalez, A. H.; Jannuzi, B. T.; Melbourne, J.; Soifer, B. T.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ~ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M *) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ("bump DOGs"), while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ("power-law DOGs"). We measure M * by applying Charlot & Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M */M ⊙) = 10.42+0.42 - 0.36, 10.62+0.36 - 0.32, and 10.71+0.40 - 0.34, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ~ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ~ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M *, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  1. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Brassington, Nicola; Da Cunha, Elisabete; Hayward, Christopher C.; Jonsson, Patrik

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  2. Dust evolution in the dwarf galaxy Holmberg II

    NASA Astrophysics Data System (ADS)

    Wiebe, D. S.; Khramtsova, M. S.; Egorov, O. V.; Lozinskaya, T. A.

    2014-05-01

    A detailed photometric study of star-forming regions (SFRs) in the galaxy Holmberg II has been carried out using the archival observational data from the far infrared to the ultraviolet obtained with the GALEX, Spitzer, and Herschel telescopes. Spectroscopic observations with the 6-m BTA telescope (Special Astrophysical Observatory of the Russian Academy of Sciences) are used to estimate the ages and metallicities of SFRs. The ages of SFRs have been correlated for the first time with their emission parameters in a wide spectral range and with the physical parameters determined by fitting the observed spectra. It is shown that the fluxes at 8 and 24 µm characterizing the emission from polycyclic aromatic hydrocarbons (PAHs) and hot dust grains decrease with age, but their ratio increases. This implies that the relative contribution from PAHs to the total infrared flux increases with age. It is hypothesized that the detected increase in the ratio of the fluxes at 8 and 24 µm is related to the increase in the relative PAH fraction due to the destruction of larger grains.

  3. OT2_bsmith_3: Spirals, Bridges, and Tails: The Herschel View of Dust in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2011-09-01

    The tidal features produced by gravitational interactions between galaxies may contribute significantly to the enrichment of the intergalactic medium in dust and heavy elements. However, at the present time little is known about the dust content and properties of tidal structures. To address this lack, we propose to use the PACS and SPIRE instruments on Herschel to image a sample of nine nearby interacting galaxies in six far-infrared/submm broadband filters. We will map the dust column density and temperature in the main bodies and tidal features of these galaxies, and compare the far-infrared/submm properties of these features with those of normal spirals and dwarf galaxies. We will compare the Herschel maps with already acquired GALEX UV, Spitzer IR, and ground-based optical data, and with population synthesis and radiative transfer codes, to investigate dust heating mechanisms and extinction in these galaxies. We will compare with available radio maps to investigate dust/gas ratios and star formation triggering mechanisms, and compare with numerical simulations of the interactions. Our sample includes the closest and best-studied examples of tidal dwarf galaxies and accretion-driven star formation. These will provide a good testbed for interpreting high redshift systems.

  4. Stellar Evolutionary Effects on the Abundance of PAHS and SN-Condensed Dust in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2007-01-01

    Spectral aid photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features and their metal abundance, and a deficiency of these features in low-metallicity galaxies. The aromatic features are most commonly attributed to emission from PAH molecules. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of PAHs and carbon dust into the ISM, by AGB stars in their final, post-AGB phase of their evolution. These AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. After determining the PAH abundances in 35 nearby galaxies, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content, in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  5. Measuring the Dust Stripping of Galaxies by the Hot Intracluster Gas in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Ran; Zabludoff, Ann I.; Lee, Joon Hyeop; French, K. Decker; Park, Byeong-Gon

    2016-06-01

    Ram pressure stripping, the removal of gas from galaxies interacting with the hot intracluster medium, has been proposed as a mechanism for quenching star formation in cluster galaxies. While much effort has been made to identify gas stripped from the interstellar medium (ISM) of cluster galaxies, the ISM also includes dust, another potential tracer of stripping. Previous studies using radio and infra-red wavelengths have suggested gas and dust stripping in several cluster galaxies. In our study, we try a different approach: searching for optical extinction and reddening of background galaxies by dust stripped from foreground cluster members. As the first step, using data from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) and the VLA Imaging of Virgo in Atomic gas (VIVA) HI survey, we map the magnitudes and colors of galaxies behind Virgo cluster galaxies whose HI morphologies are disrupted. We discuss how efficiently dust stripping can be measured with this method and the connection to gas stripping.

  6. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Technical Reports Server (NTRS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Rix, Hans-Walter; Skelton, Rosalind E.; VanDokkum, Pieter G.; Tease, Katherine Whitaker; Wuyts, Stijn

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  7. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  8. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovács, Attila; Decarli, Roberto; Egami, Eiichi; Michałowski, Michał J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-11-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6+2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54{μ }-1 M⊙ yr‑1, and its dust mass is about 5 × 107{μ }-1 M⊙, where μ is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  9. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  10. Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa

    1994-01-01

    We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.

  11. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik Alexander; Capak, Peter; Carilli, Christopher; Walter, Fabian

    2015-08-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We will discuss the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations with the most powerful facilities across the electromagnetic spectrum, with a particular focus on new observations obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large (sub-) Millimeter Array (ALMA). These studies cover a broad range in galaxy properties, and provide a detailed comparison of the physical conditions in massive, dust-obscured starburst galaxies and star-forming active galactic nuclei hosts within the first billion years of cosmic time. Facilitating the impressive sensitivity of ALMA, this investigation also includes the first direct, systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  12. Dust clouds of Sagittarius

    NASA Astrophysics Data System (ADS)

    Malin, D. F.

    1982-03-01

    The development of knowledge of the exact nature of the dust clouds in the southern Milky Way galaxy is traced. First observation of the clouds were made by Herschel in 1784, and identification came with Barnard in 1916. The region around Barnard 86 is reviewed, noting the presence of the cluster NGC 6520 and NGC 6523, which is an area of a wide and dark dust lane backed by a blue nebulosity. Further attention is given to the blue objects NGC 6589, and NGC 6590, the Trifid nebula M20, the H II region NGC 6559 and IC 1274-5, and the six hot stars in the Sagittarius constellation.

  13. Dust properties of NGC 2076

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Pandey, S. K.; Kembhavi, Ajit

    1998-05-01

    We present multiband CCD surface photometry of NGC 2076, an early-type galaxy with a broad dust lane. We investigate the wavelength dependence of the dust extinction and derive the apparent extinction law. The extinction varies linearly with inverse wavelength with a ratio of total to selective extinction R_V = 2.70+/-0.28. The smaller value of R_V relative to the Galactic value implies that the size of `large' dust grains, responsible for extinction, is smaller than that in our Galaxy. We calculate the dust mass from total extinction, as well as from the color excess. We use IRAS data on FIR emission to determine the dust temperature, star formation rate and star formation efficiency. Based on observations taken from VBO, Kavalur, India

  14. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}ȯ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  15. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}⊙ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  16. Dark Hearts in the Perseus Cluster Galaxies: A Study of Dust Absorption Features

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; Wojtaszek, M.; Gallagher, J. S.

    2013-01-01

    Indicators of a cool interstellar medium, such as dust features and HI emission, are more prevalent in early type galaxies than once thought. Yet it is still difficult to understand their presence in the cores of massive clusters. The hot intracluster medium can strip low-density gas from infalling galaxies via ram pressure or can heat the gas past its escape velocity. Nevertheless, galaxies with cool ISM in the form of dust do exist in the Coma Cluster. Here we report on several such systems observed near the core of the Perseus Cluster, the nearest massive cluster of galaxies (D = 70 Mpc). Perseus is an optically unrelaxed cluster with an extensive hot ICM. It also contains several high-velocity galaxies, including a system infalling towards NGC 1275 at a relative speed of ~3000 km/sec, which suggests a continued accretion of systems from the cluster's surroundings. We detect dust features in early-type galaxies through the presence of optical absorption, visible in the form of very circular rings, dark spiral arms and disk systems, or both. These features range in size from 50 to 1700 parsecs. We suggest that these components may be remnants of evolutionary pre-processing in groups that occurs as objects fall into the Perseus cluster. We also discuss their existence in terms of survival time scales for cold ISM in the early-type members of a rich galaxy cluster.

  17. LABOCA and MAMBO-2 imaging of the dust ring of the Sombrero galaxy (NGC 4594)

    NASA Astrophysics Data System (ADS)

    Vlahakis, C.; Baes, M.; Bendo, G.; Lundgren, A.

    2008-07-01

    The Sombrero galaxy (NGC 4594) is an Sa galaxy with a symmetric dust ring. We have used the Large APEX BOlometer CAmera (LABOCA) at 870 μm and the MAx-Planck Millimeter BOlometer (MAMBO-2) at 1.2 mm to detect the dust ring for the first time at submillimetre and millimetre wavelengths. We have constructed a model of the galaxy to separate the active galactic nucleus (AGN) and dust ring components. The ring radius at both 870 μm and 1.2 mm agrees well with the radius determined from optical absorption and atomic gas studies. The spectral energy distribution of the ring is well fitted by a single grey-body with dust emissivity index β=2 and a dust temperature T_d=18.4 K. The dust mass of the ring is found to be 1.6±0.2× 107 M_⊙ which, for a Galactic gas-to-dust ratio, implies a gas mass that is consistent with measurements from the literature. This publication is based on data acquired with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  18. A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Soifer, B. T.; Desai, Vandana; Brand, Kate; Le Floc'h, Emeric; Brown, Michael J. I.; Jannuzi, Buell T.; Armus, Lee; Bussmann, Shane; Brodwin, Mark; Bian, Chao; Eisenhardt, Peter; Higdon, Sarah J.; Weedman, Daniel; Willner, S. P.

    2008-04-01

    The Spitzer Space Telescope has revealed a significant population of high-redshift (z ~ 2) dust-obscured galaxies with large mid-infrared to ultraviolet luminosity ratios. Due to their optical faintness, these galaxies have been previously missed in traditional optical studies of the distant universe. We present a simple method for selecting this high-redshift population based solely on the ratio of the observed mid-infrared 24 μm to optical R-band flux density. We apply this method to observations of the ≈8.6 deg2 NOAO Deep Wide-Field Survey Boötes field, and uncover ≈2600 dust-obscured galaxy candidates [i.e., 0.089 arcmin-2) with 24 μm flux densities F24 μ m >= 0.3 mJy and (R - [ 24]) >= 14 (i.e., Fν(24 μ m)/Fν(R) gtrsim 1000]. These galaxies have no counterparts in the local universe. They represent 7% +/- 0.6% of the 24 μm source population at F24 μ m >= 1 mJy but increase to ≈13% +/- 1% of the population at ≈0.3 mJy. These galaxies exhibit evidence of both star formation and AGN activity, with the brighter 24 μm sources being more AGN-dominated. We have measured spectroscopic redshifts for 86 of these galaxies, and find a broad redshift distribution centered at \\overline{z}≈ 1.99+/- 0.05. The space density of this population is ΣDOG(F24μ m >= 0.3 mJy) = (2.82 +/- 0.05) × 10-5h370 Mpc -3, similar to that of bright submillimeter-selected galaxies at comparable redshifts. These redshifts imply large luminosities, with median ν Lν(8 μ m) ≈ 4 × 1011 L⊙. The infrared luminosity density contributed by this relatively rare dust-obscured galaxy population is log (IRLD) ≈ 8.23+ 0.18-0.30. This is ≈60+ 40-15% of that contributed by z ~ 2 ultraluminous infrared galaxies (ULIRGs, with LIR > 1012 L⊙) our simple selection thus identifies a significant fraction of z ~ 2 ULIRGs. This IRLD is ≈26% +/- 14% of the total contributed by all z ~ 2 galaxies. We suggest that these dust-obscured galaxies are the progenitors of luminous (~4L

  19. A Search for Stellar Dust Production in Leo P, a Nearby Analog of High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Boyer, Martha; McDonald, Iain; McQuinn, Kristen; Skillman, Evan; Sonneborn, George; Srinivasan, Sundar; van Loon, Jacco Th.; Zijlstra, Albert; Sloan, Greg

    2016-08-01

    The origin of dust in the early Universe is a matter of debate. One of the main potential dust contributors are Asymptotic Giant Branch (AGB) stars, and several studies have been devoted to investigating whether and how AGB dust production changes in metal-poor environments. Of particular interest are the most massive AGB stars (8-10 Msun), which can in principle enter the dust-producing phase <50 Myr after they form. However, these stars cannot produce their own condensable material (unlike carbon AGB stars), so the efficiency of dust production decreases with metallicity. Evidence for dust production in massive AGB stars more metal-poor than the Magellanic Clouds is scarce due both to the rarity of chemically-unevolved, star-forming systems reachable in the infrared and to the short lifetimes of these stars. The recently discovered galaxy Leo P provides an irresistible opportunity to search for these massive AGB stars: Leo P is a gas-rich, star-forming galaxy, it is nearby enough for resolved star photometry with Spitzer, and its interstellar medium is 0.4 dex more metal-poor than any other accessible star-forming galaxy. Models predict ~3 massive AGB stars may be present in Leo P, and optical HST observations reveal 7 candidates. We propose to use Spitzer to determine whether these stars are dusty, providing valuable constraints to the dust contribution from AGB stars up to at least redshift 3.2, or 11.7 Gyr ago, when massive spheroidals and Galactic globular clusters were still forming. This is a gain of 2.8 Gyr compared to other accessible galaxies. We also request 1 orbit of joint HST time to confirm whether the AGB candidates in Leo P are indeed massive AGB stars belonging to the galaxy. These observations will provide information crucial for potential JWST followup spectroscopy.

  20. Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe

    NASA Astrophysics Data System (ADS)

    Clark, C. J. R.; Dunne, L.; Gomez, H. L.; Maddox, S.; De Vis, P.; Smith, M. W. L.; Eales, S. A.; Baes, M.; Bendo, G. J.; Bourne, N.; Driver, S. P.; Dye, S.; Furlanetto, C.; Grootes, M. W.; Ivison, R. J.; Schofield, S. P.; Robotham, A. S. G.; Rowlands, K.; Valiante, E.; Vlahakis, C.; van der Werf, P.; Wright, A. H.; de Zotti, G.

    2015-09-01

    We present the properties of the first 250 μm blind sample of nearby galaxies (15 < D < 46 Mpc) containing 42 objects from the Herschel Astrophysical Terahertz Large Area Survey. Herschel's sensitivity probes the faint end of the dust luminosity function for the first time, spanning a range of stellar mass (7.4 < M⋆ < 11.3 log10 M⊙), star formation activity (-11.8 < SSFR < -8.9 log10 yr-1), gas fraction (3-96 per cent), and colour (0.6 < FUV-KS < 7.0 mag). The median cold dust temperature is 14.6 K, colder than in the Herschel Reference Survey (18.5 K) and Planck Early Release Compact Source Catalogue (17.7 K). The mean dust-to-stellar mass ratio in our sample is higher than these surveys by factors of 3.7 and 1.8, with a dust mass volume density of (3.7 ± 0.7) × 105 M⊙ Mpc-3. Counter-intuitively, we find that the more dust rich a galaxy, the lower its UV attenuation. Over half of our dust-selected sample are very blue in FUV-KS colour, with irregular and/or highly flocculent morphology; these galaxies account for only 6 per cent of the sample's stellar mass but contain over 35 per cent of the dust mass. They are the most actively star-forming galaxies in the sample, with the highest gas fractions and lowest UV attenuation. They also appear to be in an early stage of converting their gas into stars, providing valuable insights into the chemical evolution of young galaxies.

  1. Radiative transfer in dust and the spectral flux distribution of NGC 1068. [Seyfert galaxy

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Leung, C. M.; Gould, R. J.; Stein, W. A.

    1977-01-01

    The continuum spectral flux distribution of the Seyfert galaxy NGC 1068 is analyzed by detailed models of radiative transfer in an optically thick cloud of dust grains. For wavelengths short of 30 microns, models invoking a spherical dust cloud with visual optical depth near 10 in the nucleus of the galaxy can reproduce the observed spectrum in a way consistent with information derived from spectral lines. The far-infrared emission cannot be explained easily by dust in the nucleus, but it is hypothesized that this radiation is emitted by dust associated with the observed molecular clouds, and that these clouds lie outside the nucleus. This far-infrared emission, therefore, should be extended to the same degree as the molecular-cloud distribution. High angular resolution mapping will be necessary to confirm this hypothesis.

  2. Evolution of dust content in galaxies probed by gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Kuo, Tzu-Ming; Hirashita, Hiroyuki; Zafar, Tayyaba

    2013-12-01

    Because of their brightness, gamma-ray burst (GRB) afterglows are viable targets for investigating the dust content in their host galaxies. Simple intrinsic spectral shapes of GRB afterglows allow us to derive the dust extinction. Recently, the extinction data of GRB afterglows are compiled up to redshift z = 6.3, in combination with hydrogen column densities and metallicities. This data set enables us to investigate the relation between dust-to-gas ratio and metallicity out to high redshift for a wide metallicity range. By applying our evolution models of dust content in galaxies, we find that the dust-to-gas ratios derived from GRB afterglow extinction data are excessively high such that they can be explained with a fraction of gas-phase metals condensed into dust (fin) ˜ 1, while theoretical calculations on dust formation in the wind of asymptotic giant branch stars and in the ejecta of Type II supernovae suggest a much more moderate condensation efficiency (fin ˜ 0.1). Efficient dust growth in dense clouds has difficulty in explaining the excessive dust-to-gas ratio at metallicities Z/Z⊙ < ɛ, where ɛ is the star formation efficiency of the dense clouds. However, if ɛ is as small as 0.01, the dust-to-gas ratio at Z ˜ 10-2 Z⊙ can be explained with nH ≳ 106 cm-3. Therefore, a dense environment hosting dust growth is required to explain the large fraction of metals condensed into dust, but such clouds should have low star formation efficiencies to avoid rapid metal enrichment by stars.

  3. Major-Merger Galaxy Pairs at Z = 0: Dust Properties and Companion Morphology

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan L.; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.; Ronca, Joseph; Hill, Emily; Jacques, Allison

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  4. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also

  5. Star Formation and Dust Obscuration at z ≈ 2: Galaxies at the Dawn of Downsizing

    NASA Astrophysics Data System (ADS)

    Pannella, M.; Carilli, C. L.; Daddi, E.; McCracken, H. J.; Owen, F. N.; Renzini, A.; Strazzullo, V.; Civano, F.; Koekemoer, A. M.; Schinnerer, E.; Scoville, N.; Smolčić, V.; Taniguchi, Y.; Aussel, H.; Kneib, J. P.; Ilbert, O.; Mellier, Y.; Salvato, M.; Thompson, D.; Willott, C. J.

    2009-06-01

    We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ≈ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ~4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ~40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies. Based on observations collected, within the COSMOS Legacy Survey, at the HST, Chandra, XMM, Keck, NRAO-VLA, Subaru, KPNO, CTIO, CFHT, and ESO observatories. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  6. The dust SED of dwarf galaxies. I. The case of NGC 4214

    NASA Astrophysics Data System (ADS)

    Hermelo, I.; Lisenfeld, U.; Relaño, M.; Tuffs, R. J.; Popescu, C. C.; Groves, B.

    2013-01-01

    Context. High-resolution data from Spitzer, Herschel, and Planck allow us to probe the entire spectral energy distribution (SED) of morphologically separated components of the dust emission from nearby galaxies and allow a more detailed comparison between data and models. Aims: We wish to establish the physical origin of dust heating and emission based on radiation transfer models, that self-consistently connect the emission components from diffuse dust and the dust in massive star forming regions. Methods: NGC 4214 is a nearby dwarf galaxy with a large set of ancillary data, ranging from the ultraviolet (UV) to radio, including maps from Spitzer and Herschel and detections from Planck. We mapped this galaxy with MAMBO at 1.2 mm at the IRAM 30 m telescope. We extracted separate dust emission components for the HII regions (plus their associated PDRs on pc scales) and for the diffuse dust (on kpc scales). We analysed the full UV to FIR/submm SED of the galaxy using a radiation transfer model that self-consistently treats the dust emission from diffuse and star forming (SF) complexes components, considering the illumination of diffuse dust both by the distributed stellar populations and by escaping light from the HII regions. While maintaining consistency within the framework of this model, we additionally used a model that provides a detailed description of the dust emission from the HII regions and their surrounding PDRs on pc scales. Thanks to the large amount of available data and many previous studies for NGC 4214, very few free parameters remained in the model fitting process. Results: We achieve a satisfactory fit for the emission from HII + PDR regions on pc scales, with the exception of the emission at 8 μm, which is underpredicted by the model. For the diffuse emission we achieve a good fit if we assume that about 40-65% of the emission escaping the HII + PDR regions is able to leave the galaxy without passing through a diffuse ISM, which is not an

  7. Dust evolution processes constrained by extinction curves in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Hou, Kuan-Chou; Hirashita, Hiroyuki; Michałowski, Michał J.

    2016-09-01

    Extinction curves, especially those in the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Small Magellanic Cloud (SMC), have provided us with a clue to the dust properties in the nearby Universe. We examine whether or not these extinction curves can be explained by well-known dust evolution processes. We treat the dust production in stellar ejecta, destruction in supernova shocks, dust growth by accretion and coagulation, and dust disruption by shattering. To make a survey of the large parameter space possible, we simplify the treatment of the grain size distribution evolution by adopting the "two-size approximation," in which we divide the grain population into small (≲0.03 μm) and large (≳0.03 μm) grains. It is confirmed that the MW extinction curve can be reproduced in reasonable ranges for the time-scale of the above processes with a silicate-graphite mixture. This indicates that the MW extinction curve is a natural consequence of the dust evolution through the above processes. We also find that the same models fail to reproduce the SMC/LMC extinction curves. Nevertheless, this failure can be remedied by giving higher supernova destruction rates for small dust particles dust and considering amorphous carbon for carbonaceous dust; these modifications in fact fall in line with previous studies. Therefore, we conclude that the current dust evolution scenario composed of the aforementioned processes is successful in explaining the extinction curves. All the extinction curves favor efficient interstellar processing of dust, especially strong grain growth by accretion and coagulation.

  8. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  9. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C. E-mail: jslarsen@astro.ku.d

    2009-10-20

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  10. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  11. The dust energy balance in the edge-on spiral galaxy NGC 4565

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Ciesla, Laure; Cortese, Luca; de Geyter, Gert; Groves, Brent; Boquien, Médéric; Boselli, Alessandro; Brondeel, Lena; Cooray, Asantha; Eales, Steve; Fritz, Jacopo; Galliano, Frédéric; Gentile, Gianfranco; Gordon, Karl D.; Hony, Sacha; Law, Ka-Hei; Madden, Suzanne C.; Sauvage, Marc; Smith, Matthew W. L.; Spinoglio, Luigi; Verstappen, Joris

    2012-12-01

    We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/Spectral and Photometric Imaging Receiver (250, 350 and 500 μm) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, Sloan Digital Sky Survey, Galaxy Evolution Explorer) to analyse its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FITSKIRT. To account for the observed ultraviolet and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimetre emission long wards of 100 μm is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Md ˜ 2.9 × 108 M⊙) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimetre observations and hardly contribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 are consistent with that of similar analyses of other edge-on spirals.

  12. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  13. Heavy Dust Obscuration of z = 7 Galaxies in a Cosmological Hydrodynamic Simulation

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue

    2013-10-01

    Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ~ 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 × 108-3 × 1010 M ⊙ with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f esc). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (AV ~ 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (~10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 Å bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.

  14. HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION

    SciTech Connect

    Kimm, Taysun; Cen, Renyue

    2013-10-10

    Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ∼ 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 × 10{sup 8}-3 × 10{sup 10} M{sub ☉} with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f{sub esc}). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (A{sub V} ∼ 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (∼10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 Å bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.

  15. Dust emission from the lensed Lyman break galaxy cB58

    NASA Astrophysics Data System (ADS)

    Baker, A. J.; Lutz, D.; Genzel, R.; Tacconi, L. J.; Lehnert, M. D.

    2001-06-01

    We detect 1.2 mm continuum emission from dust in the gravitationally lensed Lyman break galaxy MS 1512+36-cB58. Our detected flux is surprisingly low: relative to local starburst galaxies, cB58 appears to produce somewhat less far-IR emission than its UV reddening predicts. After comparing several different estimates of the source's dust content, we conclude that the apparent discrepancy is most likely related to uncertainty in its UV spectral slope. Alternate scenarios to account for a far-IR ``deficit'' which rely on a high dust temperature or differential magnification are less satisfactory. Our result underscores one of the risks inherent in characterizing the cosmic star formation history from rest-UV data alone.

  16. Hubble Space Telescope and Very Large Array Observations of the H2O Gigamaser Galaxy TXS 2226-184.

    PubMed

    Falcke; Wilson; Henkel; Brunthaler; Braatz

    2000-02-10

    We present Hubble Space Telescope/Wide-Field and Planetary Camera 2 images in Halpha + [N ii] lambdalambda6548, 6583 lines and continuum radiation and a VLA map at 8 GHz of the H2O gigamaser galaxy TXS 2226-184. This galaxy has the most luminous H2O maser emission known to date. Our red continuum images reveal a highly elongated galaxy with a dust lane crossing the nucleus. The surface brightness profile is best fitted by a bulge plus exponential disk model, favoring classification as a highly inclined spiral galaxy (i=70&j0;). The color map confirms that the dust lane is aligned with the galaxy major axis and is crossing the putative nucleus. The Halpha + [N ii] map exhibits a gaseous, jetlike structure perpendicular to the nuclear dust lane and the galaxy major axis. The radio map shows compact, steep spectrum emission that is elongated in the same direction as the Halpha + [N ii] emission. By analogy with Seyfert galaxies, we therefore suspect that this alignment reflects an interaction between the radio jet and the interstellar medium. The axes of the nuclear dust disk, the radio emission, and the optical line emission apparently define the axis of the active galactic nucleus. The observations suggest that in this galaxy the nuclear accretion disk, obscuring torus, and large-scale molecular gas layer are roughly coplanar. Our classification of the host galaxy strengthens the trend for megamasers to be found preferentially in highly inclined spiral galaxies.

  17. Hubble Space Telescope and Very Large Array Observations of the H2O Gigamaser Galaxy TXS 2226-184.

    PubMed

    Falcke; Wilson; Henkel; Brunthaler; Braatz

    2000-02-10

    We present Hubble Space Telescope/Wide-Field and Planetary Camera 2 images in Halpha + [N ii] lambdalambda6548, 6583 lines and continuum radiation and a VLA map at 8 GHz of the H2O gigamaser galaxy TXS 2226-184. This galaxy has the most luminous H2O maser emission known to date. Our red continuum images reveal a highly elongated galaxy with a dust lane crossing the nucleus. The surface brightness profile is best fitted by a bulge plus exponential disk model, favoring classification as a highly inclined spiral galaxy (i=70&j0;). The color map confirms that the dust lane is aligned with the galaxy major axis and is crossing the putative nucleus. The Halpha + [N ii] map exhibits a gaseous, jetlike structure perpendicular to the nuclear dust lane and the galaxy major axis. The radio map shows compact, steep spectrum emission that is elongated in the same direction as the Halpha + [N ii] emission. By analogy with Seyfert galaxies, we therefore suspect that this alignment reflects an interaction between the radio jet and the interstellar medium. The axes of the nuclear dust disk, the radio emission, and the optical line emission apparently define the axis of the active galactic nucleus. The observations suggest that in this galaxy the nuclear accretion disk, obscuring torus, and large-scale molecular gas layer are roughly coplanar. Our classification of the host galaxy strengthens the trend for megamasers to be found preferentially in highly inclined spiral galaxies. PMID:10642194

  18. DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES

    SciTech Connect

    Groves, Brent A.; Schinnerer, Eva; Walter, Fabian; Leroy, Adam; Galametz, Maud; Bolatto, Alberto; Hunt, Leslie; Dale, Daniel; Calzetti, Daniela; Croxall, Kevin; Kennicutt, Robert Jr.

    2015-01-20

    We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we find that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.

  19. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  20. Young, Ultraviolet-bright Stars Dominate Dust Heating in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-09-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region—the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  1. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    SciTech Connect

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A. E-mail: kgordon@stsci.edu

    2011-09-10

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  2. Spitzer Space Telescope's View of Galaxy Messier 101

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    The galaxy Messier 101 is a swirling spiral of stars, gas, and dust. Messier 101 is nearly twice as wide as our Milky Way galaxy. Spitzer's view, taken in infrared light, reveals the galaxy's delicate dust lanes as yellow-green filaments. Such dense dust clouds are where new stars can form. In this image, dust warmed by the light of hot, young stars glows red. The rest of the galaxy's hundreds of billions of stars are less prominent and form a blue haze. Astronomers can use infrared light to examine the dust clouds where stars are born.

  3. Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Gruppioni, C.

    2010-07-01

    Dust-obscured galaxies (DOGs) represent a recently-discovered, intriguing class of mid-IR luminous sources at high redshifts. Evidence is mounting that DOGs (selected on the basis of extreme optical/mid-IR color cut and high mid-IR flux level) may represent systems caught in the process of host galaxy formation and intense SMBH growth. Here we report the results of an X-ray spectroscopic survey aimed at studying the X-ray properties of these sources and establishing the fraction of Type 2 quasars among them.

  4. DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Finn, Rose A.; Desai, Vandana; Rudnick, Gregory; Poggianti, Bianca; Bell, Eric F.; Hinz, Joannah; Zaritsky, Dennis; Jablonka, Pascale; Milvang-Jensen, Bo; Moustakas, John; Rines, Kenneth E-mail: jmoustakas@ucsd.ed

    2010-09-01

    We present Spitzer MIPS 24 {mu}m observations of sixteen 0.4 < z < 0.8 galaxy clusters drawn from the ESO Distant Cluster Survey. This is the first large 24 {mu}m survey of clusters at intermediate redshift. The depth of our imaging corresponds to a total IR luminosity of 8 x 10{sup 10} L{sub sun}, just below the luminosity of luminous infrared galaxies (LIRGs), and 6{sup +1}{sub -1}% of M{sub V} < -19 cluster members show 24 {mu}m emission at or above this level. We compare with a large sample of coeval field galaxies and find that while the fraction of cluster LIRGs lies significantly below that of the field, the IR luminosities of the field and cluster galaxies are consistent. However, the stellar masses of the EDisCS LIRGs are systematically higher than those of the field LIRGs. A comparison with optical data reveals that {approx}80% of cluster LIRGs are blue and the remaining 20% lie on the red sequence. Of LIRGs with optical spectra, 88{sup +4} {sub -5}% show [O II] emission with EW([O II]) > 5 A, and {approx}75% exhibit optical signatures of dusty starbursts. On average, the fraction of cluster LIRGs increases with projected clustercentric radius but remains systematically lower than the field fraction over the area probed (<1.5x R {sub 200}). The amount of obscured star formation declines significantly over the 2.4 Gyr interval spanned by the EDisCS sample, and the rate of decline is the same for the cluster and field populations. Our results are consistent with an exponentially declining LIRG fraction, with the decline in the field delayed by {approx}1 Gyr relative to the clusters.

  5. Finding and Studying Luminous Dust-Enshrouded Galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.

    2009-12-01

    This meeting was convened to celebrate the career and science interests of Tom Phillips. The possibility of investigating the physics and chemistry of the molecular interstellar medium (ISM) in galaxies, at mm/submm wavelengths has been enabled by many, but Tom's long-standing and consistent contributions are amongst the greatest. Here I will summarize some of the key developments and prospects for better understanding galaxy evolution, by exploiting the energy generated by stars and active galactic nuclei (AGNs) after it has been absorbed and reprocessed by the solid and gaseous components of the ISM. I highlight the difficulties of identifying and diagnosing the discovered objects. The initial burst of activity associated with the galaxies detected when the first mm/submm-wave imaging instruments were fielded is maturing; however, the advent of in particular Herschel Space Observatory (Herschel), the Atacama Large (Sub-)Millimeter Array (ALMA) and the Cornell-Caltech Atacama Telescope (CCAT) mean that the complimentary view provided by far-infrared (IR) sensors to reveal both the detailed astrophysics of star formation taking place star by star, and of the great bursts of activity seen across the Universe is becoming much more powerful.

  6. VARIATIONS OF MID- AND FAR-INFRARED LUMINOSITIES AMONG EARLY-TYPE GALAXIES: RELATION TO STELLAR METALLICITY AND COLD DUST

    SciTech Connect

    Mathews, William G.; Brighenti, Fabrizio

    2013-05-01

    The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branch stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.

  7. Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah

    2015-11-01

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  8. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    SciTech Connect

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Miller, Sarah; Sobral, David

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  9. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.

    2014-05-01

    Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are

  10. Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies

    NASA Astrophysics Data System (ADS)

    Chevallard, J.; Charlot, S.; Wandelt, B.; Wild, V.

    2013-07-01

    We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. Motivated by the observation that different stellar populations reside in different spatial components of nearby star-forming galaxies, we develop an innovative combination of generic models of radiative transfer in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We start by showing that a wide range of radiative transfer models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength, from the ultraviolet to the near-infrared, and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. This relation predicts steeper (shallower) dust attenuation curves than both the Calzetti and Milky Way curves at small (large) attenuation optical depths, which implies that geometry and orientation effects have a stronger influence on the shape of the attenuation curve than changes in the optical properties of dust grains. We use our new, combined radiative transfer and spectral evolution model to interpret the observed dependence of the Hα/Hβ ratio and ugrizYJH attenuation curve on inclination in a sample of about 23 000 nearby star-forming galaxies, which we correct for systematic biases by developing a general method based on importance sampling. From the exploration of the model parameter space by means of a Bayesian Markov chain Monte Carlo technique, we measure the central face-on B-band optical depth of this sample to be τB⊥ ≈ 1.8 ± 0.2 (corresponding to an angle-averaged {< hat{τ}^ISM_V> _θ }≈ 0.3). We also quantify the enhanced optical depth towards newly formed stars in their birth clouds, finding this to be significantly larger in

  11. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  12. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    SciTech Connect

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-06-10

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A {sub V,} {sub H} {sub II}) and the integrated dust content (A {sub V,} {sub star}). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A {sub V,} {sub H} {sub II}. First, we stack spectra in bins of A {sub V,} {sub star}, and find that A {sub V,} {sub H} {sub II} = 1.86 A {sub V,} {sub star}, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M {sub *}). We find that on average A {sub V,} {sub H} {sub II} increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  13. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  14. DUST-TO-GAS RATIO IN THE EXTREMELY METAL-POOR GALAXY I Zw 18

    SciTech Connect

    Herrera-Camus, Rodrigo; Fisher, David B.; Bolatto, Alberto D.; Leroy, Adam K.; Walter, Fabian; Gordon, Karl D.; Roman-Duval, Julia; Donaldson, Jessica; Melendez, Marcio; Cannon, John M.

    2012-06-20

    The blue compact dwarf galaxy I Zw 18 is one of the most metal-poor systems known in the local universe (12+log(O/H) = 7.17). In this work we study I Zw 18 using data from Spitzer, Herschel Space Telescope, and IRAM Plateau de Bure Interferometer. Our data set includes the most sensitive maps of I Zw 18, to date, in both the far-infrared and the CO J = 1 {yields} 0 transition. We use dust emission models to derive a dust mass upper limit of only M{sub dust} {<=} 1.1 Multiplication-Sign 10{sup 4} M{sub Sun} (3{sigma} limit). This upper limit is driven by the non-detection at 160 {mu}m, and it is a factor of 4-10 times smaller than previous estimates (depending on the model used). We also estimate an upper limit to the total dust-to-gas mass ratio of M{sub Dust}/M{sub gas} {<=} 5.0 Multiplication-Sign 10{sup -5}. If a linear correlation between the dust-to-gas mass ratio and metallicity (measured as O/H) were to hold, we would expect a ratio of 3.9 Multiplication-Sign 10{sup -4}. We also show that the infrared spectral energy distribution is similar to that of starbursting systems.

  15. A map of the temperature of interstellar dust in the Milky Way Galaxy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A map of the temperature of interstellar dust in the Milky Way Galaxy derived from FIRAS sub-millimeter data. The map is a projection of the full sky in Galactic coordinates. The plane of the Milky Way is horizontal in the middle of the map with the Galactic center at the center. At high frequencies, the continuum in a FIRAS spectrum is dominated by thermal dust emission; at low frequencies, the cosmic microwave background dominates. A single-temperature dust model (with 1.55 adopted as the emissivity spectral index) was used to make this map. Different models can be used and assumptions made, and corresponding temperature and optical depth maps can be derived straightforwardly from the FIRAS Continuum Spectrum Maps (see 'About the Data Products' in the FIRAS section of the COBE Home Page). Reach et al. ( 1995, ApJ, 451, 188, 'Far-Infrared Spectral Observations of the Galaxy by COBE'), for example, report evidence for a ubiquitous cold (5 K) dust component.

  16. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  17. Analysis of the spatial distribution of stars, gas and dust in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Muñoz-Mateos, J. C.

    2013-05-01

    I summarize the main result of my thesis, which was awarded the Spanish Astronomical Society Award for the best thesis in Astronomy defended in 2010. This thesis was supervised by Armando Gil de Paz and Jaime Zamorano at Universidad Complutense de Madrid. In this work we quantified how the physical properties of stars, gas and dust vary with radius in nearby galactic disks, and used that information to infer the past assembly and evolution of galaxies. To do so we made use of spatially-resolved multi-wavelength images of nearby galaxies, all the way from the far-UV to the far-IR and radio. By comparing extinction- corrected profiles in the UV, optical and IR with models of disk evolution, we concluded that the current stellar population gradients are consistent with an inside-out growth of disks of ˜ 25% since z ˜ 1. We also found that the dust-to-gas ratio decreases with radius, and is tightly correlated with the local gas metallicity, which is again consistent with an inside-out assembly of disks. We measured the fraction of the dust mass which is in the form of PAHs at different radii. The resulting trend agrees with certain models of dust evolution, in which the abundance of PAHs is primarily determined by a delayed injection of carbon into the ISM by AGB stars.

  18. Untangling the nature of spatial variations of cold dust properties in star forming galaxies

    SciTech Connect

    Kirkpatrick, Allison; Calzetti, Daniela; Kennicutt, Robert; Galametz, Maud; Gordon, Karl; Groves, Brent; Tabatabaei, Fatemeh; Hunt, Leslie; Dale, Daniel; Hinz, Joannah

    2014-07-10

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T{sub c} ) and emissivity (β) on a pixel by pixel basis (where each pixel ranges from 0.1 to 3 kpc{sup 2}) using a two-temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ∼15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T{sub c} and β simultaneously, (2) hold β constant and fit T{sub c} . We compare T{sub c} and β with star formation rates (calculated from L{sub Hα} and L{sub 24μm}), the luminosity of the old stellar population (traced through L{sub 3.6μm}), and the dust mass surface density (traced by 500 μm luminosity, L{sub 500}). We find a significant trend between SFR/L{sub 500} and T{sub c} , implying that the flux of hard UV photons relative to the amount of dust is significantly contributing to the heating of the cold, or diffuse, dust component. We also see a trend between L{sub 3.6}/L{sub 500} and β, indicating that the old stellar population contributes to the heating at far-IR/submillimeter wavelengths. Finally, we find that when β is held constant, T{sub c} exhibits a strongly decreasing radial trend, illustrating that the shape of the far-IR SED is changing radially through a galaxy, thus confirming on a sample almost double in size the trends observed in Galametz et al.

  19. PACS photometry of the Herschel Reference Survey - far-infrared/submillimetre colours as tracers of dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Fritz, J.; Bianchi, S.; Boselli, A.; Ciesla, L.; Bendo, G. J.; Boquien, M.; Roussel, H.; Baes, M.; Buat, V.; Clemens, M.; Cooray, A.; Cormier, D.; Davies, J. I.; De Looze, I.; Eales, S. A.; Fuller, C.; Hunt, L. K.; Madden, S.; Munoz-Mateos, J.; Pappalardo, C.; Pierini, D.; Rémy-Ruyer, A.; Sauvage, M.; di Serego Alighieri, S.; Smith, M. W. L.; Spinoglio, L.; Vaccari, M.; Vlahakis, C.

    2014-05-01

    We present Herschel/PACS 100 and 160 μm integrated photometry for the 323 galaxies in the Herschel Reference Survey (HRS), a K-band, volume-limited sample of galaxies in the local Universe. Once combined with the Herschel/SPIRE observations already available, these data make the HRS the largest representative sample of nearby galaxies with homogeneous coverage across the 100-500 μm wavelength range. In this paper, we take advantage of this unique data set to investigate the properties and shape of the far-infrared/submillimetre spectral energy distribution in nearby galaxies. We show that, in the stellar mass range covered by the HRS (8 ≲ log (M*/M⊙) ≲ 12), the far-infrared/submillimetre colours are inconsistent with a single modified blackbody having the same dust emissivity index β for all galaxies. In particular, either β decreases or multiple temperature components are needed, when moving from metal-rich/gas-poor to metal-poor/gas-rich galaxies. We thus investigate how the dust temperature and mass obtained from a single modified blackbody depend on the assumptions made on β. We show that, while the correlations between dust temperature, galaxy structure and star formation rate are strongly model dependent, the dust mass scaling relations are much more reliable, and variations of β only change the strength of the observed trends.

  20. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; McDonald, Iain; Zijlstra, Albert; Sloan, G. C.; Van Loon, Jacco Th.

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  1. Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel

    NASA Astrophysics Data System (ADS)

    Rémy-Ruyer, A.; Madden, S. C.; Galliano, F.; Hony, S.; Sauvage, M.; Bendo, G. J.; Roussel, H.; Pohlen, M.; Smith, M. W. L.; Galametz, M.; Cormier, D.; Lebouteiller, V.; Wu, R.; Baes, M.; Barlow, M. J.; Boquien, M.; Boselli, A.; Ciesla, L.; De Looze, I.; Karczewski, O. Ł.; Panuzzo, P.; Spinoglio, L.; Vaccari, M.; Wilson, C. D.

    2013-09-01

    Context. We present new photometric data from our Herschel guaranteed time key programme, the Dwarf Galaxy Survey (DGS), dedicated to the observation of the gas and dust in low-metallicity environments. A total of 48 dwarf galaxies were observed with the PACS and SPIRE instruments onboard the Herschel Space Observatory at 70, 100, 160, 250, 350, and 500 μm. Aims: The goal of this paper is to provide reliable far-infrared (FIR) photometry for the DGS sample and to analyse the FIR/submillimetre (submm) behaviour of the DGS galaxies. We focus on a systematic comparison of the derived FIR properties (FIR luminosity, LFIR, dust mass, Mdust, dust temperature, T, emissivity index, β) with more metal-rich galaxies and investigate the detection of a potential submm excess. Methods: The data reduction method is adapted for each galaxy in order to derive the most reliable photometry from the final maps. The derived PACS flux densities are compared with the Spitzer MIPS 70 and 160 μm bands. We use colour-colour diagrams to analyse the FIR/submm behaviour of the DGS galaxies and modified blackbody fitting procedures to determine their dust properties. To study the variation in these dust properties with metallicity, we also include galaxies from the Herschel KINGFISH sample, which contains more metal-rich environments, totalling 109 galaxies. Results: The location of the DGS galaxies on Herschel colour-colour diagrams highlights the differences in dust grain properties and/or global environments of low-metallicity dwarf galaxies. The dust in DGS galaxies is generally warmer than in KINGFISH galaxies (TDGS ~ 32 K and TKINGFISH ~ 23 K). The emissivity index, β, is ~1.7 in the DGS, however metallicity does not make a strong effect on β. The proportion of dust mass relative to stellar mass is lower in low-metallicity galaxies: Mdust/Mstar ~ 0.02% for the DGS versus 0.1% for KINGFISH. However, per unit dust mass, dwarf galaxies emit about six times more in the FIR/submm than

  2. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  3. Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Genzel, R.; Förster-Schreiber, N. M.; Tacconi, L. J.

    2016-03-01

    Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broadband spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, ApJ, 657, 810; DL07) and a modified blackbody (MBB). We analyze the cause, drivers, and trends of uncertainties and systematics in thorough detail. As long as the observed SED extends to at least 160-200 μm in the rest frame, Mdust can be recovered with a >3σ significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. The performance of DL07 modeling turns out to be more robust than that of MBB since relative errors on Mdust are more mildly dependent on the maximum covered rest-frame wavelength and are less scattered. At the depth of the deepest Herschel surveys (in the GOODS-S field), it is possible to retrieve dust masses with a signal-to-noise ratio, S/N ≥ 3 for galaxies on the main sequence of star formation (MS) down to M∗ ~ 1010 [M⊙] up to z ~ 1. At higher redshift (z ≤ 2), the same result is only achieved for objects at the tip of the MS or for those objects lying above the tip owing to sensitivity and wavelength coverage limitations. Molecular gas masses, obtained by converting Mdust through the metallicity-dependent gas-to-dust ratio δGDR, are consistent with those based on the scaling of depletion time, τdep, and on CO sub-mm spectroscopy. Focusing on CO-detected galaxies at z> 1, the δGDR dependence on metallicity is consistent with the local relation, provided that a sufficient SED coverage is available. Once we established that Herschel-only and sub-mm-only estimates of dust masses can be affected by large uncertainties and possibly systematics in some cases, we combined far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full

  4. ISOCAM survey and dust models of 3CR radio galaxies and quasars

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Freudling, W.; Krügel, E.; Haas, M.

    2005-01-01

    A survey of all 3CR sources imaged with ISOCAM and ISOPHOT was recently published by Siebenmorgen et al. (2004) and Haas et al. (2004). The sample consists mostly of radio-loud active galactic nuclei (AGN). For each source, we present spatially integrated mid-infrared (MIR) fluxes. In total, we detected 68 objects of the 3CR catalogue, at redshifts z=2.5, and obtained upper limits for 17 objects. The one with the highest redshift is 4C+72.26 at z=3.53. ISOCAM data are combined with other photometric measurements to construct the spectral energy distribution from optical to radio wavelengths. The MIR emission may include synchrotron radiation of the AGN, stars of the host galaxy or dust. Extrapolation of radio core fluxes to the MIR show that the synchrotron contribution is in most cases negligible. In 53 cases (~75% of our detected 3CR sources), the MIR emission can be attributed to dust. The hot dust component is mainly due to small grains and PAHs. In order to describe dust emission we apply new radiative transfer models. In the models the dust is heated by a central source which emits photons up to energies of 1keV. By varying three parameters, luminosity, effective size and extinction, we obtain a fit to the SED for our objects. In the models, a type 1 AGN is represented by a compact dust distribution, the dust is therefore very warm and emission of PAHs is weak because of photo-destruction. In AGNs of type 2, the dust is relatively colder but PAH bands are strong. Our models contain also dust at large (several kpc) distance from the AGN. Such a cold dust component was neglected in previous computations which therefore underestimated the AGN contribution to the far infrared (FIR). However to constrain the cold component we await future Herschel/ALMA photometry. The modelling demonstrates that an AGN heating suffices to explain the ISO broad band data. Starburst activity is not necessary but will be searched for by our IRS Spitzer Space Telescope program and

  5. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  6. Modelling the spectral energy distribution of galaxies. V. The dust and PAH emission SEDs of disk galaxies

    NASA Astrophysics Data System (ADS)

    Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.

    2011-03-01

    We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their

  7. Modelling the spectral energy distribution of galaxies. V. The dust and PAH emission SEDs of disk galaxies

    NASA Astrophysics Data System (ADS)

    Popescu, C. C.; Tuffs, R. J.; Dopita, M. A.; Fischera, J.; Kylafis, N. D.; Madore, B. F.

    2011-03-01

    We present a self-consistent model of the spectral energy distributions (SEDs) of spiral galaxies from the ultraviolet (UV) to the mid-infrared (MIR)/far-infrared (FIR)/submillimeter (submm) based on a full radiative transfer calculation of the propagation of starlight in galaxy disks. This model predicts not only the total integrated energy absorbed in the UV/optical and re-emitted in the infrared/submm, but also the colours of the dust emission based on an explicit calculation of the strength and colour of the UV/optical radiation fields heating the dust, and incorporating a full calculation of the stochastic heating of small dust grains and PAH molecules. The geometry of the translucent components of the model is empirically constrained using the results from the radiation transfer analysis of Xilouris et al. on spirals in the middle range of the Hubble sequence, while the geometry of the optically thick components is constrained from physical considerations with a posteriori checks of the model predictions with observational data. Following the observational constraints, the model has both a distribution of diffuse dust associated with the old and young disk stellar populations as well as a clumpy component arising from dust in the parent molecular clouds in star forming regions. In accordance with the fragmented nature of dense molecular gas in typical star-forming regions, UV light from massive stars is allowed to either freely stream away into the diffuse medium in some fraction of directions or be geometrically blocked and locally absorbed in clumps. These geometrical constraints enable the dust emission to be predicted in terms of a minimum set of free parameters: the central face-on dust opacity in the B-band τ^f_B, a clumpiness factor F for the star-forming regions, the star-formation rate SFR, the normalised luminosity of the old stellar population old and the bulge-to-disk ratio B/D. We show that these parameters are almost orthogonal in their

  8. TURBULENT CAULDRON OF STARBIRTH IN NEARBY ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope offers a stunning unprecedented close-up view of a turbulent firestorm of starbirth along a nearly edge-on dust disk girdling Centaurus A, the nearest active galaxy to Earth. A ground-based telescopic view (upper left insert) shows that the dust lane girdles the entire elliptical galaxy. This lane has long been considered the dust remnant of a smaller spiral galaxy that merged with the large elliptical galaxy. The spiral galaxy deposited its gas and dust into the elliptical galaxy, and the shock of the collision compressed interstellar gas, precipitating a flurry of star formation. Resembling looming storm clouds, dark filaments of dust mixed with cold hydrogen gas are silhouetted against the incandescent yellow-orange glow from hot gas and stars behind it. Brilliant clusters of young blue stars lie along the edge of the dark dust rift. Outside the rift the sky is filled with the soft hazy glow of the galaxy's much older resident population of red giant and red dwarf stars. The dusty disk is tilted nearly edge-on, its inclination estimated to be only 10 or 20 degrees from our line-of-sight. The dust lane has not yet had enough time since the recent merger to settle down into a flat disk. At this oblique angle, bends and warps in the dust lane cause us to see a rippled 'washboard' structure. The picture is a mosaic of two Hubble Space Telescope images taken with the Wide Field Planetary Camera 2, on Aug. 1, 1997 and Jan. 10, 1998. The approximately natural color is assembled from images taken in blue, green and red light. Details as small as seven light-years across can be resolved. The blue color is due to the light from extremely hot, newborn stars. The reddish-yellow color is due in part to hot gas, in part to older stars in the elliptical galaxy and in part to scattering of blue light by dust -- the same effect that produces brilliant orange sunsets on Earth. Centaurus A (NGC 5128) Fast Facts: Right Ascension: 13: 25.5 (hours

  9. Hubble Space Telescope Morphologies of z ~ 2 Dust Obscured Galaxies. I. Power-Law Sources

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Armus, L.; Brand, K.; Brown, M. J. I.; Desai, V.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Soifer, B. T.; Weedman, D.

    2009-03-01

    We present high-spatial resolution optical and near-infrared imaging obtained using the ACS, WFPC2, and NICMOS cameras aboard the Hubble Space Telescope of 31 24 μm bright z ≈ 2 Dust Obscured Galaxies (DOGs) identified in the Boötes Field of the NOAO Deep Wide-Field Survey. Although this subset of DOGs have mid-IR spectral energy distributions dominated by a power-law component suggestive of an AGN, all but one of the galaxies are spatially extended and not dominated by an unresolved component at rest-frame UV or optical wavelengths. The observed V - H and I-H colors of the extended components are 0.2-3 magnitudes redder than normal star-forming galaxies. All but one have axial ratios >0.3, making it unlikely that DOGs are composed of an edge-on star-forming disk. We model the spatially extended component of the surface brightness distributions of the DOGs with a Sérsic profile and find effective radii of 1-6 kpc. This sample of DOGs is smaller than most submillimeter galaxies (SMGs), but larger than quiescent high-redshift galaxies. Nonparametric measures (Gini and M20) of DOG morphologies suggest that these galaxies are more dynamically relaxed than local ULIRGs. We estimate lower limits to the stellar masses of DOGs based on the rest-frame optical photometry and find that these range from ~109-1011 M sun. If major mergers are the progenitors of DOGs, then these observations suggest that DOGs may represent a postmerger evolutionary stage.

  10. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    NASA Technical Reports Server (NTRS)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  11. XMM-Newton spectroscopy of high-redshift Dust Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lanzuisi, Giorgio

    2010-10-01

    A population of Dust Obscured Galaxies (DOGs; (F(24um)/F(R)>1000 and F(24um)> 1 mJy) at z>1, likely associated with an obscured phase in the quasar lifetime, has recently been revealed. Redshift distribution, broad-band photometry and bolometric luminosities of DOGs indicate that these systems may represent an early dust-embedded phase of powerful AGN activity. Due to low space density, DOGs are rarely detected even in the deepest X-ray surveys. However, low-quality X-ray spectroscopy has revealed the common presence of highly obscured AGN in their nuclei. XMM-Newton is the ideal telescope to study their largely unexplored X-ray properties. We propose here to obtain a high signal-to-noise X-ray spectrum for two unique, optically-identified DOGs from the Bootes survey.

  12. XMM-Newton spectroscopy of high-redshift Dust Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lanzuisi, Giorgio

    2011-10-01

    A population of Dust Obscured Galaxies (DOGs; (F(24um)/F(R)>1000 and F(24um)> 1 mJy) at z>1, associated with an obscured phase in the quasar lifetime, has recently been revealed. Redshift distribution, broad-band photometry and bolometric luminosities indicate that these systems may represent an early dust-embedded phase of AGN activity. Due to low space density, DOGs are rarely detected even in the deepest X-ray surveys. However, low-quality X-ray spectroscopy has revealed the common presence of highly obscured AGN in their nuclei. XMM-Newton is the ideal telescope to study their largely unexplored X-ray properties. We propose here to obtain a high signal-to-noise X-ray spectrum for two unique, optically-identified DOGs from the Bootes survey.

  13. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    SciTech Connect

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D.; Hartoog, O. E.; Kaper, L.; Wiersema, K.; D'Elia, V.; Afonso, P. M. J.; Covino, S.; Flores, H.; Goldoni, P.; Jakobsson, P.; Klose, S.; Levan, A. J.; and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  14. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies

    SciTech Connect

    Koshida, Shintaro; Minezaki, Takeo; Yoshii, Yuzuru; Sakata, Yu; Sugawara, Shota; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A. E-mail: minezaki@ioa.s.u-tokyo.ac.jp

    2014-06-20

    We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained by the cross-correlation function analysis and also by an alternative method for estimating the maximum likelihood lag. The lag times strongly correlated with the optical luminosity in the luminosity range of M{sub V} = –16 to –22 mag, and the regression analysis was performed to obtain the correlation log Δt (days) = –2.11 – 0.2 M{sub V} assuming Δt∝L {sup 0.5}, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be approximately 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by the about a factor of two, which could be interpreted by the difference between the flux-weighted radius and response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of four to five, which strongly supports the unified

  15. Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Yoshii, Yuzuru; Kobayashi, Yukiyasu; Minezaki, Takeo; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Koshida, Shintaro; Peterson, Bruce A.

    2006-03-01

    The most intense monitoring observations yet made in the optical and near-infrared wave bands were carried out for Seyfert 1 galaxies NGC 5548, NGC 4051, NGC 3227, and NGC 7469 by the MAGNUM telescope, and clear time-delayed responses of the K-band flux variations to the V-band flux variations were found for all of these galaxies. Their H-K color temperatures of 1500-1800 K, estimated from their observed flux variation gradients, support a view that the bulk of the K flux should originate in the thermal radiation of hot dust surrounding the central engine and that the lag time should correspond to light-travel distance between them. Cross-correlation analysis measures their lag times to be 47-53 (NGC 5548), 11-18 (NGC 4051), about 20 (NGC 3227), and 65-87 (NGC 7469) days. The lag times are tightly correlated with the optical luminosities, as expected from dust reverberation (Δt~L0.5), while weakly with the central virial masses, which suggests that the inner radii of the dust tori around active nuclei have one-to-one correspondences with their central luminosities. In the lag time versus central luminosity diagram, the K-band lag times place an upper boundary on the similar lag times of broad emission lines in the literature, which not only supports the unified scheme of AGNs but also implies a physical transition from the BLR out to the dust torus that encircles the BLR. Correlated short-term V-band and X-ray flux variations in NGC 5548 are also found with a delay of 1 or 2 days, indicating the thermal reprocessing of X-ray emission by the central accretion flow.

  16. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  17. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  18. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  19. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu E-mail: xkong@ustc.edu.cn

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter

  20. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  1. Dust and Chemical Abundances of the Sagittarius Dwarf Galaxy Planetary Nebula Hen2-436

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Meixner, Margaret; Riebel, David; Hyung, Siek; Tajitsu, Akito; Izumiura, Hideyuki

    2011-03-01

    We have estimated elemental abundances of the planetary nebula (PN) Hen2-436 in the Sagittarius (Sgr) spheroidal dwarf galaxy using ESO/VLT FORS2, Magellan/MMIRS, and Spitzer/IRS spectra. We have detected candidates of fluorine [F II] λ4790, krypton [Kr III] λ6826, and phosphorus [P II] λ7875 lines and successfully estimated the abundances of these elements ([F/H] = +1.23, [Kr/H] = +0.26, [P/H] = +0.26) for the first time. These elements are known to be synthesized by the neutron capture process in the He-rich intershell during the thermally pulsing asymptotic giant branch (AGB) phase. We present a relation between C, F, P, and Kr abundances among PNe and C-rich stars. The detections of these elements in Hen2-436 support the idea that F, P, Kr together with C are synthesized in the same layer and brought to the surface by the third dredge-up. We have detected N II and O II optical recombination lines (ORLs) and derived the N2+ and O2+ abundances. The discrepancy between the abundance derived from the oxygen ORL and that derived from the collisionally excited line is >1 dex. To investigate the status of the central star of the PN, nebula condition, and dust properties, we construct a theoretical spectral energy distribution (SED) model to match the observed SED with CLOUDY. By comparing the derived luminosity and temperature of the central star with theoretical evolutionary tracks, we conclude that the initial mass of the progenitor is likely to be ~1.5-2.0 M sun and the age is ~3000 yr after the AGB phase. The observed elemental abundances of Hen2-436 can be explained by a theoretical nucleosynthesis model with a star of initial mass 2.25 M sun, Z = 0.008, and LMC compositions. We have estimated the dust mass to be 2.9×10-4 M sun (amorphous carbon only) or 4.0×10-4 M sun (amorphous carbon and polycyclic aromatic hydrocarbon). Based on the assumption that most of the observed dust is formed during the last two thermal pulses and the dust-to-gas mass ratio is 5

  2. The heating of mid-infrared dust in the nearby galaxy M33: A testbed for tracing galaxy evolution

    SciTech Connect

    Calapa, Marie D.; Calzetti, Daniela; Draine, Bruce T. E-mail: calzetti@astro.umass.edu; and others

    2014-04-01

    Infrared emission is an invaluable tool for quantifying star formation in galaxies. Because the 8 μm polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the accuracy and reliability of the 8 μm emission as a SFR tracer. Our study, part of the Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) M33 Extended Survey (HERM33ES) open time key program, aims at addressing this issue by analyzing the infrared emission from the nearby spiral galaxy M33 at the high spatial scale of ∼75 pc. Combining data from the Herschel Space Observatory and the Spitzer Space Telescope, we find that the 8 μm emission is better correlated with the 250 μm emission, which traces cold interstellar gas, than with the 24 μm emission. Furthermore, the L(8)/L(250) ratio is more tightly correlated with the 3.6 μm emission, a tracer of evolved stellar populations and stellar mass, than with a combination of Hα and 24 μm emission, a tracer of SFR. The L(8)/L(24) ratio is highly depressed in 24 μm luminous regions, which correlate with known H II regions. We also compare our results with the dust emission models by Draine and Li. We confirm that the depression of 8 μm PAH emission near star-forming regions is higher than what is predicted by models; this is possibly an effect of increased stellar radiation from young stars destroying the dust grains responsible for the 8 μm emission as already suggested by other authors. We find that the majority of the 8 μm emission is fully consistent with heating by the diffuse interstellar medium, similar to what recently determined for the dust emission in M31 by Draine et al. We also find that the fraction of 8 μm emission associated with the diffuse

  3. Magnetic field surrounding the starburst nucleus of the galaxy M82 from polarized dust emission

    PubMed

    Greaves; Holland; Jenness; Hawarden

    2000-04-13

    Magnetic fields may play an important role in the star-formation process, especially in the central regions of 'starburst' galaxies where star formation is vigorous. But the field directions are very difficult to determine in the dense molecular gas out of which the stars form, so it has hitherto been impossible to test this hypothesis. Dust grains in interstellar clouds tend to be magnetically aligned, and it is possible to determine the alignment direction based on the polarization of optical light due to preferential extinction along the long axes of the aligned grains. This technique works, however, only for diffuse gas, not for the dense molecular gas. Here we report observations of polarized thermal emission from the aligned dust grains in the central region of M82, which directly traces the magnetic field structure (as projected onto the plane of the sky). Organized field lines are seen around the brightest star-forming regions, while in the dusty halo the field lines form a giant magnetic bubble possibly blown out by the galaxy's 'superwind'.

  4. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  5. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-10

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  6. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  7. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  8. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  9. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang. PMID:23598341

  10. Dust in the nuclei of the Seyfert galaxies Markarian 231 and NGC 4151

    SciTech Connect

    Jones, B.; Worrall, D.M.; Rodriguez-Espinosa, J.M.; Stein, W.A.

    1984-09-01

    Observations carried out with a 8-13 micron grating-spectrometer of Mrk 231 and NGC 4151 are reported. The Mrk 231 data can be fitted to various thermal dust emission models or a single power law, with dust extinction. In all the model fits, except for that of graphite and silicon carbide grain emission, a component of silicate absorption of optical depth of not more than 0.7 is required. Confirming published work, the absorption being at the redshift of the low-redshift absorption-line system is ruled out. The high values of silicate optical depth absorption do not give ratios to the galaxy's visual extinction which are comparable to those of galactic H II regions. Weak evidence for a 10-micron absorption feature in NGC 4151 is also reported. This is somewhat contrary to expectation, since the visual extinction of NGC 4151 is lower than that of Mrk 231, and since there is evidence to support a nonthermal rather than thermal dust origin for the infrared continuum emission. 46 references.

  11. Gas-to-dust ratios in massive star-forming galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Aono, Yuya; Iono, Daisuke

    2016-08-01

    We present results of 12CO(J = 2-1) observations toward four massive star-forming galaxies at z ˜ 1.4 with the Nobeyama 45 m radio telescope. The galaxies are detected with Spitzer/MIPS in 24 μm and Herschel/SPIRE in 250 μm and 350 μm, and they mostly reside in the main sequence. Their gas-phase metallicities derived by the N2 method using the Hα and [N II]λ 6584 emission lines are near the solar value. CO lines are detected toward three galaxies. The molecular-gas masses obtained are (9.6-35) × 1010 M⊙ by adopting the Galactic CO-to-H2 conversion factor and a CO(2-1)/CO(1-0) flux ratio of 3. The dust masses derived from the modified blackbody model (assuming a dust temperature of 35 K and an emissivity index of 1.5) are (2.4-5.4) × 108 M⊙. Resulting gas-to-dust ratios (not accounting for H I mass) at z ˜ 1.4 are 220-1450, which are several times larger than those in local star-forming galaxies. A dependence of the gas-to-dust ratio on the far-infrared luminosity density is not clearly seen.

  12. GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS

    SciTech Connect

    Cox, P.; Krips, M.; Neri, R.; Omont, A.; Guesten, R.; Menten, K. M.; Wyrowski, F.; Weiss, A.; Beelen, A.; Gurwell, M. A.; Blundell, R.; Dannerbauer, H.; Negrello, M.; Aretxaga, I.; Hughes, D. H.; Auld, R.; Baes, M.; Buttiglione, S.; Cava, A.

    2011-10-20

    We report ground-based follow-up observations of the exceptional source, ID 141, one of the brightest sources detected so far in the Herschel Astrophysical Terahertz Large Area Survey cosmological survey. ID 141 was observed using the IRAM 30 m telescope and Plateau de Bure interferometer (PdBI), the Submillimeter Array, and the Atacama Pathfinder Experiment submillimeter telescope to measure the dust continuum and emission lines of the main isotope of carbon monoxide and carbon ([C I] and [C II]). The detection of strong CO emission lines with the PdBI confirms that ID 141 is at high redshift (z = 4.243 {+-} 0.001). The strength of the continuum and emission lines suggests that ID 141 is gravitationally lensed. The width ({Delta}V{sub FWHM} {approx} 800 km s{sup -1}) and asymmetric profiles of the CO and carbon lines indicate orbital motion in a disk or a merger. The properties derived for ID 141 are compatible with an ultraluminous (L{sub FIR} {approx} (8.5 {+-} 0.3) x 10{sup 13} {mu}{sup -1}{sub L} L{sub sun}, where {mu}{sub L} is the amplification factor), dense (n {approx} 10{sup 4} cm{sup -3}), and warm (T{sub kin} {approx} 40 K) starburst galaxy, with an estimated star formation rate of (0.7-1.7) x 10{sup 4} {mu}{sup -1}{sub L} M{sub sun} yr{sup -1}. The carbon emission lines indicate a dense (n {approx} 10{sup 4} cm{sup -3}) photon-dominated region, illuminated by a far-UV radiation field a few thousand times more intense than that in our Galaxy. In conclusion, the physical properties of the high-z galaxy ID 141 are remarkably similar to those of local ultraluminous infrared galaxies.

  13. Gas and Dust in a Submillimeter Galaxy at z = 4.24 from the Herschel Atlas

    NASA Astrophysics Data System (ADS)

    Cox, P.; Krips, M.; Neri, R.; Omont, A.; Güsten, R.; Menten, K. M.; Wyrowski, F.; Weiß, A.; Beelen, A.; Gurwell, M. A.; Dannerbauer, H.; Ivison, R. J.; Negrello, M.; Aretxaga, I.; Hughes, D. H.; Auld, R.; Baes, M.; Blundell, R.; Buttiglione, S.; Cava, A.; Cooray, A.; Dariush, A.; Dunne, L.; Dye, S.; Eales, S. A.; Frayer, D.; Fritz, J.; Gavazzi, R.; Hopwood, R.; Ibar, E.; Jarvis, M.; Maddox, S.; Michałowski, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Smith, D. J. B.; Swinbank, A. M.; Temi, P.; Valtchanov, I.; van der Werf, P.; de Zotti, G.

    2011-10-01

    We report ground-based follow-up observations of the exceptional source, ID 141, one of the brightest sources detected so far in the Herschel Astrophysical Terahertz Large Area Survey cosmological survey. ID 141 was observed using the IRAM 30 m telescope and Plateau de Bure interferometer (PdBI), the Submillimeter Array, and the Atacama Pathfinder Experiment submillimeter telescope to measure the dust continuum and emission lines of the main isotope of carbon monoxide and carbon ([C I] and [C II]). The detection of strong CO emission lines with the PdBI confirms that ID 141 is at high redshift (z = 4.243 ± 0.001). The strength of the continuum and emission lines suggests that ID 141 is gravitationally lensed. The width (ΔV FWHM ~ 800 km s-1) and asymmetric profiles of the CO and carbon lines indicate orbital motion in a disk or a merger. The properties derived for ID 141 are compatible with an ultraluminous (L FIR ~ (8.5 ± 0.3) × 1013 μ-1 L L sun, where μL is the amplification factor), dense (n ≈ 104 cm-3), and warm (T kin ≈ 40 K) starburst galaxy, with an estimated star formation rate of (0.7-1.7) × 104 μ-1 L M sun yr-1. The carbon emission lines indicate a dense (n ≈ 104 cm-3) photon-dominated region, illuminated by a far-UV radiation field a few thousand times more intense than that in our Galaxy. In conclusion, the physical properties of the high-z galaxy ID 141 are remarkably similar to those of local ultraluminous infrared galaxies.

  14. Search for Hyperluminous Infrared Dust-obscured Galaxies Selected with WISE and SDSS

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Nagao, T.

    2016-03-01

    We aim to search for hyperluminous infrared (IR) galaxies (HyLIRGs) with IR luminosity {L}{{IR}} > 1013 L⊙ by applying the selection method of dust-obscured galaxies (DOGs). They are spatially rare but could correspond to a maximum phase of cosmic star formation (SF) and/or active galactic nucleus (AGN) activity hence, they are a crucial population for understanding the SF and mass assembly history of galaxies. Combining the optical and IR catalogs obtained from the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE), we performed the extensive HyLIRGs survey; we selected 5311 IR-bright DOGs with i - [22] > 7.0 and flux at 22 μm > 3.8 mJy in 14,555 deg2, where i and [22] are i-band and 22 μm AB magnitudes, respectively. Among them, 67 DOGs have reliable spectroscopic redshifts that enable us to estimate their total IR luminosity based on the spectral energy distribution fitting. Consequently, we successfully discovered 24 HyLIRGs among the 67 spectroscopically confirmed DOGs. We found that (i) i - [22] color of IR-bright DOGs correlates with the total IR luminosity and (ii) the surface number density of HyLIRGs is >0.17 deg-2. A large fraction (˜73%) of IR-bright DOGs with i - [22] > 7.5 show {L}{{IR}} > 1013 L⊙, and the DOG criterion we adopted could be independently effective against the “W1W2-dropout method,” based on four WISE bands, for searching hyperluminous IR populations of galaxies.

  15. Morphologies of High-Redshift Dust-Obscured Galaxies from Keck Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Desai, V.; Armus, Lee; Dey, Arjun; Brand, K.; Thompson, D.; Soifer, B. T.; Matthews, K.; Jannuzi, B. T.; Houck, J. R.

    2008-09-01

    Spitzer MIPS images in the Boötes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust-obscured galaxy (DOG) at z ~ 2. The DOGs are defined by very red optical to mid-infrared (IR; observed-frame) colors, R - [24 μm]>14 mag, i.e. f ν(24 μm)/f ν(R)>1000. They are ultra-luminous infrared galaxies with L 8-1000 μm > 1012-1014 L sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck laser guide star adaptive optics (LGSAO) system, obtaining ~0.06'' resolution in the K'-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The nonparametric measures of their concentration and asymmetry show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1'' (<1 kpc at z = 2), making it unlikely that ongoing major mergers (mass ratios of 1/3 and greater) are triggering the high-IR luminosities. By contrast, high-resolution images of z ~ 2 SCUBA sources tend to show multiple components and a higher degree of asymmetry. We compare near-IR morphologies of the DOGs with a set of z = 1 luminous infrared galaxies (LIRGs; L IR ~ 1011 L sun) imaged with Keck LGSAO by the Center for Adaptive Optics Treasury Survey. The DOGs in our sample have significantly smaller effective radii, ~1/4 the size of the z = 1 LIRGs, and tend toward higher concentrations. The small sizes and high concentrations may help explain the globally obscured rest-frame blue-to-UV emission of the DOGs.

  16. HerMES: The Far-infrared Emission from Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A.; Assef, R. J.; Bock, J.; Casey, C. M.; Conley, A.; Farrah, D.; Ibar, E.; Kartaltepe, J.; Magdis, G.; Marchetti, L.; Oliver, S. J.; Pérez-Fournon, I.; Riechers, D.; Rigopoulou, D.; Roseboom, I. G.; Schulz, B.; Scott, Douglas; Symeonidis, M.; Vaccari, M.; Viero, M.; Zemcov, M.

    2013-09-01

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ~ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have langzrang = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r + - [24] >= 7.5 (AB mag) and S 24 >= 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (>=3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012 L ⊙ and (0.77 ± 0.08) × 1012 L ⊙, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 >= 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 >= 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ~ 2.

  17. HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES

    SciTech Connect

    Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A.; Assef, R. J.; Bock, J.; Riechers, D.; Schulz, B.; Casey, C. M.; Conley, A.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Ibar, E.; Kartaltepe, J.; Magdis, G.; Rigopoulou, D.; Marchetti, L.; Pérez-Fournon, I.; Scott, Douglas; and others

    2013-09-20

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg{sup 2} of the Cosmic Evolution Survey. The 3077 DOGs have (z) = 1.9 ± 0.3 and are selected from 24 μm and r {sup +} observations using a color cut of r {sup +} – [24] ≥ 7.5 (AB mag) and S{sub 24} ≥ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 10{sup 12} L{sub ☉} and (0.77 ± 0.08) × 10{sup 12} L{sub ☉}, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S{sub 24} ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S{sub 24} ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2.

  18. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Barr Domínguez, A.; Kaderhandt, L.; Hackstein, M.; Kollatschny, W.; Zetzl, M.; Hodapp, K. W.; Murphy, M.

    2015-04-01

    We present the results of three-year monitoring campaigns of the z = 0.024 type 1 active Galactic nucleus (AGN) PGC 50427. Using robotic telescopes of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we monitored PGC 50427 in the optical and near-infrared (NIR). Through the use of photometric reverberation mapping with broad- and narrowband filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα emission line. The Hα emission line responds to blue continuum variations with an average rest frame lag of 19.0 ± 1.23 days. Using single epoch spectroscopy obtained with the Southern African Large Telescope (SALT) we determined a broad-line Hα velocity width of 1020 km s-1 and in combination with the rest frame lag and adoption of a geometric scaling factor f = 5.5, we calculate a black hole mass of MBH ~ 17 × 106 M⊙. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100 Å luminosity at the time of our monitoring campaign. We measured small luminosity variations in the AGN (~10%) accross the three years of the monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC 50427 in the BLR size - AGN luminosity diagram, which is remarkably close to the theoretically expected relation of R ∝ L0.5. The simultaneous optical and NIR (J and Ks) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (~1800 K) lags the optical variations with an average rest frame lag of 46.2 ± 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC 50427 on the known τ - MV diagram. The simultaneous observations for the broad-line region and dust thermal emission demonstrate that the innermost dust

  19. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  20. M81 Galaxy is Pretty in Pink

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The perfectly picturesque spiral galaxy known as Messier 81, or M81, looks sharp in this new composite from NASA's Spitzer and Hubble space telescopes and NASA's Galaxy Evolution Explorer. M81 is a 'grand design' spiral galaxy, which means its elegant arms curl all the way down into its center. It is located about 12 million light-years away in the Ursa Major constellation and is one of the brightest galaxies that can be seen from Earth through telescopes.

    The colors in this picture represent a trio of light wavelengths: blue is ultraviolet light captured by the Galaxy Evolution Explorer; yellowish white is visible light seen by Hubble; and red is infrared light detected by Spitzer. The blue areas show the hottest, youngest stars, while the reddish-pink denotes lanes of dust that line the spiral arms. The orange center is made up of older stars.

  1. Hubble Space Telescope Observations of the CFA Seyfert 2 Galaxies: The Fueling of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Pogge, Richard W.

    1999-12-01

    We present an investigation of possible fueling mechanisms operating in the inner kiloparsec of Seyfert galaxies. We analyze visible and near-infrared Hubble Space Telescope images of 24 Seyfert 2 galaxies from the CfA Redshift Survey sample. In particular, we are searching for the morphological signatures of dynamical processes responsible for transporting gas from kiloparsec scales into the nucleus. The circumnuclear regions are very rich in gas and dust, often taking the form of nuclear spiral dust lanes on scales of a few hundred parsecs. While these nuclear spirals are found in 20 of our 24 Seyfert galaxies, we find only five nuclear bars among the entire sample, strongly reinforcing the conclusions of other investigators that nuclear bars are not the primary means of transporting this material into the nucleus. An estimate of the gas density in the nuclear spirals, based on extinction measurements, suggests that the nuclear spiral dust lanes are probably shocks in nuclear gas disks that are not strongly self-gravitating. Since shocks can dissipate energy and angular momentum, these spiral dust lanes may be the channels by which gas from the host galaxy disks is being fed into the central engines.

  2. High Redshift Dust Obscured Galaxies, A Morphology-SED Connection Revealed by Keck Adaptive Optics Imaging

    NASA Astrophysics Data System (ADS)

    Melbourne, Jason

    2009-01-01

    Keck Adaptive Optics (AO) K'-band images reveal the morphologies of 15 high redshift (z 2) dust obscured galaxies (DOGs). DOGs are defined by an optical to mid-IR color of fν(24) / fν(R) > 1000, redder than Arp 220 at any redshift. With ultra-luminous infrared luminosities, DOGs are thought to be powered by a combination of AGN and star formation. We use high spatial resolution (0.5 - 1 kpc at these redshifts) AO images to help disentangle the dominant energy source in each DOG and to look for triggers, such as evidence of ongoing mergers. We find evidence for ongoing merging in 10-20% of the sample. We also find a statistically significant correlation between galaxy compactness and 24 micron flux (luminosity), with the brightest DOGs exhibiting more compact morphologies than fainter DOGs. The most diffuse systems tend to show a 1.6 micron stellar bump in their spectral energy distributions redshifted to the Spitzer IRAC bands (4.5 - 8.0 microns). The imaging results lend further support to the idea that the highest luminosity DOGs are AGN dominated (resulting in compact morphology), while the lower luminosity, diffuse, DOGs tend to be star formation dominated.

  3. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Le Floc'h, E.; Melbourne, J.; Weedman, D.

    2011-05-20

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.

  4. Hubble Space Telescope Morphologies of z ~ 2 Dust-obscured Galaxies. II. Bump Sources

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Armus, L.; Brown, M. J. I.; Desai, V.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Soifer, B. T.; Weedman, D.

    2011-05-01

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z ≈ 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 μm associated with stellar emission. These sources, which we call "bump DOGs," have star formation rates (SFRs) of 400-4000 M sun yr-1 and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission—a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 ± 2.7 kpc versus 5.5 ± 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M 20 of -1.08 ± 0.05 versus -1.48 ± 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M 20 = -1.0 to M 20 = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.

  5. AGN - Dust-Obscured Galaxies at z~1-3 revealed by near-to-far infrared SED-fitting

    NASA Astrophysics Data System (ADS)

    Riguccini, Laurie

    Dust-Obscured galaxies (DOGs, Dey et al. 2008) are bright 24μm-selected sources with extreme obscuration at optical wavelengths (F24μ m /F R > 982). Recent studies (Dey et al. 2008, Bussmann et al. 2009) describe an evolutionary scenario in which the starbursting nature of submillimeter galaxies (SMGs) evolves into the composite nature of DOGs as an underlying AGN grows; this is followed by a quasar phase that terminates star formation (SF), leading to the formation of a passive, massive elliptical galaxy. Within this context, DOGs could provide a key insight to an extremely dusty stage in the evolution of galaxies at z ~ 2, where both AGN and SF activity coexist.

  6. Interferometric follow-up of WISE hyper-luminous hot, dust-obscured galaxies

    SciTech Connect

    Wu, Jingwen; Wright, Edward L.; Bussmann, R. Shane; Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas; Petric, Andreea; Blain, Andrew; Bridge, Carrie R.; Benford, Dominic J.; Assef, Roberto J.; Gelino, Christopher R.

    2014-09-20

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.

  7. Interferometric Follow-up of WISE Hyper-luminous Hot, Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Bussmann, R. Shane; Tsai, Chao-Wei; Petric, Andreea; Blain, Andrew; Eisenhardt, Peter R. M.; Bridge, Carrie R.; Benford, Dominic J.; Stern, Daniel; Assef, Roberto J.; Gelino, Christopher R.; Moustakas, Leonidas; Wright, Edward L.

    2014-09-01

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ~1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 108 M ⊙ for W0149+2350 and 3.9 × 108 M ⊙ for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 1010 M ⊙ and 2.3 × 1010 M ⊙ for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.

  8. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    NASA Astrophysics Data System (ADS)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  9. Molecular gas, stars, and dust in sub-L* star-forming galaxies at z~2: evidence for universal star formation and nonuniversal dust-to-gas ratio

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Schaerer, Daniel; Combes, Francoise; Egami, Eiichi; Swinbank, A. Mark; Richard, Johan; Sklias, Panos; Rawle, Tim D.

    2015-08-01

    Only recently have CO measurements become possible in main sequence star-forming galaxies (SFGs) at z=1-3, but are still biased toward high star formation rates (SFR) and stellar masses (Ms), because of instrumental sensitivity limitations. It is essential to extend these studies toward the more numerous and typical SFGs, characterized by IR luminosities LIRdust properties in 8 such sub-L*, lensed SFGs at z=1.5-3.6, achieved thanks to the gravitational lensing and IRAM/PdBI, Herschel, Spitzer, and HST multi-wavelength data. Combined with our compilation of CO-detected galaxies from the literature, we revisit and propose new correlations between IR and CO luminosities, molecular gas, stellar and dust masses, specific SFR, molecular gas depletion timescales (tdepl), molecular gas fractions (fgas), dust-to-gas ratios, and redshift. These correlations betray the interplay between gas, dust, and star formation in galaxies.All the LIR, L'CO(1-0) data are best-fitted with a single relation, which spans 5 orders of magnitude in LIR, covers redshifts from z=0 to z=5.3, and samples spirals, main sequence SFGs, and starbursts. This favors a universal star formation. We find an increase of tdepl with Ms, as now revealed by low-Ms SFGs at z>1 and also observed at z=0, which contrasts with the acknowledged constant tdepl and refutes the linearity of the Kennicutt-Schmidt relation between molecular gas and SFR at galactic scales. A steady increase of fgas with redshift is predicted and is observed from z~0 to z~1.5, but is followed by a mild increase toward higher redshifts, which we further confirm with our highest redshift CO measurement in an L* galaxy at z=3.6. We provide the first fgas measure in z>1 SFGs at the low-Ms end 109.4

  10. Interstellar matter in early-type galaxies - Optical observations

    NASA Technical Reports Server (NTRS)

    Kim, Dong-Woo

    1989-01-01

    Results of optical observations of 26 bright elliptical galaxies selected on the basis of IRAS data are discussed. Optical broadband imaging (using B and R filters) and narrow-band imaging (using H-alpha interference filters) have been performed to study dust patches and ionized gas. Long-split spectroscopy has also been made to determine gas kinematics and relative line ratios. The spectroscopic data confirm the presence and distribution of interstellar matter (dust lanes and ionized gas) seen in the direct imaging. Decoupled kinematics of interstellar gas and stars favors an external origin of the interstellar matter. However, for one isolated galaxy, an internal origin is not excluded. The rotation curves determined by optical emission lines are symmetric around the center in most galaxies observed. Galaxy masses and mass-to-light ratios are estimated using the rotation curves of the ionized gas.

  11. The selective effect of environment on the atomic and molecular gas-to-dust ratio of nearby galaxies in the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Bekki, K.; Boselli, A.; Catinella, B.; Ciesla, L.; Hughes, T. M.; Baes, M.; Bendo, G. J.; Boquien, M.; de Looze, I.; Smith, M. W. L.; Spinoglio, L.; Viaene, S.

    2016-07-01

    We combine dust, atomic (H I) and molecular (H2) hydrogen mass measurements for 176 galaxies in the Herschel Reference Survey to investigate the effect of environment on the gas-to-dust mass (Mgas/Mdust) ratio of nearby galaxies. We find that, at fixed stellar mass, the average Mgas/Mdust ratio varies by no more than a factor of ˜2 when moving from field to cluster galaxies, with Virgo galaxies being slightly more dust rich (per unit of gas) than isolated systems. Remarkably, once the molecular and atomic hydrogen phases are investigated separately, we find that H I-deficient galaxies have at the same time lower M_{H I}/M_dust ratio but higher M_H2/M_dust ratio than H I-normal systems. In other words, they are poorer in atomic but richer in molecular hydrogen if normalized to their dust content. By comparing our findings with the predictions of theoretical models, we show that the opposite behaviour observed in the M_{H I}/M_dust and M_H2/M_dust ratios is fully consistent with outside-in stripping of the interstellar medium (ISM), and is simply a consequence of the different distribution of dust, H I and H2 across the disc. Our results demonstrate that the small environmental variations in the total Mgas/Mdust ratio, as well as in the gas-phase metallicity, do not automatically imply that environmental mechanisms are not able to affect the dust and metal content of the ISM in galaxies.

  12. A GENERALIZED POWER-LAW DIAGNOSTIC FOR INFRARED GALAXIES AT z > 1: ACTIVE GALACTIC NUCLEI AND HOT INTERSTELLAR DUST

    SciTech Connect

    Caputi, K. I.

    2013-05-10

    I present a generalized power-law (PL) diagnostic which allows one to identify the presence of active galactic nuclei (AGNs) in infrared (IR) galaxies at z > 1, down to flux densities at which the extragalactic IR background is mostly resolved. I derive this diagnostic from the analysis of 174 galaxies with S{sub {nu}}(24 {mu}m)>80 {mu}Jy and spectroscopic redshifts z{sub spec} > 1 in the Chandra Deep Field South, for which I study the rest-frame UV/optical/near-IR spectral energy distributions (SEDs), after subtracting a hot-dust, PL component with three possible spectral indices {alpha} = 1.3, 2.0, and 3.0. I obtain that 35% of these 24 {mu}m sources are power-law composite galaxies (PLCGs), which I define as those galaxies for which the SED fitting with stellar templates, without any previous PL subtraction, can be rejected with >2{sigma} confidence. Subtracting the PL component from the PLCG SEDs produces stellar mass correction factors <1.5 in >80% of cases. The PLCG incidence is especially high (47%) at 1.0 < z < 1.5. To unveil which PLCGs host AGNs, I conduct a combined analysis of 4 Ms X-ray data, galaxy morphologies, and a graybody modeling of the hot dust. I find that (1) 77% of all the X-ray AGNs in my 24 {mu}m sample at 1.0 < z < 1.5 are recognized by the PLCG criterion; (2) PLCGs with {alpha} = 1.3 or 2.0 have regular morphologies and T{sub dust} {approx}> 1000 K, indicating nuclear activity. Instead, PLCGs with {alpha} = 3.0 are characterized by disturbed galaxy dynamics, and a hot interstellar medium can explain their dust temperatures T{sub dust} {approx} 700-800 K. Overall, my results indicate that the fraction of AGNs among 24 {mu}m sources is between {approx}30% and 52% at 1.0 < z < 1.5.

  13. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre

  14. WFPC2 Imaging of Dust Structures and Star Formation in the Disk-Halo Interface of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Savage, Blair

    1999-07-01

    WFPC2 images of five edge-on spirals to study star formation and dusty interstellar clouds in the disk-halo interface of these galaxies. Ground-based and HST images of the nearby {9 Mpc} edge-on spiral NGC 891 show an unexpected web of hundreds of dust structures at heights 0.4 <= z <= 1.7 kpc {Howk & Savage 1997}. With masses >10^5-10^6 M{sun}, the more prominent extraplanar dust complexes may be sites of star formation at high-z, and there is evidence for H II regions associated with unresolved continuum sources far above the plane of NGC 891. We have established that such high-z dust features and H II regions are not unique to NGC 891. We propose to image five edge-on spiral galaxies {D 17 - 70 Mpc} with the WFPC2. The proposed BVI images will be used to identify sites of on- going star formation in the thick disks of these galaxies, all of which show evidence for high-z dust complexes, and with ground-based H Alpha images will be used to study the stellar content o f any such regions. The resolution and point-source sensitivity of the WFPC2 are crucial for studying these star-forming regions. We will also use these images to study interstellar matter in the thick disks of these galaxies with unprecedented detail and derive the fundamental properties of high-z dusty clouds-including sizes, extinctions, column densities, masses, and gravitational potential energies.

  15. SIMULTANEOUS MODELING OF THE STELLAR AND DUST EMISSION IN DISTANT GALAXIES: IMPLICATIONS FOR STAR FORMATION RATE MEASUREMENTS

    SciTech Connect

    Utomo, Dyas; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Conroy, Charlie

    2014-03-10

    We have used near-ultraviolet (NUV) to mid-infrared (MIR) composite spectral energy distributions (SEDs) to simultaneously model the attenuated stellar and dust emission of 0.5 ≲ z ≲ 2.0 galaxies. These composite SEDs were previously constructed from the photometric catalogs of the NEWFIRM Medium-Band Survey by stacking the observed photometry of galaxies that have similar rest-frame NUV-to-NIR SEDs. In this work, we include a stacked MIPS 24 μm measurement for each SED type to extend the SEDs to rest-frame MIR wavelengths. Consistent with previous studies, the observed MIR emission for most SED types is higher than expected from only the attenuated stellar emission. We fit the NUV-to-MIR composite SEDs with the Flexible Stellar Population Synthesis (FSPS) models, which include both stellar and dust emission. We compare the best-fit star formation rates (SFRs) to the SFRs based on simple UV+IR estimators. Interestingly, the UV and IR luminosities overestimate SFRs—compared to the model SFRs—by more than ∼1 dex for quiescent galaxies, while for the highest star-forming galaxies in our sample the two SFRs are broadly consistent. The difference in specific SFRs also shows a gradually increasing trend with declining specific SFR, implying that quiescent galaxies have even lower specific SFRs than previously found. Contributions from evolved stellar populations to both the UV and the MIR SEDs most likely explain the discrepancy. Based on this work, we conclude that SFRs should be determined from modeling the attenuated stellar and dust emission simultaneously, instead of employing simple UV+IR-based SFR estimators.

  16. The nature of the red disc-like galaxies at high redshift: dust attenuation and intrinsically red stellar populations

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Maraston, C.; Gordon, K. D.; Witt, A. N.

    2005-10-01

    We investigate which conditions of dust attenuation and stellar populations allow models of dusty, continuously star-forming, bulge-less disc galaxies at 0.8 <~z<~ 3.2 to meet the different colour selection criteria of high-z`red' galaxies (e.g. RC-K > 5.3, IC-K > 4, J-K > 2.3). As a main novelty, we use stellar population models that include the thermally pulsating asymptotic giant branch (TP-AGB) phase of stellar evolution. The star formation rate of the models declines exponentially as a function of time, the e-folding time being longer than 3 Gyr. In addition, we use calculations of radiative transfer of the stellar and scattered radiation through different dusty interstellar media in order to explore the wide parameter space of dust attenuation. We find that synthetic discs can exhibit red optical/near-infrared colours because of reddening by dust, but only if they have been forming stars for at least ~1 Gyr. Extremely few models barely exhibit RC-K > 5.3, if the inclination i= 90° and if the opacity 2 ×τV>~ 6. Hence, RC-K-selected galaxies at 1 <~z<~ 2 most probably are either systems with an old, passively evolving bulge or starbursts. Synthetic discs at 1 <~z<~ 2 exhibit 4 < IC-K < 4.8, if they are seen edge on (i.e. at i~ 90°) and if 2 ×τV>~ 0.5. This explains the large fraction of observed, edge-on disc-like galaxies with Ks < 19.5 and F814W-Ks>~ 4. Finally, models with 2 <~z<~ 3.2 exhibit 2.3 < J-K < 3, with no bias towards i~ 90° and for a large range in opacity (e.g. 2 ×τV > 1 for i~ 70°). In conclusion, red disc-like galaxies at 0.8 <~z<~ 3.2 may not necessarily be dustier than nearby disc galaxies (with 0.5 <~ 2 ×τV<~ 2) and/or much older than ~1 Gyr. This result is due both to a realistic description of dust attenuation and to the emission contribution by TP-AGB stars, with ages of 0.2 to 1-2 Gyr and intrinsically red colours.

  17. CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES-A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY

    SciTech Connect

    Eales, Stephen; Smith, Matthew W. L.; Auld, Robbie; Davies, Jon; Gear, Walter; Gomez, Haley; Baes, Maarten; De Looze, Ilse; Gentile, Gianfranco; Fritz, Jacopo; Bendo, George J.; Bianchi, Simone; Boselli, Alessandro; Ciesla, Laure; Clements, David; Cooray, Asantha; Cortese, Luca; Galametz, Maud; Hughes, Tom; Madden, Suzanne [Laboratoire AIM, CEA and others

    2012-12-20

    The standard method for estimating the mass of the interstellar medium (ISM) in a galaxy is to use the 21 cm line to trace the atomic gas and the CO 1-0 line to trace the molecular gas. In this paper, we investigate the alternative technique of using the continuum dust emission to estimate the mass of gas in all phases of the ISM. Using Herschel observations of 10 galaxies from the Herschel Reference Survey and the Herschel Virgo Cluster Survey, we show that the emission detected by Herschel is mostly from dust that has a temperature and emissivity index similar to that of dust in the local ISM in our galaxy, with the temperature generally increasing toward the center of each galaxy. We calibrate the dust method using the CO and 21 cm observations to provide an independent estimate of the mass of hydrogen in each galaxy, solving the problem of the uncertain ''X-factor'' for the CO observations by minimizing the dispersion in the ratio of the masses estimated using the two methods. With the calibration for the dust method and the estimate of the X-factor produced in this way, the dispersion in the ratio of the two gas masses is 25%. The calibration we obtain for the dust method is similar to those obtained from Herschel observations of M31 and from Planck observations of the Milky Way. We discuss the practical problems in using this method.

  18. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  19. Galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  20. K'-band observations of the evil eye galaxy: Are the optical and near-infrared dust albedos identical?

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Lindell, Rebecca S.; Block, David L.; Evans, Rhodri

    1994-01-01

    New measurements of the reduction of the V-band surface brightness across the prominent dust feature in the galaxy NGC 4826 are compared with corresponding increases in the V-K' color within the context of radiative transfer models invoking both absorption and scattering. The K'-band surface brightness is found to be higher than expected from standard dust models. We interpret the difference as resulting from a high effective dust albedo at K', with a likely value in excess of 0.8, provided the near-IR extinction curve in NGC 4826 is identical to the Galactic one. The high effective albedo may result from scattering by dust with a maximum grain size at least twice as large as assumed by standard models, a conclusion already indirectly hinted at by recent studies of dust star-forming regions and reflection nebulae. At least part of the high effective albedo at K' may result from near-IR nonequilibrium continuum emission attributable to very small grains.

  1. QUANTIFYING THE HEATING SOURCES FOR MID-INFRARED DUST EMISSIONS IN GALAXIES: THE CASE OF M 81

    SciTech Connect

    Lu, N.; Zhao, Y.; Bendo, G. J.; Boselli, A.; Baes, M.; De Looze, I.; Wu, H.; Lam, M. I.; Madden, S. C.; Rémy-Ruyer, A.; Wilson, C. D.; Galametz, M.; Cooray, A.; Spinoglio, L.

    2014-12-20

    With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I {sub 8} or I {sub 24}, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I {sub 8} and I {sub 24} being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I {sub 500}, that of the cold dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) I {sub Hα}, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.

  2. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    SciTech Connect

    Perley, D. A.; Levan, A. J.; Tanvir, N. R.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N.; Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B.; Fruchter, A.; Kalirai, J.; Jakobsson, P.; Prochaska, J. X.

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  3. The cosmic origins of carbon and the evolution of dust, gas and the CNO elements in galaxies

    NASA Astrophysics Data System (ADS)

    Stock, David J.

    2011-04-01

    Carbon, along with nitrogen and oxygen, is produced by stars of differing mass and metallicity throughout the evolutionary history of galaxies. The production of oxygen and nitrogen is believed to be dominated by stars of high and low mass respectively, while the origin of carbon is less settled, as it can be produced by both low and high mass stars. An observational approach to determining whether low or high mass stars dominate carbon production is desirable, via studies of the nebulae that such stars produce during their advanced evolutionary stages. However, ionized carbon does not have forbidden emission lines in the optical range, making optical carbon abundance measurements reliant on the use of carbon recombination lines or neutral carbon forbidden lines. Carbonaceous dust is inferred to exist in many nebulae, though the amount of carbon in such dust can be difficult to determine. This thesis presents observations and numerical modelling results aimed at tracing the origins of carbon in galaxies. The contribution of individual stars is probed, focusing first on nebulae around massive Wolf-Rayet (WR) stars, particularly those with C-rich WC stars. The properties of the population of Galactic and LMC circumstellar nebulae around WR stars are examined, followed by a spectroscopic investigation of abundances in nebulae around both WN and WC stars. Carbon production rates by low and intermediate mass stars are inferred from published carbon abundance measurements for planetary nebulae. The second approach used to trace the origin and evolution of carbon is through numerical modelling of the chemical histories of galaxies. Using various formulations for the inputs of C, N and O by low and high mass stars, models are constructed which trace the overall abundances of these elements over the history of a galaxy, from their birth to the present day. By tuning the input data for stellar elemental yields to best match observed abundance patterns, the mass and

  4. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    SciTech Connect

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R.; Buat, V.; Charmandaris, V.; Magdis, G.; Ivison, R. J.; Borgne, D. Le; Lin, L.; Morrison, G. E.; and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  5. Ionized gas characteristics in the cavities of the gas and dust disc of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Afanasiev, V. L.; Egorov, O. V.

    2011-07-01

    The parameters of the ionized gas in NGC 6946 (in the [NII] λλ6548, 6583, H α and [SII] λλ6717, 6731 lines) are investigated with the SAO RAS BTA telescope along three positions of the long slit of the SCORPIO focal reducer, passing through a number of large and small cavities of the gaseous disc of the galaxy. These cavities correspond exactly to the cavities in warm dust, visible at 5 - 8µm. We found that everywhere in the direction of NGC 6946 the lines of ionized gas are decomposed into two Gaussians, one of which shows almost constant [SII]/H α and [NII]/H α ratios, as well as an almost constant radial velocity within the measurement errors (about -35… - 50 km/s). This component is in fact the foreground radiation from the diffuse ionized gas of our Galaxy, which is not surprising, given the low (12°) latitude of NGC 6946; a similar component is also present in the emission of neutral hydrogen. The analysis of the component of ionized gas, occurring inNGC 6946, has revealed that it shows signs of shock excitation in the cavities of the gaseous disc of the galaxy. This shock excitation is as well typical for the extraplanar diffuse ionized gas (EDIG), observed in a number of spiral galaxies at their high Z-coordinates. This can most likely be explained by low density of the gas in the NGC 6946 disc (with the usual photoionization) inside the cavities, due to what we see the spectral features of the EDIG gas of NGC 6946, projected onto them, and located outside the plane of the galaxy. In the absence of separation of ionized gas into two components by radial velocities, there is an increasing contribution to the integral line parameters by the EDIG of our Galaxy when the gas density in NGC 6946 decreases, which explains some strange results, obtained in the previous studies. Themorphology of warmdust, visible in the infrared range and HI is almost the same (except for the peripheral parts of the galaxy, where there are no sources of dust heating

  6. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  7. The 60-μm extragalactic background radiation intensity, dust-enshrouded active galactic nuclei and the assembly of groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.; Phillips, T. G.

    2002-06-01

    Submillimetre- (submm-) wave observations have revealed a cosmologically significant population of high-redshift dust-enshrouded galaxies. The form of evolution inferred for this population can be reconciled easily with COBE FIRAS and DIRBE measurements of the cosmic background radiation (CBR) intensity at wavelengths longer than ~100μm. At shorter wavelengths, however, the 60-μm CBR intensity reported by Finkbeiner, Davis & Schlegel is less easily accounted for. Lagache et al. have proposed that this excess CBR emission is a warm Galactic component, and the detection of the highest-energy γ-rays from blazars limits the CBR intensity at these wavelengths, but here we investigate possible sources of this excess CBR emission, assuming that it has a genuine extragalactic origin. We propose and test three explanations, each involving additional populations of luminous, evolving galaxies not readily detected in existing submm-wave surveys. First, an additional population of dust-enshrouded galaxies with hot dust temperatures, perhaps dust-enshrouded, Compton-thick active galactic nuclei (AGN) as suggested by recent deep Chandra surveys. Secondly, a population of dusty galaxies with temperatures more typical of the existing submm-selected galaxies, but at relatively low redshifts. These could plausibly be associated with the assembly of groups and clusters of galaxies. Thirdly, a population of low-luminosity, cool, quiescent spiral galaxies. Hot AGN sources and the assembly of galaxy groups can account for the excess 60-μm background. There are significant problems with the cluster assembly scenario, in which too many bright 60-μm IRAS sources are predicted. Spiral galaxies have the wrong spectral energy distributions to account for the excess. Future wide-field far-infrared (IR) surveys at wavelengths of 70 and 250μm using the SIRTF and Herschel space missions will sample representative volumes of the distant Universe, allowing any hot population of dusty AGNs and

  8. LACK OF INTERACTION BETWEEN THE DUST GRAINS AND THE ANOMALOUS RADIO JET IN THE NEARBY SPIRAL GALAXY NGC 4258

    SciTech Connect

    Laine, Seppo; Krause, Marita; Tabatabaei, Fatemeh S.; Siopis, Christos E-mail: mkrause@mpifr-bonn.mpg.d E-mail: christos.siopis@ulb.ac.b

    2010-10-15

    We obtained Spitzer/IRAC 3.6-8 {mu}m images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis, we also included high-resolution radio continuum, H{alpha}, CO, and X-ray data. Our data reveal that the 8 {mu}m emission, believed to originate largely from polycyclic aromatic hydrocarbon molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 {mu}m and radio continuum emissions along the jet in two independent ways, namely, (1) from wavelet-transformed maps of the original images at different spatial scales and (2) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.

  9. Dust in an Extremely Metal-Poor Galaxy: Mid-infrared Observations ofSBS 0335-052

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh X.; Sauvage, Marc; Madden, Suzanne

    1999-05-01

    The metal-deficient (Z=Zsolar/41) blue compact dwarf galaxy SBS 0335-052 was observed with ISOCAM between 5 and 17 μm. With an L12μm/LB ratio of 2.15, the galaxy is unexpectedly bright in the mid-infrared for such a low-metallicity object. The mid-infrared spectrum shows no sign of the unidentified infrared bands, which we interpret as an effect of the destruction of their carriers by the very high UV energy density in SBS 0335-052. The spectral energy distribution (SED) is dominated by a very strong continuum, which makes the ionic lines of [S IV] and [Ne III] very weak. From 5 to 17 μm, the SED can be fitted with a graybody spectrum, modified by an extinction law similar to that observed toward the Galactic center, with an optical depth of AV~19-21 mag. Such a large optical depth implies that a large fraction (as much as ~75%) of the current star formation activity in SBS 0335-052 is hidden by dust with a mass between 3×103 and 5×105 Msolar. Silicate grains that are present as silicate extinction bands at 9.7 and 18 μm can account for the unusual shape of the MIR spectrum of SBS 0335-052. It is remarkable that such a nearly primordial environment contains as much dust as galaxies that are 10 times more metal-rich. If the hidden star formation in SBS 0335-052 is typical of young galaxies at high redshifts, then the cosmic star formation rate derived from UV/optical fluxes would be underestimated. Based on data obtained with ISO, an ESA project with instruments funded by the ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) with the participation of ISAS and NASA.

  10. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    NASA Astrophysics Data System (ADS)

    Duah Asabere, B.; Horellou, C.; Jarrett, T. H.; Winkler, H.

    2016-07-01

    Context. Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. Aims: In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 μm and Spitzer mid-infrared spectra. Methods: By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.̋6 to 5.̋5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 μm images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 μm images to estimate the stellar continuum contribution to the emission in the 12 and 22 μm bands. Results: The two galaxies differ markedly in their mid-IR properties. The 3.4 μm brightness distribution can be well represented by the superposition of two Sérsic models in NGC 1316 and by a Sérsic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 μm luminosity, we infer a star-formation rate of ~0.7 M⊙ yr-1 in NGC 1316 and ~7 M⊙ yr-1 in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 μm PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1'-2' of the galaxies. In NGC 1316, the extra-nuclear emission coincides with two dusty regions NW and SE of the nucleus seen in extinction in optical images and where molecular gas is known to reside

  11. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  12. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    SciTech Connect

    Xie, Yanxia; Hao, Lei; Li, Aigen

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  13. Simultaneously modelling far-infrared dust emission and its relation to CO emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Roman-Duval, Julia; Hony, Sacha; Cormier, Diane; Klessen, Ralf S.; Konstandin, Lukas K.; Loredo, Thomas; Pellegrini, Eric W.; Ruppert, David

    2016-07-01

    We present a method to simultaneously model the dust far-infrared (FIR) spectral energy distribution (SED) and the total infrared - carbon monoxide (CO) integrated intensity (SIR-ICO) relationship. The modelling employs a hierarchical Bayesian (HB) technique to estimate the dust surface density, temperature (Teff), and spectral index at each pixel from the observed FIR maps. Additionally, given the corresponding CO map, the method simultaneously estimates the slope and intercept between the FIR and CO intensities, which are global properties of the observed source. The model accounts for correlated and uncorrelated uncertainties, such as those present in Herschel observations. Using synthetic data sets, we demonstrate the accuracy of the HB method, and contrast the results with common non-hierarchical fitting methods. As an initial application, we model the dust and gas on 100 pc scales in the Magellanic Clouds from Herschel FIR and NANTEN CO observations. The slopes of the logSIR-logICO relationship are similar in both galaxies, falling in the range 1.1-1.7. However, in the Small Magellanic Cloud the intercept is nearly three times higher, which can be explained by its lower metallicity than the Large Magellanic Cloud (LMC), resulting in a larger SIR per unit ICO. The HB modelling evidences an increase in Teff in regions with the highest ICO in the LMC. This may be due to enhanced dust heating in the densest molecular regions from young stars. Such simultaneous dust and gas modelling may reveal variations in the properties of the interstellar medium and its association with other galactic characteristics, such as star formation rates and/or metallicities.

  14. The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Vignali, C.; Bianchi, S.; Zappacosta, L.; Fritz, J.; Lanzuisi, G.; Miniutti, G.; Bongiorno, A.; Feruglio, C.; Fiore, F.; Maiolino, R.

    2015-02-01

    We present the first X-ray spectrum of a hot dust-obscured galaxy (DOG), namely W1835+4355 at z ~ 2.3. Hot DOGs represent a very rare population of hyperluminous (≥1047 erg s-1), dust-enshrouded objects at z ≥ 2 recently discovered in the WISE All Sky Survey. The 40 ks XMM-Newton spectrum reveals a continuum as flat (Γ ~ 0.8) as typically seen in heavily obscured AGN. This, along with the presence of strong Fe Kα emission, clearly suggests a reflection-dominated spectrum due to Compton-thick absorption. In this scenario, the observed luminosity of L2-10~ 2 × 1044 erg s-1 is a fraction (<10%) of the intrinsic one, which is estimated to be ≳ 5 × 1045 erg s-1 by using several proxies. The Herschel data allow us to constrain the SED up to the sub-mm band, providing a reliable estimate of the quasar contribution (~75%) to the IR luminosity as well as the amount of star formation (~2100 M⊙ yr-1). Our results thus provide additional pieces of evidence that associate Hot DOGs with an exceptionally dusty phase during which luminous quasars and massive galaxies co-evolve and a very efficient and powerful AGN-driven feedback mechanism is predicted by models.

  15. UV to IR Luminosities and Dust Attenuation Determined from ~4000 K-selected Galaxies at 1 < z < 3 in the ZFOURGE Survey

    NASA Astrophysics Data System (ADS)

    Forrest, Ben; Tran, Kim-Vy H.; Tomczak, Adam R.; Broussard, Adam; Labbé, Ivo; Papovich, Casey; Kriek, Mariska; Allen, Rebecca J.; Cowley, Michael; Dickinson, Mark; Glazebrook, Karl; van Houdt, Josha; Inami, Hanae; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel; McCarthy, Patrick J.; Monson, Andrew; Morrison, Glenn; Nanayakkara, Themiya; Persson, S. Eric; Quadri, Ryan F.; Spitler, Lee R.; Straatman, Caroline; Tilvi, Vithal

    2016-02-01

    We build a set of composite galaxy spectral energy distributions (SEDs) by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ˜4000 Ks-band selected galaxies, we define 38 composite galaxy SEDs that yield continuous low-resolution spectra (R ˜ 45) over the rest-frame range 0.1-4 μm. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope (β) in the IRX-β dust relation at 1 < z < 3. Blue star-forming composite SEDs show IRX and β values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U - V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Midsummer's Dream Galaxies

    NASA Astrophysics Data System (ADS)

    2005-08-01

    -years away in the constellation Coma Berenices (Berenice's Hair). It displays a bright yellowish central bulge that juts out above most impressive dust lanes. Because it is relatively close (it is only 12 times farther away than Messier 31, the Andromeda galaxy, which is the major galaxy closest to us) and relatively large (roughly one third larger than the Milky Way), it does not fit entirely into the field of view of the FORS instrument (about 7 x 7 arcmin2). Many background galaxies are also visible in this FORS image, giving full meaning to their nickname of "island universes". Messier 83 If our Milky Way were to resemble this one, we certainly would be proud of our home! The beautiful spiral galaxy Messier 83 [4] is located in the southern constellation Hydra (the Water Snake) and is also known as NGC 5236 and as the Southern Pinwheel galaxy. Its distance is about 15 million light-years. Being about twice as small as the Milky Way, its size on the sky is 11x10 arcmin2. The image show clumpy, well-defined spiral arms that are rich in young stars, while the disc reveals a complex system of intricate dust lanes. This galaxy is known to be a site of vigorous star formation.

  17. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  18. HERSCHEL DETECTION OF DUST EMISSION FROM UV-LUMINOUS STAR-FORMING GALAXIES AT 3.3 {approx}< z {approx}< 4.3

    SciTech Connect

    Lee, Kyoung-Soo; Alberts, Stacey; Pope, Alexandra; Atlee, David; Dey, Arjun; Jannuzi, Buell T.; Reddy, Naveen; Brown, Michael J. I.

    2012-10-20

    We report the Herschel/SPIRE detection of dust emission arising from UV-luminous (L {approx}> L*) star-forming galaxies at 3.3 {approx}< z {approx}< 4.3. Our sample of 1913 Lyman break galaxy (LBG) candidates is selected over an area of 5.3 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. This is one of the largest samples of UV-luminous galaxies at this epoch and enables an investigation of the bright end of the galaxy luminosity function. We divide our sample into three luminosity bins and stack the Herschel/SPIRE data to measure the average spectral energy distribution (SED) of LBGs at far-infrared (FIR) wavelengths. We find that these galaxies have average IR luminosities of (3-5) Multiplication-Sign 10{sup 11} L{sub Sun} and 60%-70% of their star formation obscured by dust. The FIR SEDs peak at {lambda}{sub rest} {approx}> 100 {mu}m suggesting dust temperatures (T{sub d} = 27-30 K) significantly colder than that of local galaxies of comparable IR luminosities. The observed IR-to-UV luminosity ratio (IRX {identical_to} L{sub IR}/L{sub UV}) is low ( Almost-Equal-To 3-4) compared with that observed for z Almost-Equal-To 2 LBGs (IRX{sub z{approx}2} Almost-Equal-To 7.1 {+-} 1.1). The correlation between the slope of the UV continuum and IRX for galaxies in the two lower luminosity bins suggests dust properties similar to those of local starburst galaxies. However, the galaxies in the highest luminosity bin appear to deviate from the local relation, suggesting that their dust properties may differ from those of their lower-luminosity and low-redshift counterparts. We speculate that the most UV-luminous galaxies at this epoch are being observed in a short-lived and young evolutionary phase.

  19. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  20. A Systematic Investigation of Cold Gas and Dust in "Normal" Star-Forming Galaxies and Starbursts at Redshifts 5-6

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Chris Luke; Capak, Peter L.; COSMOS, HerMES

    2016-01-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We present some of the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations of the cold gas and dust with the most powerful facilities, i.e., the Karl G. Jansky Very Large Array (VLA), the NOrthern Extended Millimeter Array (NOEMA) and the Atacama Large (sub-) Millimeter Array (ALMA). Facilitating the impressive sensitivity of ALMA, this investigation encompasses a systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in massive dusty starbursts and (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  1. Dust Obscuration and Metallicity at High Redshift: New Inferences from UV, Hα, and 8 μm Observations of z ~ 2 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Erb, Dawn K.; Pettini, Max; Steidel, Charles C.; Shapley, Alice E.

    2010-04-01

    We use a sample of 90 spectroscopically confirmed Lyman break galaxies with Hα measurements and Spitzer MIPS 24 μm observations to constrain the relationship between rest-frame 8 μm luminosity (L 8) and star formation rate (SFR) for L* galaxies at z ~ 2. We find a tight correlation with 0.24 dex scatter between L 8 and Hα luminosity/SFR for z ~ 2 galaxies with 1010 L sun <~ L IR <~ 1012 L sun. Employing this relationship with a larger sample of 392 galaxies with spectroscopic redshifts, we find that the UV slope β can be used to recover the dust attenuation of the vast majority of moderately luminous L* galaxies at z ~ 2 to within a 0.4 dex scatter using the local correlation. Separately, young galaxies with ages lsim100 Myr appear to be less dusty than their UV slopes would imply based on the local trend and may follow an extinction curve that is steeper than what is typically assumed. Consequently, very young galaxies at high redshift may be significantly less dusty than inferred previously. Our results provide the first direct evidence, independent of the UV slope, for a correlation between UV and bolometric luminosity (L bol) at high redshift, in the sense that UV-faint galaxies are on average less infrared and less bolometrically luminous than their UV-bright counterparts. The L bol-L UV relation indicates that as the SFR increases, L UV turns over (or "saturates") around the value of L* at z ~ 2, implying that dust obscuration may be largely responsible for modulating the bright end of the UV luminosity function. Finally, dust attenuation is found to correlate with oxygen abundance at z ~ 2. Accounting for systematic differences in local and high-redshift metallicity calibrations, we find that L* galaxies at z ~ 2, while at least an order of magnitude more bolometrically luminous, exhibit ratios of metals to dust that are similar to those of local starbursts. This result is expected if high-redshift galaxies are forming their stars in a less metal

  2. LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)

  3. Spatial Correlation between Dust and Hα Emission in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola; Salmon, Brett; Forrest, Ben

    2016-07-01

    Using a sample of dwarf irregular galaxies selected from the ALFALFA blind H i-survey and observed using the VIMOS IFU, we investigate the relationship between Hα emission and Balmer optical depth ({τ }{{b}}). We find a positive correlation between Hα luminosity surface density and Balmer optical depth in 8 of 11 at ≥0.8σ significance (6 of 11 at ≥1.0σ) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearman’s rank correlation coefficient to test for correlation between {{{Σ }}}{{H}α } and {τ }{{b}} in all the galaxies combined, we find ρ =0.39, indicating a positive correlation at 4σ significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of the galaxy hosting the emission line region. The positive correlation between Hα luminosity and Balmer optical depth within spaxels is consistent with the hypothesis that young star-forming regions are surrounded by dusty birth-clouds. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.

  4. Lane Keeping Support

    NASA Astrophysics Data System (ADS)

    Gayko, Jens

    Während längerer Fahrten auf autobahnähnlichen Straßen wird die Fahraufgabe des Spurhaltens von vielen Fahrern als lästig empfunden. Andererseits stellt das unbeabsichtigte Verlassen des Fahrstreifens eine häufge Unfallursache dar, wie bereits in Kapitel 34 beschrieben. Im Gegensatz zu der im vorigen Kapitel dargelegten Funktion des Lane Departure Warning (LDW) greift die hier beschriebene Spurhalteassistenz bzw. Lane Keeping Support (LKS) aktiv in das Lenksystem ein. Dadurch wird der Fahrer bei der Fahraufgabe des Spurhaltens unterstützt. Ziel dieser Funktion ist, je nach Auslegung, eine Erhöhung der Sicherheit, eine Erhöhung des Fahrkomforts oder eine Kombination beider Ziele. Ein wichtiges Merkmal der hier beschriebenen Systeme ist die Art der Assistenz, die über Warnungen hinausgeht, jedoch keine den Fahrer ersetzende Assistenz darstellt. Die motorische Ausführung der Lenkung des Fahrzeugs erfolgt somit durch den Fahrer und das LKS-System zugleich. Das Einsatzgebiet der heute verfügbaren Systeme erstreckt sich über autobahnähnliche Straßen in mittleren bis hohen Geschwindigkeiten und sichtbaren Markierungen der Fahrstreifen.

  5. ALMA Observation of 158 μm [C II] Line and Dust Continuum of a z = 7 Normally Star-forming Galaxy in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Walter, Fabian; Ohta, Kouji; Hatsukade, Bunyo; Carilli, Chris L.; da Cunha, Elisabete; González-López, Jorge; Decarli, Roberto; Hodge, Jacqueline A.; Nagai, Hiroshi; Egami, Eiichi; Jiang, Linhua; Iye, Masanori; Kashikawa, Nobunari; Riechers, Dominik A.; Bertoldi, Frank; Cox, Pierre; Neri, Roberto; Weiss, Axel

    2014-09-01

    We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σline = 240 μJy beam-1 (40 km s-1 channel) and σcont = 21 μJy beam-1, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum) suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M dust < 6.4 × 107 M ⊙, FIR luminosity L FIR < 3.7 × 1010 L ⊙ (42.5-122.5 μm), total IR luminosity L IR < 5.7 × 1010 L ⊙ (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M ⊙ yr-1, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L [C II] < 3.4 × 107 L ⊙. Locations of IOK-1 and previously observed LAEs on the L [C II] versus SFR and L [C II]/L FIR versus L FIR diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies. Based in part on data collected with the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc

  6. GOODS-Herschel: Star Formation, Dust Attenuation, and the FIR-radio Correlation on the Main Sequence of Star-forming Galaxies up to z ≃4

    NASA Astrophysics Data System (ADS)

    Pannella, M.; Elbaz, D.; Daddi, E.; Dickinson, M.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Buat, V.; Charmandaris, V.; Cibinel, A.; Juneau, S.; Ivison, R. J.; Le Borgne, D.; Le Floc'h, E.; Leiton, R.; Lin, L.; Magdis, G.; Morrison, G. E.; Mullaney, J.; Onodera, M.; Renzini, A.; Salim, S.; Sargent, M. T.; Scott, D.; Shu, X.; Wang, T.

    2015-07-01

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate-M* correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5-4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts. Based on observations collected at the Herschel, Spitzer, Keck, NRAO-VLA, Subaru, KPNO, and CFHT observatories. Herschel is an European Space Agency Cornerstone Mission with science instruments provided by European-led Principal Investigator consortia and

  7. ALMA observation of 158 μm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization

    SciTech Connect

    Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete; González-López, Jorge; Decarli, Roberto; Hodge, Jacqueline A.; Ohta, Kouji; Hatsukade, Bunyo; Nagai, Hiroshi; Iye, Masanori; Kashikawa, Nobunari; Carilli, Chris L.; Egami, Eiichi; Jiang, Linhua; Riechers, Dominik A.; Bertoldi, Frank; Cox, Pierre; Neri, Roberto; Weiss, Axel

    2014-09-01

    We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum) suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.

  8. COMPARING ULTRAVIOLET- AND INFRARED-SELECTED STARBURST GALAXIES IN DUST OBSCURATION AND LUMINOSITY

    SciTech Connect

    Sargsyan, Lusine A.; Weedman, Daniel W.; Houck, James R. E-mail: dweedman@isc.astro.cornell.ed

    2010-06-01

    We present samples of starburst galaxies that represent the extremes discovered with infrared and ultraviolet observations, including 25 Markarian galaxies, 23 ultraviolet-luminous galaxies discovered with GALEX, and the 50 starburst galaxies having the largest infrared/ultraviolet ratios. These sources have z < 0.5 and cover a luminosity range of {approx}10{sup 4}. Comparisons between infrared luminosities determined with the 7.7 {mu}m polycyclic aromatic hydrocarbon feature and ultraviolet luminosities from the stellar continuum at 153 nm are used to determine obscuration in starbursts and dependence of this obscuration on infrared or ultraviolet luminosity. A strong selection effect arises for the ultraviolet-selected samples: the brightest sources appear bright because they have the least obscuration. Obscuration correction for the ultraviolet-selected Markarian+GALEX sample has the form log[UV(intrinsic)/UV(observed)] = 0.07({+-}0.04)M(UV) + 2.09 {+-} 0.69 but for the full infrared-selected Spitzer sample is log[UV(intrinsic)/UV(observed)] = 0.17({+-}0.02)M(UV) + 4.55 {+-} 0.4. The relation of total bolometric luminosity L {sub ir} to M(UV) is also determined for infrared-selected and ultraviolet-selected samples. For ultraviolet-selected galaxies, log L {sub ir} = -(0.33 {+-} 0.04)M(UV) + 4.52 {+-} 0.69. For the full infrared-selected sample, log L {sub ir} = -(0.23 {+-} 0.02)M(UV) + 6.99 {+-} 0.41, all for L {sub ir} in L{sub sun} and M(UV) the AB magnitude at rest frame 153 nm. These results imply that obscuration corrections by factors of 2-3 determined from reddening of the ultraviolet continuum for Lyman break galaxies with z>2 are insufficient, and should be at least a factor of 10 for M(UV) {approx} -17, with decreasing correction for more luminous sources.

  9. Sombrero Galaxy (M104) in Infrared Light

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  10. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    SciTech Connect

    Melbourne, J.; Matthews, K.; Soifer, B. T. E-mail: bts@submm.caltech.edu

    2009-06-15

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f {sub {nu}}(24 {mu}m)/f {sub {nu}}(R) {approx}> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z {approx} 2 {+-} 0.5. Extreme mid-IR luminosities (L {sub IR} > 10{sup 12-14}) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of {approx}1 kpc, circumstantial evidence for ongoing mergers.

  11. Bright [C ii] and Dust Emission in Three z > 6.6 Quasar Host Galaxies Observed by ALMA

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Zschaechner, Laura; Decarli, Roberto; De Rosa, Gisella; Findlay, Joseph R.; McMahon, Richard G.; Sutherland, Will J.

    2016-01-01

    We present ALMA detections of the [C ii] 158 μm emission line and the underlying far-infrared (FIR) continuum of three quasars at 6.6 < z < 6.9 selected from the VIKING survey. The [C ii] line fluxes range between 1.6 and 3.4 Jy km s-1 ([C ii] luminosities ˜(1.9-3.9) × 109 L⊙). We measure continuum flux densities of 0.56-3.29 mJy around 158 μm (rest frame), with implied FIR luminosities of (0.6-7.5) × 1012 L⊙ and dust masses Md = (0.7-24) × 108 M⊙. In one quasar we derive a dust temperature of {30}-9+12 K from the continuum slope, below the canonical value of 47 K. Assuming that the [C ii] and continuum emission are powered by star formation, we find star formation rates from 100 to 1600 M⊙ yr-1 based on local scaling relations. The L[C ii]/LFIR ratios in the quasar hosts span a wide range from (0.3-4.6) × 10-3, including one quasar with a ratio that is consistent with local star-forming galaxies. We find that the strength of the L[C ii] and 158 μm continuum emission in z ≳ 6 quasar hosts correlates with the quasar’s bolometric luminosity. In one quasar, the [C ii] line is significantly redshifted by ˜1700 km s-1 with respect to the Mg ii broad emission line. Comparing to values in the literature, we find that, on average, the Mg ii is blueshifted by 480 km s-1 (with a standard deviation of 630 km s-1) with respect to the host galaxy redshift, i.e., one of our quasars is an extreme outlier. Through modeling we can rule out a flat rotation curve for our brightest [C ii] emitter. Finally, we find that the ratio of black hole mass to host galaxy (dynamical) mass is higher by a factor of 3-4 (with significant scatter) than local relations.

  12. How Dead are Dead Galaxies? Mid-infrared Fluxes of Quiescent Galaxies at Redshift 0.3 < z < 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn; van Dokkum, Pieter; Brammer, Gabriel; da Cunha, Elisabete; Förster Schreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; Rix, Hans-Walter; Wake, David; Whitaker, Katherine E.; Lundgren, Britt; Marchesini, Danilo; Maseda, Michael; Momcheva, Ivelina; Nelson, Erica; Pacifici, Camilla; Skelton, Rosalind E.

    2014-11-01

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ~ 10-12 yr-1). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ~ 10-11.9 × (1 + z)4 yr-1. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  13. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; Rix, Hans-Walter; Wake, David; Whitaker, Katherine E.; Lundgren, Britt; Marchesini, Danilo; Maseda, Michael; Momcheva, Ivelina; Nelson, Erica; Pacifici, Camilla; Skelton, Rosalind E.

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  14. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    SciTech Connect

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn; Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael; Schreiber, Natascha M. Förster; Kriek, Mariska; Quadri, Ryan; Wake, David; Lundgren, Britt; Whitaker, Katherine E.; Marchesini, Danilo; Pacifici, Camilla; Skelton, Rosalind E.

    2014-11-20

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  15. THE WYOMING SURVEY FOR H{alpha}. III. A MULTI-WAVELENGTH LOOK AT ATTENUATION BY DUST IN GALAXIES OUT TO z {approx} 0.4

    SciTech Connect

    Moore, Carolynn A.; Dale, Daniel A.; Barlow, Rebecca J.; Cohen, Seth A.; Cook, David O.; Johnson, L. C.; Kattner, ShiAnne M.; Staudaher, Shawn M.; Lee, Janice C.

    2010-07-15

    We report results from the Wyoming Survey for H{alpha} (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the universe. We have supplemented the H{alpha} data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic Survey and ultraviolet data from the Galaxy Evolution Explorer Deep Imaging Survey. This data set provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently developed robust star formation rate (SFR) indicator, [Ha{sub obs}+24{mu}m]/Ha{sub obs}. With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z {approx} 0.16, 0.24, 0.32, and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher SFRs. Hence, an epoch-to-epoch comparison at a fixed SFR suggests a mild decrease in dust attenuation with redshift.

  16. The Spectral Energy Distribution of Dust Emission in the Edge-on Spiral Galaxy NGC 4631 as Seen with Spitzer and the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Dale, Daniel A.; Draine, Bruce T.; Engelbracht, Charles W.; Kennicutt, Robert C., Jr.; Calzetti, Daniela; Gordon, Karl D.; Helou, George; Hollenbach, David; Li, Aigen; Murphy, Eric J.; Prescott, Moire K. M.; Smith, John-David T.

    2006-11-01

    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission.

  17. HERschel Observations of Edge-on Spirals (HEROES). I. Far-infrared morphology and dust mass determination

    NASA Astrophysics Data System (ADS)

    Verstappen, J.; Fritz, J.; Baes, M.; Smith, M. W. L.; Allaert, F.; Bianchi, S.; Blommaert, J. A. D. L.; De Geyter, G.; De Looze, I.; Gentile, G.; Gordon, K. D.; Holwerda, B. W.; Viaene, S.; Xilouris, E. M.

    2013-08-01

    Context. Edge-on spiral galaxies with prominent dust lanes provide us with an excellent opportunity to study the distribution and properties of the dust within them. The HEROES project was set up to observe a sample of seven large edge-on galaxies across various wavelengths for this investigation. Aims: Within this first paper, we present the Herschel observations and perform a qualitative and quantitative analysis on them, and we derive some global properties of the far infrared and submillimetre emission. Methods: We determine horizontal and vertical profiles from the Herschel observations of the galaxies in the sample and describe the morphology. Modified black-body fits to the global fluxes, measured using aperture photometry, result in dust temperatures and dust masses. The latter values are compared to those that are derived from radiative transfer models taken from the literature. Results: On the whole, our Herschel flux measurements agree well with archival values. We find that the exponential horizontal dust distribution model often used in the literature generally provides a good description of the observed horizontal profiles. Three out of the seven galaxies show signatures of extended vertical emission at 100 and 160 μm at the 5σ level, but in two of these it is probably due to deviations from an exactly edge-on orientation. Only for NGC 4013, a galaxy in which vertically extended dust has already been detected in optical images, we can detect vertically extended dust, and the derived scaleheight agrees with the value estimated through radiative transfer modelling. Our analysis hints at a correlation between the dust scaleheight and its degree of clumpiness, which we infer from the difference between the dust masses as calculated from modelling of optical data and from fitting the spectral energy distribution of Herschel datapoints. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia

  18. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  19. Mid-infrared Properties of Luminous Infrared Galaxies. II. Probing the Dust and Gas Physics of the GOALS Sample

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Armus, L.; Charmandaris, V.; Diaz-Santos, T.; Marshall, J.; Evans, A. S.; Haan, S.; Howell, J.; Iwasawa, K.; Kim, D. C.; Murphy, E. J.; Rich, J. A.; Spoon, H. W. W.; Inami, H.; Petric, A. O.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ9.7 μm, τice, neon line ratios, and PAH feature ratios). However, as their EQW6.2 μm decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L IR/L 8 μm) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ~6% of the sample but only in the most obscure sources (s 9.7 μm < -1.24). Ice absorption features are observed in ~11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H2)/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H2)/L(PAH) ratio with increasing L(H2). While star formation appears to be the

  20. The Spectral Energy Distributions and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey

    2012-05-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙ 1013 L ⊙. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR(8-1000 μm)/νL ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  1. Galaxy M82

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A colorful image showing violent star formation triggered when two galaxies bumped into each other has been captured by NASA's Hubble Space Telescope.

    In the image, the starburst galaxy M82 has a disturbed appearance caused by violent activity after an ancient encounter with its large galactic neighbor, M81. The image, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is online at http://www.jpl.nasa.gov/pictures/wfpc .

    The huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- appear as white dots sprinkled throughout the galaxy's central area. The dark area just above center is a huge dust cloud.

    A collaboration of European and American scientists used these clusters to date the interaction between M82 and M81 to about 600 million years ago, when a region called M82 B (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have found that this ancient starburst was triggered by the encounter with M81. The results are published in the February 2001 issue of the Astronomical Journal.

    This discovery provides evidence linking the birth of super star clusters to violent interaction between galaxies. These clusters also provide insight into the rough-and-tumble universe of long ago, when galaxies bumped into each other more frequently.

    M82 is located 12 million light-years from Earth in the constellation Ursa Major. The picture was taken Sept. 15, 1997. The natural-color composite was constructed from three exposures taken with blue, green and red filters.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope

  2. Global dust attenuation in disc galaxies: strong variation with specific star formation and stellar mass, and the importance of sample selection

    NASA Astrophysics Data System (ADS)

    Devour, Brian M.; Bell, Eric F.

    2016-06-01

    We study the relative dust attenuation-inclination relation in 78 721 nearby galaxies using the axis ratio dependence of optical-near-IR colour, as measured by the Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared Survey Explorer. In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star-forming main sequence varies from ˜0.55 mag up to ˜1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at M3.4 μm ≈ -21.5, corresponding to M* ≈ 3 × 1010 M⊙. This behaviour stands seemingly in contrast to some older studies; we show that older works failed to reliably probe to higher luminosities, and were insensitive to the decrease in attenuation with increasing luminosity for the brightest star-forming discs. Back-of-the-envelope scaling relations predict the strong variation of dust optical depth with specific star formation rate and stellar mass. More in-depth comparisons using the scaling relations to model the relative attenuation require the inclusion of star-dust geometry to reproduce the details of these variations (especially at high luminosities), highlighting the importance of these geometrical effects.

  3. GETTING TO THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269

  4. a Snapshot Survey of X-Ray Selected Central Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Edge, Alastair

    1999-07-01

    Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.

  5. Probing the Peak Epoch of Cosmic Star Formation (1Galaxies Behind the Lensing Clusters: UV Luminosity Function and the Dust Attenuation

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian D.; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Stark, Daniel; Teplitz, Harry I.

    2016-01-01

    Obtaining a complete census of cosmic star formation requires an understanding of faint star-forming galaxies that are far below the detection limits of current surveys. To search for the faint galaxies, we use the power of strong gravitational lensing from foreground galaxy clusters to boost the detection limits of HST to much fainter luminosities. Using the WFC3/UVIS on board the HST, we obtain deep UV images of 4 lensing clusters with existing deep optical and near-infrared data (three from Frontier Fields survey). Building multiband photometric catalogs and applying a photometric redshift selection, we uncover a large population of dwarf galaxies (-18.5galaxies keeps increasing steeply toward very faint magnitudes (MUV=-12.5). As an important implication of a steep faint-end slope LF, we show that the faint galaxies (-18.550%) at these redshifts. We use this unique sample to investigate further the various properties of dwarf galaxies as it is claimed to deviate from the trends seen for the more massive galaxies. Recent hydro-dynamical simulations and observations of local dwarfs show that these galaxies have episodic bursts of star formation on short time scales (< 10 Myr). We find that the bursty star formation histories (SFHs) cause a large intrinsic scatter in UV colors (β) at MUV > -16, comparing a sample of low mass galaxies from simulations with bursty SFHs with our comprehensive measurements of the observed β values. As this scatter can also be due to the dust extinction, we distinguish these two effects by measuring the dust attenuation using Balmer decrement (Hα/Hβ) ratios from our MOSFIRE/Keck spectroscopy.

  6. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    SciTech Connect

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto; Richard, Johan; Stark, Daniel P.; Robertson, Brant; Scarlata, Claudia; Teplitz, Harry I.; Rafelski, Marc; Kewley, Lisa

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  7. Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Strauss, Michael A.; Aoki, Kentaro; Goto, Tomotsugu; Imanishi, Masatoshi; Kawaguchi, Toshihiro; Terashima, Yuichi; Ueda, Yoshihiro; Bosch, James; Bundy, Kevin; Doi, Yoshiyuki; Inami, Hanae; Komiyama, Yutaka; Lupton, Robert H.; Matsuhara, Hideo; Matsuoka, Yoshiki; Miyazaki, Satoshi; Morokuma, Tomoki; Nakata, Fumiaki; Oi, Nagisa; Onoue, Masafusa; Oyabu, Shinki; Price, Paul; Tait, Philip J.; Takata, Tadafumi; Tanaka, Manobu M.; Terai, Tsuyoshi; Turner, Edwin L.; Uchida, Tomohisa; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Wang, Shiang-Yu

    2015-10-01

    We present the photometric properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we discovered 48 DOGs with i - Ks > 1.2 and i - [22] > 7.0, where i, Ks, and [22] represent AB magnitude in the i-band, Ks-band, and 22 μm, respectively, in the GAMA 14 hr field (˜ 9 deg2). Among these objects, 31 (˜ 65%) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show an NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma z = 1.99 ± 0.45, we calculated their total IR luminosity using an empirical relation between 22 μm luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ± 1.1) × 1013 L⊙, which classifies them as hyper-luminous infrared galaxies. We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μm flux greater than 3.0 mJy and with i-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log φ = -6.59 ± 0.11 [Mpc-3]. The IR LF for DOGs including data obtained from the literature is fitted well by a double-power law. The derived lower limit for the IR LD for our sample is ρIR ˜ 3.8 × 107 [L⊙ Mpc-3] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies, and that of all DOGs are > 3%, > 9%, and > 15%, respectively.

  8. ISM Masses and the Star formation Law at Z = 1 to 6: ALMA Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey Field

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Sheth, K.; Aussel, H.; Vanden Bout, P.; Capak, P.; Bongiorno, A.; Casey, C. M.; Murchikova, L.; Koda, J.; Álvarez-Márquez, J.; Lee, N.; Laigle, C.; McCracken, H. J.; Ilbert, O.; Pope, A.; Sanders, D.; Chu, J.; Toft, S.; Ivison, R. J.; Manohar, S.

    2016-04-01

    ALMA Cycle 2 observations of long-wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of the star-forming interstellar medium (ISM). We also develop a physical basis and empirical calibration (with 72 low-z and z ∼ 2 galaxies) for using the dust continuum as a quantitative probe of ISM masses. The galaxies with the highest star formation rates (SFRs) at < z> = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50%–80%, i.e., gas masses 1-4× their stellar masses. We find a single high-z star formation law: {SFR}=35 {M}{mol}0.89× {(1+z)}z=20.95× {({sSFR})}{MS}0.23 {M}ȯ yr‑1—an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the main sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS; thus, these “starbursts” are largely the result of having greatly increased gas masses rather than an increased efficiency of converting gas to stars. At z > 1, the entire population of star-forming galaxies has ∼2–5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe—most likely dynamically driven by compressive, high-dispersion gas motions—a natural consequence of the high gas accretion rates.

  9. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A new technique using near-infrared images, obtained with ESO's 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its "last meal" in unprecedented detail - a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A. Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust. Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy - the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars. First glimpses of the "leftovers" of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA's Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies. The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO's La Silla Observatory

  10. Unveiling the Composite Nature of Dust-Obscured Galaxies (DOGs) with Herschel

    NASA Astrophysics Data System (ADS)

    Riguccini, Laurie A.; Le Floc'h, Emeric; Mullaney, James

    2015-08-01

    DOGs are bright 24um-selected sources with extreme obscuration at optical wavelengths. Some of them are characterized by a rising power-law continuum of hot dust (T_D ~ 200-1000 K) in the near-IR emission indicating that their mid-IR luminosity is dominated by an AGN. Whereas DOGs with a fainter 24um flux display a stellar bump and their mid-IR luminosity is believed to be mainly powered by dusty star-formation. Another explanation is that the mid-IR emission still comes from AGN activity but the torus emission is so obscured that it becomes negligible with respect to the emission from the host component.In an effort to characterize the nature of the physical processes underlying their IR emission, we focus on DOGs (F24/FR>982) within the COSMOS field with Herschel data and derive their far-IR properties (e.g., total IR luminosities; mid-to-far IR colors; dust temperatures and masses and AGN contribution) based on SED fitting.Of particular interest are the 24um-bright DOGs (F24>1mJy). They present bluer far-IR/mid-IR colors than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000um flux increases as a function of the rest-frame 8um-luminosity irrespective of the redshift, with a stronger contribution at lower redshift. This confirms that faint DOGs (F24<1mJy) are dominated by star-formation while brighter DOGs show a larger contribution from an AGN.Is this FIR-selection technique allowing us to probe a new population of obscured AGN? Or does it corresponds to already known AGN in the X-rays, NIR or radio? The wealth of multi wavelength data in COSMOS will allow us to describe our results here.

  11. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  12. THE BLACK HOLE MASSES AND STAR FORMATION RATES OF z>1 DUST OBSCURED GALAXIES: RESULTS FROM KECK OSIRIS INTEGRAL FIELD SPECTROSCOPY

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Matthews, K. E-mail: bts@ipac.caltech.edu

    2011-04-15

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z {approx} 1.5 ultra-luminous infrared galaxies that exhibit broad H{alpha} emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0.''1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions-possibly powered by star formation-from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(H{alpha}) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) x 10{sup 8} M{sub sun} and star formation rates <100 M{sub sun} yr{sup -1}. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  13. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    NASA Astrophysics Data System (ADS)

    Grossi, M.; Corbelli, E.; Bizzocchi, L.; Giovanardi, C.; Bomans, D.; Coelho, B.; De Looze, I.; Gonçalves, T. S.; Hunt, L. K.; Leonardo, E.; Madden, S.; Menéndez-Delmestre, K.; Pappalardo, C.; Riguccini, L.

    2016-05-01

    We present 12CO(1-0) and 12CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log (O / H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 μm emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses ≲ 109 M⊙, contrary to the atomic hydrogen fraction, MHI/M∗, which increases inversely with M∗. The flattening of the MH2/M∗ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both Hi-deficient and Hi-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, τdep, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between Hi deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity. Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany

  14. New emerging results on molecular gas, stars, and dust at z~2, as revealed by low star formation rate and low stellar mass star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Schaerer, Daniel; Combes, Francoise; Egami, Eiichi; Swinbank, Mark; Richard, Johan; Sklias, Panos; Rawle, Tim D.

    2015-08-01

    The large surveys of main sequence star-forming galaxies (SFGs) at z~2, made at near-IR and mm wavelengths, have revolutionized our picture of galaxies at this critical epoch, where the cosmic star formation rate (SFR) density is at its peak and the stellar mass (Ms) assembly is rapid. They reveal that ~70% of SFGs are young, rotation dominated disk-like systems, yet dynamically hotter and geometrically thicker than local spirals, with larger molecular gas fractions (fgas).It is time to refine this modern picture of z~2 galaxies by extending the current studies toward the more numerous and typical SFGs, characterized by SFRdust properties in 8 such sub-SFR*, lensed SFGs at z=1.5-3.6, achieved thanks to gravitational lensing and IRAM/PdBI, Herschel, Spitzer, and HST multi-wavelength data. They extend the dynamical range in SFR and Ms of our compilation of CO-detected SFGs at z>1 from the literature, and allow us to revisit and propose new correlations between IR and CO luminosities, molecular gas, stellar and dust masses, specific SFR, molecular gas depletion timescales (tdepl), fgas, dust-to-gas ratios, and redshift, to be directly compared with galaxy evolution models.We find an increase of tdepl with Ms, as now revealed by low-Ms SFGs at z>1 and also observed at z=0, which contrasts with the acknowledged constant tdepl in "bathtub" models and refutes the linearity of the Kennicutt-Schmidt relation. A steady increase of fgas with redshift is predicted by cosmological models and is observed from z~0 to z~1.5, but is followed by a mild increase toward higher redshifts, which we further confirm with our highest redshift CO measurement in an SFR* galaxy at z=3.6. We provide the first fgas measure in z>1 SFGs at the low-Ms end 109.4

  15. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  16. New emerging results on molecular gas, stars, and dust at z ~ 2, as revealed by low star formation rate and low stellar mass star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Zamojski, Michel; Schaerer, Daniel; Combes, Françoise; Egami, Eiichi; Sklias, Panos; Swinbank, Mark A.; Richard, Johan; Rawle, Tim

    Recent CO surveys of star-forming galaxies (SFGs) at z ~ 2 have revolutionized our picture of massive galaxies. It is time to expand these studies toward the more common z ~ 2 SFGs with SFR < 40 M ⊙ yr-1 and M * < 2.5 × 1010 M⊙. We have derived molecular gas, stars, and dust in 8 such lensed SFGs. They extend the L IR-L'CO(1-0) distribution of massive z>1 SFGs and increase the spread of the SFG star formation efficiency (SFE). A single star formation relation is found when combining all existing CO-detected galaxies. Our low-M * SFGs also reveal a SFE decrease with M * as found locally. A rise of the molecular gas fraction (f gas) with redshift is observed up to z ~ 1.6, but it severely flattens toward higher redshifts. We provide the first insight into the f gas upturn at the low-M * end 109.4 < M */M⊙ < 1010 reaching f gas ~ 0.7, it is followed by a f gas decrease toward higher M *. Finally, we find a non-universal dust-to-gas ratio among local and high-redshift SFGs and starbursts with near-solar metallicities.

  17. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ≈1 billion years after the big bang

    SciTech Connect

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Yan, Lin; Scoville, Nicholas Z.; Smolčić, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR) surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  18. Warrants for left-turn lanes

    SciTech Connect

    Agent, K.R.

    1983-01-01

    Most states use accident, traffic-volume, or delay data as guidelines for installing left-turn lanes. Computer simulation of these data compares statistics of intersections with left-turn lanes to those without. The study found that special lanes always lead to improvement in traffic flow, but noted that all intersections cannot accommodate a special lane. The recommendations specify the accident rate, critical-volume determination, and the rate of traffice conflicts which warrant a separate left-turn lane. 10 references, 6 figures, 4 tables. (DCK)

  19. The Interacting Galaxy Pair KPG 390: Hα Kinematics

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-04-01

    In this work, we present scanning Fabry-Perot (FP) Hα observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA FP interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with disk+halo components. We test three different types of halos (pseudo-isothermal, Hernquist, and Navarro-Frenk-White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by the pseudo-isothermal profile is about 10 times smaller than that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lane distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.

  20. THE INTERACTING GALAXY PAIR KPG 390: H{alpha} KINEMATICS

    SciTech Connect

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-04-15

    In this work, we present scanning Fabry-Perot (FP) H{alpha} observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA FP interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with disk+halo components. We test three different types of halos (pseudo-isothermal, Hernquist, and Navarro-Frenk-White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by the pseudo-isothermal profile is about 10 times smaller than that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lane distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.

  1. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  2. Correlation of the radio continuum intensity with the FIR luminosity and its implication for dust heating sources and physical processes in galaxies

    NASA Astrophysics Data System (ADS)

    Völk, Heinrich J.; Xu, Cong

    1994-03-01

    The tight correlation between the far-infrared (FIR) luminosities and the radio continuum intensities of late-type galaxies can be shown to be not only a mass-scaling (or ``richness'') effect. It rather depends on intrinsic properties like star-formation rate per unit mass, connecting différent physical processes in a galaxy. While the FIR emission is thermal radiation of dust grains heated by stellar UV and optical light, the radio continuum consists of thermal Bremsstrahlung, and nonthermal synchrotron radiation from relativistic electrons. The dominance of the so-called cool component of the total FIR radiation can be understood by the absorption of non-ionizing UV emission from intermediate massive stars (5-20 M.) which also contribute dominantly to the galaxian supernova rates. The relativistic electrons are therefore generated as a consequence of supernova explosions whose dynamical influence on galaxian gas motions (``turbulence'') in turn affects the generation of the magnetic fields in which the synchrotron emission occurs. Most galaxian disks are optically thick for their own UV emission, ionizing and non-ionizing. Similarly, energetic electrons lose most of their energy by Inverse Compton and synchrotron losses in galaxian disks and their halos. Therefore the independence of morphology, size, color, etc. of the FIR/radio correlation is basically explained by a ``calorimeter theory''. However a residual ``radio-quiet'' FIR emission due to dust-absorbed optical emission from old, low-mass stars appears necessary to explain the non-linearity of the correlation. The abnormal FIR-to-radio ratios of clustered galaxies are interpreted by an active interaction between these galaxies and presumably existing dense intracluster fragments.

  3. An intensely star-forming galaxy at z ∼ 7 with low dust and metal content revealed by deep ALMA and HST observations

    SciTech Connect

    Ouchi, Masami; Ono, Yoshiaki; Momose, Rieko; Ellis, Richard; Nakanishi, Kouichiro; Kohno, Kotaro; Tamura, Yoichi; Kurono, Yasutaka; Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Shimasaku, Kazuhiro; Iono, Daisuke

    2013-12-01

    We report deep ALMA observations complemented by associated Hubble Space Telescope (HST) imaging for a luminous (m {sub UV} = 25) galaxy, 'Himiko', at a redshift of z = 6.595. The galaxy is remarkable for its high star formation rate, 100 M {sub ☉} yr{sup –1}, which has been securely estimated from our deep HST and Spitzer photometry, and the absence of any evidence for strong active galactic nucleus activity or gravitational lensing magnification. Our ALMA observations probe an order of magnitude deeper than previous IRAM observations, yet fail to detect a 1.2 mm dust continuum, indicating a flux of <52 μJy, which is comparable to or weaker than that of local dwarf irregulars with much lower star formation rates. We likewise provide a strong upper limit for the flux of [C II] 158 μm, L{sub [C} {sub II]}<5.4×10{sup 7} L{sub ⊙}, which is a diagnostic of the hot interstellar gas that is often described as a valuable probe for early galaxies. In fact, our observations indicate that Himiko lies off the local L{sub [C} {sub II]}-star formation rate scaling relation by a factor of more than 30. Both aspects of our ALMA observations suggest that Himiko is a unique object with a very low dust content and perhaps nearly primordial interstellar gas. Our HST images provide unique insight into the morphology of this remarkable source, highlighting an extremely blue core of activity and two less extreme associated clumps. Himiko is undergoing a triple major merger event whose extensive ionized nebula of Lyα emitting gas, discovered in our earlier work with Subaru, is powered by star formation and the dense circumgalactic gas. We are likely witnessing an early massive galaxy during a key period of its mass assembly close to the end of the reionization era.

  4. Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor.

    PubMed

    Hoang, Toan Minh; Hong, Hyung Gil; Vokhidov, Husan; Park, Kang Ryoung

    2016-01-01

    With the increasing need for road lane detection used in lane departure warning systems and autonomous vehicles, many studies have been conducted to turn road lane detection into a virtual assistant to improve driving safety and reduce car accidents. Most of the previous research approaches detect the central line of a road lane and not the accurate left and right boundaries of the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the safety of vehicles driven by human drivers. To overcome these problems, we propose a method for road lane detection that distinguishes between dashed and solid lanes. Experimental results with the Caltech open database showed that our method outperforms conventional methods. PMID:27548176

  5. Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor.

    PubMed

    Hoang, Toan Minh; Hong, Hyung Gil; Vokhidov, Husan; Park, Kang Ryoung

    2016-08-18

    With the increasing need for road lane detection used in lane departure warning systems and autonomous vehicles, many studies have been conducted to turn road lane detection into a virtual assistant to improve driving safety and reduce car accidents. Most of the previous research approaches detect the central line of a road lane and not the accurate left and right boundaries of the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the safety of vehicles driven by human drivers. To overcome these problems, we propose a method for road lane detection that distinguishes between dashed and solid lanes. Experimental results with the Caltech open database showed that our method outperforms conventional methods.

  6. Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor

    PubMed Central

    Hoang, Toan Minh; Hong, Hyung Gil; Vokhidov, Husan; Park, Kang Ryoung

    2016-01-01

    With the increasing need for road lane detection used in lane departure warning systems and autonomous vehicles, many studies have been conducted to turn road lane detection into a virtual assistant to improve driving safety and reduce car accidents. Most of the previous research approaches detect the central line of a road lane and not the accurate left and right boundaries of the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the safety of vehicles driven by human drivers. To overcome these problems, we propose a method for road lane detection that distinguishes between dashed and solid lanes. Experimental results with the Caltech open database showed that our method outperforms conventional methods. PMID:27548176

  7. Hubble Reveals Sombrero Galaxy (M104)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In the 19th century, astronomer V. M. Slipher first discovered a hat-like object that appeared to be rushing away from us at 700 miles per second. This enormous velocity offered some of the earliest clues that it was really another galaxy, and that the universe was expanding in all directions. The trained razor sharp eye of the Hubble Space Telescope (HST) easily resolves this Sombrero galaxy, Messier 104 (M104). The galaxy is 50,000 light-years across and is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. At a relatively bright magnitude of +8, M104 is just beyond the limit of naked-eye visibility and is easily seen through small telescopes. This rich system of globular clusters are estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. The ages of the clusters are similar to the clusters in the Milky Way, ranging from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. X-ray emission suggests that there is material falling into the compact core, where a 1-billion-solar-mass black hole resides. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  8. Intergalactic Dust

    NASA Astrophysics Data System (ADS)

    Li, A.

    2002-12-01

    We study the composition and sizes of intergalactic dust based on the expulsion of interstellar dust from the galactic disk. Interstellar grains in the Galactic disk are modelled as a mixture of amorphous silicate dust and carbonaceous dust consisting of polycyclic aromatic hydrocarbon (PAH) molecules and larger graphitic grains (Li & Draine 2001) with size distributions like those of the Milky Way dust (Weingartner & Draine 2001). We model their dynamic evolution in terms of the collective effects caused by (1) radiative acceleration, (2) gravitational attraction, (3) gas drag, (4) thermal sputtering, and (5) Lorenz force from the galactic magnetic field (Ferrara et al. 1991). Radiation pressure from the stellar disk exerts an upward force on dust grains and may ultimately expel them out of the entire galaxy. Gravitational force from the stellar, dust and gas disk as well as the dark matter halo exerts a downward force. Thermal sputtering erodes all grains to some degree but more efficiently destroys small grains. This, together with the fact that (1) very small grains (with small radiation pressure efficiencies) are not well coupled to starlight; (2) for large grains the radiative force to the gravitational force is approximately inversely proportional to grain size, acts as a size ``filter'' for dust leaking into the intergalactic space. Since the radiation pressure efficiency and the grain destruction rate are sensitive to dust composition, the relative importance of carbon dust compared to silicate dust expelled into the intergalactic space differs from that in the galactic plane. We derive the size distributions of both silicate and carbonaceous dust finally getting into the intergalactic space and obtain an intergalactic extinction curve. The predicted intergalactic infrared emission spectrum is calculated. References: Ferrara, A., Ferrini, F., Franco, J., & Barsella, B. 1991, ApJ, 381, 137 Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Weingartner, J

  9. Shipping lanes or offshore rigs

    SciTech Connect

    Not Available

    1980-09-01

    This information was from the Los Angeles Steamship Association (LASSA) luncheon meeting. The problems of limiting access and availability of the Santa Barbara/Santa Catalina channels to commercial vessel traffic and other related uses. LASSA speaks for about 85% of the maritime industry in Southern California. The Association is actively seeking a compromise with the oil companies in keeping the Vessel Traffic Separation Scheme (VTSS) in the channels; however, the Western Oil and Gas Association (WOGA) is seeking to abolish VTSS as currently established in the channels and move the sea lanes outside the Channel Islands, and open up the entire Santa Barbara Channel to unlimited drilling sites. LASSA claims that moving the VTSS sea lanes outside of the Channel Islands would add 18 to 22 miles to the average trip from San Francisco to Los Angeles, with fuel cost etc. would make for a big loss to the merchant ship operators. LASSA has offered to support the concept of opening up the Buffer Zone that separates the Sea Lanes themselves to exploratory drilling. This two mile wide stretch of water is off limits to vessels and it would open new areas to the oil companies heretofore unaccessible to them. (DP)

  10. FORMATION OF DENSE MOLECULAR GAS AND STARS AT THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 7552

    SciTech Connect

    Pan, Hsi-An; Lim, Jeremy; Matsushita, Satoki; Wong, Tony; Ryder, Stuart

    2013-05-01

    We present millimeter molecular line complemented by optical observations, along with a reanalysis of archival centimeter H I and continuum data, to infer the global dynamics and determine where dense molecular gas and massive stars preferentially form in the circumnuclear starburst ring of the barred-spiral galaxy NGC 7552. We find diffuse molecular gas in a pair of dust lanes each running along the large-scale galactic bar, as well as in the circumnuclear starburst ring. We do not detect dense molecular gas in the dust lanes, but find such gas concentrated in two knots where the dust lanes make contact with the circumnuclear starburst ring. When convolved to the same angular resolution as the images in dense gas, the radio continuum emission of the circumnuclear starburst ring also exhibits two knots, each lying downstream of an adjacent knot in dense gas. The results agree qualitatively with the idea that massive stars form from dense gas at the contact points, where diffuse gas is channeled into the ring along the dust lanes, and later explode as supernovae downstream of the contact points. Based on the inferred rotation curve, however, the propagation time between the respective pairs of dense gas and centimeter continuum knots is about an order of magnitude shorter than the lifetimes of OB stars. We discuss possible reasons for this discrepancy, and conclude that either the initial mass function is top-heavy or massive stars in the ring do not form exclusively at the contact points where dense molecular gas is concentrated.

  11. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ˜ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (˜1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  12. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  13. Star Formation Laws in Both Galactic Massive Clumps and External Galaxies: Extensive Study with Dust Coninuum, HCN (4-3), and CS (7-6)

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Kim, Kee-Tae; Yoo, Hyunju; Liu, Sheng-yuan; Tatematsu, Ken'ichi; Qin, Sheng-Li; Zhang, Qizhou; Wu, Yuefang; Wang, Ke; Goldsmith, Paul F.; Juvela, Mika; Lee, Jeong-Eun; Tóth, L. Viktor; Mardones, Diego; Garay, Guido; Bronfman, Leonardo; Cunningham, Maria R.; Li, Di; Lo, Nadia; Ristorcelli, Isabelle; Schnee, Scott

    2016-10-01

    We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment 10 m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z > 1) star forming galaxies (SFGs), indicating a constant gas depletion time of ˜100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L TIR) and molecular line luminosities ({L}{mol}\\prime ) of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with L TIR ˜ 103 L ⊙. These correlations become linear when extended to external galaxies. A bimodal behavior in the L TIR-{L}{mol}\\prime correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and σ line/σ vir. Such bimodal behavior may be due to evolutionary effects. The slopes of L TIR-L‧mol correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in Wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with L TIR larger than L TIR ˜ 104.5 L ⊙. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both M clump-L‧mol and L TIR-L‧mol relations.

  14. The Kiloparsec-scale Star Formation Law at Redshift 4: Widespread, Highly Efficient Star Formation in the Dust-obscured Starburst Galaxy GN20

    NASA Astrophysics Data System (ADS)

    Hodge, J. A.; Riechers, D.; Decarli, R.; Walter, F.; Carilli, C. L.; Daddi, E.; Dannerbauer, H.

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (~2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M ⊙ yr-1 kpc-2) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc2. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of ΣSFR ~ Σ _H_2^2.1+/- 1.0, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ~kiloparsec scales in a galaxy 12 Gyr ago. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  15. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    SciTech Connect

    Hopkins, Philip F.

    2014-12-10

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10{sup 4} M {sub ☉}), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10{sup 4} in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  16. FIRST DETECTION OF ULTRAVIOLET EMISSION FROM A DETACHED DUST SHELL: GALAXY EVOLUTION EXPLORER OBSERVATIONS OF THE CARBON ASYMPTOTIC GIANT BRANCH STAR U Hya

    SciTech Connect

    Sanchez, Enmanuel; Montez, Rodolfo Jr.; Stassun, Keivan G.; Ramstedt, Sofia

    2015-01-10

    We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ∼110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ∼10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H{sub 2} molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

  17. Color distributions in E-S0 galaxies. I. Frequency and importance of dust patterns for various brands of E classified galaxies

    NASA Astrophysics Data System (ADS)

    Michard, R.

    1998-06-01

    From the consideration of a sample of color distributions in 67 E classified objects of the Local Supercluster, it is found that local dust features are much more frequent and important in disky E's than boxy E's. The subclass of undeterminate objects, those which cannot be assigned to the diE or boE groups, is intermediate. Subsets of objects of common properties are considered from the point of view of local dust features occurrence: giant boxy E's; minor boxy E's with rotational support; compact dwarfs; SB0-like E's. It is noted that the detection of dust features is more than twice less frequent in Virgo cluster ellipticals than in the full sample, but the significance of this result is not clear. Based on observations collected at the Canada-France-Hawaii Telescope and at the Observatoire du Pic du Midi

  18. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  19. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    SciTech Connect

    Dominguez, A.; Siana, B.; Masters, D.; Henry, A. L.; Martin, C. L.; Scarlata, C.; Bedregal, A. G.; Malkan, M.; Ross, N. R.; Atek, H.; Colbert, J. W.; Teplitz, H. I.; Rafelski, M.; McCarthy, P.; Hathi, N. P.; Dressler, A.; Bunker, A.

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  20. Abell 262 and RXJ0341: Two Brightest Cluster Galaxies with Line Emission Blanketing a Cool Core

    NASA Astrophysics Data System (ADS)

    Edwards, Louise O. V.; Heng, Renita

    2014-08-01

    Over the last decade, integral field (IFU) analysis of the brightest cluster galaxies (BCGs) in several cool core clusters has revealed the central regions of these massive old red galaxies to be far from dead. Bright line emission alongside extended X-ray emission links nearby galaxies, is superposed upon vast dust lanes and extends out in long thin filaments from the galaxy core. Yet, to date no unifying picture has come into focus, and the activity across systems is currently seen as a grab-bag of possibile emission line mechanisms. Our primary goal is to work toward a consistent picture for why the BCGs seem are undergoing a renewed level of activity. One problem is most of the current data remains focused on mapping the very core of the BCG, but neglects surrounding galaxies. We propose to discover the full extent of line emission in a complementary pair of BCGs. In Abell 262, an extensive dust patch screens large portions of an otherwise smooth central galaxy, whereas RXJ0341 appears to be a double-core dust free BCG. We will map the full extent of the line emission in order to deduce whether the line emission is a product of local interactions, or the large-scale cluster X-ray gas. The narrow band filter set and large FOV afforded by the the Mayall MOSAIC-1 (MOSA) imager allows us to concurrently conduct an emission line survey of both clusters, locating all line emitting members and beginning a search for the effect of the environment of the different regions (outskirts vs. cluster core) out to the virial radius. We will combine our results with publically available data from 2MASS to determine the upper limits on specific star formation in the BCG and other cluster galaxies within the cluster virial radius.

  1. Centaurus A - The nearest active galaxy

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Price, R. M.

    1983-11-01

    Observed features of the active galaxy Centaurus A are described, and attention is given to the physical processes responsible for the two detected radio lobes. Data have been taken in visible, X ray, and radio wavelengths. Most of the radiation emitted has originated from the loss of energy by electrons through thermal processes in the interstellar gas, synchrotron radiation, and by randomly polarized atomic emission. Cen A displays features of both elliptical and spiral galaxies, with a dust lane in the middle of the ellipse holding hot, newly formed blue stars. Spectroscopic studies of the emission lines of hot gas in Cen A indicate that the source of excited gas is in the center of the galaxy. The radio region has a 2,700,000 light year extent, with a plasma jet directed from the center into the north radio lobe. X ray maps of Cen A suggest a black hole with a mass of a billion suns is the source of the jet. Electrons in the beam could be accelerated by shock waves, turbulence, or collisions with protons.

  2. Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Eisenhardt, P. R. M.; Stern, D.; Tsai, C.-W.; Wu, J.; Wylezalek, D.; Blain, A. W.; Bridge, C. R.; Donoso, E.; Gonzales, A.; Griffith, R. L.; Jarrett, T. H.

    2015-05-01

    The Wide-field Infrared Survey Explorer mission has unveiled a rare population of high-redshift (z = 1-4.6), dusty, hyper-luminous galaxies, with infrared luminosities {{L}IR}\\gt {{10}13} {{L}⊙ }, and sometimes exceeding {{10}14} {{L}⊙ }. Previous work has shown that their dust temperatures and overall far-infrared spectral energy distributions (SEDs) are significantly hotter than expected to be powered by star formation. We present here an analysis of the rest-frame optical through mid-infrared SEDs for a large sample of these so-called “hot, dust-obscured galaxies” (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured active galactic nuclei (AGNs) that dominates the rest-frame emission at λ \\gt 1 μ m and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as 1011-1012 M⊙, the AGN emission, with a range of luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit, at a level at least 10 times more efficiently than z ˜ 2 QSOs. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This may be at odds with the trend suggested at lower luminosities for the fraction of obscured AGNs to decrease with increasing luminosity. That trend may, instead, reverse at higher luminosities. Alternatively, Hot DOGs may not be the torus-obscured counterparts of the known optically selected, largely unobscured, hyper-luminous QSOs, and may represent a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and statistically show that these objects are in regions as dense as

  3. Lane Detection on the iPhone

    NASA Astrophysics Data System (ADS)

    Ren, Feixiang; Huang, Jinsheng; Terauchi, Mutsuhiro; Jiang, Ruyi; Klette, Reinhard

    A robust and efficient lane detection system is an essential component of Lane Departure Warning Systems, which are commonly used in many vision-based Driver Assistance Systems (DAS) in intelligent transportation. Various computation platforms have been proposed in the past few years for the implementation of driver assistance systems (e.g., PC, laptop, integrated chips, PlayStation, and so on). In this paper, we propose a new platform for the implementation of lane detection, which is based on a mobile phone (the iPhone). Due to physical limitations of the iPhone w.r.t. memory and computing power, a simple and efficient lane detection algorithm using a Hough transform is developed and implemented on the iPhone, as existing algorithms developed based on the PC platform are not suitable for mobile phone devices (currently). Experiments of the lane detection algorithm are made both on PC and on iPhone.

  4. Multi-lane detection based on multiple vanishing points detection

    NASA Astrophysics Data System (ADS)

    Li, Chuanxiang; Nie, Yiming; Dai, Bin; Wu, Tao

    2015-03-01

    Lane detection plays a significant role in Advanced Driver Assistance Systems (ADAS) for intelligent vehicles. In this paper we present a multi-lane detection method based on multiple vanishing points detection. A new multi-lane model assumes that a single lane, which has two approximately parallel boundaries, may not parallel to others on road plane. Non-parallel lanes associate with different vanishing points. A biological plausibility model is used to detect multiple vanishing points and fit lane model. Experimental results show that the proposed method can detect both parallel lanes and non-parallel lanes.

  5. Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (sage). IV. Dust Properties in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Bernard, Jean-Philippe; Reach, William T.; Paradis, Deborah; Meixner, Margaret; Paladini, Roberta; Kawamura, Akiko; Onishi, Toshikazu; Vijh, Uma; Gordon, Karl; Indebetouw, Remy; Hora, Joseph L.; Whitney, Barbara; Blum, Robert; Meade, Marilyn; Babler, Brian; Churchwell, Ed B.; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl; Leitherer, Claus; Cohen, Martin; Boulanger, François; Frogel, Jay A.; Fukui, Yasuo; Gallagher, Jay; Gorjian, Varoujan; Harris, Jason; Kelly, Douglas; Latter, William B.; Madden, Suzanne; Markwick-Kemper, Ciska; Mizuno, Akira; Mizuno, Norikazu; Mould, Jeremy; Nota, Antonella; Oey, M. S.; Olsen, Knut; Panagia, Nino; Perez-Gonzalez, Pablo; Shibai, Hiroshi; Sato, Shuji; Smith, Linda; Staveley-Smith, Lister; Tielens, A. G. G. M.; Ueta, Toshiya; Van Dyk, Schuyler; Volk, Kevin; Werner, Michael; Zaritsky, Dennis

    2008-09-01

    The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding

  6. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    stripped from the top edge of the disc. So did NGC 134 have a striking encounter with another galaxy in the past? Or is some other galaxy out there exerting a gravitational pull on it? This is a riddle astronomers need to solve. The superb VLT image also shows that the galaxy has its fair share of ionised hydrogen regions (HII regions) lounging along its spiral arms. Seen in the image as red features, these are glowing clouds of hot gas in which stars are forming. The galaxy also shows prominent dark lanes of dust across the disc, obscuring part of the galaxy's starlight. Studying galaxies like NGC 134 is an excellent way to learn more about our own Galaxy. NGC 134 was discovered by Sir John Herschel at the Cape of Good Hope and is located in the Sculptor southern constellation. The galaxy is located about 60 million light-years away - when the light that was captured by the VLT originally left the galaxy, a dramatic episode of mass extinction had led to the disappearance of dinosaurs on Earth, paving the way for the appearance of mammals and later specifically of humans, who have built unique high-tech installations in the Atacama desert to satisfy their curiosity about the workings of the Universe. Still, NGC 134 is not very far away, by cosmological standards. It is the dominant member of a small group of galaxies that belongs to the Virgo or Local Supercluster and is one of the 200 brightest galaxies in our skies.

  7. The Role of Star Formation and an AGN in Dust Heating of z = 0.3-2.8 Galaxies. I. Evolution with Redshift and Luminosity

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Allison; Pope, Alexandra; Sajina, Anna; Roebuck, Eric; Yan, Lin; Armus, Lee; Díaz-Santos, Tanio; Stierwalt, Sabrina

    2015-11-01

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3-2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S24, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2-1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (Tc and Tw). We find that Tc does not depend on mid-IR classification, while Tw shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to LIR. AGNs, composites, and SFGs separate in S8/S3.6 and S250/S24, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S24 > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  8. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    SciTech Connect

    Kashino, D.; Sugiyama, N.; Silverman, J. D.; Rodighiero, G.; Renzini, A.; Arimoto, N.; Daddi, E.; Lilly, S. J.; Carollo, C. M.; Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J.; Kartaltepe, J.; Nagao, T.; Capak, P.; Ilbert, O.; Kajisawa, M.; Koekemoer, A. M. [HST and JWST Instruments and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  9. The composite nature of Dust-Obscured Galaxies (DOGs) at z ˜ 2-3 in the COSMOS field - I. A far-infrared view

    NASA Astrophysics Data System (ADS)

    Riguccini, L.; Le Floc'h, E.; Mullaney, J. R.; Menéndez-Delmestre, K.; Aussel, H.; Berta, S.; Calanog, J.; Capak, P.; Cooray, A.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A.; Lutz, D.; Magnelli, B.; McCracken, H.; Oliver, S.; Roseboom, I.; Salvato, M.; Sanders, D.; Scoville, N.; Taniguchi, Y.; Treister, E.

    2015-09-01

    Dust-Obscured Galaxies (DOGs) are bright 24 μm-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (TD ˜ 200-1000 K) in the near-IR indicating that their mid-IR luminosity is dominated by an active galactic nucleus (AGN). DOGs with a fainter 24 μm flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g. total IR luminosities; mid-to-far-IR colours; dust temperatures and masses) based on spectral energy distribution fitting. Of particular interest are the 24 μm-bright DOGs (F24 μm > 1 mJy). They present bluer far-IR/mid-IR colours than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 μm flux increases as a function of the rest-frame 8 μm-luminosity irrespective of the redshift. This confirms that faint DOGs (L8 μm < 1012 L⊙) are dominated by star formation while brighter DOGs show a larger contribution from an AGN.

  10. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    SciTech Connect

    Hodge, J. A.; Riechers, D.; Decarli, R.; Walter, F.; Carilli, C. L.; Daddi, E.

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.

  11. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    SciTech Connect

    Zahid, H. J.; Sanders, D. B.; Chu, J.; Hasinger, G.; Kashino, D.; Silverman, J. D.; Kewley, L. J.; Daddi, E.; Renzini, A.; Rodighiero, G.; Nagao, T.; Arimoto, N.; Kartaltepe, J.; Lilly, S. J.; Carollo, C. M.; Maier, C.; Geller, M. J.; Capak, P.; Ilbert, O.; Kajisawa, M.; Collaboration: COSMOS Team; and others

    2014-09-01

    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉}) are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.

  12. Dark filaments in the galaxy NGC 253: A boiling galactic disk

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Wakamatsu, Ken-Ichi; Malin, David F.

    1994-12-01

    We study the morphology of dark lanes and filaments in the dust-rich galaxy NGC 253 using an unsharp-masked B-band optical photograph. Dust features are classified as 'arcs,' which have heights and scale radius of about 100 to 300 pc, connecting two or more dark clouds, and 'loops' and 'bubbles,' which are developed forms of arcs, expanding into the disk-halo interface. These have diameters of a few hundred pc to approximately 1 kpc. Among the bubbles, we notice a peculiar round-shaped bubble above the nucleus, which could be a large-diameter (approximately 300 pc) supernova remnant exploded in the halo over the nucleus. We also find 'vertical dust streamers,' which comprise bunches of narrow filaments with a thickness of a few tens of pc and are almost perpendicular to the galactic plane, extending coherently for 1 to 2 kpc toward the halo. Finally, we note 'short vertical dust filaments' (or spicules) are found in the central region. We interpret these features as due to three-dimensional structures of gas extending from the disk into the halo. We propose a 'boiling disk' model where the filamentary features are produced by star-forming activity in the disk as well as the influence of magnetic fluxes. We discuss the implication of the model for the chemical evolution of the interstellar medium (ISM) in a galaxy disk.

  13. Near Infrared Observations of a Redshift 5.34 Galaxy: Further Evidence for Significant Dust Absorption in the Early Universe

    NASA Technical Reports Server (NTRS)

    Armus, L.; Matthews, K.; Neugebauer, G.; Soifer, B. T.

    1998-01-01

    In the last several years, the combination of new wavelength dropout discovery techniques coupled with the incredible power of deep imaging of the Hubble Space Telescope and the spectroscopic capabilities of a new generation of large ground-based telescopes, has lead to an astonishing blossoming of the study of galaxies at redshifts of z=2-4, when the Universe was less than 10-20% of its current age.

  14. Is There Evidence for a Hubble Bubble? The Nature of SN Ia Colors And Dust in External Galaxies

    SciTech Connect

    Conley, A.; Carlberg, R.G.; Guy, J.; Howell, D.A.; Jha, S.; Riess, A.G.; Sullivan, M.; /Toronto U., Astron. Dept.

    2007-06-06

    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae for the {approx} 3 {sigma} detection of a ''Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation ({beta}) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky-Way like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give {beta} {approx} 2, instead of the {beta} {approx} 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.

  15. Hov lane enforcement evaluation. Final report

    SciTech Connect

    Jacobson, E.L.

    1993-01-01

    The study evaluated various high occupancy vehicle (HOV) lane enforcement techniques on a recently constructed section of HOV lanes along I-405 in the Seattle, Washington, area. The research included a related public opinion survey concerning HOV lanes. The enforcement techniques that were evaluated included intensive (or continuous saturation) enforcement, once a week saturation enforcement, and once a week stationary enforcement. The study concluded that each type of enforcement effort helped in lowering the number of HOV lane violations; however, it was not possible to determine which method was most effective. Violations decreased considerably during the first weeks of enforcement, regardless of the type of enforcement. The research team recommends intensive enforcement only for the first three months (or less) of the operation of a new HOV facility. After that point, the level of effort should revert to routine enforcement. The study also makes recommendations concerning the design of HOV lanes related to enforcement issues. Specifically, enforcement areas alongside HOV lanes must be designed in cooperation with the appropriate enforcement agency. Two types of enforcement areas along freeways are suggested.

  16. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S. E-mail: bts@submm.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: pope@astro.umass.edu E-mail: jannuzi@noao.edu

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of

  17. HUBBLE UNVEILS A GALAXY IN LIVING COLOR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this view of the center of the magnificent barred spiral galaxy NGC 1512, NASA Hubble Space Telescope's broad spectral vision reveals the galaxy at all wavelengths from ultraviolet to infrared. The colors (which indicate differences in light intensity) map where newly born star clusters exist in both 'dusty' and 'clean' regions of the galaxy. This color-composite image was created from seven images taken with three different Hubble cameras: the Faint Object Camera (FOC), the Wide Field and Planetary Camera 2 (WFPC2), and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). NGC 1512 is a barred spiral galaxy in the southern constellation of Horologium. Located 30 million light-years away, relatively 'nearby' as galaxies go, it is bright enough to be seen with amateur telescopes. The galaxy spans 70,000 light-years, nearly as much as our own Milky Way galaxy. The galaxy's core is unique for its stunning 2,400 light-year-wide circle of infant star clusters, called a 'circumnuclear' starburst ring. Starbursts are episodes of vigorous formation of new stars and are found in a variety of galaxy environments. Taking advantage of Hubble's sharp vision, as well as its unique wavelength coverage, a team of Israeli and American astronomers performed one of the broadest and most detailed studies ever of such star-forming regions. The results, which will be published in the June issue of the Astronomical Journal, show that in NGC 1512 newly born star clusters exist in both dusty and clean environments. The clean clusters are readily seen in ultraviolet and visible light, appearing as bright, blue clumps in the image. However, the dusty clusters are revealed only by the glow of the gas clouds in which they are hidden, as detected in red and infrared wavelengths by the Hubble cameras. This glow can be seen as red light permeating the dark, dusty lanes in the ring. 'The dust obscuration of clusters appears to be an on-off phenomenon,' says Dan Maoz, who headed the

  18. Karl G. Jansky very large array observations of cold dust and molecular gas in starbursting quasar host galaxies at z ∼ 4.5

    SciTech Connect

    Wagg, J.; Carilli, C. L.; Lentati, L.; Maiolino, R.; Hills, R.; Aravena, M.; Cox, P.; McMahon, R. G.; Riechers, D.; Walter, F.; Andreani, P.; Wolfe, A.

    2014-03-10

    We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} K km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.

  19. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Sajina, Anna; Roebuck, Eric; Yan, Lin; Armus, Lee; Díaz-Santos, Tanio; Stierwalt, Sabrina

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  20. The Walker Lane in northeastern California

    SciTech Connect

    Saucedo, G.J.; Wagner, D.L.; Grose, T.L.T.

    1990-01-01

    The Walker Lane (Locke and others, 1940) was defined as a narrow northwest-trending dextral fault zone that separates basin- and range topography on the east from diverse topography on the west that extends discontinuously from Lake Mead to Honey Lake. The term Walker Lane Belt (Steward, 1988) expands the feature to include a wide zone east of the Sierra Nevada. Pease (1969), Hannah (1977), and Grose (1986) suggested that the tectonic characteristics of Walker Lane continue into the Modoc Plateau. The authors believe that it is useful to recognize the Walker Lane or Walker Lane Belt in the Modoc Plateau. Within the Modoc Plateau, a 25-km wide (15-mile wide) zone of northwest-southeast faults herein recognized as the Walker Lane, trends N35{degree}W from Honey Lake Basin to Medicine Lake Highland. Mapping in the Eagle Lake area revealed northwest-southeast, north-south, and northeast-southwest late Quaternary faults and rifts, eruptive fissures, small tectonic depressions, and the large Eagle Lake volcano-tectonic depression. To the east is a remarkably unfaulted Neogene volcanic terrane extending 70 km (42 miles) eastward to the Dry Valley-Smoke Creek Desert fault system in Nevada. To the west in the Cascades complex late Pliocene-Quaternary faulting, linear basaltic cones, and andesite volcanoes are all aligned N15{degree}-30{degree}W. This Modoc part of the Walker Lane Belt displays blocks tilted mostly 3{degree}-10{degree}E bounded by west-dipping normal faults and right diagonal normal faults. Left stepping north-south trending rifts occur within northwest trending, straight right diagonal-slip fault zones.

  1. Dust content of a hydrogen rich, low surface brightness galaxy and the luminosity history of 3C273

    NASA Technical Reports Server (NTRS)

    Hamilton, Thomas T.

    1993-01-01

    This project consists of a 30,000 second PSPC observation of the Giovanelli-Haynes Cloud in an attempt to detect light emitted by 3C273 which has been reflected by the cloud, and incidentally search the cloud for other sources of X-ray emission. The observation was carried out by ROSAT on Dec. 25, 1992 and the data was received by the P.I. in late March of 1993. We have examined the data and determined that the observation's background level, astrometry, etc. are acceptable. We have also detected diffuse emission from the direction of the Giovanelli-Haynes Cloud. Determination of the origin of this emission, by examining its morphology in relation to that of the radio map and the object's geometric relation with 3C273, requires software implementation of specialized algorithms. However, the most dramatic observation in the field is a potentially new population of discrete soft X-ray sources associated with dwarf galaxies.

  2. An Infrared Portrait of the Barred Spiral Galaxy Messier 83

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Messier 83 (M83) is a relatively nearby spiral galaxy with a pronounced bar-like structure. It is located in the southern constellation Hydra (The Water-Snake) and is also known as NGC 5236 ; the distance is approximately 12 million light-years. Images of M83 obtained in visible light - like the VLT photo published exactly two years ago ( ESO PR 18/99 ) - show clumpy, well-defined spiral arms that are rich in young stars while the disk reveals a complex system of intricate dust lanes. This galaxy is known to be a site of vigorous star formation and no less than six supernovae (exploding stars) have been observed in M83 during the past century. It is a fairly symmetrical object and possesses no nearby companions. Gas dynamics and galaxy bars Investigations of gas motions in the nucleus and in the main disk play a key role in understanding the structure and evolution of barred spiral galaxies like M83. Inflow of gas towards the center caused by a mass distribution that is not circularly symmetric is often invoked to explain certain observed phenomena, e.g., the feeding of Active Galactic Nuclei (AGNs, see also the report about recent observations in three such galaxies in ESO PR 18/01 ), and the fueling of bursts of star formation in the nuclear region. Some astronomers think that this process may cause a change of a galaxy's (morphological) type, for instance from barred to normal spiral galaxy. It has also been suggested that the development of spiral structures in galactic disks may be due to central stellar bars. Interstellar gas that is subject to periodical perturbations by the non-circularly symmetrical gravitational field in a barred system will develop a "density wave" that attracts neighbouring stars and gas. The local density increases and once a certain ("critical") value is reached, star formation is "ignited" in this area. The mass distribution In order to better understand phenomena like these, it is essential to know in detail the distribution of

  3. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  4. LANES - LOCAL AREA NETWORK EXTENSIBLE SIMULATOR

    NASA Technical Reports Server (NTRS)

    Gibson, J.

    1994-01-01

    The Local Area Network Extensible Simulator (LANES) provides a method for simulating the performance of high speed local area network (LAN) technology. LANES was developed as a design and analysis tool for networking on board the Space Station. The load, network, link and physical layers of a layered network architecture are all modeled. LANES models to different lower-layer protocols, the Fiber Distributed Data Interface (FDDI) and the Star*Bus. The load and network layers are included in the model as a means of introducing upper-layer processing delays associated with message transmission; they do not model any particular protocols. FDDI is an American National Standard and an International Organization for Standardization (ISO) draft standard for a 100 megabit-per-second fiber-optic token ring. Specifications for the LANES model of FDDI are taken from the Draft Proposed American National Standard FDDI Token Ring Media Access Control (MAC), document number X3T9.5/83-16 Rev. 10, February 28, 1986. This is a mature document describing the FDDI media-access-control protocol. Star*Bus, also known as the Fiber Optic Demonstration System, is a protocol for a 100 megabit-per-second fiber-optic star-topology LAN. This protocol, along with a hardware prototype, was developed by Sperry Corporation under contract to NASA Goddard Space Flight Center as a candidate LAN protocol for the Space Station. LANES can be used to analyze performance of a networking system based on either FDDI or Star*Bus under a variety of loading conditions. Delays due to upper-layer processing can easily be nullified, allowing analysis of FDDI or Star*Bus as stand-alone protocols. LANES is a parameter-driven simulation; it provides considerable flexibility in specifying both protocol an run-time parameters. Code has been optimized for fast execution and detailed tracing facilities have been included. LANES was written in FORTRAN 77 for implementation on a DEC VAX under VMS 4.6. It consists of two

  5. MISSING LENSED IMAGES AND THE GALAXY DISK MASS IN CXOCY J220132.8-320144

    SciTech Connect

    Chen, Jacqueline; Lee, Samuel K.; Schechter, Paul L.; Castander, Francisco-Javier; Maza, Jose

    2013-05-20

    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present. These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 mag of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kpc. Currently unobserved images will be detectable by future James Webb Space Telescope observations and will provide strict constraints on the fraction of mass in the disk.

  6. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics. 1; Absorption by Host Galaxy Gas and Dust

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. A. M. J.; Wiersema, K.; Rol, E.; Curran, P. A.; Kouveliotou, C.; vanderHorst, A. J.; Heemskerk, M. H. M.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards an initial sample of 10 long Gamma-Ray Bursts observed with BeppoSAX and selected on the basis of their good optical and nIR coverage, from simultaneous fits to nIR, optical and X-ray afterglow data, in count space and including the effects of metallicity. In no cases is a MIV-like ext,inction preferred, when testing MW, LMC and SMC extinction laws. The 2175A bump would in principle be detectable in all these afterglows, but is not present in the data. An SMC-like gas-to-dust ratio or lower value can be ruled out for 4 of the hosts analysed here (assuming Sh4C metallicity and extinction law) whilst the remainder of the sample have too large an error to discriminate. We provide a more accurate estimate of the line-of-sight extinction and improve upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample. We discuss this method to determine extinction values in comparison with the most commonly employed existing methods.

  7. VIEW OF NORTHBOUND LANES AND SIGN STRUCTURE, LOOKING SOUTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHBOUND LANES AND SIGN STRUCTURE, LOOKING SOUTH FROM SOUTHBOUND LANES. QWEST FIELD, SAFECO STADIUM AND MOUNT RAINIER IN BACKGROUND. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  8. View looking up Linden Lane toward the Swiss Chalet and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking up Linden Lane toward the Swiss Chalet and causeway extension; note roof-line of Pagoda in background - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  9. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E.; Wysocki, A.; Loewen, H.; Goedheer, W. J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  10. Neal Lane: Science in a Flat World

    SciTech Connect

    Neal Lane

    2006-09-12

    Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

  11. Neal Lane: Science in a Flat World

    ScienceCinema

    Neal Lane

    2016-07-12

    Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

  12. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  13. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-06-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.

  14. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  15. HOV lane performance monitoring, 1998 annual report. Research report

    SciTech Connect

    Brown, W.W.; Nee, J.; Ishimaru, J.; Hallenbeck, M.E.

    1999-08-01

    This report describes the results of an extensive monitoring effort of HOV lane use and performance in the Puget Sound area in 1998. It presents an analysis of data collected to describe the number of people and vehicles that use those lanes, the reliability of the HOV lanes, travel time savings in comparison to general purpose lanes, violation rates, and public perceptions. This information is intended to serve as reliable input for transportation decision makers and planners in evaluating the impact and adequacy of the existing HOV lane system in the Puget Sound area and in planning for other HOV facilities.

  16. The Milky Way Center Aglow with Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Milky Way Poster

    Our Milky Way is a dusty place. So dusty, in fact, that we cannot see the center of the galaxy in visible light. But when NASA's Spitzer Space Telescope set its infrared eyes on the galactic center, it captured this spectacular view.

    Taken with just one of Spitzer's cameras (at a wavelength of 8 microns), the image highlights the region's exceptionally bright and dusty clouds, lit up by young massive stars. Individual stars can also be seen as tiny dots scattered throughout the dust. The top mosaic shows a portion of the galactic center that stretches across a distance of 760 light-years.

    Thanks to Spitzer's excellent resolution, the dusty features within the galactic center are seen in unprecedented detail. Four examples are shown in the magnified insets at the bottom. The farthest left box shows a pair of star-forming regions resembling owl-like cosmic eyes. To the left of the 'eyes,' dark lanes of dust can be seen. This object is probably located in a spiral arm between Earth and the galactic center, in contrast to the following examples, which are all located at the galactic center.

    The next inset to the right includes the extremely luminous 'Quintuplet' stars, a set of five massive stars believed to have buried themselves in cocoons of dust. Just below and to the right of the Quintuplet is the 'Pistol' nebula, a bubble of ejected material from the central, massive Pistol star. The finger-like pillars to the left are part of a structure known as 'Sickle.' They are similar in size and shape to those in the famous picture of the Eagle Nebula taken by NASA's Hubble Space Telescope. Pillars like these are sculpted out of dense dust clouds by radiation and winds from hot stars. The pillars in the Sickle were likely to have been formed by a cluster of hot stars located to their right but not readily visible here.

    The third inset highlights a system of long, stringy

  17. Demixing-stimulated lane formation in binary complex plasma

    SciTech Connect

    Du, C.-R.; Jiang, K.; Suetterlin, K. R.; Ivlev, A. V.; Morfill, G. E.

    2011-11-29

    Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify a critical value of the non-additivity parameter {Delta} for the crossover.

  18. Agent-based modeling of lane discipline in heterogeneous traffic

    NASA Astrophysics Data System (ADS)

    Dailisan, Damian N.; Lim, May T.

    2016-09-01

    Designating lanes for different vehicle types is ideal road safety-wise. Practical considerations, however, require road sharing. Using a modified Nagel-Schreckenberg cellular automata model for two vehicle types (cars and motorcycles), we analyzed the interplay of lane discipline, lane changing, and vehicle density. In the absence of lane changing, the transition between free flow and congested states occurs at a higher vehicle (road occupation) density when the ratio of cars to motorcycles is increased. When lane changing is allowed, the smaller motorcycles tend to fill in unused spaces, until the point when the wider cars effectively block their way at high vehicle densities. When the condition of lane discipline is not imposed, i.e. staying wholly within lane boundaries is not required, further improvement in throughput becomes possible at the cost of required driver attentiveness.

  19. I-90 lane conversion evaluation. Technical report (Final)

    SciTech Connect

    Kim, S.G.; Koehne, J.; Mannering, F.

    1995-02-01

    The purpose of the project is to evaluate the effectiveness of converting a general purpose traffic lane to an HOV lane on Interstate 90 between Issaquah and Bellevue Way. The research effort included consideration of vehicle occupancies, travel time, safety, and public support. A successful lane conversion would demonstrate the potential to save the cost of constructing new highway lanes when existing highway lanes were available for conversion. From a public opinion standpoint, the I-90 lane conversion in the Seattle area can be classified as a qualified success. While a slight majority of commuters oppose the conversion, public opinion for and against is surprisingly close. It appears that with effective marketing and careful implementation, lane conversions can be successfully undertaken.

  20. The CO-12 and CO-13 J=2-1 and J=1-0 observations of hot and cold galaxies

    NASA Technical Reports Server (NTRS)

    Xie, Shuding; Schloerb, F. Peter; Young, Judith

    1990-01-01

    Researchers observed the nuclear regions of the galaxies NGC 2146 and IC 342 in CO-12 and CO-13 J=1-0 and J=2-1 lines using the Five College Radio Astronomy Observatory (FCRAO) 14m telescope. NGC 2146 is a peculiar Sab spiral galaxy. Its complex optical morphology and strong nuclear radio continuum emission suggest that it is experiencing a phase of violent activity and could have a polar ring which may have resulted from an interaction. IC 342 is a nearby luminous Scd spiral galaxy. Strong CO, infrared and radio continuum emission from the nuclear region of IC 342 indicate enhanced star-forming activity, and interferometric CO-12 J=1-0 observations reveal a bar-like structure centered on the nucleus, along the dark lane in the NS direction. These two galaxies are selected based on their different dust temperatures and star formation efficiencies (SFE) as derived from the Infrared Astronomy Satellite (IRAS) S sub 60 mu/S sub 100 mu flux density ratio and L sub IR/M(H2), respectively, with a relatively high SFE and dust temperature of 45 K in NGC 2146 and a relatively low SFE and dust temperature of 35 K in IC 342. The data from the different CO-12 and CO-13 lines are used to study the physical conditions in the molecular clouds in the galaxies. Researchers also consider the radiative transfer to determine whether a warm and optically thin gas component exists in these galaxies, as has been suggested in the case of M82 (Knapp et al. 1980), and whether the warm gas is related to the dust properties. Since optically thin CO-12 gas is rarely detected in our own Galaxy (except in outflow sources), to confirm its existence in external galaxies is very important in understanding the molecular content of external galaxies and its relationship to star formation activity. The present CO-12 J=2-1 and CO-13 J=2-1 and J=1-0 data for NGC 2146 are the first detections of this galaxy to our knowledge. The CO-12 J=1-0 distribution in NGC 2146 has been measured as part of the FCRAO

  1. High-Resolution Imaging in 3-mm and 0.8-mm Bands and Abundances of Shock/Dust Related Molecules Toward the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Takano, S.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We present the results of high-angular-resolution in 3-mm and 0.8-mm band observations with ALMA in cycle-0 toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. The physical properties of CO isotopic species, CS, CN, and shock and dust related molecules such as HNCO, CH3CN, SO, and CH3OH were estimated using rotation diagrams. We discuss the chemistry of each species, and compare the fractional abundances in the circumnuclear disk (CND) and starburst ring with those of Galactic sources in order to study the overall characteristics.

  2. Deep Imaging of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2006-07-01

    Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW

  3. The hydrological role of 'sunken lanes'

    NASA Astrophysics Data System (ADS)

    Boardman, John

    2013-04-01

    The hydrological role of 'sunken lanes' Sunken lanes are found in many parts of southern England and have also been described in Belgium, France, Germany, Poland, Spain and the USA. They are associated with soft rock and long histories of vehicular and animal movements. They form important features of the cultural and physical landscape. Although most are probably Medieval in origin, some maydate back to the Iron Age. Little attention has been paid to their function as conduits for runoff, sediment and pollutants from areas of forestry and agriculture to the watercourses in valley bottoms. In the Midhurst area of West Sussex, southern England, they are important routes for eroded sediments particularly during extreme rainfall events as occurred in the autumns of 2000 and 2006. This led to the flooding of property, disruption of minor roads and the pollution of the Western Rother river, an important fish habitat.

  4. Imaging and two-dimensional spectra of the IR-bright galaxy NGC 2146 - A recent low-energy merger?

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Lo, E.; Neff, S. G.; Stanford, S. A.; Unger, S. W.

    1990-01-01

    New data are presented on the IR-luminous galaxy NGC 2146 from several sources: direct imaging in B, R, and H-alpha; IR imaging in the J, H, and K bands; long-slit spectroscopy at optical and IR wavelengths; and scanning etalon observations in H-alpha. The results allow measurement of the interstellar extinction in the dust lane, and estimation of the true luminosity of the galaxy and nuclear regions. The spectra indicate that there is no active nucleus, and measure the changing ratio of forbidden to permitted lines across the galaxy. IR images and colors indicate the existence of a significant population of hot young stars in the central regions of the system. The H-alpha velocity maps show the full radial-velocity pattern, and suggest that the system consists of a disturbed disk and a merging or interacting arm which connects to the inner dust and radio structures. Outer H-alpha and H I structures appear to be the earlier remnants of this spiraling merger.

  5. Lane detection algorithm for an onboard camera

    NASA Astrophysics Data System (ADS)

    Bellino, Mario; Lopez de Meneses, Yuri; Ryser, Peter; Jacot, Jacques

    2005-02-01

    After analysing the major causes of injuries and death on roads, it is understandable that one of the main goals in the automotive industry is to increase vehicle safety. The European project SPARC (Secure Propulsion using Advanced Redundant Control) is developing the next generation of trucks that will fulfil these aims. The main technologies that will be used in the SPARC project to achieve the desiderated level of safety will be presented. In order to avoid accidents in critical situations, it is necessary to have a representation of the environment of the vehicle. Thus, several solutions using different sensors will be described and analysed. Particularly, a division of this project aims to integrate cameras in automotive vehicles to increase security and prevent driver's mistakes. Indeed, with this vision platform it would be possible to extract the position of the lane with respect to the vehicle, and thus, help the driver to follow the optimal trajectory. A definition of lane is proposed, and a lane detection algorithm is presented. In order to improve the detection, several criteria are explained and detailed. Regrettably, such an embedded camera is subject to the vibration of the truck, and the resulting sequence of images is difficult to analyse. Thus, we present different solutions to stabilize the images and particularly a new approach developed by the "Laboratoire de Production Microtechnique". Indeed, it was demonstrated in previous works that the presence of noise can be used, through a phenomenon called Stochastic Resonance. Thus, instead of decreasing the influence of noise in industrial applications, which has non negligible costs, it is perhaps interesting to use this phenomenon to reveal some useful information, such as for example the contour of the objects and lanes.

  6. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  7. Modeling Dust in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Aniano Porcile, Gonzalo Jorge

    We are in a very special moment for the study of the interstellar medium (ISM). The Spitzer Space Telescope had provided, and currently Herschel Space Observatory is providing, invaluable infrared (IR) observations of a variety of astrophysical systems. These observations allow us to model several ongoing processes in the ISM, and in particular to study the physical properties of the interstellar dust. Determining the dust properties accurately is an extremely difficult task: even the overall amount of dust in other galaxies has often been very uncertain. In the current work, we develop "state of the art'' tools for image processing and dust modeling that allows study of the interstellar dust in other galaxies using the new infrared data. We start by developing, the now "industry-standard'', convolution kernels. They allow us to accurately combine data from several space- and ground-based telescopes, to perform multi-wavelength studies. They are a key development for doing resolved studies of astrophysical systems. We follow by analyzing the performance of "modified blackbody'' (MBB) dust models when applied to realistic spectral energy distributions (SEDs), where we use a specific physical model, the Draine and Li (2007, DL07) dust model, to generate the synthetic SEDs. We show that MBB models can have a large bias in the inferred dust parameters, and therefore it is important to use more realistic dust models. We provide "correction'' formulae to compensate for the MBB bias, useful when the more sophisticated dust modeling is not available. Using the DL07 dust model, which contains amorphous silicate and carbonaceous grains, we perform careful modeling of the dust properties in a large sample of well-resolved galaxies observed by the KINGFISH survey. With data from 3.6µm to 500µm, dust models are strongly constrained. For each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons

  8. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    SciTech Connect

    Abramson, Anne; Kenney, Jeffrey D. P. E-mail: jeff.kenney@yale.edu

    2014-03-01

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.

  9. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    ; it is located at a distance of about 11 million light-years in the direction of the southern constellation Centaurus. Some time ago a group of European astronomers [1] decided to take a closer look at this object and to study star-forming processes in the primordial-like environment of this galaxy. True, NGC 5253 does contains some dust and heavier elements, but significantly less than our own Milky Way galaxy. However, it is quite extreme as a site of intense star formation, a profuse "starburst galaxy" in astronomical terminology, and a prime object for detailed studies of large-scale star formation. ESO PR Photo 31a/04 provides an impressive view of NGC 5253. This composite image is based on a near-infrared exposure obtained with the multi-mode ISAAC instrument mounted on the 8.2-m VLT Antu telescope at the ESO Paranal Observatory (Chile), as well as two images in the optical waveband obtained from the Hubble Space Telescope data archive (located at ESO Garching). The VLT image (in the K-band at wavelength 2.16 μm) is coded red, the HST images are blue (V-band at 0.55 μm) and green (I-band at 0.79 μm), respectively. The enormous light-gathering capability and the fine optical quality of the VLT made it possible to obtain the very detailed near-infrared image (cf. PR Photo 31b/04) during an exposure lasting only 5 min. The excellent atmospheric conditions of Paranal at the time of the observation (seeing 0.4 arcsec) allow the combination of space- and ground-based data into a colour photo of this interesting object. A major dust lane is visible at the western (right) side of the galaxy, but patches of dust are visible all over, together with a large number of colourful stars and stellar clusters. The different colour shades are indicative of the ages of the objects and the degree of obscuration by interstellar dust. The near-infrared VLT image penetrates the dust clouds much better than the optical HST images, and some deeply embedded objects that are not

  10. Effects of Lane Width, Lane Position and Edge Shoulder Width on Driving Behavior in Underground Urban Expressways: A Driving Simulator Study

    PubMed Central

    Liu, Shuo; Wang, Junhua; Fu, Ting

    2016-01-01

    This study tested the effects of lane width, lane position and edge shoulder width on driving behavior for a three-lane underground urban expressway. A driving simulator was used with 24 volunteer test subjects. Five lane widths (2.85, 3.00, 3.25, 3.50, and 3.75 m) and three shoulder widths (0.50, 0.75, and 1.00 m) were studied. Driving speed, lane deviation and subjective perception of driving behavior were collected as performance measures. The results show that lane and shoulder width have significant effects on driving speed. Average driving speed increases from 60.01 km/h in the narrowest lane to 88.05 km/h in the widest lane. While both narrower lanes and shoulders result in reduced speed and lateral lane deviation, the effect of lane width is greater than that of shoulder width. When the lane and shoulder are narrow, drivers in the left or right lane tend to shy away from the tunnel wall, even encroaching into the neighboring middle lane. As the lane or shoulder gets wider, drivers tend to stay in the middle of the lane. An interesting finding is that although few participants acknowledged that lane position had any great bearing on their driving behaviors, the observed driving speed is statistically higher in the left lane than in the other two lanes when the lane width is narrow (in 2.85, 3 and 3.25 m lanes). These findings provided support for amending the current design specifications of urban underground roads, such as the relationship between design speed and lane width, speed limit, and combination form of lanes. PMID:27754447

  11. Kinematics and Structure of the Starburst Galaxy NGC 7673

    NASA Astrophysics Data System (ADS)

    Homeier, N. L.; Gallagher, J. S.

    1999-09-01

    The morphology and kinematics of the luminous blue starburst galaxy NGC 7673 are explored using the WIYN (Wisconsin-Indiana-Yale-NOAO) 3.5 m telescope. Signs of a past kinematic disturbance are detected in the outer galaxy; the most notable feature is a luminous ripple located 1.55 arcmin from the center of NGC 7673. Subarcsecond imaging in B and R filters also reveals red dust lanes and blue star clusters that delineate spiral arms in the bright inner disk, and narrowband Hα imaging shows that the luminous star clusters are associated with giant H II regions. The Hα kinematics measured with echelle imaging spectroscopy using the WIYN DensePak fiber array imply that these H II regions are confined to a smoothly rotating disk. The velocity dispersion in ionized gas in the disk is σ~24 km s-1, which sets an upper boundary on the dispersion of young stellar populations. Broad emission components with σ~63 km s-1 found in some regions are likely produced by mechanical power supplied by massive, young stars; a violent starburst is occurring in a kinematically calm disk. Although the asymmetric outer features point to a merger or interaction as the starburst trigger, the inner disk structure constrains the strength of the event to the scale of a minor merger or weak interaction that occurred at least an outer disk dynamical timescale in the past.

  12. The Nuclear Ring in the Barred Spiral Galaxy IC 4933

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart D.; Illingworth, Samuel M.; Sharp, Robert G.; Farage, Catherine L.

    2010-03-01

    We present infrared imaging from IRIS2 on the Anglo-Australian Telescope that shows the barred spiral galaxy IC 4933 has not just an inner ring encircling the bar, but also a star-forming nuclear ring 1.5 kpc in diameter. Imaging in the u' band with GMOS on Gemini South confirms that this ring is not purely an artifact due to dust. Optical and near-infrared colours alone however cannot break the degeneracy between age, extinction, and burst duration that would allow the star formation history of the ring to be unraveled. Integral field spectroscopy with the GNIRS spectrograph on Gemini South shows the equivalent width of the Paβ line to peak in the north and south quadrants of the ring, indicative of a bipolar azimuthal age gradient around the ring. The youngest star-forming regions do not appear to correspond to where we expect to find the contact points between the offset dust lanes and the nuclear ring unless the nuclear ring is oval in shape, causing the contact points to lead the bar by more than 90°.

  13. High occupancy vehicle lanes: some evidence on their recent performance

    SciTech Connect

    Southworth, F.; Westbrook, F.

    1985-09-01

    The results of a 1985 survey of HOV lane project performance are presented. Despite the lack of the energy crises that spurred HOV lane promotion during the seventies, HOV lane planning has continued to remain active in a number of states. Most currently, operational mainline HOV lanes were found to be very effective as people movers during commuting rush hours, and to save fuel by removing significant numbers of automobiles from the road through high levels of ridesharing and bus patronage. Bus ridership has managed to compete effectively with carpooling/vanpooling on a number of lanes. Continued traffic growth during the eighties is strengthening the case for HOV lane use in many big city urban corridors.

  14. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    NASA Astrophysics Data System (ADS)

    2003-12-01

    of this photo retains the original pixels. Note the many arms and the pronounced dust bands. North is up and East is left. NGC 613 is a beautiful barred spiral galaxy in the southern constellation Sculptor. This galaxy is inclined by 32 degrees and, contrary to most barred spirals, has many arms that give it a tentacular appearance. Prominent dust lanes are visible along the large-scale bar. Extensive star-formation occurs in this area, at the ends of the bar, and also in the nuclear regions of the galaxy. The gas at the centre, as well as the radio properties are indicative of the presence of a massive black hole in the centre of NGC 613. NGC 1792 ESO PR Photo 33b/03 ESO PR Photo 33b/03 [Preview - JPEG: 473 x 400 pix - 26k] [Normal - JPEG: 946 x 800 pix - 376k] [Full Res - JPEG: 2716 x 2297 pix - 3.2M] PR Photo 33b/03 shows the starburst spiral galaxy NGC 1792 . Note the numerous background galaxies in this sky field. North is up and East is to the left. NGC 1792 is located in the southern constellation Columba (The Dove) - almost on the border with the constellation Caelum (The Graving Tool) - and is a so-called starburst spiral galaxy. Its optical appearance is quite chaotic, due to the patchy distribution of dust throughout the disc of this galaxy. It is very rich in neutral hydrogen gas - fuel for the formation of new stars - and is indeed rapidly forming such stars. The galaxy is characterized by unusually luminous far-infrared radiation; this is due to dust heated by young stars. M 66 (NGC 3627) ESO PR Photo 33c/03 ESO PR Photo 33c/03 [Preview - JPEG: 469 x 400 pix - 24k] [Normal - JPEG: 938 x 800 pix - 383k] [Full Res - JPEG: 2698 x 2300 pix - 3.0M] PR Photo 33c/03 of the spiral galaxy M 66 (or NGC 3627). North towards upper left, West towards upper right. The third galaxy is NGC 3627 , also known as Messier 66, i.e. it is the 66th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It is located in the constellation

  15. Intelligent driving in traffic systems with partial lane discipline

    NASA Astrophysics Data System (ADS)

    Assadi, Hamid; Emmerich, Heike

    2013-04-01

    It is a most common notion in traffic theory that driving in lanes and keeping lane changes to a minimum leads to smooth and laminar traffic flow, and hence to increased traffic capacity. On the other hand, there exist persistent vehicular traffic systems that are characterised by habitual disregarding of lane markings, and partial or complete loss of laminar traffic flow. Here, we explore the stability of such systems through a microscopic traffic flow model, where the degree of lane-discipline is taken as a variable, represented by the fraction of drivers that disregard lane markings completely. The results show that lane-free traffic may win over completely ordered traffic at high densities, and that partially ordered traffic leads to the poorest overall flow, while not considering the crash probability. Partial order in a lane-free system is similar to partial disorder in a lane-disciplined system in that both lead to decreased traffic capacity. This could explain the reason why standard enforcement methods, which rely on continuous increase of order, often fail to incur order to lane-free traffic systems. The results also provide an insight into the cooperative phenomena in open systems with self-driven particles.

  16. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile

  17. Quasar Dust Factories.

    NASA Astrophysics Data System (ADS)

    Marengo, Massimo; Elvis, Martin; Karovska, Margarita

    We show that quasars are naturally copious producers of dust, assuming only that the quasar broad emission lines (BELs) are produced by gas clouds that are part of an outflowing wind. These BEL clouds have large initial densities (ne ˜109 - 1011 cm-3) so that as they expand quasi-adiabatically they cool from an initial T = 104 K to a dust-capable T = 103 K, and reduce their pressures from ˜0.1 dyn cm-2 to ˜ 10-3 -10-5 dyn cm-2.. This places the expanded BEL clouds in the (T,P) dust forming regime of late-type giants extended atmospheres, both static and pulsing. The result applies whether the clouds have C/O abundance ratio greater or lower than 1. Photo-destruction of the grains by the quasar UV/X-ray continuum is not important, as the BEL clouds reach these conditions several parsecs from the quasar nucleus, well below the dust evaporation temperature. This result offers a new insight for the strong link between quasars and dust, and for the heavy obscuration around many quasars. It also introduces a new means of forming dust at early cosmological times, and a direct mechanism for the injection of such dust in the intergalactic medium. Since dust at high z is found only by observing quasars, our result allows far less dust to be present at early epochs, since dust only need be present where a quasar is, rather than the quasar illuminating pre-existing dust which would then need to be present in all galaxies at high z. See astro-ph/0202002 or ApJ 576, L107 (2002).

  18. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  19. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could

  20. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  1. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  2. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  3. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering.

    PubMed

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters-the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)-are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  4. Lane-changing model with dynamic consideration of driver's propensity

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyuan; Wang, Jianqiang; Zhang, Jinglei; Ban, Xuegang Jeff

    2015-07-01

    Lane-changing is the driver's selection result of the satisfaction degree in different lane driving conditions. There are many different factors influencing lane-changing behavior, such as diversity, randomicity and difficulty of measurement. So it is hard to accurately reflect the uncertainty of drivers' lane-changing behavior. As a result, the research of lane-changing models is behind that of car-following models. Driver's propensity is her/his emotion state or the corresponding preference of a decision or action toward the real objective traffic situations under the influence of various dynamic factors. It represents the psychological characteristics of the driver in the process of vehicle operation and movement. It is an important factor to influence lane-changing. In this paper, dynamic recognition of driver's propensity is considered during simulation based on its time-varying discipline and the analysis of the driver's psycho-physic characteristics. The Analytic Hierarchy Process (AHP) method is used to quantify the hierarchy of driver's dynamic lane-changing decision-making process, especially the influence of the propensity. The model is validated using real data. Test results show that the developed lane-changing model with the dynamic consideration of a driver's time-varying propensity and the AHP method are feasible and with improved accuracy.

  5. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  6. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  7. GRB 051008: a long, spectrally hard dust-obscured GRB in a Lyman-break galaxy at z ≈ 2.8

    NASA Astrophysics Data System (ADS)

    Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.; Perley, D. A.; Frederiks, D. D.; Kann, D. A.; Rumyantsev, V. V.; Biryukov, V. V.; Burkhonov, O.; Castro-Tirado, A. J.; Ferrero, P.; Golenetskii, S. V.; Klose, S.; Loznikov, V. M.; Minaev, P. Yu.; Stecklum, B.; Svinkin, D. S.; Tsvetkova, A. E.; de Ugarte Postigo, A.; Ulanov, M. V.

    2014-08-01

    We present observations of the dark gamma-ray burst GRB 051008 provided by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I telescopes in the optical and near-infrared bands. The burst was detected only in gamma- and X-rays and neither a prompt optical nor a radio afterglow was detected down to deep limits. We identified the host galaxy of the burst, which is a typical Lyman-break galaxy (LBG) with R-magnitude of 24.06 ± 0.10 mag. A redshift of the galaxy of z = 2.77_{-0.20}^{+0.15} is measured photometrically due to the presence of a clear, strong Lyman-break feature. The host galaxy is a small starburst galaxy with moderate intrinsic extinction (AV = 0.3) and has a star formation rate of ˜60 M⊙ yr-1 typical for LBGs. It is one of the few cases where a GRB host has been found to be a classical LBG. Using the redshift we estimate the isotropic-equivalent radiated energy of the burst to be Eiso = (1.15 ± 0.20) × 1054 erg. We also provide evidence in favour of the hypothesis that the darkness of GRB 051008 is due to local absorption resulting from a dense circumburst medium.

  8. Phase diagram of a single lane roundabout

    NASA Astrophysics Data System (ADS)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-03-01

    Using the cellular automata model, we numerically study the traffic dynamic in a single lane roundabout system of four entry/exit points. The boundaries are controlled by the injecting rates α1, α2 and the extracting rate β. Both the system with and without Splitter Islands of width Lsp are considered. The phase diagram in the (α1 , β) space and its variation with the roundabout size, Pagg (i.e. the probability of aggressive entry), and Pexit (i.e. the probability of preferential exit) are constructed. The results show that the phase diagram in both cases consists of three phases: free flow, congested and jammed. However, as Lsp increases the free flow phase enlarges while the congested and jammed ones shrink. On the other hand, the short sized roundabout shows better performance in the free flow phase while the large one is more optimal in the congested phase. The density profiles are also investigated.

  9. The strange 'barred' spiral galaxy ESO 235-58 - A case of morphological deception

    NASA Astrophysics Data System (ADS)

    Buta, R.; Crocker, D. A.

    1993-09-01

    On the SRC-J southern sky survey, the galaxy ESO 235-58 (alpha = 21 h 03 m, delta = -48 deg 19 arcmin, 1950) looks deceptively like a late-type barred spiral with a weak, broken ring surrounding the bar. However, the bar shows a straight, splitting dust lane, atypical of normal bars but just like what is seen in an edge-on spiral galaxy. In this paper, we use CCD images to show that the apparent bar is indeed likely to be an edge-on galaxy, possibly of Hubble type Sb. The object is part of a group of nine galaxies at a distance of 47 Mpc, and from the photometry we find that the edge-on component has a low luminosity, corresponding to a corrected absolute blue magnitude of M(0)B = -18.0 (for H0 = 100). The outer spiral part is asymmetric and may be perturbed by one or both of the neighboring large spirals, ESO 235-55 and ESO 235-57. Since we can find no evidence for an independent bulge or nucleus of this part, we believe that ESO 235-58 is not simply a case of superposition of two unrelated objects, but instead is an interacting galaxy of the type related to polar rings. This interpretation is supported by preliminary single-dish H I observations and published optical spectroscopy. Here we present mainly B-band images, a B-I color index map, an unsharp-masked image, integrated parameters, and luminosity profiles of the object to highlight its structural properties.

  10. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  11. Vision-based Lane-Vehicle Detection and Tracking

    NASA Astrophysics Data System (ADS)

    Lim, King Hann; Seng, Kah Phooi; Ang, Li-Minn; Chin, Siew Wen

    2009-10-01

    This chapter presents a vision-based lane-vehicle detection and tracking system comprising of (i) enhanced lane boundary detection, (ii) linear-parabolic lane region tracking, and (iii) vehicle detection with a proposed possible vehicle region verification. First, a road image is partitioned into sky and road region. Lane boundaries are then extracted from the road region using line model estimation without applying Hough Transform. These detected boundaries are tracked in consecutive video frames with possible edges scanning and linear-parabolic modeling. An approximate lane region is subsequently constructed with the predicted model parameters. By integrating the knowledge of lane region with vehicle detection, vehicle searching region is restricted to the road area so as to detect the shadow underneath a vehicle continuously with less interference to the road environment and non-vehicle structures. A self-adjusting bounding box is used to extract likely vehicle region for further verification. Besides horizontal symmetry detection, a vertical asymmetry measurement is presented to validate the extracted region and to obtain the center of frontal vehicle. Simulation results have revealed good performance of lane-vehicle detection and tracking system.

  12. COOL DUST IN THE OUTER RING OF NGC 1291

    SciTech Connect

    Hinz, J. L.; Engelbracht, C. W.; Skibba, R.; Montiel, E.; Crocker, A.; Calzetti, D.; Donovan Meyer, J.; Sandstrom, K.; Walter, F.; Groves, B.; Meidt, S. E.; Johnson, B. D.; Hunt, L.; Aniano, G.; Draine, B.; Murphy, E. J.; Armus, L.; Dale, D. A.; Galametz, M.; Kennicutt, R. C.; and others

    2012-09-01

    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 {mu}m. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 {+-} 0.3 K) is cooler than that of the inner galaxy (T = 25.7 {+-} 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge.

  13. Predicting high occupancy vehicle lane demand. Final report. Report for October 1994-June 1996

    SciTech Connect

    Dowling, R.G.; Billheimer, J.; Alexiadis, V.; May, A.D.

    1996-08-01

    The report provides: A review of the available literature and the experiences of public agencies with current methods for predicting the demand for HOV lanes; the recommended new methodology for predicting the demand for HOV lanes; and The data on existing HOV lane projects in the United States that was used to calibrate and validate the new HOV lane demand estimation methodology.

  14. The Northern Walker Lane Seismic Refraction Experiment

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Smith, S. B.; Thelen, W.; Scott, J. B.; Clark, M.

    2002-12-01

    We are developing a three-dimensional reference seismic velocity model for the western Great Basin region of Nevada and eastern California. The northern Walker Lane had not been characterized well by previous work. In May 2002 we collected a new crustal refraction profile from Battle Mountain, Nev. across western Nevada, the Reno area, Lake Tahoe, and the northern Sierra to Auburn, Calif. Mine blasts and earthquakes were recorded by 199 Texan instruments (loaned by the PASSCAL Instrument Center) extending across this more than 450-km-long transect. The seismic sources at the eastern end were mining blasts at Barrick's GoldStrike pit. We recorded additional blasts at the Florida Canyon and other mines between Lovelock and Battle Mountain, Nevada. The GoldStrike mine produced several ripple-fired blasts using 10,000-40,000 kg of ANFO each. First arrivals from the larger blasts are obvious to distances exceeding 250 km in the raw records. A M2.4 earthquake near Bridgeport, Calif. also produced pickable P-wave arrivals across at least half the transect, providing fan-shot data. We recorded only during working hours, and so missed an M4 earthquake that occurred at night. Events of M2 occurred during our recording to the west on the San Andreas fault near Pinnacles, Calif.; M3 events occurred near Portola and Mammoth Lakes, Calif. Arrivals from M5 events in the Mariana and Kuril Islands also appear in the records. Time-picks from these earthquakes may be possible after more work on synthetic-time modeling, data filtering, and display. We plan to record blasts at quarries in the western Sierra in future experiments, for a direct refraction reversal. We will compare our time picks against times generated from regional velocity models, to identify potential crustal and upper-mantle velocity anomalies. Such anomalies may be associated with the Battle Mountain heat-flow high, the northern Walker Lane belt, or the northern Sierran block.

  15. 30. TACOMA NARROWS BRIDGE, LOOKING EAST THROUGH TOLL LANES, 29 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. TACOMA NARROWS BRIDGE, LOOKING EAST THROUGH TOLL LANES, 29 AUGUST 1940. (ELDRIDGE, CLARK H. TACOMA NARROWS BRIDGE, TACOMA, WASHINGTON, FINAL REPORT ON DESIGN AND CONSTRUCTION, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  16. Predictors of Lane-Change Errors in Older Drivers

    PubMed Central

    Munro, Cynthia A.; Jefferys, Joan; Gower, Emily W.; Muñoz, Beatriz E.; Lyketsos, Constantine G.; Keay, Lisa; Turano, Kathleen A.; Bandeen-Roche, Karen; West, Sheila K.

    2011-01-01

    Objectives To determine the factors that predict errors in executing proper lane changes among older drivers. Design Cross-sectional analysis of data from a longitudinal study. Setting Maryland's Eastern Shore. Participants One thousand eighty drivers aged 67 to 87 enrolled in the Salisbury Eye Evaluation Driving Study. Measurements Tests of vision, cognition, health status, and self-reported distress and a driving monitoring system in each participant's car, used to quantify lane-change errors. Results In regression models, measures of neither vision nor perceived stress were related to lane-change errors after controlling for age, sex, race, and residence location. In contrast, cognitive variables, specifically performance on the Brief Test of Attention and the Beery-Buktenicka Test of Visual-Motor Integration, were related to lane-change errors. Conclusion The current findings underscore the importance of specific cognitive skills, particularly auditory attention and visual perception, in the execution of driving maneuvers in older individuals. PMID:20398113

  17. Sir William Arbuthnot Lane and His Contributions to Plastic Surgery.

    PubMed

    Breakey, Richard William F; Mulliken, John B

    2015-07-01

    Surgical subspecialties were just emerging at the turn of the 20th Century, before this time, general surgeons had to adjust their operative skills to address disorders throughout the body. Sir William Arbuthnot Lane was a British surgeon, whose restless mind led him to wander throughout the field of general surgery and beyond. Although controversial, he advanced in the repair of cleft lip and palate, introduced the "no touch" operative technique, internal fixation of fractures, and is credited as the first surgeon to perform open massage of the heart. During The Great War, he established the British Plastic Surgery unit at Sidcup and delegated the care of facial and jaw injuries to young Major Harold Gillies. Lane later founded The New Health Society, an organization that stimulated the natural food movement. Sadly, in his latter years Lane's thinking drifted further away from with the times and his professional credibility waned. Nevertheless, Lane's variegated life is of sufficient interest to deserve reassessment.

  18. Polymer delineation system. [Patent application: traffic lane lines

    DOEpatents

    Woolman, S.; Steinberg, M.

    1975-06-24

    A delineation system (traffic lane lines) for highways is described in which polymerizable substances are applied to existing or newly prepared highway pavements. The substances would contain a suitable pigment and may incorporate reflective elements.

  19. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. LOOKING 278°W - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  20. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    SciTech Connect

    Caputi, K. I.; Popping, G.; Spaans, M.; Michałowski, M. J.; Dunlop, J. S.; Krips, M.; Geach, J. E.; Ashby, M. L. N.; Huang, J.-S.; Fazio, G. G.; Koekemoer, A. M.; Castellano, M.; Fontana, A.; Santini, P.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galactic nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.

  1. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  2. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2010-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  3. The Walker Lane Belt in northeastern California

    SciTech Connect

    Grose, T.L.T. . Dept. of Geology and Geological Engineering)

    1993-04-01

    The Walker Lane Belt (WLB) has been suspected to significantly project NW-ward into NE CA from the Pyramid Lake-Honey Lake area which has been generally regarded as its northwestern terminus. Within the WLB, most of the exposed rocks are Miocene to Late Quaternary (10--0.1 Ma) volcanics, mainly andesitic, but significantly rhyolitic and basaltic. The Hayden Hill Au mine within a Mid-Miocene NNW-SSE volcanotectonic depression and the Quaternary NE-SW Eagle lake volcanotectonic depression are confined within the WLB. Most of the faults are high-angle normal and right normal, W-dipping, NW- to N-trending, and locally left-stepping en echelon, and 2 to 18 km long. Dip slip varies from 10 to 200 m. Strike slip across the entire zone seems impossible to determine, but probably is less than 20 km since Mid-Miocene. Many faults localize volcanic vents, though most do not appear to. Tectonic tilt of beds within fault blocks is less than 10[degree]. Fault activity and volcanism both continued at a slow rate from Mid-Miocene to Late Quaternary. The WLB in NE CA is a transitional boundary between the Sierra Nevada-Cascade arc on the southwest and the Basin and Range-Modoc Plateau on the northeast.

  4. Decametric modulation lanes as a probe for inner jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Rucker, Helmut O.

    2013-11-01

    We use the specific scintillations of jovian decametric radio sources (modulation lanes), which are produced by plasma inhomogeneities in the vicinity of that planet, to probe the inner magnetosphere of Jupiter. The positions and frequency drift of 1762 lanes have been measured on the DAM spectra from archives. A special 3D algorithm is used for space localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. As a result, the main regions of the lane formation are found: the Io plasma torus; the magnetic shell of the Gossamer Ring at Thebe and Amalthea orbits; and the region above the magnetic anomaly in the northern magnetosphere. It is shown that modulation lanes reveal the depleted magnetic tubes in practically unvisited, innermost regions of the jovian magnetosphere. The local and probably temporal plasma enhancement is found at the magnetic shell of Thebe satellite. Hence, the modulation lanes are a valuable instrument for remote sensing of those parts of jovian magnetosphere, which are not studied yet in situ.

  5. Global Dust Budgets of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2013-03-01

    Within galaxies, gas and dust are constantly exchanged between stars and the interstellar medium (ISM). The life-cycle of gas and dust is the key to the evolution of galaxies. Despite its importance, it is has been very difficult to trace the life-cycle of gas and dust via observations. The Spitzer Space Telescope and Herschel Space Observatory have provided a great opportunity to study the life-cycle of the gas and dust in very nearby galaxies, the Magellanic Clouds. AGB stars are more important contributors to the dust budget in the Large Magellanic Cloud (LMC), while in the Small Magellanic Cloud (SMC), SNe are dominant. However, it seems that the current estimates of the total dust production from AGB stars is insufficient to account for dust present in the ISM. Other dust sources are needed, and supernovae are promising sources. Alternatively the time scale of dust lifetime itself needs some revisions, potentially because they could be unevenly distributed in the ISM or clumps.

  6. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  7. Star formation in nuclear rings of barred-spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young

    2015-08-01

    Barred-spiral galaxies contain star-forming nuclear rings at their centers. Some rings show a well-defined azimuthal age gradient of star clusters along a ring, while others do not. Using hydrodynamic simulations with the prescriptions of star formation and feedback included, we study what control star formation occurring in the nuclear rings. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall along due to the bar growth, consuming most of the gas inside the bar region. On the other hand, models with spiral arms outside the bar region show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4-4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points, since star formation occurs preferentially in the contact points between a ring and dust lanes.

  8. Non-axisymmetric structure in the satellite dwarf galaxy NGC 2976: Implications for its dark/bright mass distribution and evolution

    SciTech Connect

    Valenzuela, Octavio; Hernandez-Toledo, Hector; Cano, Mariana; Pichardo, Bárbara; Puerari, Ivanio; Buta, Ronald; Groess, Robert

    2014-02-01

    We present the result of an extensive search for non-axisymmetric structures in the dwarf satellite galaxy of M81, NGC 2976, using multiwavelength archival observations. The galaxy is known to present kinematic evidence for a bisymmetric distortion; however, the stellar bar presence is controversial. This controversy motivated the possible interpretation of NGC 2976 as presenting an elliptical disk triggered by a prolate dark matter halo. We applied diagnostics used in spiral galaxies in order to detect stellar bars or spiral arms. The m = 2 Fourier phase has a jump around 60 arcsec, consistent with a central bar and bisymmetric arms. The CO, 3.6 μm surface brightness, and the dust lanes are consistent with a gas-rich central bar and possibly with gaseous spiral arms. The bar-like feature is offset close to 20° from the disk position angle, in agreement with kinematic estimations. The kinematic jumps related to the dust lanes suggest that the bar perturbation in the disk kinematics is non-negligible and the reported non-circular motions, the central gas excess, and the nuclear X-ray source (active galactic nucleus/starburst) might be produced by the central bar. Smoothed particle hydrodynamics simulations of disks inside triaxial dark halos suggest that the two symmetric spots at 130 arcsec and the narrow arms may be produced by gas at turning points in an elliptical disk, or, alternatively, the potential ellipticity can be produced by a tidally induced strong stellar bar/arms; in both cases the rotation curve interpretation is, importantly, biased. The M81 group is a natural candidate to trigger the bisymmetric distortion and the related evolution as suggested by the H I tidal bridge detected by Chynoweth et al. We conclude that both mechanisms, the gas-rich bar and spiral arms triggered by the environment (tidal stirring) and primordial halo triaxiality, can explain most of the NGC 2976 non-circular motions, mass redistribution, and nuclear activity

  9. THE GEOMETRY OF MASS OUTFLOWS AND FUELING FLOWS IN THE SEYFERT 2 GALAXY MRK 3

    SciTech Connect

    Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Jaffe, Y. L.; Deo, R. P.; Collins, N. R.

    2010-03-15

    We present a study of the resolved emission-line regions and an inner dust/gas disk in the Seyfert 2 galaxy Mrk 3, based on Hubble Space Telescope observations. We show that the extended narrow-line region (ENLR), spanning {approx}4 kpc, is defined by the intersection of the ionizing bicone of radiation from the active galactic nucleus (AGN) and the inner disk, which is not coplanar with the large-scale stellar disk. This intersection leads to different position and opening angles of the ENLR compared to the narrow-line region (NLR). A number of emission-line arcs in the ENLR appear to be continuations of dust lanes in the disk, supporting this geometry. The NLR, which consists of outflowing emission-line knots spanning the central {approx}650 pc, is in the shape of a backward S. This shape may arise from rotation of the gas, or it may trace the original fueling flow close to the nucleus that was ionized after the AGN turned on.

  10. Ultraviolet Imaging of the cD Galaxy in Abell 1795

    NASA Astrophysics Data System (ADS)

    Smith, Eric P.; Neff, Susan G.; Smith, Andrew M.; Stecher, Thedore P.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.

    1995-12-01

    We present an image of the Abell 1795 cD galaxy and its environment obtained with the Goddard Ultraviolet Imaging Telescope (UIT). Our ultraviolet (UV) image was obtained during the March 1995 Astro-2 Space Shuttle mission using a filter centered at ~ 1520 Angstroms/ (Delta lambda =354 Angstroms/). The ultraviolet image resulting from a 1310 second exposure has stellar images with ~ 5.0arcsec FWHM. We compare these data to published optical, radio (VLA) and archival HST observations. This richness class 2 cluster is known to contain a large cooling flow (dot {M} 300M_⊙ yr(-1) ) and its cD galaxy contains a relatively bright yet small radio source (4C26.42). Previous optical observations have shown the cD galaxy possesses a system of Hα filaments (van Breugel et al./ 1984, ApJ, 276, 79), whose surface brightness is consistent with models in which the emission--lines arise from radiatively regulated accretion (i.e. cooling X-ray gas). Broad-band optical investigations have revealed the presence of ``blue lobes'' near the cD galaxy center. These regions are posited to contain young stars formed via the interaction of a radio jet and the intercluster medium (McNamara & O'Connell 1993, AJ, 105, 417). The HST observations show the elliptical galaxy has an easily resolved dust lane structure near its center. The cD galaxy is very bright in the ultraviolet (m1520=15.1) and exhibits a strong radial color gradient with the center being bluer. Indeed, UV light is detected from the central 7.6arcsecx16 .1arcsec (8.4x17.7 kpc) which can be compared with the optical extents of 38arcsecx70 arcsec . We discuss the implications that our new UV data have for the high mass star formation rate, and examine how our photometry fits in with previous models for the unusual features present in the system. Most of the other cluster galaxies are not detected. We report photometry and predicted star formation rates for those that were seen along with upper limits for those galaxies not

  11. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense

  12. A new bus lane on urban expressway with no-bay bus stop

    NASA Astrophysics Data System (ADS)

    Tian, Zhao; Jia, Limin

    2016-01-01

    The sharp increase in residents and vehicles causes heavy traffic pressure in many cities. To ease traffic congestion, it has been the common sense that we should develop public transit system. The priority of the bus appears particularly necessary with the rapid development of the public transport system. The bus lane is an important embodiment of the bus priority. Focusing on the problem of the unreasonable dedicated bus lane (DBL) under the lower ratio of buses, this paper proposed a new bus lane with limited physical length. And this bus lane can reduce the lane-changing conflict caused by the buses and cars running on roads without bus lanes. Based on the cellular automata (CA) traffic flow model and the lane-changing behavior of the vehicle including the optional lane-changing and the mandatory lane-changing, a three-lane traffic model with an isolated no-bay bus stop is proposed. The ordinary three-lane traffic without a bus lane and the cases of traffic with a DBL or the proposed bus lane are simulated, and the comparisons in the form of the fundamental diagrams are made among them. It is shown that the no-bay bus stop can act as a bottleneck on the traffic flow because of the mandatory lane-changing behavior. Under a certain ratio of the bus number to the total vehicles number, (1) the traffic with the proposed bus lane has less lane-changing conflict and can provide higher traffic capacity than the ordinary traffic without a bus lane, (2) compared with the DBL, the proposed bus lane is advantageous in easing congestion on the ordinary lanes when the traffic flow is high and can avoid unreasonable allocation of the road resources.

  13. Development of crash modification factors for changing lane width on roadway segments using generalized nonlinear models.

    PubMed

    Lee, Chris; Abdel-Aty, Mohamed; Park, Juneyoung; Wang, Jung-Han

    2015-03-01

    This study evaluates the effectiveness of changing lane width in reducing crashes on roadway segments. To consider nonlinear relationships between crash rate and lane width, the study develops generalized nonlinear models (GNMs) using 3-years crash records and road geometry data collected for all roadway segments in Florida. The study also estimates various crash modification factors (CMFs) for different ranges of lane width based on the results of the GNMs. It was found that the crash rate was highest for 12-ft lane and lower for the lane width less than or greater than 12ft. GNMs can extrapolate this nonlinear continuous effect of lane width and estimate the CMFs for any lane width, not only selected lane widths, unlike generalized linear models (GLMs) with categorical variables. The CMFs estimated using GNMs reflect that crashes are less likely to occur for narrower lanes if the lane width is less than 12ft whereas crashes are less likely to occur for wider lanes if the lane width is greater than 12ft. However, these effects varied with the posted speed limits as the effect of interaction between lane width and speed limit was significant. The estimated CMFs show that crashes are less likely to occur for lane widths less than 12ft than the lane widths greater than 12ft if the speed limit is higher than or equal to 40mph. It was also found from the CMFs that crashes at higher severity levels (KABC and KAB) are less likely to occur for lane widths greater or less than 12ft compared to 12-ft lane. The study demonstrates that the CMFs estimated using GNMs clearly reflect variations in crashes with lane width, which cannot be captured by the CMFs estimated using GLMs. Thus, it is recommended that if the relationship between crash rate and lane width is nonlinear, the CMFs are estimated using GNMs.

  14. News and Views: Betelgeuse bubbles up dust; Hydrothermal activity on early asteroids; Is this a record? Galaxy evolution in 3D; LOFAR looks farther; IOPD makes plans

    NASA Astrophysics Data System (ADS)

    2011-08-01

    Red supergiant star Betelgeuse is surrounded by a vast halo of silicate and aluminium dust, visible in false colour in this infrared image from the European Southern Observatory's Very Large Telescope. This material may eventually form planets around a new star. Biochemical analysis of the Tagish Lake meteorites, some of the most pristine samples of carbonaceous chondrites known, suggests that much of the variation in organic matter between different meteorite samples can be ascribed to hydrothermal activity on meteorite parent bodies. European Southern Observatory astronomers have discovered the most distant quasar yet - and reckon it is one of the brightest objects in the early universe.

  15. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  16. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  17. Robust Lane Sensing and Departure Warning under Shadows and Occlusions

    PubMed Central

    Tapia-Espinoza, Rodolfo; Torres-Torriti, Miguel

    2013-01-01

    A prerequisite for any system that enhances drivers' awareness of road conditions and threatening situations is the correct sensing of the road geometry and the vehicle's relative pose with respect to the lane despite shadows and occlusions. In this paper we propose an approach for lane segmentation and tracking that is robust to varying shadows and occlusions. The approach involves color-based clustering, the use of MSAC for outlier removal and curvature estimation, and also the tracking of lane boundaries. Lane boundaries are modeled as planar curves residing in 3D-space using an inverse perspective mapping, instead of the traditional tracking of lanes in the image space, i.e., the segmented lane boundary points are 3D points in a coordinate frame fixed to the vehicle that have a depth component and belong to a plane tangent to the vehicle's wheels, rather than 2D points in the image space without depth information. The measurement noise and disturbances due to vehicle vibrations are reduced using an extended Kalman filter that involves a 6-DOF motion model for the vehicle, as well as measurements about the road's banking and slope angles. Additional contributions of the paper include: (i) the comparison of textural features obtained from a bank of Gabor filters and from a GMRF model; and (ii) the experimental validation of the quadratic and cubic approximations to the clothoid model for the lane boundaries. The results show that the proposed approach performs better than the traditional gradient-based approach under different levels of difficulty caused by shadows and occlusions. PMID:23478598

  18. Robust lane sensing and departure warning under shadows and occlusions.

    PubMed

    Tapia-Espinoza, Rodolfo; Torres-Torriti, Miguel

    2013-03-11

    A prerequisite for any system that enhances drivers' awareness of road conditions and threatening situations is the correct sensing of the road geometry and the vehicle's relative pose with respect to the lane despite shadows and occlusions. In this paper we propose an approach for lane segmentation and tracking that is robust to varying shadows and occlusions. The approach involves color-based clustering, the use of MSAC for outlier removal and curvature estimation, and also the tracking of lane boundaries. Lane boundaries are modeled as planar curves residing in 3D-space using an inverse perspective mapping, instead of the traditional tracking of lanes in the image space, i.e., the segmented lane boundary points are 3D points in a coordinate frame fixed to the vehicle that have a depth component and belong to a plane tangent to the vehicle's wheels, rather than 2D points in the image space without depth information. The measurement noise and disturbances due to vehicle vibrations are reduced using an extended Kalman filter that involves a 6-DOF motion model for the vehicle, as well as measurements about the road's banking and slope angles. Additional contributions of the paper include: (i) the comparison of textural features obtained from a bank of Gabor filters and from a GMRF model; and (ii) the experimental validation of the quadratic and cubic approximations to the clothoid model for the lane boundaries. The results show that the proposed approach performs better than the traditional gradient-based approach under different levels of difficulty caused by shadows and occlusions.

  19. Viability of remote sensing on two-lane roads

    SciTech Connect

    Wilmot, C.G.; Stopher, P.R.; Chen, X.; Vaikuntum, S.R.

    1998-01-01

    The objective of this study was to observe how successfully remote-sensing observations can be made on two-lane roads, to identify the factors that affect the success with which observations are made, and to quantify the relationship. The investigation involved both an empirical and a theoretical analysis. The empirical analysis included observation of the number of successful observations made at three sites in Baton Rouge, LA, under varying traffic conditions. The theoretical analysis included development of a simulation model of traffic on a two-lane road. It was found that approximately 800 successful observations per hour can be made on two-lane roads in urban areas. This is roughly 80% of the number achievable at single-lane sites. Factors affecting the number of successful observations on two-lane roads are volume, directional split, and traffic composition of the traffic stream. The impact of these traffic characteristics on successful observation was captured in a model that was able to explain 95% of the variation in the data observed in this study.

  20. A Study of Lane Detection Algorithm for Personal Vehicle

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuyuki; Watanabe, Kajiro; Ohkubo, Tomoyuki; Kurihara, Yosuke

    By the word “Personal vehicle”, we mean a simple and lightweight vehicle expected to emerge as personal ground transportation devices. The motorcycle, electric wheelchair, motor-powered bicycle, etc. are examples of the personal vehicle and have been developed as the useful for transportation for a personal use. Recently, a new types of intelligent personal vehicle called the Segway has been developed which is controlled and stabilized by using on-board intelligent multiple sensors. The demand for needs for such personal vehicles are increasing, 1) to enhance human mobility, 2) to support mobility for elderly person, 3) reduction of environmental burdens. Since rapidly growing personal vehicles' market, a number of accidents caused by human error is also increasing. The accidents are caused by it's drive ability. To enhance or support drive ability as well as to prevent accidents, intelligent assistance is necessary. One of most important elemental functions for personal vehicle is robust lane detection. In this paper, we develop a robust lane detection method for personal vehicle at outdoor environments. The proposed lane detection method employing a 360 degree omni directional camera and unique robust image processing algorithm. In order to detect lanes, combination of template matching technique and Hough transform are employed. The validity of proposed lane detection algorithm is confirmed by actual developed vehicle at various type of sunshined outdoor conditions.

  1. Fundamental design concepts in multi-lane smart electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Annaz, Fawaz Yahya

    2005-12-01

    The most fundamental concept in designing multi-lane smart electromechanical actuation systems, besides meeting performance requirements, is the realization of high integrity. The essential requirements for realizing high integrity (and in any safety-critical system) are hardware redundancy and intelligent monitoring. To correctly detect, identify, isolate and replace redundant components, an intelligent fault detection and fault isolation scheme is required. The effectiveness of any fault detection and fault isolation system is assessed by examining promptness of detection, sensitivity, missed fault detection, the rate of false alarms, and incorrect fault identification. These terms are very much dependent on the threshold values of the monitoring devices imbedded in the system. The main aim of this paper is to provide fundamental consolidation designs and monitoring schemes in different architectures. It will address single-type and two-type summing architectures and highlight feedback sensor integration and monitoring strategies in the former, and explore the suitability of different threshold setting methodologies such as a simulation-graphical based Monte Carlo method, decision theory and analysis of variance. The paper will also address other fundamentals that are essential at the design stage, such as control surface load estimation, force fight (between mismatch lanes) reduction through lane equalization, and threshold setting concepts (scheduled and unscheduled) in a multi-mode operation system. The analysis is based on a four-lane actuation system capable of driving aerodynamic and inertial loads (with two lanes failed) of an aileron control surface similar to that of the Sea Harrier.

  2. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  3. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  4. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  5. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  6. Violent interaction between the active galactic nucleus and the hot gas in the core of the galaxy cluster Sérsic 159-03

    NASA Astrophysics Data System (ADS)

    Werner, N.; Sun, M.; Bagchi, J.; Allen, S. W.; Taylor, G. B.; Sirothia, S. K.; Simionescu, A.; Million, E. T.; Jacob, J.; Donahue, M.

    2011-08-01

    We present a multiwavelength study of the energetic interaction between the central active galactic nucleus (AGN), the intracluster medium (ICM) and the optical emission-line nebula in the galaxy cluster Sérsic 159-03. We use X-ray data from Chandra, high-resolution X-ray spectra and ultraviolet (UV) images from XMM-Newton, Hα images from the Southern Astrophysics Research Telescope, Hubble Space Telescope optical imaging, and Very Large Array and Giant Metrewave Radio Telescope radio data. The cluster centre displays signs of powerful AGN feedback, which has cleared the central regions (r < 7.5 kpc) of a dense, X-ray-emitting ICM. X-ray spectral maps reveal a high-pressure ring surrounding the central AGN at a radius of r˜ 15 kpc, indicating an AGN-driven weak shock. The cluster harbours a bright, 44 kpc long Hα+[N II] filament extending from the centre of the cD galaxy to the north. Along the filament, we see low-entropy, high-metallicity, cooling X-ray gas. The gas in the filament has most likely been uplifted by 'radio mode' AGN activity and subsequently stripped from the galaxy due to its relative southward motion. Because this X-ray gas has been removed from the direct influence of the AGN jets, part of it cools and forms stars as indicated by the observed dust lanes, molecular and ionized emission-line nebulae and the excess UV emission.

  7. Limits on Intergalactic Dust during Reionization

    NASA Astrophysics Data System (ADS)

    Imara, N.; Loeb, A.

    2016-01-01

    In this Letter, we constrain the dust-to-gas ratio in the intergalactic medium (IGM) at high redshifts. We employ models for dust in the local universe to constrain the dust-to-gas ratio during the epoch of reionization at redshifts z ˜ 6-10. The observed level of reddening of high redshift galaxies implies that the IGM was enriched to an intergalactic dust-to-gas ratio of less than 3% of the Milky Way value by a redshift of z = 10.

  8. LENTICULAR GALAXIES AND THEIR ENVIRONMENTS

    SciTech Connect

    Van den Bergh, Sidney

    2009-09-10

    It is widely believed that lenticular (S0) galaxies were initially spirals from which the gas has been removed by interactions with hot cluster gas, or by ram pressure stripping of cool gas from spirals that are orbiting within rich clusters of galaxies. However, problems with this interpretation are that (1) some lenticulars, such as NGC 3115, are isolated field galaxies rather than cluster members. (2) The distribution of flattening values of S0 galaxies in clusters, in groups, and in the field are statistically indistinguishable. This is surprising because one might have expected most of the progenitors of field S0 galaxies to have been flattened late-type galaxies, whereas lenticulars in clusters are thought to have mostly been derived from bulge-dominated early-type galaxies. (3) It should be hardest for ram pressure to strip massive luminous galaxies with deep potential wells. However, no statistically significant differences are seen between the luminosity distributions of early-type Shapley-Ames galaxies in clusters, groups, and in the field. (4) Finally both ram pressure stripping and evaporation by hot intracluster gas would be most efficient in rich clusters. However, the small number of available data in the Shapley-Ames sample appears to show no statistically significant differences between the relative frequencies of dust-poor S0{sub 1} and dust-rich S0{sub 3} galaxies in clusters, groups, and in the field. It is tentatively concluded that ram pressure stripping and heating by intracluster gas, may not be the only evolutionary channels that lead to the formation of lenticular galaxies. It is speculated that gas starvation, or gas ejection by active nuclei, may have played a major role in the formation of a significant fraction of all S0 galaxies.

  9. Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Baldry, I. K.; Alpaslan, M.; Bauer, A.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Conselice, C.; Driver, S. P.; Hopkins, A. M.; Jones, D. H.; López-Sánchez, Á. R.; Loveday, J.; Meyer, M. J.; Moffett, A.

    2015-06-01

    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s-1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter `Ef' classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys.

  10. Achievement of alternative configurations of vehicles on multiple lanes.

    PubMed

    Nishi, Ryosuke; Miki, Hiroshi; Tomoeda, Akiyasu; Nishinari, Katsuhiro

    2009-06-01

    Heavy traffic congestion occurs daily at merging sections on a highway. For relieving this congestion, possibility of alternative configuration of vehicles on multiple-lane road at a merging area is discussed in this paper. This is the configuration where no vehicles move aside on the other lane. It has merit in making a smooth merging at an intersection or a junction due to the so-called "zipper effect." We show, by developing a cellular automaton model for multiple lanes, that this configuration is achieved by simple local interactions between vehicles neighboring each other. The degree of the alternative configuration in terms of the spatial increase in parallel driving length is studied by using both numerical simulations and mean-field theory. We successfully construct a theoretical method for calculating this degree of the alternative configuration by using cluster approximation. It is shown that the theoretical results coincide with those of the simulations very well.

  11. Indiana lane merge system for work zones on rural freeways

    SciTech Connect

    Tarko, A.P.; Shamo, D.; Wasson, J.

    1999-10-01

    The Indiana Department of Transportation and Purdue University have been investigating and implementing a novel traffic control system at two-lane freeway work zone entries to reduce the number of aggressive land changes close to the lane taper. The system creates a variable no passing zone through a series of dynamic ``DO NOT PASS'' signs activated in response to congestion detected on the continuous land. The Purdue team investigated the operational effect of the system to develop preliminary guidelines for system deployment. The research results indicate that the system improves drivers' behavior toward more safety and reduces travel time in the continuous lane. The simulation model developed at Purdue was used to generate data and formulate rules for system deployment.

  12. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  13. NGC 7217: A Spheroid-dominated, Early-Type Resonance Ring Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.; Wakamatsu, K.; Sofue, Y.; Tomita, A.

    1995-09-01

    . The ring is also where we find the H I gas to be concentrated. The galaxy is very gas poor (MH I/L0B = 0.024 Msun/Lsun, B for its morphological type. The H I rotational velocities agree well with published and our new Hα-values. Fourier analysis reveals a very weak possible oval distortion in the stellar mass distribution. Using the I-band light distribution to define the potential, we carried out simulations of gas streaming with no self- gravity. A model with a bulge-to-disk mass ratio of 2.4 reproduces the observed optical ring morphology very well. This suggests to us that in spite of the extreme weakness of the observed nonaxisymmetry of this galaxy, this nonaxisymmetry is still sufficient to torque the gas into the usual resonance rings identified in other, more obviously barred galaxies. An additional noteworthy feature that we have identified in a B - I color index map is a symmetric, nuclear dust ring 17" in angular diameter. Other dust lanes are seen mainly on the near side of the galaxy.

  14. The Secret Lives of Galaxies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  15. Let There Be Dust

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.

    2011-09-01

    Most of the ordinary matter in the universe is hydrogen and helium. In galaxies such as ours, heavier elements make up only about 1% of the mass, and about half of this is tied up in small particles, termed dust grains, that range in size from a nanometer to a fraction of a micrometer. Interstellar dust contains an appreciable fraction of the carbon and most of the refractory elements, such as magnesium, silicon, and iron. Because these particles are comparable in size to the wavelength of light, they are very effective at absorbing it. As a result, the Milky Way is much fainter in the night sky than it would otherwise be. This absorbed light is reradiated, but because the dust in the interstellar medium is so cold - about 20° above absolute zero - it is radiated at very long wavelengths, at around 200 μm. Such radiation can be observed only from space, and the European Space Agency's Herschel Space Observatory was designed to do just that. On page 1258 of this issue, Matsuura et al. (1) present Herschel observations showing that substantial amounts of dust are created in the aftermath of a supernova, the titanic explosion that terminates the life of a massive star.

  16. Dust Emission from Stephan's Quintet

    NASA Astrophysics Data System (ADS)

    Natale, G.; Tuffs, R.; Popescu, C.; Xu, C. K.; Fischera, J.; Lu, N.; Appleton, P.; Dopita, M.; Sulentic, J.; Gao, Y.; Yun, M.; Reach, W.; Boulanger, F.; Ogle, P.; Duc, P. A.; Des Forets, G. P.

    2010-10-01

    We present new infrared images of the prototype of compact galaxy groups, Stephan’s Quintet, taken with Spitzer/MIPS at 24, 70 and 160μm, and compare these with existing images at X-ray (Trinchieri et al. 2005, ,hereafter T05), UV/optical (Xu et al. 2005) and radio wavelengths (Williams et al. 2002) as well as with archival Spitzer/IRAC imaging at 8μ m. Morphological decomposition of the new images reveal an extended (on scales of up to 70 kpc) component of FIR emission which is roughly correlated with diffuse soft X-ray emission arising from the SHOCK and HALO regions (see T05). This correlation could be due, in principle, to collisional heating of dust embedded in X-ray plasma. If active, this mechanism would determine a significant shortening of the gas cooling time scale because the luminosity of the X-ray correlated infrared emission is about 70 times higher than the X-ray luminosity. However the color of dust emission and the inferred dust to gas ratio, comparable to the solar neighbourhood value, are difficult to explain in terms of purely collisionally heated dust. It is plausible that dust in colder and denser gas phases, heated by the diffuse intergalactic radiation field and/or local radiation fields from embedded young stars, is the major source of the apparently extended emission. The presence of the extended infrared emission, not related to the main bodies of the galaxies, is probably a direct consequence of the interaction induced decoupling between gas and stars in Stephan’s Quintet. Gas displacement has also modified the location of star formation sites (as traced by compact sources in the Spitzer images and the UV) compared to the case of isolated galaxies. In Stephan’s Quintet most of the recent star formation appears to have occurred at the peripheries of the galaxies, extending into the intergalactic medium.

  17. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  18. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  19. Gamma-ray Burst Afterglows as Probes of Environment and Blastwave Physics: Absorption by Host Galaxy Gas and Dust, Circumburst Media and the Distribution of P

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. a. M. J.; Curran, P.; Rol, E.; Wiersema, K.; Kouveliotou, C.; vanderHorst, A. J.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards a sample of 10 Gamma-ray Bursts observed by BeppoSAX from simultaneous fits to X-ray, optical and IR data, in counts space and including the effects of metallicity. For half the afterglows the best-fitting model to the SED includes SMC-like extinction (as opposed to LMC or MW) and in one LMC-like extinction, and in no cases is there a preference for MW-like extinction. Gas-to-dust ratios generally do not match those of the 3 standard and most well-known extinction models of SMC, LMC and MW, but tend to be higher. We compare the results from this method to those of previous works using other methods. We constrain the jet models for a subsample of the bursts by constraining the cooling break position and power law spectral slopes, allowing the injected electron energy index to be measured. We derive secure values of p from our spectral fits and comparison with the temporal optical and X-ray slopes for 4 afterglows. The mean of these single value, suggesting that either external factors such as circumburst medium play a strong role or that the microphysics is not identical for each GRB. For GRB 971214 we find that the circumburst medium has a wind-like density profile and the cooling frequency appears to be moving to higher frequencies.

  20. Featured Image: Reddened Stars Reveal Andromeda's Dust

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    As distant light travels on a path toward us, it can be absorbed by intervening, interstellar dust. Much work has been done to understand this dust extinction in the Milky Way, providing us with detailed information about the properties of the dust in our galaxy. Far less, however, is known about the dust extinction of other galaxies. The image above, taken with the ultraviolet space telescope GALEX, identifies the locations of four stars in the nearby Andromeda galaxy (click for a full view!) that are reddened due to extinction of their light by dust within Andromeda. In a recent study led by Geoffrey Clayton (Louisiana State University), new, high-signal-to-noise spectra were obtained for these four stars using Hubbles Space Telescope Imaging Spectrograph. These observations have allowed the authors to construct dust extinction curves to carefully study the nature of Andromedas interstellar dust. To learn about the results, see the paper below.CitationGeoffrey C. Clayton et al 2015 ApJ 815 14. doi:10.1088/0004-637X/815/1/14

  1. Study on the effects of driver's lane-changing aggressiveness on traffic stability from an extended two-lane lattice model

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing

    2015-07-01

    In this paper, the effects of driver's lane-changing aggressiveness on the stability of traffic flow of two-lane are studied by using a generalized lattice hydrodynamic model with consideration of lane-changing aggressiveness of each individual. The effect of lane-changing aggressiveness parameter on traffic stability is derived through employing linear stability analysis with finding that the driver's lane-changing aggressiveness has an important impact on the stability of the traffic flow in a two-lane system. To describe the phase transition, the mKdV equation near the critical point is derived by using the reductive perturbation method, with obtaining the dependence of the propagation kink solution for traffic jams on the lane-changing aggressiveness. It can be concluded from the phase diagram of stability criterion that the higher lane-changing aggressiveness leads to a more stable traffic flow. In addition, the stabilizing effect of the optimal current difference weakens gradually with the increasing of the lane-changing aggressiveness adjusting coefficient, even vanishes when the value of lane-changing aggressiveness adjusting coefficient is greater than a critical value. Theoretical conclusions are also confirmed by the numerical simulations.

  2. Evaluation of the cost effectiveness of HOV (high-occupancy vehicle) lanes. Final report

    SciTech Connect

    Ulberg, C.

    1987-07-01

    The cost effectiveness of high-occupancy vehicle (HOV) lanes was analyzed by comparing the costs and benefits of existing HOV lanes with the hypothetical alternatives of doing nothing or adding a lane for general traffic. Three specific sites in the Seattle area were studied. A life-cycle costing approach was used. The main result of the study was that for the three locations studied the construction of HOV lanes was the most cost-effective alternative.

  3. Ammonia thermometry of star-forming galaxies

    SciTech Connect

    Mangum, Jeffrey G.; MacGregor, Meredith; Svoboda, Brian E.; Darling, Jeremy; Henkel, Christian; Menten, Karl M.; Schinnerer, Eva E-mail: mmacgreg@fas.harvard.edu E-mail: jdarling@origins.colorado.edu E-mail: kmenten@mpifr-bonn.mpg.de

    2013-12-10

    With a goal toward deriving the physical conditions in external galaxies, we present a study of the ammonia (NH{sub 3}) emission and absorption in a sample of star-forming systems. Using the unique sensitivities to kinetic temperature afforded by the excitation characteristics of several inversion transitions of NH{sub 3}, we have continued our characterization of the dense gas in star-forming galaxies by measuring the kinetic temperature in a sample of 23 galaxies and one galaxy offset position selected for their high infrared luminosity. We derive kinetic temperatures toward 13 galaxies, 9 of which possess multiple kinetic temperature and/or velocity components. Eight of these galaxies exhibit kinetic temperatures >100 K, which are in many cases at least a factor of two larger than kinetic temperatures derived previously. Furthermore, the derived kinetic temperatures in our galaxy sample, which are in many cases at least a factor of two larger than derived dust temperatures, point to a problem with the common assumption that dust and gas kinetic temperatures are equivalent. As previously suggested, the use of dust emission at wavelengths greater than 160 μm to derive dust temperatures, or dust heating from older stellar populations, may be skewing derived dust temperatures in these galaxies to lower values. We confirm the detection of high-excitation OH {sup 2}Π{sub 3/2} J = 9/2 absorption toward Arp 220. We also report the first detections of non-metastable NH{sub 3} inversion transitions toward external galaxies in the (2,1) (NGC 253, NGC 660, IC 342, and IC 860), (3,1), (3,2), (4,3), (5,4) (all in NGC 660), and (10,9) (Arp 220) transitions.

  4. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  5. Radio and Millimeter Properties of z~5.7 Lyα Emitters in the COSMOS Field: Limits on Radio AGNs, Submillimeter Galaxies, and Dust Obscuration

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Murayama, T.; Wang, R.; Schinnerer, E.; Taniguchi, Y.; Smolčić, V.; Bertoldi, F.; Ajiki, M.; Nagao, T.; Sasaki, S. S.; Shioya, Y.; Aguirre, J. E.; Blain, A. W.; Scoville, N.; Sanders, D. B.

    2007-09-01

    We present observations at 1.4 and 250 GHz of the z~5.7 Lyα emitters (LAEs) in the COSMOS field found by Murayama et al. At 1.4 GHz there are 99 LAEs in the lower noise regions of the radio field. We do not detect any individual source down to 3 σ limits of ~30 μJy beam-1 at 1.4 GHz, nor do we detect a source in a stacking analysis, to a 2 σ limit of 2.5 μJy beam-1. At 250 GHz we do not detect any of the 10 LAEs that are located within the central regions of the COSMOS field covered by MAMBO (20'×20') to a typical 2 σ limit of S250<2 mJy. The radio data imply that there are no low-luminosity radio AGNs with L1.4>6×1024 W Hz-1 in the LAE sample. The radio and millimeter observations also rule out any highly obscured, extreme starbursts in the sample, i.e., any galaxies with massive star formation rates >1500 Msolar yr-1 in the full sample (based on the radio data), or 500 Msolar yr-1 for the 10% of the LAE sample that falls in the central MAMBO field. The stacking analysis implies an upper limit to the mean massive star formation rate of ~100 Msolar yr-1. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; the IRAM 30 m telescope; and the Caltech Submillimeter Observatory.

  6. Gap Acceptance During Lane Changes by Large-Truck Drivers—An Image-Based Analysis

    PubMed Central

    Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J.; Zhao, Ding; Peng, Huei; Pan, Christopher S.

    2016-01-01

    This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing. PMID:26924947

  7. Teaching "The Children of Willesden Lane." [DVD Series

    ERIC Educational Resources Information Center

    Annenberg Media, 2006

    2006-01-01

    This unique set of multimedia resources for middle and high school teachers of history, literature, social studies, and the arts, provides background, lessons, and ideas for studying and discussing the book "The Children of Willesden Lane" (2002). This book is based on the true story of Lisa Jura, a young girl who escaped Nazi persecution, as told…

  8. Sperm cryopreservation of lane snapper Lutjanus synagris (Linnaeus, 1758).

    PubMed

    Sanches, E G; Oliveira, I R; Serralheiro, P C S; Cerqueira, V R

    2015-08-01

    This study aims developing and evaluate a protocol of semen cryopreservation of the lane snapper Lutjanus synagris. Firstly, sperm motility rate, motility time, density and spermatocrit were appraised to characterize the sperm quality of the lane snapper. The effect of three extenders with distinct ionic compositions and pH values combined with seven concentrations of cryoprotector dimethylsulfoxide (0; 2.5; 5.0; 7.5; 10.0; 12.5 e 15.0%), five cooling rates (110, 90, 60, 45 e 30°C -min), nine equilibration time (1; 2,5; 5; 10; 15; 20; 25; 30 e 60 minutes) e five dilutions ratio (1:1; 1:3; 1:6; 1:10 e 1:20) on the sperm motility rate and motility time were analyzed. Fertilization test was accomplished to evaluate the viability of the cryopreserved sperm. The higher sperm motility rate and motility time (P<0.05) was achieved by combining extender with pH 8.2 with 10% concentration of dimethylsulfoxide and cooling rate 60°C -min, 1 minute of equilibration time and 1:3 (v/v) dilution ratio. The use of cryopreserved sperm presented fertilization rates >60% validating the present protocol for lane snapper. The cryoconserved sperm of lane snapper is a viable alternative, being possible to maintain appropriate sperm viability.

  9. Timber Lane Tales: Problem-Centered Learning and Technology Integration.

    ERIC Educational Resources Information Center

    Norton, Priscilla; Sprague, Debra

    This exploratory study examined a field-based project in which preservice teacher candidates and faculty collaborated to implement a problem-centered, technology integrated curriculum for a multiage (4th, 5th, and 6th grade) intersession at Timber Lane Elementary School. Content included detective skills such as fingerprinting and handwriting…

  10. 211. EQUIPMENT LAYING FIRST LANE OF CONCRETE PAVEMENT NEAR THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    211. EQUIPMENT LAYING FIRST LANE OF CONCRETE PAVEMENT NEAR THE CAPITAL OVERLOOK, 1931. NOTE THE BEGINNING OF BITUMINOUS TYPE OF TEMPORARY PAVEMENT TO ALLOW FOR SETTLEMENT IN HYDRAULIC FILL AREAS. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  11. 8 CFR 287.11 - Pre-enrolled Access Lane.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designated traffic lane located at a Service checkpoint, which, when in operation, may be used exclusively by... participant must have that device removed by the Service at the PAL enrollment center prior to sale or... enrollment center where the application is filed. Written notice of the decision on the application shall...

  12. 8 CFR 287.11 - Pre-enrolled Access Lane.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designated traffic lane located at a Service checkpoint, which, when in operation, may be used exclusively by... participant must have that device removed by the Service at the PAL enrollment center prior to sale or... enrollment center where the application is filed. Written notice of the decision on the application shall...

  13. 9. ACCESS ROAD FOR NORTHBOUND PARKWAY LANES AT AVENUE 60. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. ACCESS ROAD FOR NORTHBOUND PARKWAY LANES AT AVENUE 60. NOTE RAILING AT LEFT FOR BRIDGE SEEN IN CA-265-T-8. LOOKING 308°N. - Arroyo Seco Parkway, Avenue 60 Bridge, Milepost 28.76, Los Angeles, Los Angeles County, CA

  14. 8 CFR 287.11 - Pre-enrolled Access Lane.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... States citizens and members of the classes of aliens which the Commissioner of the Service or her... United States Government at all times and must be surrendered upon request of the Service. Enrolled... designated traffic lane located at a Service checkpoint, which, when in operation, may be used exclusively...

  15. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. NOTE IRRIGATION AND DRAINAGE FEATURES AT RIGHT. LOOKING 248°WSW - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  16. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  17. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... April 11, 2004 (top panels) contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). ... Apr 11 and May 13, 2004 Images:  Dust Storm location:  Middle East thumbnail:  ...

  18. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  19. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  20. The dustier early-type galaxies deviate from late-type galaxies' scaling relations

    NASA Astrophysics Data System (ADS)

    Lianou, S.; Xilouris, E.; Madden, S. C.; Barmby, P.

    2016-09-01

    Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared Herschel and either H I or CO detection (or both). We derive their star formation rates (SFRs), stellar masses and dust masses via modelling their spectral energy distributions. We combine these with literature information on their atomic and molecular gas properties, in order to relate their star formation, total gas mass and dust mass on global scales. The ETGs deviate from the dust mass-SFR relation and the Schmidt-Kennicutt relation that SDSS star-forming galaxies define: compared to SDSS galaxies, ETGs have more dust at the same SFR, or less SFR at the same dust mass. When placing them in the M⋆-SFR plane, ETGs show a much lower specific SFR as compared to normal star-forming galaxies. ETGs show a large scatter compared to the Schmidt-Kennicutt relation found locally within our Galaxy, extending to lower SFRs and gas mass surface densities. Using an ETG's SFR and the Schmidt-Kennicutt law to predict its gas mass leads to an underestimate. ETGs have similar observed-gas-to-modelled-dust mass ratios to star-forming galaxies of the same stellar mass, as well as they exhibit a similar scatter.

  1. A panchromatic view of M82: Dust properties

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio

    2015-08-01

    A combination of NUV and optical imaging of M82, the nearest star-bursting galaxy, allows us to probe the properties of the dust, both in the interstellar medium of the galaxy, as well as the dust entrained in the extraplanar gas blown by the super wind. We compare the photometric observations with sets of population synthesis models to derive the characteristics of the illumination source, and compare the results with simple dust models, leading us to conclude that the dust entrained in the extraplanar region is made up of small grains. In the galaxy, the extinction law reveals a strong presence of an NUV bump at 2175A, at odds with the standard extinction law for star-forming systems. We compare our results with the recent analyses of the dust in the region around SN2014J (hosted by M82).

  2. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  3. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  4. THE SPIRAL GALAXY M100 AS SEEN WITH THE HUBBLE'S IMPROVED VISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    are expected to provide a crucial measurement of this much needed scale. (Only Space Telescope can make these types of observations. Cepheids are too faint and the resolution too poor, as seen from ground-based telescopes, to separate the images in such a crowded region of a distant galaxy.) The picture is chevron-shaped because it is a mosaic of the three wide field cameras and the planetary camera which make up the WFPC-2. The three wide field detectors in the camera reveal individual stars and filamentary dust lanes in the outer arms of the majestic spiral galaxy. The instrument's planetary camera image (upper right) resolves complex structure in the core of the galaxy, which is the site of vigorous star formation. The image was taken on December 31, 1993. The field of view is about two and a half arc minutes across. PHOTO RELEASE NO.: STScI-PR94-02

  5. Two-lane traffic simulations with a blockage induced by an accident car

    NASA Astrophysics Data System (ADS)

    Zhu, H. B.; Lei, L.; Dai, S. Q.

    2009-07-01

    Based on the two-lane traffic model proposed by Chowdhury et al., a highway traffic model with a blockage induced by an accident car is proposed, in which both symmetric lane changing rules and asymmetric lane changing rules are adopted. The fundamental diagrams and spatial-temporal profiles are presented after the numerical simulation and the jam transition is studied. It is shown that the accident car not only causes a local jam behind the accident car, but also causes vehicles to cluster in the bypass lane. The asymmetric lane changing rules are more advantageous in reducing the local jam than the symmetric lane changing rules when the accident car is in the right lane, and the symmetric lane changing rules are superior when the accident car is in the left lane. Furthermore the curves of lane-changing frequency against the total density are given. It is found that the vehicles will change lane more frequently when traffic is inhomogeneous with different types of vehicle or with an accident car.

  6. Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability

    NASA Astrophysics Data System (ADS)

    Tian, Chuan; Sun, Di-Hua

    2010-12-01

    Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption.

  7. Star formation bimodality in early-type galaxies

    SciTech Connect

    Amblard, A.; Riguccini, L.; Temi, P.; Im, S.; Fanelli, M.; Serra, P.

    2014-03-10

    We compute the properties of a sample of 221 local, early-type galaxies with a spectral energy distribution (SED) modeling software, CIGALEMC. Concentrating on the star-forming (SF) activity and dust contents, we derive parameters such as the specific star formation rate (sSFR), the dust luminosity, dust mass, and temperature. In our sample, 52% is composed of elliptical (E) galaxies and 48% of lenticular (S0) galaxies. We find a larger proportion of S0 galaxies among galaxies with a large sSFR and large specific dust emission. The stronger activity of S0 galaxies is confirmed by larger dust masses. We investigate the relative proportion of active galactic nuclei (AGNs) and SF galaxies in our sample using spectroscopic Sloan Digital Sky Survey data and near-infrared selection techniques, and find a larger proportion of AGN-dominated galaxies in the S0 sample than the E one. This could corroborate a scenario where blue galaxies evolve into red ellipticals by passing through an S0 AGN active period while quenching its star formation. Finally, we find a good agreement comparing our estimates with color indicators.

  8. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  9. Detection of ultraviolet halos around highly inclined galaxies

    SciTech Connect

    Hodges-Kluck, Edmund; Bregman, Joel N.

    2014-07-10

    We report the discovery of diffuse ultraviolet light around late-type galaxies out to 5-20 kpc from the midplane using Swift and GALEX images. The emission is consistent with the stellar outskirts in the early-type galaxies but not in the late-type galaxies, where the emission is quite blue and consistent with a reflection nebula powered by light escaping from the galaxy and scattering off dust in the halo. Our results agree with expectations from halo dust discovered in extinction by Ménard et al. to within a few kpc of the disk and imply a comparable amount of hot and cold gas in galaxy halos (a few× 10{sup 8} M{sub ☉} within 20 kpc) if the dust resides primarily in Mg II absorbers. The results also highlight the potential of UV photometry to study individual galaxy halos.

  10. Interpreting Central Surface Brightness and Color Profiles in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Wise, Michael W.

    1996-01-01

    Hubble Space Telescope imagery has revealed dust features in the central regions of many (50%--80%) nearby bright elliptical galaxies. If these features are an indication of an underlying smooth diffuse dust distribution, then the interpretation of central surface brightness and color profiles in elliptical galaxies becomes significantly more difficult. In this Letter, diagnostics for constraining the presence of such an underlying central dust distribution are presented. We show that easily detectable central color gradients and flattened central surface brightness profiles can be induced by even small amounts of smoothly distributed dust (~100 M⊙). Conversely, combinations of flat surface brightness profiles and flat color gradients or steep surface brightness profiles and steep color gradients are unlikely to be caused by dust. Taken as a whole, these results provide a simple observational tautology for constraining the existence of smooth diffuse dust distributions in the central regions of elliptical galaxies.

  11. Is the Milky Way an interacting galaxy

    SciTech Connect

    Verschuur, G.L.

    1988-01-01

    The Milky Way Galaxy is an interacting galaxy, according to radio astronomers. The disk of stars we live in is linked to the Magellanic Clouds, our Galaxy's satellites, by an enormous arc of neutral hydrogen called the Magellanic Stream. These startling facts have recently been established by piecing together many seemingly unrelated bits of evidence into a new picture of our Milky Way Galaxy. The discoveries that led up to this grand picture of the Milky Way's interaction data back over fifty years to create one of the best detective stories in modern astronomy. The realization that ours is an interacting galaxy is only the latest result of an intensive effort to map the Milky Way. Since the 1930s, astronomers have tried to discover just how our Galaxy is built. Charting the Milky Way hasn't been easy, because we are inside it and our view of the Milky Way is obscured by cosmic dust. This dust creates a region called the zone of avoidance, a band centered along the galactic plane that blocks visible light from objects beyond nearby objects in the Galaxy. Thus radio astronomers have become the Milky Way mappers because cosmic radio waves penetrate the dust and reveal the grand scheme of our Galaxy.

  12. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm   ... CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, ...

  13. Using Spinning Dust Emission To Constrain The Evolution Of Dust Grains In Cold Clumps

    NASA Astrophysics Data System (ADS)

    Tibbs, C.; Paladini, R.; Cleary, K.; Grainge, K.; Muchovej, S.; Pearson, T.; Perrott, Y.; Rumsey, C.; Scaife, A.; Stevenson, M.; Villadsen, J.

    Within many molecular clouds in our Galaxy there are cold, dense regions known as cold clumps in which stars form. These dense environments provide a great location in which to study dust grain evolution. Given the low temperatures (˜10-15 K) and high densities (˜105 cm-3 ), these environments are dark at mid-infrared (IR) wavelengths and emit strongly at wavelengths ≥160 µm. The lack of mid-IR emission can be attributed to one of two reasons: i) a deficit of the small dust grains that emit stochastically at mid-IR wavelengths; or ii) small dust grains are present, but due to the high densities, the stellar photons cannot penetrate deep enough into the clumps to excite them. Using mid-IR observations alone it is impossible to distinguish between these two scenarios. However, by using spinning dust emission at cm wavelengths it is possible to break this degeneracy, because if small dust grains are present in these clumps, then even though stellar photons cannot excite them to emit at mid-IR wavelengths, these dust grains will be spunup by collisions and hence emit spinning dust radiation. If spinning dust were detected in these clumps it would prove that there are small dust grains present and that the lack of mid-IR emission is due to a lack of stellar photons. Conversely, a lack of spinning dust emission would indicate a deficit of small dust grains in these clumps. Since small dust grains require harsh radiation fields to be destroyed, a lack of small dust grains is likely a result of dust grain coagulation. With this in mind, we present preliminary results illustrating our method of using spinning dust observations to determine the evolution of small dust grains in these environments.

  14. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  15. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The

  16. Microscopic modeling of multi-lane highway traffic flow

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  17. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  18. Molecular Gas, Dust, and Star Formation in the Barred Spiral NGC 5383

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Vogel, Stuart N.; Teuben, Peter J.

    2000-03-01

    We have mapped the barred spiral NGC 5383 using the Berkeley-Illinois-Maryland Association millimeter-wave array for observations of CO (J=1-0), the Palomar 1.5 m telescope for Hα and optical broadband, and the Kitt Peak 1.3 m telescope for near-IR broadband. We compare the observed central gas and dust morphology to the predictions of recent hydrodynamic simulations calculated using the Piner, Stone, and Teuben code. In the nuclear region, our observations reveal three peaks lying along an S-shaped gas and dust distribution: two of these are at the inner end of offset bar dust lanes at the presumed location of the inner Lindblad resonance (ILR), and the other lies closer to the nucleus. In contrast, the model predicts a circumnuclear ring, not the observed S-shaped distribution; moreover, the predicted surface density contrast between the central gas accumulation and the bar dust lanes is an order of magnitude larger than observed. These discrepancies remain for all our simulations which produce offset bar dust lanes and indicate that the model is missing an essential process or component. A small nuclear bar might account for the discrepancy, but we rule this out using a Hubble Space Telescope NICMOS (near-IR camera and multiobject spectrometer) image: this reveals a nuclear trailing spiral, not a bar; we show that coarser resolution (i.e., ground-based images) can produce artifacts that resemble bars or rings. We conclude that the discrepancies in morphology and contrast are due to the omission of star formation from the model; this is supported by the observed high rate of central star formation (7 Msolar yr-1), a rate that can consume most of the accumulating gas. As is common in similar bars, the star formation rate in the bar between the bar ends and the central region is low (0.5 Msolar yr-1), despite the high gas column density in the bar dust lanes; this is generally attributed to shear and shocks. We note a tendency for the H II regions to be associated

  19. Neal Lane: Confessions of a President's Science Advisor

    ScienceCinema

    Neal Lane

    2016-07-12

    Former science advisor to president Bill Clinton Neal Lane briefly reviews the history of the job of Science Advisor to the President and give some examples of issues he had to deal with when he was in that position, including climate change, stem cell research, the human genome, nanotechnology and research funding. He will also give his opinions about the present and future state of science in the U.S.

  20. Neal Lane: Confessions of a President's Science Advisor

    SciTech Connect

    Neal Lane

    2006-09-11

    Former science advisor to president Bill Clinton Neal Lane briefly reviews the history of the job of Science Advisor to the President and give some examples of issues he had to deal with when he was in that position, including climate change, stem cell research, the human genome, nanotechnology and research funding. He will also give his opinions about the present and future state of science in the U.S.

  1. 13. VIEW OF WESTERN CANAL EAST OF CARRIAGE LANE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF WESTERN CANAL EAST OF CARRIAGE LANE IN TEMPE, SHOWING DROP STRUCTURE AND GROUNDWATER PUMP. THIS IS THE LAST OF FOUR PUMPS WHICH FEED DIRECTLY INTO THE CANAL BETWEEN ALMA SCHOOL ROAD AND PRICE ROAD. ON THIS DAY, ALL FOUR PUMPS, OPERATING AT FULL OUTPUT, HAVE CONSIDERABLY SWELLED THE FLOW TO THE CANAL. NOTE THE OLD FASHIONED BRICKWORK ON THE NORTH BANK. - Western Canal, South side of Salt River between Tempe, Phoenix & Mesa, Mesa, Maricopa County, AZ

  2. HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY</