Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
NASA Astrophysics Data System (ADS)
Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.
2018-01-01
The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.
Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J
2009-09-28
Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which leads to the addition of more than approximately 3% soluble material will significantly enhance its hygroscopicity and CCN activity.
Dry particle generation with a 3-D printed fluidized bed generator
Roesch, Michael; Roesch, Carolin; Cziczo, Daniel J.
2017-06-02
We describe the design and testing of PRIZE (PRinted fluidIZed bed gEnerator), a compact fluidized bed aerosol generator manufactured using stereolithography (SLA) printing. Dispersing small quantities of powdered materials – due to either rarity or expense – is challenging due to a lack of small, low-cost dry aerosol generators. With this as motivation, we designed and built a generator that uses a mineral dust or other dry powder sample mixed with bronze beads that sit atop a porous screen. A particle-free airflow is introduced, dispersing the sample as airborne particles. The total particle number concentrations and size distributions were measured duringmore » different stages of the assembling process to show that the SLA 3-D printed generator did not generate particles until the mineral dust sample was introduced. Furthermore, time-series measurements with Arizona Test Dust (ATD) showed stable total particle number concentrations of 10–150 cm -3, depending on the sample mass, from the sub- to super-micrometer size range. Additional tests with collected soil dust samples are also presented. PRIZE is simple to assemble, easy to clean, inexpensive and deployable for laboratory and field studies that require dry particle generation.« less
Dry particle generation with a 3-D printed fluidized bed generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesch, Michael; Roesch, Carolin; Cziczo, Daniel J.
We describe the design and testing of PRIZE (PRinted fluidIZed bed gEnerator), a compact fluidized bed aerosol generator manufactured using stereolithography (SLA) printing. Dispersing small quantities of powdered materials – due to either rarity or expense – is challenging due to a lack of small, low-cost dry aerosol generators. With this as motivation, we designed and built a generator that uses a mineral dust or other dry powder sample mixed with bronze beads that sit atop a porous screen. A particle-free airflow is introduced, dispersing the sample as airborne particles. The total particle number concentrations and size distributions were measured duringmore » different stages of the assembling process to show that the SLA 3-D printed generator did not generate particles until the mineral dust sample was introduced. Furthermore, time-series measurements with Arizona Test Dust (ATD) showed stable total particle number concentrations of 10–150 cm -3, depending on the sample mass, from the sub- to super-micrometer size range. Additional tests with collected soil dust samples are also presented. PRIZE is simple to assemble, easy to clean, inexpensive and deployable for laboratory and field studies that require dry particle generation.« less
NASA Astrophysics Data System (ADS)
Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.
2012-12-01
Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.
Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe
NASA Astrophysics Data System (ADS)
Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.
2017-12-01
Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.
NASA Astrophysics Data System (ADS)
Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.
2017-12-01
The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.
Plasma-Based Detector of Outer-Space Dust Particles
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce; Brinza, David E.; Henry, Michael D.; Clay, Douglas R.
2006-01-01
A report presents a concept for an instrument to be flown in outer space, where it would detect dust particles - especially those associated with comets. The instrument would include a flat plate that would intercept the dust particles. The anticipated spacecraft/dust-particle relative speeds are so high that the impingement of a dust particle on the plate would generate a plasma cloud. Simple electric dipole sensors located equidistantly along the circumference of the plate would detect the dust particle indirectly by detecting the plasma cloud. The location of the dust hit could be estimated from the timing of the detection pulses of the different dipoles. The mass and composition of the dust particle could be estimated from the shapes and durations of the pulses from the dipoles. In comparison with other instruments for detecting hypervelocity dust particles, the proposed instrument offers advantages of robustness, large collection area, and simplicity.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Li, Haijun; Li, Xinyu
2016-06-01
Dust particles generated in thermal spray process can cause serious health problems to the workers. Dust particles generated in high velocity oxy-fuel (HVOF) spraying WC-Co coatings were characterized in terms of mass concentrations, particle size distribution, micro morphologies, and composition. Results show that the highest instantaneous exposure concentration of dust particles in the investigated thermal spray workshop is 140 mg/m3 and the time-weighted average concentration is 34.2 mg/m3, which are approximately 8 and 4 times higher than the occupational exposure limits in China, respectively. The large dust particles above 10 μm in size present a unique morphology of polygonal or irregular block of crushed powder, and smaller dust particles mainly exist in the form of irregular or flocculent agglomerates. Some heavy metals, such as chromium, cobalt, and nickel, are also found in the air of the workshop and their concentrations are higher than the limits. Potential occupational hazards of the dust particles in the thermal spray process are further analyzed based on their characteristics and the workers' exposure to the nanoparticles is assessed using a control banding tool.
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly
2016-07-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including the Moon, Mercury, and the moons of Mars: Phobos and Deimos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona
2009-11-01
Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as wellmore » as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of fresh mineral dust which leads to the addition of more than ~3% soluble material is expected to significantly enhance hygroscopicity and CCN activity.« less
Utilization of ultrasonic atomization for dust control in underground mining
NASA Astrophysics Data System (ADS)
Okawa, Hirokazu; Nishi, Kentaro; Kawamura, Youhei; Kato, Takahiro; Sugawara, Katsuyasu
2017-07-01
This study examined dust suppression using water particles generated by ultrasonic atomization (2.4 MHz) at low temperature (10 °C). Green tuff (4 µm), green tuff (6 µm), kaolin, and silica were used as dust samples. Even though ultrasonic atomization makes fine water particles, raising relative air humidity immediately was difficult at low temperature. However, remaining water particles that did not change to water vapor contributed to suppression of dust dispersion. Additionally, the effect of water vapor amount (absolute humidity) and water particles generated by ultrasonic atomization on the amount of dust dispersion was investigated using experimental data at temperatures of 10, 20, and 30 °C. Utilization of ultrasound atomization at low temperature has the advantages of low humidity increments in the working space and water particles remaining stable even with low relative air humidity.
The Entry of Nano-dust Particles into the Terrestrial Magnetosphere
NASA Astrophysics Data System (ADS)
Horanyi, M.; Juhasz, A.
2016-12-01
Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Drake, K.; Gruen, E.; Malaspina, D.; Sternovsky, Z.
2013-12-01
We are performing calibration measurements in our laboratory using a dust accelerator to understand the mechanisms how dust impact generated plasma clouds couple into electric field antennas on spacecraft. The S/WAVES electric field instruments on board the twin STEREO spacecraft observed short duration (milliseconds), large amplitude (> 15 mV) voltage spikes associated with the impact of high velocity dust particles on the spacecraft [St. Cyr et al., 2009, MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. These sharp spikes have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The high count rate has lead to the interpretation that S/WAVES is detecting nanometer sized dust particles (nano-dust) generated in the inner solar system and accelerated to close to solar wind velocities before impacting the spacecraft at 1 AU. The S/WAVES nano-dust interpretation is currently based on an incomplete understanding of the charge generated from relevant materials and the coupling mechanism between the plasma cloud and the electric field instrument. Calibration measurements are performed at the dust accelerator facility at the University of Colorado to investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility allows experimental control over target materials, size (micron to sub-micron), and velocity (1-60 km/s) of impacting dust particles, geometry of the impact, the ';spacecraft' potential, and the presence or absence of photoelectrons, allowing each coupling factor to be isolated and quantified. As the first step in this effort, we measure the impact charge generation for materials relevant for the STEREO spacecraft.
Generation rate and particle size distribution of wood dust by handheld sanding operation.
Ojima, Jun
2016-11-29
The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m 3 /min ventilation rate.
A parallel direct numerical simulation of dust particles in a turbulent flow
NASA Astrophysics Data System (ADS)
Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.
2012-04-01
Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.
2016-12-01
Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2011-04-01
This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.
Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds
NASA Astrophysics Data System (ADS)
Kumar, Prashant
2011-12-01
Mineral dust is ubiquitous in the atmosphere and represents a dominant type of particulate matter by mass. Dust particles can serve as cloud condensation nuclei (CCN), giant CCN (GCCN), or ice nuclei (IN), thereby, affecting cloud microphysics, albedo, and lifetime. Despite its well-recognized importance, assessments of dust impacts on clouds and climate remain highly uncertain. This thesis addresses the role of dust as CCN and GCCN with the goal of improving our understanding of dust-warm cloud interactions and their representation in climate models. Most studies to date focus on the soluble fraction of aerosol particles when describing cloud droplet nucleation, and overlook the interactions of the hydrophilic insoluble fraction with water vapor. A new approach to include such interactions (expressed by the process of water vapor adsorption) is explored, by combining multilayer Frenkel-Halsey-Hill (FHH) physical adsorption isotherm and curvature (Kelvin) effects. The importance of adsorption activation theory (FHH-AT) is corroborated by measurements of CCN activity of mineral aerosols generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. A new aerosol generation setup for CCN measurements was developed based on a dry generation technique capable of reproducing natural dust aerosol emission. Based on the dependence of critical supersaturation with particle dry diameter, it is found that the FHH-AT is a better framework for describing fresh (and unprocessed) dust CCN activity than the classical Kohler theory (KT). Ion Chromatography (IC) measurements performed on fresh regional dust samples indicate negligible soluble fraction, and support that water vapor adsorption is the prime source of CCN activity in the dust. CCN measurements with the commonly used wet generated mineral aerosol (from atomization of a dust aqueous suspension) are also carried out. Results indicate that the method is subject to biases as it generates a bimodal size distribution with a broad range of hygroscopicity. It is found that smaller particles generated in the more hygroscopic peak follow CCN activation by KT, while the larger peak is less hydrophilic with activation similar to dry generated dust that follow FHH-AT. Droplet activation kinetics measurements demonstrate that dry generated mineral aerosol display retarded activation kinetics with an equivalent water vapor uptake coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated mineral aerosols, however, display similar activation kinetics to ammonium sulfate. These results suggest that at least a monolayer of water vapor (the rate-limiting step for adsorption) persists during the timescale of aerosol generation in the experiment, and questions the atmospheric relevance of studies on mineral aerosol generated from wet atomization method. A new parameterization of cloud droplet formation from insoluble dust CCN for regional and global climate models is also developed. The parameterization framework considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble aerosol with activation described through KT. The parameterization is validated against a numerical parcel model, agreeing with predictions to within 10% (R2 ˜ 0.98). The potential role of dust GCCN activating by FHH-AT within warm stratocumulus and convective clouds is also evaluated. It is found that under pristine aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-precipitation linkages. Biases introduced from describing dust GCCN activation by KT are also addressed. The results demonstrate that dust particles do not require deliquescent material to act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on warm cloud and precipitation must be considered. Finally, the new parameterization of cloud droplet formation can be implemented in regional and global models providing an improved treatment of mineral aerosol on clouds and precipitation. The new framework is uniquely placed to address dust aerosol indirect effects on climate.
Generation rate and particle size distribution of wood dust by handheld sanding operation
Ojima, Jun
2016-01-01
Objectives: The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Methods: Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Results: Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Conclusions: Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m3/min ventilation rate. PMID:27725491
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2011-08-01
This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.
Physical properties of five grain dust types.
Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J
1986-01-01
Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482
Martian Dust Devils: Laboratory Simulations of Particle Threshold
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce
2003-01-01
An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.
Biological effects of desert dust in respiratory epithelial cells and a murine model.
Ghio, Andrew J; Kummarapurugu, Suryanaren T; Tong, Haiyan; Soukup, Joleen M; Dailey, Lisa A; Boykin, Elizabeth; Ian Gilmour, M; Ingram, Peter; Roggli, Victor L; Goldstein, Harland L; Reynolds, Richard L
2014-04-01
As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO₂ of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.
Biological effects of desert dust in respiratory epithelial cells and a murine model
Ghio, Andrew J.; Kummarapurugu, Suryanaren T.; Tong, Haiyan; Soukup, Joleen M.; Dailey, Lisa A.; Boykin, Elizabeth; Gilmour, M. Ian; Ingram, Peter; Roggli, Victor L.; Goldstein, Harland L.; Reynolds, Richard L.
2014-01-01
As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO2 of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.
A planetary dust ring generated by impact-ejection from the Galilean satellites
NASA Astrophysics Data System (ADS)
Sachse, Manuel
2018-03-01
All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.
1999-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.
Field sampling of loose erodible material: A new method to consider the full particle-size range
NASA Astrophysics Data System (ADS)
Klose, Martina; Gill, Thomas E.
2017-04-01
The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.
Dust generation in powders: Effect of particle size distribution
NASA Astrophysics Data System (ADS)
Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin
2017-06-01
This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.
Generation of urban road dust from anti-skid and asphalt concrete aggregates.
Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto
2006-04-30
Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.
Advances in Dust Detection and Removal for Tokamaks
NASA Astrophysics Data System (ADS)
Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.
2008-11-01
Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.
Fine metal dust particles on the wall probes from JET-ILW
NASA Astrophysics Data System (ADS)
Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET
2017-12-01
Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.
2009-05-01
Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results have important implications for the treatment of mineral dust particles in global chemistry and climate models.
Majumdar, Deepanjan; William, S P M Prince
2009-01-01
The study was undertaken to examine the nature of particulate chalk dust settled on classroom floor during traditional teaching with dusting and non-dusting chalks on two types of boards viz. rough and smooth. Settling chalk particles were collected for 30 min during teaching in glass Petri plates placed in classrooms within 3 m distance from the teaching boards. Particle size distribution, scanning electron microscopic images of chalk dusts and compressive strength of two types of chalks were tested and evaluated. Results showed that a larger proportion of dusts generated from anti-dusting chalks were of <4.5 and <2.5 microm size on both smooth and rough boards, as compared to dusting chalks. Non-dusting chalks, on an average, produced about 56% and 62% (by volume) of <4.5 microm (respirable) diameter, on rough and smooth boards, respectively, while the corresponding values for dusting chalks were 36% and 45%. Also, on an average, 83% and 94% (by volume) of the particles were <11 microm (thoracic) in case of non-dusting chalks against 61% and 72% for dusting chalks on rough and smooth boards, respectively. Interestingly, taking into account the mass of chalk dust produced per unit time, which was higher in dusting chalks than non dusting chalks, the former was actually producing higher amount of PM <4.5 and <11 particles from both types of boards. Scanning electron microscope images revealed that chalk particles had random shape, although in dusting chalks prevalence of elongated particles was observed, apparently due to the longitudinal breaking of the chalks during writing, which was confirmed during compressive strength testing. We could conclude that dusting chalks could be potentially more harmful than anti dusting chalks, as they produced higher amount of potentially dangerous PM 4.5 and PM 11.
NASA Astrophysics Data System (ADS)
O'Brien, Leela; Juhász, Antal; Sternovsky, Zoltan; Horányi, Mihály
2018-07-01
This article reports on an investigation of the effect of interplanetary coronal mass ejections (ICMEs) on the transport and delivery of nano-dust to 1 AU. Charged nanometer-sized dust particles are expected to be generated close to the Sun and interact strongly with the solar wind as well as solar transient events. Nano-dust generated outside of ∼0.2 AU are picked up and transported away from the Sun due to the electromagnetic forces exerted by the solar wind. A numerical model has been developed to calculate the trajectories of nano-dust through their interaction with the solar wind and explore the potential for their detection near Earth's orbit (Juhasz and Horanyi, 2013). Here, we extend the model to include the interaction with interplanetary coronal mass ejections. We report that ICMEs can greatly alter nano-dust trajectories, their transport to 1 AU, and their distribution near Earth's orbit. The smallest nano-dust (<10 nm) can be delivered to 1 AU in high concentration. Thus, the nature of the interaction between nano-dust and ICMEs could potentially be revealed by simultaneous measurements of nano-dust fluxes and solar wind particles/magnetic fields.
NASA Astrophysics Data System (ADS)
Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank
2016-05-01
Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.
The London Underground: dust and hazards to health.
Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J F; Tran, C L
2005-06-01
To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Concentrations on station platforms were 270-480 microg/m3 PM2.5 and 14,000-29,000 particles/cm3. Cab concentrations over a shift averaged 130-200 microg/m3 and 17,000-23,000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1-2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 microg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters.
The London Underground: dust and hazards to health
Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J; Tran, C
2005-01-01
Aims: To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Methods: Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Results: Concentrations on station platforms were 270–480 µg/m3 PM2.5 and 14 000–29 000 particles/cm3. Cab concentrations over a shift averaged 130–200 µg/m3 and 17 000–23 000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1–2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 µg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. Discussion: It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters. PMID:15901881
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Malaspina, D.; Gruen, E.; Drake, K.
2013-10-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements is performed to calibrate the impact charge generated from materials specific the STEREO spacecraft and will help to interpret electric field data.
Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.
Methods for reducing exposure to cotton dust. Progress report, 1 January 1981-30 September 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hersh, S.P.; Batra, S.K.
1982-01-01
The effectiveness of additives and the blending of fibers on dust emission during carding, the relationship between dust-particle size and grade of cotton, and amount of oil mist in dust from treated cottons were investigated. Six additives were evaluated for dust-suppressant abilities on high-micronaire cotton. A substantial reduction in dust generated was achieved by the addition of very small amounts of five of the additives. For polyester and cotton blends, the dust generated increased as the cotton content of the blend increased and as the production rate increased.
UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle
NASA Astrophysics Data System (ADS)
Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick
2016-01-01
In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.
A novel system to generate WTC dust particles for inhalation exposures.
Vaughan, Joshua M; Garrett, Brittany J; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M; Zelikoff, Judith T; Ghio, Andrew; Peltier, Richard E; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D
2014-01-01
First responders (FRs) present at Ground Zero within the critical first 72 h after the World Trade Center (WTC) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10-53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm mass median aerodynamic diameter (MMAD) at levels up to ≥1200 mg/m(3). To validate system utility, F344 rats were exposed for 2 h to ≈100 mg WTC dust/m(3). Exposed rats had significantly increased lung weight and levels of select tracer metals 1 h after exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios.
A Novel System to Generate WTC Dust Particles for Inhalation Exposures
Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M.; Zelikoff, Judith; Ghio, Andrew; Peltier, Richard E.; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D.
2014-01-01
First Responders (FR) present at Ground Zero within the first 72-hr after the WTC (World Trade Center) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10–53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm MMAD at levels up to ≥ 1200 mg/m3. To validate system utility, F344 rats were exposed for 2-hr to ≈100 mg WTC dust/m3. Exposed rats had significantly increased lung weight and levels of select tracer metals 1-hr post-exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios. PMID:24220216
Dusty Plasma Dynamics Near Surfaces in Space
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.; Robertson, S.; Horanyi, M.; Nahra, Henry (Technical Monitor)
1998-01-01
The investigation 'Dusty Plasma Dynamics Near Surfaces in Space' is an experimental and theoretical study of the dynamics of dust particles on airless bodies in the solar system in the presence of a photoelectron sheath generated by solar ultraviolet light impinging on the surface. Solar UV illumination of natural and manmade surfaces in space produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface acquire a charge and may be transported by electric fields in the photoelectron sheath generated by inhomogeneities in the surface or the illumination (such as shadows). The sheath itself has a finite vertical extent leading to (at least) an electric field normal to the illuminated surface. If dust particles are launched from the surface by some other process, such as meteoroid impact, or spacecraft activity on the surface, these grains become charged and move under the influence of gravity and the electric field. This can give rise to suspension of the particles above the surface, loss from the parent body entirely (if accelerated beyond escape velocity), and a different distribution of dust ejecta from what would be expected with purely gravitational dynamics.
Oxidative and cytotoxic stress induced by inorganic granular and fibrous particles.
Helmig, Simone; Walter, Dirk; Putzier, Julia; Maxeiner, Hagen; Wenzel, Sibylle; Schneider, Joachim
2018-06-01
The hazards of granular and fibrous particles have been associated with the generation of reactive oxygen species (ROS), which in turn is often associated with physicochemical properties exhibited by these particles. In the present study, the ability of various types of fibrous and granular dusts to generate oxidative stress, and their cytotoxicity, was investigated. Biopersistent granular dusts employed in the present study included micro‑ and nanosized titanium dioxide with rutile or anatase crystal structure modifications. Additionally, glass fibres, chrysotile and crocidolite asbestos representative of fibrous dust were selected. Detailed characterisation of particles was performed using scanning electron microscopy, and the effect of exposure to these particles on cell viability and intracellular ROS generation was assessed by PrestoBlue and 2',7'‑dichlorofluorescein assays, respectively. A549 human lung epithelial adenocarcinoma cells were exposed to increasing concentrations (0.1‑10 µg/cm2) of particles and fibres for 24 h. Subsequently, the gene expression of X‑linked inhibitor of apoptosis (XIAP), superoxide dismutase (SOD)1 and SOD2 were analysed by reverse transcription‑quantitative polymerase chain reaction. All investigated granular particles induce ROS production in A549 lung carcinoma cells within 24 h. Hematite increased ROS production in a dose‑dependent manner. A concentration of >1 µg/cm2 TiO2 na with its disordered surface, demonstrated the greatest ability to generate ROS. Therefore, the crystalline surface structure of the particle may be considered as a determinant of the extent of ROS induction by the particle. Fibrous particle compared with granular particles were associated with a lower ability to generate ROS. Glass fibres did not significantly increase ROS production in A549 cells, but elevated gene expression of SOD2 was observed. The results demonstrated that in general, the ability of particles to generate ROS depends on their number and crystal phase. Therefore, the present study helps to understand the cause of particle toxicity.
NASA Astrophysics Data System (ADS)
Szalay, Jamey Robert
Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.
Resuspended dust as a novel source of marine ice nucleating particles
NASA Astrophysics Data System (ADS)
Cornwell, G.; Sultana, C. M.; Schill, G. P.; Hill, T. C. J.; Cochran, R. E.; DeMott, P. J.; Prather, K. A.
2017-12-01
Recent studies of marine ice nucleating particles (INPs) have focused upon their production from phytoplankton blooms, the products of their metabolism, and resulting from their decomposition. In this work, we provide evidence for an additional, inorganic source of marine INPs independent of the marine mesocosm. Laboratory studies of aerosols generated from both synthetic seawater solutions spiked with mineral dust and from nascent coastal Pacific Ocean seawater indicate that dust can be ejected from seawater during the bubble bursting processes. Online and offline measurements of INP concentrations showed that these dust particles were ice nucleation-active in concentrations up to 40 L-1 at -30 °C, an order of magnitude more than those found in marine boundary layers or in laboratory mesocosms. Additional single particle composition measurements using an aerosol time of flight mass spectrometer (ATOFMS) collected along the Californian coast at Bodega Marine Laboratory found dust particles that contained markers from internal mixing with sea salt similar to those observed in the laboratory studies. The evidence from both laboratory and field studies suggests that there is a reservoir of dust particles within the ocean that can be ejected from the ocean's surface and act as INPs.
NASA Astrophysics Data System (ADS)
Dorier, J.-L.; Hilleret, N.
1998-11-01
Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio-frequency accelerating cavities. Intrinsic dust contamination from sources such as valves or ion pumps has not yet been studied due to the inability of commercial particle counters to be able to detect across large cross sections under ultrahigh vacuum (UHV) conditions. This motivated the development of the dust particle detector described here which is able to quantify, in situ, the level of contamination on a representative part of a vacuum vessel. This system operates under UHV conditions and measures flashes of scattered light from free falling dust particles as they cross a thin laser light sheet across a 100 mm diam vacuum vessel. A calibration using microspheres of known diameter has allowed estimation of the particle size from the scattered signal amplitude. Measurements of particulate contamination generated by shocks onto the vessel walls are presented and determination of the height of origin of dust particles from their transit time across the irradiation sheet is discussed. Measurements of dust particle release right to operation of an all-metal gate valve are also presented in the form of time resolved measurements of dust occurrence during the open/close cycles of the valve, as well as histograms of the particle size distribution. A partial self-cleaning effect is witnessed during the first 10 operation cycles following valve installation. The operation of an ion pump has also been investigated and revealed that, in our conditions, particles were released only at pump startup.
Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes
NASA Astrophysics Data System (ADS)
Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun
2017-10-01
Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.
Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.
2010-12-14
Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solarmore » radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.« less
Berman, D Wayne; Brorby, Gregory P; Sheehan, Patrick J; Bogen, Kenneth T; Holm, Stewart E
2012-08-01
An ongoing research effort designed to reconstruct the character of historical exposures associated with use of chrysotile-containing joint compounds naturally raised questions concerning how the character (e.g. particle size distributions) of dusts generated from use of recreated materials compares to dusts from similar materials manufactured historically. This also provided an opportunity to further explore the relative degree that the characteristics of dusts generated from a bulk material are mediated by the properties of the bulk material versus the mechanical processes applied to the bulk material by which the dust is generated. In the current study, the characteristics of dusts generated from a recreated ready mix and recreated dry mix were compared to each other, to dusts from a historical dry mix, and to dusts from the commercial chrysotile fiber (JM 7RF3) used in the recreated materials. The effect of sanding on the character of dusts generated from these materials was also explored. Dusts from the dry materials studied were generated and captured for analysis in a dust generator-elutriator. The recreated and historical joint compounds were also prepared, applied to drywall, and sanded inside sealed bags so that the particles produced from sanding could be introduced into the elutriator and captured for analysis. Comparisons of fiber size distributions in dusts from these materials suggest that dust from commercial fiber is different from dusts generated from the joint compounds, which are mixtures, and the differences persist whether the materials are sanded or not. Differences were also observed between sanded recreated ready mix and either the recreated dry mix or a historical dry mix, again whether sanded or not. In all cases, however, such differences disappeared when variances obtained from surrogate data were used to better represent the 'irreducible variation' of these materials. Even using the smaller study-specific variances, no differences were observed between the recreated dry mix and the historical dry mix, indicating that chrysotile-containing joint compounds can be recreated using historical formulations such that the characteristics of the modern material reasonably mimic those of a corresponding historical material. Similarly, no significant differences were observed between dusts from sanded and unsanded versions of similar materials, suggesting (as in previous studies) that the characteristics of asbestos-containing dusts are mediated primarily by the properties of the bulk material from which they are derived.
NASA Astrophysics Data System (ADS)
O'Brien, Leela; Gruen, E.; Sternovsky, Z.; Horanyi, M.; Juhasz, A.; Eberhard, M.; Srama, R.
2013-10-01
The development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration are reported. The two STEREO spacecrafts have indicated that nanometer-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and accelerated outward by the solar wind. The temporal variability reveals the complex interaction with the solar wind magnetic field within 1 AU and provides the means to learn about solar wind conditions and can supply additional parameters or verification for heliospheric magnetic field models. The composition analysis will report on the processes that generated the nanometer-sized particle. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. The instrument is a linear time-of-flight mass analyzer that utilizes dust impact ionization and is modeled after the Cosmic Dust Analyzer (CDA) on Cassini. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed toward the solar direction. A laboratory prototype has been built, tested, and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with 1 to over 50 km/s velocity. NDA is unique in its requirement to operate with the Sun in its field-of-view. A light trap system has been designed and optimized in terms of geometry and surface optical properties to mitigate Solar UV contribution to detector noise. In addition, results from laboratory tests performed with a 1 keV ion beam at the University of New Hampshire’s Space Sciences Facility confirm the effectiveness of the instrument’s solar wind particle rejection system.
Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
Thorpe, Andrew; Walsh, Peter T
2013-08-01
Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.
Optimization of the Nano-Dust Analyzer (NDA) for operation under solar UV illumination
NASA Astrophysics Data System (ADS)
O`Brien, L.; Grün, E.; Sternovsky, Z.
2015-12-01
The performance of the Nano-Dust Analyzer (NDA) instrument is analyzed for close pointing to the Sun, finding the optimal field-of-view (FOV), arrangement of internal baffles and measurement requirements. The laboratory version of the NDA instrument was recently developed (O'Brien et al., 2014) for the detection and elemental composition analysis of nano-dust particles. These particles are generated near the Sun by the collisional breakup of interplanetary dust particles (IDP), and delivered to Earth's orbit through interaction with the magnetic field of the expanding solar wind plasma. NDA is operating on the basis of impact ionization of the particle and collecting the generated ions in a time-of-flight fashion. The challenge in the measurement is that nano-dust particles arrive from a direction close to that of the Sun and thus the instrument is exposed to intense ultraviolet (UV) radiation. The performed optical ray-tracing analysis shows that it is possible to suppress the number of UV photons scattering into NDA's ion detector to levels that allow both high signal-to-noise ratio measurements, and long-term instrument operation. Analysis results show that by avoiding direct illumination of the target, the photon flux reaching the detector is reduced by a factor of about 103. Furthermore, by avoiding the target and also implementing a low-reflective coating, as well as an optimized instrument geometry consisting of an internal baffle system and a conical detector housing, the photon flux can be reduced by a factor of 106, bringing it well below the operation requirement. The instrument's FOV is optimized for the detection of nano-dust particles, while excluding the Sun. With the Sun in the FOV, the instrument can operate with reduced sensitivity and for a limited duration. The NDA instrument is suitable for future space missions to provide the unambiguous detection of nano-dust particles, to understand the conditions in the inner heliosphere and its temporal variability, and to constrain the chemical differentiation and processing of IDPs.
NASA Astrophysics Data System (ADS)
Sullivan, Ryan Christopher
Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic and CCN-active, due to the high solubility of these compounds, calcium sulfate and calcium oxalate were not. Particles composed of these two sparingly soluble compounds had apparent hygroscopicities similar to pure calcium carbonate. This implies that the commonly made assumption that all dust particles become more hygroscopic after atmospheric processing must be revisited. Calcium sulfate and oxalate represent two forms of aged mineral dust particles that remain non-hygroscopic and thus have poor CCN nucleation ability. The particle generation method (dry versus wet) was found to significantly affect the chemistry and hygroscopicity of the aerosolized particles. Finally, in Chapter 7 the timescale for the atmospheric conversion of insoluble calcite particles to soluble, CCN-active calcium nitrate particles was derived from aerosol flow tube experiments. The reaction rate is rapid was used to estimate the conversion of calcite particles to very hygroscopic particles can occur in just a few hours of exposure to tropospheric levels of nitric acid. This process will therefore be controlled by the availability of nitric acid and its precursors, as opposed to the available atmospheric reaction time.
NASA Astrophysics Data System (ADS)
Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar
2018-04-01
The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.
Fielding, Lee A; Hillier, Jon K; Burchell, Mark J; Armes, Steven P
2015-12-11
Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 μm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.
Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment
NASA Astrophysics Data System (ADS)
Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.
2015-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.
Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust
Chubb, Lauren G.; Cauda, Emanuele G.
2017-01-01
Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139
NASA Astrophysics Data System (ADS)
OBrien, L. E.; Gemer, A.; Gruen, E.; Collette, A.; Horanyi, M.; Moebius, E.; Auer, S.; Juhasz, A.; Srama, R.; Sternovsky, Z.
2012-12-01
We report the development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration. The two STEREO spacecrafts have indicated that nano-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and subsequently accelerated outward by the solar wind. The temporal variability and directionality are governed by conditions in the inner heliosphere and the mass analysis of the particles reveals the chemical differentiation of solid matter near the Sun. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. NDA is a linear time-of-flight mass analyzer that modeled after Cosmic Dust Analyzer (CDA) on Cassini and the more recent Lunar Dust EXperiment (LDEX) for the upcoming LADEE mission to the Moon. The ion optics of the instrument is optimized through numerical modeling. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed towards the solar direction. A laboratory prototype is built and tested and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with from 1 to over 50 km/s velocity.
NASA Astrophysics Data System (ADS)
Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.
2013-06-01
Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.
Laboratory investigation of antenna signals from dust impacts on spacecraft
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick
2016-04-01
Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two mechanisms also vary with impact location relative to the antenna. The experimental results obtained are successfully used to improve the interpretation of existing data sets.
Dust environment of an airless object: A phase space study with kinetic models
NASA Astrophysics Data System (ADS)
Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.
2016-01-01
The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.
NASA Astrophysics Data System (ADS)
Malik, O. P.; Singh, Sukhmander; Malik, Hitendra K.; Kumar, A.
2015-01-01
An explosion-generated-plasma is explored for low and high frequency instabilities by taking into account the drift of all the plasma species together with the dust particles which are charged. The possibility of wave triplet is also discussed based on the solution of dispersion equation and synchronism conditions. High frequency instability (HFI) and low frequency instability (LFI) are found to occur in this system. LFI grows faster with the higher concentration of dust particles, whereas its growth rate goes down if the mass of the dust is higher. The ion and electron temperatures affect its growth in opposite manner and the electron temperature causes this instability to grow. In addition to the instabilities, a simple wave is also observed to propagate, whose velocity is larger for larger wave number, smaller mass of the dust and higher ion temperature.
The immersion freezing behavior of mineral dust particles mixed with biological substances
NASA Astrophysics Data System (ADS)
Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.
2015-10-01
Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.
By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion andmore » (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g., dust growth) to explain the near-IR deficit of some systems.« less
Qi, Chaolong; Echt, Alan; Murata, Taichi K
2016-06-01
We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.
Qi, Chaolong; Echt, Alan; Murata, Taichi K
2016-01-01
We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962
The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools
Qi, Chaolong; Echt, Alan; Gressel, Michael G
2017-01-01
This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343
The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.
Qi, Chaolong; Echt, Alan; Gressel, Michael G
2017-03-01
This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.
Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp
NASA Astrophysics Data System (ADS)
Kremer, Arnaud; El Mansori, Mohamed
2011-01-01
This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.
Method and apparatus for measuring surface density of explosive and inert dust in stratified layers
Sapko, Michael J.; Perlee, Henry E.
1988-01-01
A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.
Laboratory investigation of dust impacts induced signals on antennas in space
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Collette, A.; Malaspina, D.; Gruen, E.; Sternovsky, Z.
2014-12-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements was aimed at the understanding of the charge yield of impact-generated plasmas from common materials used on spacecraft, i.e. BeCu, germanium coated black Kapton, MLI, and solar cells. The measurements show that at 10 km/s these materials yield similar charge signals. At higher speeds (~50 km/s) the variation is with material increases. The impact charge is also found to depend on angle of incidence; the data suggest a maximum at 45 degrees. The second set of measurements investigates the variation of the induced dust signal with bias potential applied on the simulated spacecraft.
NASA Astrophysics Data System (ADS)
Mao, Zirui; Liu, G. R.
2018-02-01
The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.
A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.
NASA Astrophysics Data System (ADS)
Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.
2001-12-01
Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.
Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2
NASA Astrophysics Data System (ADS)
Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki
2010-05-01
The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. We can deduce the mass and velocity information of the impacted dust particle from the recorded signal waveforms generated by the impacts of dust particles. Dust particles around the Moon are classified based on their origins: interstellar dust, interplanetary dust, beta meteoroids, and possibly dust that originated on the Moon. They can be inferred from their kinematic properties: the velocities and the arrival directions. If the proportion of dust components around the Moon is determined by observation, we can increase our knowledge of the contribution of inflow and outflow dust particles to lunar surface materials. References: [1] Matsumoto, K. et al., Joint Annual Meeting of LEAG-ICEUM-SRR (2008) LPI Contribution No.1446, 86. [2] Iglseder H. et al., Adv. Space Res. 17 (1996) 177-182. [3] Sasaki S., et al., Adv. Space Res., 39 (2007), 485-488. [4] Horanyi, M. et al., (2009) LPSC 40th, Abstract #1741.
Generation and Evaluation of Lunar Dust Adhesion Mitigating Materials
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Connell, John W.; Lin, Yi; Belcher, Marcus A.; Palmieri, Frank L.
2011-01-01
Particulate contamination is of concern in a variety of environments. This issue is especially important in confined spaces with highly controlled atmospheres such as space exploration vehicles involved in extraterrestrial surface missions. Lunar dust was a significant challenge for the Apollo astronauts and will be of greater concern for longer duration, future missions. Passive mitigation strategies, those not requiring external energy, may decrease some of these concerns, and have been investigated in this work. A myriad of approaches to modify the surface chemistry and topography of a variety of substrates was investigated. These involved generation of novel materials, photolithographic techniques, and other template approaches. Additionally, single particle and multiple particle methods to quantitatively evaluate the particle-substrate adhesion interactions were developed.
Chen, Di; Wu, Junru
2010-01-01
It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.
Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter
2013-03-01
Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
NASA Astrophysics Data System (ADS)
Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.
2012-01-01
Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Maanen, J.M.; Borm, P.J.; Knaapen, A
1999-12-15
The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less
Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas
NASA Astrophysics Data System (ADS)
Ross, A. E.; McKenzie, D. R.
2016-04-01
Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.
The role of the atmospheric electric field in the dust-lifting process
NASA Astrophysics Data System (ADS)
Esposito, F.; Molinaro, R.; Popa, C. I.; Molfese, C.; Cozzolino, F.; Marty, L.; Taj-Eddine, K.; Di Achille, G.; Franzese, G.; Silvestro, S.; Ori, G. G.
2016-05-01
Mineral dust particles represent the most abundant component of atmospheric aerosol in terms of dry mass. They play a key role in climate and climate change, so the study of their emission processes is of utmost importance. Measurements of dust emission into the atmosphere are scarce, so that the dust load is generally estimated using models. It is known that the emission process can generate strong atmospheric electric fields. Starting from the data we acquired in the Sahara desert, here, we show for the first time that depending on the relative humidity conditions, electric fields contribute to increase up to a factor of 10 the amount of particles emitted into the atmosphere. This means that electrical forces and humidity are critical quantities in the dust emission process and should be taken into account in climate and circulation models to obtain more realistic estimations of the dust load in the atmosphere.
A new method to generate dust with astrophysical properties
NASA Astrophysics Data System (ADS)
Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Eberly, B.; Graham, G. A.; Remington, B. A.; Taylor, E. A.; Tielens, A. G. G. M.
2011-05-01
To model the size distribution and composition of interstellar and interplanetary dust grains, and their effect on a wide range of phenomena, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new laser experiment that subjects dust grains to pressure spikes similar to those of colliding astrophysical dust, and that accelerates the grains to astrophysical velocities. This new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields. We also measure the in-flight velocity ( ~ 4.5km/s) of hundreds of grains simultaneously by use of a particle image velocimetry (PIV) technique.
Jiang, Hua; Luo, Yi; McQuerrey, Joe
2018-02-01
Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.
Development of Charge to Mass Ratio Microdetector for Future Mars Mission
NASA Technical Reports Server (NTRS)
Chen, Yuan-Lian Albert
2003-01-01
The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.
Transmission characteristics of microwave in a glow-discharge dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin
2016-07-15
In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (n{sub e}) of 10{sup 17 }m{sup −3} and electron temperatures (T{sub e}) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al{sub 2}O{sub 3}) particles into the helium plasma. The density of the dust particle (n{sub d}) in the device is about 10{sup 11}–10{sup 12 }m{sup −3}. Themore » propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4–6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.« less
Laminar Dust Flames: A Program of Microgravity and Ground Based Studies at McGill
NASA Technical Reports Server (NTRS)
Goroshin, Sam; Lee, John
1999-01-01
Fundamental knowledge of heterogeneous combustion mechanisms is required to improve utilization of solid fuels (e.g. coal), safe handling of combustible dusts in industry, and solid propulsion systems. The objective of the McGill University research program on dust combustion is to obtain a reliable set of data on basic combustion parameters for dust suspensions (i.e. laminar burning velocity, flame structure, quenching distance, flammability limits, etc.) over a range of particle sizes, dust concentrations, and types of fuel. This set of data then permits theoretical models to be validated and, when necessary, new models to be developed to describe the detailed reaction mechanisms and transport processes. Microgravity is essential to the generation of a uniform dust suspension of arbitrary particle size and concentration. When particles with a characteristic size on the order of tens of microns are suspended, they rapidly settle in a gravitational field. To maintain a particulate in suspension for time duration adequate to carry out combustion experiments invariably requires continuous convective flow in excess of the gravitational settling velocity (which is comparable with and can even exceed the dust laminar burning velocity). This makes the experiments turbulent in nature and thus renders it impossible to study laminar dust flames. Even for small particle sizes on the order of microns, a stable laminar dust flow can be maintained only for relatively low dust concentrations at normal gravity conditions. High dust loading leads to gravitational instability of the dust cloud and to the formation of recirculation cells in the dust suspension in a confined volume, or to the rapid sedimentation of the dense dust cloud, as a whole, in an unconfined volume. Many important solid fuels such as carbon and boron also have low laminar flame speeds (of the order of several centimeters per second). Convection that occurs in combustion products due to buoyancy disrupts the low speed dust flames and makes observation of such flames at normal gravity difficult.
Characterization of Imposed Ordered Structures in MDPX
NASA Astrophysics Data System (ADS)
Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2016-10-01
It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
Ice nucleation by soil dust compared to desert dust aerosols
NASA Astrophysics Data System (ADS)
Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.
2015-12-01
A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we will summarize the experimental results, introduce related INP parameterizations for use in weather and climate models, and briefly discuss possible reasons for the discrepancy between the INP fraction of desert and soil dust aerosols.
Cytotoxic effects of composite dust on human bronchial epithelial cells.
Cokic, Stevan M; Hoet, Peter; Godderis, Lode; Wiemann, Martin; Asbach, Christof; Reichl, Franz X; De Munck, Jan; Van Meerbeek, Bart; Van Landuyt, Kirsten L
2016-12-01
Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (<5μm) including nano-sized particles (<100nm) may be released. To determine the cytotoxic potential of composite dust particles on bronchial epithelium cells. Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith
NASA Technical Reports Server (NTRS)
Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon
2010-01-01
Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.
Numerical simulations of particle orbits around 2060 Chiron
NASA Technical Reports Server (NTRS)
Stern, S. A.; Jackson, A. A.; Boice, D. C.
1994-01-01
Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.
2017-02-15
The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less
Aeolian Dust and Forest Fire Smoke in Urban Air
NASA Astrophysics Data System (ADS)
Brimblecombe, P.
2006-12-01
Particles of aeolian dust and forest fire smoke are now regularly detected in urban air. Although dusts are common on the Asian Pacific Rim and forest fire smoke characteristic of South East Asia they also frequently detected elsewhere. In the past dust was treated as though it was fairly inert and reactions on the surface limited to the neutralizing ability of alkaline minerals. More recent work shows that that dust has a complex organic chemistry. Observations in China found fatty acids from urban areas (oleic acid and linoleic acid from cooking) on dust derived aerosols. The fatty acids and PAHs decreased sharply after dust storms, suggesting a role for dust in removal processes. When silica particles absorb unsaturated compounds they can react with ozone and release compounds such as formaldehyde. Particles from forest fires have a similarly complex chemistry and the acid-alkaline balance may vary depend on the balance of removal rates of alkaline materials (ammonia, potassium carbonate) and inorganic and organic acids. Airborne dust and forest fire soot can contain humic like substances (HULIS) either as primary material or as secondary oxidation products of the surface of soot. This paper will report on the role polluted air masses in the generation humic materials, particularly those that are surface active. These materials of high molecular weight oxygen rich organic compounds, which exhibit a range of properties of importance in aerosols: they can form complexes with metal ions and thus enhance their solubility, photosensitize the oxidation of organic compounds and lower the surface tension of aqueous aerosols. HULIS can be oxidized to form a range of simpler acids such as formic, acetic and oxalic acid. Dust and forest fire smoke particles have a different composition and size range to that of typical urban combustion particles, so it is likely that the health impacts will be different, yet current regulation often does not recognize any significant difference.
Instrumentation and Methodology Development for Mars Mission
NASA Technical Reports Server (NTRS)
Chen, Yuan-Liang Albert
2002-01-01
The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo
2017-04-01
Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.
Sensitivity of spectral climate signals to the emissions of atmospheric dust
NASA Astrophysics Data System (ADS)
Xu, X.; Wang, J.; Wang, Y.; Henze, D. K.; Zhang, L.
2015-12-01
Mineral dust particles profoundly influence the Earth climate due to their varied affects on the radiation and cloud physics. The knowledge of dust emissions from daily to seasonal scales is thus important for interpreting the past and predicting the future climate changes. Satellite measured radiances in the shortwave and thermal infrared are sensitive to the amount and properties of mineral dust present in the atmosphere. Therefore, the climate (i.e., monthly averages) of these reflectance spectra could contain valuable information on the change of dust emissions. In this work, we investigate the feasibility of using the climate of spectral radiances for recovering dust emissions. An observation simulation system (OSS) that incorporates the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) with forward and adjoint global chemistry transport models (GEOS-Chem and FIM-Chem) has been applied to generate synthetic hyperspectral climate data in the shortwave and thermal infrared (TIR) for summer 2008. Along with the calculation of radiances at the top of the atmosphere (TOA), the OSS also computes their Jacobians of these synthetic data to dust optical depth, plume height, and effective radius, as well as the adjoint gradients of spectral radiances to dust emissions. We found that the brightness temperature (BT) in the TIR spectra at TOA is sensitive to both of the dust plume height and particle size. For the same relative changes of these parameters, BT shows largest change with respect to particle size at the wavenumber of 890-1200 cm-1. This demonstrates the potential for retrieving three-dimensional dust information along with the particle size from hyperspectral TIR measurements. We also assess the information content of monthly versus instantaneous radiances for constraining dust emissionsthe from the calculated adjoint gradients. Our analysis may guide new applications of long-term spectral radiance measurements (such as those from GOME, AIRS, IASI, and CrIS instruments) to constrain dust sources, and thus reduce uncertainty in our broader understanding of the impacts of mineral dust on climate.
The Electric Environment of Martian Dust Devils
NASA Astrophysics Data System (ADS)
Barth, E. L.; Farrell, W. M.; Rafkin, S. C.
2017-12-01
While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.
NASA Astrophysics Data System (ADS)
Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.
2008-12-01
The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.
Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas
Ross, A. E.; McKenzie, D. R.
2016-01-01
Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237
NASA Astrophysics Data System (ADS)
Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.
2000-10-01
We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2
NASA Astrophysics Data System (ADS)
Yu, Zechen; Jang, Myoseon; Park, Jiyeon
2017-08-01
The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone).
Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.
2013-01-01
Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya generates ongoing disturbance and colonization events that subject heterogeneous microniches to stochastic colonization by far away dust associated microbes and result in the observed spatially divergent bacterial communities. PMID:24086740
A Secondary Ion Mass Analyzer for Remote Surface Composition Analysis of the Galilean Moons
NASA Technical Reports Server (NTRS)
Krueger, H.; Srama, R.; Johnson, T. V.; Henkel, H.; vonHoerner, H.; Koch, A.; Horanyi, M.; Gruen, E.; Kissel, J.; Krueger, F.
2003-01-01
Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.
NASA Technical Reports Server (NTRS)
Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.
2014-01-01
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
Gomez, Virginia; Levin, Marcus; Saber, Anne T; Irusta, Silvia; Dal Maso, Miikka; Hanoi, Roberto; Santamaria, Jesus; Jensen, Keld A; Wallin, Håkan; Koponen, Ismo K
2014-10-01
The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber. The temporal evolution of the aerosol concentration and size distribution were measured simultaneously. The morphology of collected dust by scanning electron microscopy was different depending on the type of nanocomposites: particles from carbon nanotubes (CNTs) nanocomposites had protrusions on their surfaces and aggregates and agglomerates are attached to the paint matrix in particles emitted from alkyd paints. We observed no significant differences in the particle size distributions when comparing sanding dust from nanofiller containing products with dust from conventional products. Neither did we observe release of free nanomaterials. Instead, the nanomaterials were enclosed or partly enclosed in the matrix. A source strength term Si (cm(-3) s(-1)) that describes particle emission rates from continuous sources was introduced. Comparison between the Si parameters derived from sanding different materials allows identification of potential effects of addition of engineered nanoparticles to a composite. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali
2008-08-01
The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.
Method to Remove Particulate Matter from Dusty Gases at Low Pressures
NASA Technical Reports Server (NTRS)
Calle, Carlos; Clements, J. Sid
2012-01-01
Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic precipitator design, and with the use of filters. However, filters require upstream compression of the gas to be treated because the atmospheric pressure on Mars is too close to vacuum to use a vacuum pump downstream to the filter to draw the gas through the filter. The electrostatic precipitator is the best and more efficient solution for this environment. No other precipitator designs have been developed for the environment of Mars due to the challenges of the low atmospheric pressure. Dust particles are charged using corona generation around the high-voltage discharge electrode, which ionizes gas molecules. Since the atmospheric gas intakes for the ISRU processing chambers will likely be cylindrical, cylindrical precipitator geometry was chosen. The electrostatic precipitator design presented here removes simulated Martian dust particles in the required range in a simulated Martian atmospheric environment. The current-voltage (I-V) characteristic curves taken for the nine precipitator configurations at 9 mbars of pressure showed that a cylindrical collecting electrode 7.0 cm in diameter with a concentric positive high voltage electrode 100 m thick provides the best range of voltage and charging corona current. This precipitator design is effective for the size of the dust particles expected in the Martian atmosphere. Mass determination, as well as microscopic images and particle size distributions of dust collected on a silicon wafer placed directly below the precipitator with the field on and off, showed excellent initial results.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.
2010-12-01
Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.
Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un
2012-04-30
Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.
Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall.
Fazinić, Stjepko; Tadić, Tonči; Vukšić, Marin; Rubel, Marek; Petersson, Per; Fortuna-Zaleśna, Elżbieta; Widdowson, Anna
2018-05-01
Generation of metal dust in the JET tokamak with the ITER-like wall (ILW) is a topic of vital interest to next-step fusion devices because of safety issues with plasma operation. Simultaneous Nuclear Reaction Analysis (NRA) and Particle-Induced X-ray Emission (PIXE) with a focused four MeV 3 He microbeam was used to determine the composition of dust particles related to the JET operation with the ILW. The focus was on "Be-rich particles" collected from the deposition zone on the inner divertor tile. The particles found are composed of a mix of codeposited species up to 120 μm in size with a thickness of 30-40 μm. The main constituents are D from the fusion fuel, Be and W from the main plasma-facing components, and Ni and Cr from the Inconel grills of the antennas for auxiliary plasma heating. Elemental concentrations were estimated by iterative NRA-PIXE analysis. Two types of dust particles were found: (i) larger Be-rich particles with Be concentrations above 90 at% with a deuterium presence of up to 3.4 at% and containing Ni (1-3 at%), Cr (0.4-0.8 at%), W (0.2-0.9 at%), Fe (0.3-0.6 at%), and Cu and Ti in lower concentrations and (ii) small particles rich in Al and/or Si that were in some cases accompanied by other elements, such as Fe, Cu, or Ti or W and Mo.
Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C
2008-01-01
Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.
NASA Technical Reports Server (NTRS)
Bishop, Janice; Murchie, Scott L.; Pieters, Carle M.; Zent, Aaron P.
2001-01-01
This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates. Reflectance spectra were measured of the initial particulate mixtures, the cemented products and ground versions of the cemented material. The spectral contrast in the visible/near-infrared and mid-infrared regions is significantly reduced for the cemented material compared to the initial soil, and somewhat reduced for the ground, cemented soil compared to the initial soil. The results of this study suggest that diurnal and seasonal cycling on Mars will have a profound effect on the texture and spectral properties of the dust/soil particles on the surface. The model developed in this study provides an explanation for the generation of cemented or crusted soil units and rock coatings on Mars and may explain albedo variations on the surface observed near large rocks or crater rims.
Dust Measurements On-board the New Horizons Mission
NASA Astrophysics Data System (ADS)
Poppe, A.; James, D.; Horanyi, M.
2007-12-01
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft was successfully commissioned on March 3, 2006 (DOY 2006/061). VSDC is a dust impact detector designed to map the dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and it is currently operated by a small group of undergraduate and graduate students at the Laboratory of Atmospheric and Space Physics (LASP), University of Colorado. By the time of this meeting (12/2007), VSDC will have operated for about 330 days, covering an approximate distance from 1.21 to 10 AU. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters, and the detection threshold is about a micron in particle radius. In this talk we will briefly review the VSDC instrument. The in-flight tests and calibrations, as well as our initial science results will be discussed. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the encounter with Jupiter. These measurements will be compared with earlier measurements by Ulysses, Galileo, and Cassini.
Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.
Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko
2011-10-30
Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain
2018-05-01
Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From spheroids to stereo-particles, ηd increases by about 30%. We believe these results may be useful for our understanding of the spatial distribution of mineral dust contained in an aerosol external mixture and to better quantify dust mass concentrations from polarization lidar experiments.
Gaps and rings carved by vortices in protoplanetary dust
NASA Astrophysics Data System (ADS)
Barge, Pierre; Ricci, Luca; Carilli, Christopher Luke; Previn-Ratnasingam, Rathish
2017-09-01
Context. Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at submillimeter and millimeter wavelengths. Aims: We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at submillimeter and millimeter wavelengths. Methods: Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and Nest Generation Very Large Array (ngVLA) observations. Results: We find that a giant vortex not only captures dust grains with Stokes number St< 1 but can also affect the distribution of larger grains (with St 1) carving a gap associated with a ring composed of incompletely trapped particles. The results are presented for different particle sizes and associated with their possible signatures in disk observations. Conclusions: Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
A study of extended zodiacal structures
NASA Technical Reports Server (NTRS)
Sykes, Mark V.
1990-01-01
Observations of cometary dust trails and zodiacal dust bands, discovered by the Infrared Astronomical Satellite (IRAS) were analyzed in a continuing effort to understand their nature and relationship to comets, asteroids, and processes effecting those bodies. A survey of all trails observed by IRAS has been completed, and analysis of this phenomenon continues. A total of 8 trails have been associated with known short-period comets (Churyumov-Gerasimenko, Encke, Gunn, Kopff, Pons-Winnecke, Schwassmann-Wachmann 1, Tempel 1, and Tempel 2), and a few faint trails have been detected which are not associated with any known comet. It is inferred that all short-period comets may have trails, and that the trails detected were seen as a consequence of observational selection effects. Were IRAS launched today, it would likely observe a largely different set of trails. The Tempel 2 trail exhibits a small but significant excess in color temperature relative to a blackbody at the same heliocentric distance. This excess may be due to the presence of a population of small, low-beta particles deriving from large particles within the trail, or a temperature gradient over the surface of large trail particles. Trails represent the very first stage in the formation and evolution of a meteor stream, and may also be the primary mechanism by which comets contribute to the interplanetary dust complex. A mathematical model of the spatial distribution of orbitally evolved collisional debris was developed which reproduces the zodiacal dust band phenomena and was used in the analysis of dust band observations made by IRAS. This has resulted in the principal zodiacal dust bands being firmly related to the principal Hirayama asteroid families. In addition, evidence for the collisional diffusion of the orbital elements of the dust particles has been found in the case of dust generated in the Eos asteroid family.
NASA Astrophysics Data System (ADS)
Dong, Chenyin; Taylor, Mark Patrick
2017-07-01
Resolving the source of environmental contamination is the critical first step in remediation and exposure prevention. Australia's oldest silver-zinc-lead mine at Broken Hill (>130 years old) has generated a legacy of contamination and is associated with persistent elevated childhood blood lead (Pb) levels. However, the source of environmental Pb remains in dispute: current mine emissions; remobilized mine-legacy lead in soils and dusts; and natural lead from geological weathering of the gossan ore body. Multiple lines of evidence used to resolve this conundrum at Broken Hill include spatial and temporal variations in dust Pb concentrations and bioaccessibility, Pb isotopic compositions, particle morphology and mineralogy. Total dust Pb loading (mean 255 μg/m2/day) and its bioaccessibility (mean 75% of total Pb) is greatest adjacent to the active mining operations. Unweathered galena (PbS) found in contemporary dust deposits contrast markedly to Pb-bearing particles from mine-tailings and weathered gossan samples. Contemporary dust particles were more angular, had higher sulfur content and had little or no iron and manganese. Dust adjacent to the mine has Pb isotopic compositions (208Pb/207Pb: 2.3197; 206Pb/207Pb: 1.0406) that are a close match (99%) to the ore body with values slightly lower (94%) at the edge of the city. The weight of evidence supports the conclusion that contemporary dust Pb contamination in Broken Hill is sourced primarily from current mining activities and not from weathering or legacy sources.
NASA Astrophysics Data System (ADS)
Kristensen, L.; Cornwell, G.; Sedlacek, A. J., III; Prather, K. A.
2016-12-01
Mineral dust particles can serve as cloud condensation nuclei (CCN), with enhanced CCN activity observed when the dust is mixed with additional soluble species. Long range atmospheric transport can change the composition of dust particles through aging, cloud processing and mixing with other particles. The CalWater2 campaign measured single particles and cloud dynamics to investigate the influence aerosols have on the hydrological cycle in California. An Aircraft Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to characterize and identify single particles within clouds potentially acting as ice and cloud nuclei. Two matching flights over California's mountains in March 2015 detected significantly different particle types that resulted in different precipitation totals. Calcium dust dominated the particle composition during the first flight which had an observed decrease in orographic precipitation. Particle composition and air mass back trajectories indicate an Asian desert origin. The calcium dust particles contained secondary acids, in particular oxalic acid, acquired during transport from Asia to California. This chemical processing likely increased the solubility of the dust, enabling the particles to act as more effective CCN. The chemical composition also showed oligomeric carbonaceous species were mixed with the calcium dust particles, potentially further increasing the solubility the particles. A single particle soot photometer (SP2) measured black carbon concurrently and returned intense incandescence when calcium dust was present, confirming the calcium dust particles were internally mixed with a carbonaceous species. Dust particles were greatly reduced during the second flight with local biomass burning particles the dominant type. Observed precipitation in California were within forecast levels during the second flight. These single particle measurements from CalWater2 show that dust particles from Asia can affect cloud process and thus precipitation in California.
Do we detect interplanetary dust with Faraday cups?
NASA Astrophysics Data System (ADS)
Kočiščák, S.; Pavlů, J.; Šafránková, J.; Němeček, Z.; Přech, L.
2018-07-01
Transient clouds of a plasma generated by hypervelocity dust particles impacting onto the spacecraft were observed in-situ by many experiments over the last 20 years. The reported observations analyze sensitive measurements of plasma waves that are transmitted to the Earth with a sufficient time resolution. The detection is based on a fact that hypervelocity impacts generate plumes of the ionized gas expanding into a space. The present paper analyzes five years of the operation of the Bright Monitor of the Solar Wind (BMSW) onboard the Spektr-R spacecraft with a motivation to demonstrate that such type of the instruments is capable to observe the dust impacts into its detectors. The results of analysis are compared with Wind electric field measurements used for a detection of hypervelocity dust impacts.
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Astrophysics Data System (ADS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Technical Reports Server (NTRS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-01-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
The influence of mineral dust particles on the energy output of photovoltaic cells
NASA Astrophysics Data System (ADS)
Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.
2016-12-01
The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
Characterizing temporal changes of agricultural particulate matter number concentrations
NASA Astrophysics Data System (ADS)
Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.
2017-12-01
It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.
Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars
NASA Technical Reports Server (NTRS)
Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.
2006-01-01
Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.
Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission
NASA Astrophysics Data System (ADS)
James, David; Horanyi, Mihaly; Poppe, Andrew
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.
Pfister, Hugo; Morzadec, Claudie; Le Cann, Pierre; Madec, Laurent; Lecureur, Valérie; Chouvet, Martine; Jouneau, Stéphane; Vernhet, Laurent
2017-10-01
Dairy working increases the prevalence of lower airway respiratory diseases, especially COPD and asthma. Epidemiological studies have reported that chronic inhalation of organic dusts released during specific daily tasks could represent a major risk factor for development of these pathologies in dairy workers. Knowledge on size, nature and biological activity of such organic dusts remain however limited. To compare size distribution, microbial composition and cellular effects of dusts liberated by the spreading of straw bedding in five French dairy farms located in Brittany. Mechanized distribution of straw bedding generated a cloud of inhalable dusts in the five dairy farms' barns. Thoracic particles having a 3-7.5µm size constituted 58.9-68.3% of these dusts. Analyses of thoracic dusts by next generation sequencing showed that the microbial dust composition differed between the five French farms, although Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria represent more than 97.5% of the bacterial phyla detected in each sample. Several bacteria genera comprising of human pathogenic species, such as Pseudomonas, Staphylococcus, Thermoactinomyces or Saccharopolyspora were identified. Cladosporium and Alternaria fungal genera, which are potent environmental determinants of respiratory symptoms, were detected in dusts collected in the five farms and their levels reached 15.5-51.1% and 9-24.7% of assignable fungal sequences in each sample, respectively. Finally, all dust samples significantly and strongly increased the expression of the pro-inflammatory TNF-α, IL-1β, IL-6 and IL-8 cytokines at both mRNA and protein levels in human monocyte-derived macrophages. Their effects were dose-dependent and detectable from 1µg/ml. The intensity of the macrophage responses however differed according to the samples. Our results strengthen the hypothesis that organic dusts released during the distribution of straw bedding are mainly constituted of thoracic particles which are small enough to deposit on lower bronchial epithelium of dairy farmers and induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Contribution of indoor-generated particles to residential exposure
NASA Astrophysics Data System (ADS)
Isaxon, C.; Gudmundsson, A.; Nordin, E. Z.; Lönnblad, L.; Dahl, A.; Wieslander, G.; Bohgard, M.; Wierzbicka, A.
2015-04-01
The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 μm and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 104 cm-3) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities it was possible to estimate correlations between the number concentration of ultrafine particles and the mass concentration of soot in total dust in 10 homes. Particle source strengths (for 7 specific activities) ranged from 1.6·1012 to 4.5·1012 min-1. The correlation between ultrafine particles and mass concentration of soot in total dust varied between 0.37 and 0.85, with an average of 0.56 (Pearson correlation coefficient). This study clearly shows that due to the importance of indoor sources, residential exposure to ultrafine particles cannot be characterized by ambient measurements alone.
NASA Astrophysics Data System (ADS)
Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas
2018-04-01
The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.
Electrostatic effects on dust particles in space
NASA Astrophysics Data System (ADS)
Leung, Philip; Wuerker, Ralph
1992-02-01
The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.
NASA Astrophysics Data System (ADS)
Gao, H.; Xiaohong Yao, Jinhui Shi, Jianhua Qi
2010-12-01
Dust storm carries a large amount of aerosol particles, sweeps continents and exports to oceans. When these aerosol particles deposit in ocean, which provides abundant nutrients such as nitrogen and iron for ocean ecosystem, increases the primary production and induces algae bloom. Asian dust storm generates at a high latitude and a high elevation and is obvious a hemispheric scale phenomenon. Dust sources in East Asia are one of the major dust sources on the earth which contribute to 5%-40% of the global dust release. The regions affected by the Asian dust storm include not only China and Mongolia but also the downwind Korea, Japan, the Pacific Ocean, the west coast of America, even the subarctic region and Europe. The Asian dust storm is obviously a hemispheric scale phenomenon, which has more important impact on the ecosystem in the western Pacific. Asian dust is unique not only in morphology, soil texture, and dust storm activities, but also mixing and capturing anthropogenic air pollutants on the transport pathway. Deposition of Asian dust substantially affects surface biological productivity. To improve understandings of Asian dust and its effect on ocean ecosystem from the coastal sea to open ocean, ADOES (Asian Dust and Ocean EcoSystem) was proposed under the frame of international SOLAS (Surface Ocean-Lower Atmosphere Study). A series of studies were performed in high- nutrient low-chlorophyll (HNLC), low-nutrient low-chlorophyll (LNLC) and eutrophication coastal regions of the Pacific Ocean. These studies provided evidence of biotic response to natural iron fertilization caused by Asian dust particles in the subarctic North Pacific and showed that dust storm episodes were significant in the initiation of spring blooms in the East China Sea. On-board incubations on the cruise in a LNLC region of the western Pacific at the southeast of Japan showed different responses of ocean ecosystem to nitrogen and dust fertilization. Correlation of the Asian dust storms with chlorophyll, primary productivity and algae blooms in the coastal seas of China from 1998 to 2008 were also illustrated.
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
Model of Image Artifacts from Dust Particles
NASA Technical Reports Server (NTRS)
Willson, Reg
2008-01-01
A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact is the shape (typically, circular) of the aperture, and the contribution of the particle to the attenuation factor for a given pixel is the fraction of the cross-sectional area of the collection cone occupied by the particle. Assuming that dust particles do not overlap, the net transmission factor for a given pixel is calculated as one minus the sum of attenuation factors contributed by all dust particles affecting that pixel. In a test, the model was used to synthesize attenuation images for random distributions of dust particles on the front surface of a lens at various relative aperture (F-number) settings. As shown in Figure 2, the attenuation images resembled dust artifacts in real test images recorded while the lens was aimed at a white target.
Fugitive Dust Emissions: Development of a Real-time Monitor
2011-10-01
the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective
3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.
Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan
2012-07-01
A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.
Parameterization of cloud glaciation by atmospheric dust
NASA Astrophysics Data System (ADS)
Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Pejanovic, Goran; Petkovic, Slavko
2016-04-01
The exponential growth of research interest on ice nucleation (IN) is motivated, inter alias, by needs to improve generally unsatisfactory representation of cold cloud formation in atmospheric models, and therefore to increase the accuracy of weather and climate predictions, including better forecasting of precipitation. Research shows that mineral dust significantly contributes to cloud ice nucleation. Samples of residual particles in cloud ice crystals collected by aircraft measurements performed in the upper tropopause of regions distant from desert sources indicate that dust particles dominate over other known ice nuclei such as soot and biological particles. In the nucleation process, dust chemical aging had minor effects. The observational evidence on IN processes has substantially improved over the last decade and clearly shows that there is a significant correlation between IN concentrations and the concentrations of coarser aerosol at a given temperature and moisture. Most recently, due to recognition of the dominant role of dust as ice nuclei, parameterizations for immersion and deposition icing specifically due to dust have been developed. Based on these achievements, we have developed a real-time forecasting coupled atmosphere-dust modelling system capable to operationally predict occurrence of cold clouds generated by dust. We have been thoroughly validated model simulations against available remote sensing observations. We have used the CNR-IMAA Potenza lidar and cloud radar observations to explore the model capability to represent vertical features of the cloud and aerosol vertical profiles. We also utilized the MSG-SEVIRI and MODIS satellite data to examine the accuracy of the simulated horizontal distribution of cold clouds. Based on the obtained encouraging verification scores, operational experimental prediction of ice clouds nucleated by dust has been introduced in the Serbian Hydrometeorological Service as a public available product.
Individual particle analysis in suburban Osaka
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo
2012-11-01
Higashi-Osaka is urban area located on the east of Osaka city in Japan. We equip various ground measurement devices in Higashi-Osaka campus of Kinki University. The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. We set up an SPM sampler attached to our AERONET site. It is found from the simultaneous measurements and analyses that clear atmosphere with few small particles is not too often, usually polluted particles from diesel vehicles and industries are suspended at Higashi-Osaka and the characterization of atmospheric particles varies especially in dust phenomenon. Then we performed detailed analysis of atmospheric particles in dust days. We analyzed atmospheric particles with scanning electron microscope coupled with energy dispersive X-ray analyzer. This instrument can detect contain elements of sample by X-ray emanated from the surface of the sample. In order to investigate change of particle properties before and after dust event, we select three cases as before dust reaches to Higashi-Osaka, peak of dust event and after dust event and after dust passes. The results of analyses for each case indicate that nonspherical particles with large particle size are dominant and the main component becomes silicon derived from soil particles at the peak of dust event and soil particles remain after dust event. It is found that sometimes anthropogenic pollutant is transported to Higashi-Osaka before dust comes and components from anthropogenic source increase before dust event.
Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.
2009-01-01
Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.
Ceramic Rail-Race Ball Bearings
NASA Technical Reports Server (NTRS)
Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.
2010-01-01
Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
NASA Astrophysics Data System (ADS)
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
A Dust Aggregation and Concentration System (DACS) for the Microgravity Space Environment
NASA Technical Reports Server (NTRS)
Giovane, F. J.; Blum, J.
1999-01-01
The Dust Aggregation and Concentration System, DACS, Project is an international effort intended to complete the preliminary definition of a system for suspending and concentrating dust particles in a microgravity environment for extended periods of time. The DACS design concept is based on extensive ground, drop tower, and parabolic flight tests. During the present proposed work, the DACS design will be completed, and a Science Requirements Document generated. At the end of the proposed 2 year project, DACS will be positioned to enter the advanced definition phase.
Pharmaceutical dust exposure at pharmacies using automatic dispensing machines: a preliminary study.
Fent, Kenneth W; Durgam, Srinivas; Mueller, Charles
2014-01-01
Automatic dispensing machines (ADMs) used in pharmacies concentrate and dispense large volumes of pharmaceuticals, including uncoated tablets that can shed dust. We evaluated 43 employees' exposures to pharmaceutical dust at three pharmacies where ADMs were used. We used an optical particle counter to identify tasks that generated pharmaceutical dust. We collected 72 inhalable dust air samples in or near the employees' breathing zones. In addition to gravimetric analysis, our contract laboratory used internal methods involving liquid chromatography to analyze these samples for active pharmaceutical ingredients (APIs) and/or lactose, an inactive filler in tablets. We had to choose samples for these additional analyses because many methods used different extraction solvents. We selected 57 samples for analysis of lactose. We used real-time particle monitoring results, observations, and information from employees on the dustiness of pharmaceuticals to select 28 samples (including 13 samples that were analyzed for lactose) for analysis of specific APIs. Pharmaceutical dust was generated during a variety of tasks like emptying and refilling of ADM canisters. Using compressed air to clean canisters and manual count machines produced the overall highest peak number concentrations (19,000-580,000 particles/L) of smallest particles (count median aerodynamic diameter ≤ 2 μm). Employees who refilled, cleaned, or repaired ADM canisters, or hand filled prescriptions were exposed to higher median air concentrations of lactose (5.0-12 μg/m(3)) than employees who did other jobs (0.04-1.3 μg/m(3)), such as administrative/office work, labeling/packaging, and verifying prescriptions. We detected 10 APIs in air, including lisinopril, a drug prescribed for high blood pressure, levothyroxine, a drug prescribed for hypothyroidism, and methotrexate, a hazardous drug prescribed for cancer and other disorders. Three air concentrations of lisinopril (1.8-2.7 μg/m(3)) exceeded the lower bound of the manufacturer's hazard control band (1-10 μg/m(3)). All other API air concentrations were below applicable occupational exposure limits. Our findings indicate that some pharmacy employees are exposed to multiple APIs and that measures are needed to control those exposures.
7 CFR 51.2126 - Particles and dust.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...
7 CFR 51.2126 - Particles and dust.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...
NASA Astrophysics Data System (ADS)
Ghannad, Z.; Hakimi Pajouh, H.
2017-12-01
In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.
INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx
The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Organiscak, J.A.; Page, S.J.
1998-10-01
Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated withmore » ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.« less
7 CFR 51.1443 - Particles and dust.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...
7 CFR 51.1443 - Particles and dust.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...
Experiments to trap dust particles by a wire simulating an electron beam
NASA Astrophysics Data System (ADS)
Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime
1991-11-01
Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.
7 CFR 51.2126 - Particles and dust.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...
7 CFR 51.1443 - Particles and dust.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...
7 CFR 51.2126 - Particles and dust.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...
7 CFR 51.1443 - Particles and dust.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...
7 CFR 51.1443 - Particles and dust.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...
7 CFR 51.2126 - Particles and dust.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...
NASA Astrophysics Data System (ADS)
James, D.; Poppe, A.; Horanyi, M.
2008-12-01
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.
Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike
2017-11-01
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.
Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Tsutsumi, Yasuo
2014-01-01
Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages. PMID:24987712
ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir
2016-02-01
We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less
Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires
NASA Technical Reports Server (NTRS)
Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.
1996-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) data and the instantaneous scanner ERBE data from the NOAA-9 and NOAA-10 satellites.
Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang
2015-12-01
The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0-2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temperature measurement of a dust particle in a RF plasma GEC reference cell
NASA Astrophysics Data System (ADS)
Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.
2016-10-01
The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.
Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.
2000-01-01
Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be investigated for planetary and astrophysical environments.
Influence of emissivity on behavior of metallic dust particles in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.
Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less
Comparison of the mixing state of long-range transported Asian and African mineral dust
NASA Astrophysics Data System (ADS)
Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.
2015-08-01
Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despax, B.; Makasheva, K.; CNRS, LAPLACE, F-31062 Toulouse cedex 09
2012-11-01
A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towardsmore » the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.« less
Mining cosmic dust from the blue ice lakes of Greenland
NASA Technical Reports Server (NTRS)
Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.
1985-01-01
Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F.; Comfort, R. H.
1999-01-01
The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.
The effect of dust lifting process on the electrical properties of the atmosphere
NASA Astrophysics Data System (ADS)
Esposito, Francesca; Molinaro, Roberto; Ionut Popa, Ciprian; Molfese, Cesare; Cozzolino, Fabio; Marty, Laurent; Taj-Eddine, Kamal; Di Achille, Gaetano; Silvestro, Simone; Ori, Gian Gabriele
2015-04-01
Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far.
Small-Scale Dust Structures in Halley's Coma: Evidence from the Vega-2 Electric Field Records
NASA Astrophysics Data System (ADS)
Oberc, P.
1999-07-01
Owing to simultaneous dust and plasma wave observations onboard the Vega mission to Comet Halley, previous studies have found that the two double probe antennas, short (of APV-N experiment) and long (APV-V), (i) responded to plasma clouds induced by impacts of relatively large particles, (ii) the target area was comparable to the whole spacecraft projection, and (iii) the mass thresholds depended on the ambient plasma conditions. Subsequently, the response mechanisms have been identified, and it was shown that if impacts became continuous, the sensitivity of the antennas to individual plasma clouds was reduced or even cancelled. In the present paper, about 30 short-time events of continuous impact (CIEs), recognized in the Vega-2 records from the two experiments mostly near the closest approach to (at ∼104 km from) the nucleus, are investigated. The high-resolution APV-N waveforms reveal that the respective dust formations were structured. A few types of structure, all belonging to one family, have been distinguished. The basic structure, as seen along the Vega-2 pass, is a sequence of particle clouds. CIEs have time scales shorter than or comparable to the time resolution of the dust experiments (spatial scale less than 200 km) and do not correlate with the SP-1 observations (m≤10-10 g) nor with the published SP-2 fluxes (m≤5.8×10-8 g). But, these dust data, combined with an integral criterion for continuous impact, provide a constraint which implies that the particles responsible were bigger than 10-9-10-8 g. The data from the DUCMA V-detector confirm positively this inference for about 1/3 (∼10) of CIEs and indicate that particles (much) bigger than 10-7 g were decisive in generating several other events. Using an argument from the dusty gas dynamics, it is shown that the small-scale dust structures were not jets but have originated from the disintegration of particle aggregates. An estimate of the total mass contained within a dust structure leads to values of 1-10 kg. Besides CIEs near closest approach, a pair of exceptionally prolonged events has been recorded by APV-V at relatively large distances (∼4×104 km). The dust data show that the mass distribution across the respective dust formations was highly variable.
Sulfate and nitrate in Asian dust particles observed in desert, coastal and marine air
NASA Astrophysics Data System (ADS)
Zhang, D.; Wu, F.; Junji, C.
2016-12-01
Sulfate and nitrate in dust particles are believed to be two key species which can largely alter the physical and chemical properties of the particles in the atmosphere, in particular under humid conditions. Their occurrence in the particles has usually been considered to be the consequence of particles' aging during their long-distance travel in the air although they are present in some crustal minerals. Our observations at two deserts in China during dust episodes revealed that there were soil-derived sulfate and background-like nitrate in atmospheric dust samples. Sulfate in dust samples was proportional to samples' mass and comprised at steady mass percentages in differently sized samples. In contrast, nitrate concentration was approximately stable and independent from dust loading. Our observations at inland and coastal areas of China during dust episodes revealed that sulfate and nitrate were hardly produced on the surface of dust particles that were originated from the deserts areas in northwestern China. This is because the dust particles were in the postfrontal air, where the temperature was low and the relative humidity was small due to the adiabatic properties of the air mass. There are a number studies reporting that sulfate and nitrate had been efficiently produced on mineral particles in inland areas of China. However, those mineral particles were more likely from the local areas rather than from the desert areas. Our observations in the coastal areas of Japan, which is located in the downstream areas of the Asian continent and surrounded by sea areas revealed that dust particles appearing there frequently contained sulfate and nitrate, indicating sulfate and nitrate had been efficiently produced on the surface of the particles when the particles traveled in the marine air between China and Japan.
NASA Astrophysics Data System (ADS)
Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki
Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.
Dynamics and Distribution of Interplanetary Dust
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2005-08-01
We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612, 1206-1213) shows that only asteroidal dust particles cannot explain these observations, and particles produced by high-eccentricity comets (such as Comet Encke) are needed for such explanation. Several our recent papers are presented on astro-ph.
Two moment dust and water ice in the MarsWRF GCM
NASA Astrophysics Data System (ADS)
Lee, Christopher; Richardson, Mark I.; Newman, Claire E.; Mischna, Michael A.
2016-10-01
A new two moment dust and water ice microphysics scheme has been developed for the MarsWRF General Circulation Model based on the Morrison and Gettelman (2008) scheme, and includes temperature dependent nucleation processes and energetically constrained condensation and evaporation. Dust consumed in the formation of water ice is also tracked by the model.The two moment dust scheme simulates dust particles in the Martian atmosphere using a Gamma distribution with fixed radius for lifted particles. Within the atmosphere the particle distribution is advected and sedimented within the two moment framework, obviating the requirement for lossy conversion between the continuous Gamma distribution and discritized bins found in some Mars microphysics schemes. Water ice is simulated using the same Gamma distribution and advected and sedimented in the same way. Water ice nucleation occurs heterogeneously onto dust particles with temperature dependent contact parameters (e.g. Trainer et al., 2009) and condensation and evaporation follows energetic constraints (e.g. Pruppacher and Klett, 1980; Montmessin et al., 2002) allowing water ice particles to grow in size where necessary. Dust particles are tracked within the ice cores as nucleation occurs, and dust cores advect and sediment along with their parent ice particle distributions. Radiative properties of dust and water particles are calculated as a function of the effective radius of the particles and the distribution width. The new microphysics scheme requires 5 tracers to be tracked as the moments of the dust, water ice, and ice core. All microphysical processes are simulated entirely within the two moment framework without any discretization of particle sizes.The effect of this new microphysics scheme on dust and water ice cloud distribution will be discussed and compared with observations from TES and MCS.
Migration of Dust Particles and Their Collisions with the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.
2004-01-01
Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai
2014-08-27
Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. Themore » fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.« less
Structures and dynamics in a two-dimensional dipolar dust particle system
NASA Astrophysics Data System (ADS)
Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.
2018-05-01
The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.
Application of Dusty Plasmas for Space
NASA Astrophysics Data System (ADS)
Bhavasar, Hemang; Ahuja, Smariti
In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.
Physical characteristics of cometary dust from dynamical studies - A review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1980-01-01
Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.
Oil refinery dusts: morphological and size analysis by TEM.
Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek
2011-03-01
The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.
Fast camera imaging of dust in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.
2009-06-01
Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.
Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui
2013-09-01
To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.
NASA Astrophysics Data System (ADS)
Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan
2017-12-01
Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust particles following cold fronts is likely limited when the particles move from the desert to populated areas within the continent. For an accurate quantification of sulfate and nitrate formed on long-distance-transported desert dust particles at downwind populated areas in eastern China, dust collection efforts are indispensable to minimize any possible influence by locally emitted particles or at least to ensure that the samples are collected after dust arrival.
Particle Lifting Processes in Dust Devils
NASA Astrophysics Data System (ADS)
Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.
2016-11-01
Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; DeLuca, M.; Janches, D.; Marshall, R. A.; Munsat, T.; Plane, J. M. C.; Horanyi, M.
2017-12-01
Radars play an important role in characterizing the distribution of meteoroids entering Earth's atmosphere, and they are sensitive to the size range where most of the mass input occurs. The interpretation of meteor radar measurements, however, is handicapped by the incomplete understanding of the microphysical processes relevant to meteoric ablation. A facility has been developed to simulate the ablation of small dust particles in laboratory conditions and to determine the most critical parameters. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities of 1-70 km/s. The particles are then introduced into a cell filled with nitrogen, air, oxygen, or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where partial or complete ablation occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path. An optical observation setup using a 64 channel PMT system allows direct observation of the particle and estimating the light output. A new addition to the facility, using pickup tube detectors and precise timing, allows measurement of the drag coefficient of the particle's slowdown, which we find to be significantly higher than commonly used in existing models. Measurements also indicated that the ionization efficiency of iron and aluminum at low velocities is larger than previously expected.
Laboratory Simulations of Micrometeoroid Ablation
NASA Astrophysics Data System (ADS)
Thomas, Evan Williamson
Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.
In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele
2017-04-19
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.
NASA Astrophysics Data System (ADS)
Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.
2009-04-01
The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical composition. At Tinfou, larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3. Evaluation of the Cape Verde data will show whether a significant difference exists between fresh and aged Saharan dust in aspect ratio.
Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun
NASA Astrophysics Data System (ADS)
Shestakova, L. I.; Demchenko, B. I.
2018-03-01
We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2011-04-01
This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2010-12-01
This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.
Comparison of the predictions of two road dust emission models with the measurements of a mobile van
NASA Astrophysics Data System (ADS)
Kauhaniemi, M.; Stojiljkovic, A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Kupiainen, K.; Kangas, L.; Aarnio, M. A.; Omstedt, G.; Denby, B. R.; Kukkonen, J.
2014-02-01
The predictions of two road dust suspension emission models were compared with the on-site mobile measurements of suspension emission factors. Such a quantitative comparison has not previously been reported in the reviewed literature. The models used were the Nordic collaboration model NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and the Swedish-Finnish FORE model (Forecasting Of Road dust Emissions). These models describe particulate matter generated by the wear of road surface due to traction control methods and processes that control the suspension of road dust particles into the air. An experimental measurement campaign was conducted using a mobile laboratory called SNIFFER, along two selected road segments in central Helsinki in 2007 and 2008. The suspended PM10 concentration was measured behind the left rear tyre and the street background PM10 concentration in front of the van. Both models reproduced the measured seasonal variation of suspension emission factors fairly well during both years at both measurement sites. However, both models substantially under-predicted the measured emission values. The results indicate that road dust emission models can be directly compared with mobile measurements; however, more extensive and versatile measurement campaigns will be needed in the future.
Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Wilms, Jochen
2016-07-15
The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where themore » critical condition for the hydraulic jump is located.« less
The influence of solid rocket motor retro-burns on the space debris environment
NASA Astrophysics Data System (ADS)
Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.
Scavenging of pollutant acid substances by Asian mineral dust particles - article no. L07816
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, J.; Takahashi, K.; Matsumi, Y.
2006-04-13
Uptakes of sulfate and nitrate onto Asian dust particles during transport from the Asian continent to the Pacific Ocean were analyzed by using a single-particle time-of-flight mass spectrometer. Observation was conducted at Tsukuba in Japan in the springtime of 2004. Sulfate-rich dust particles made their largest contribution during the 'dust event' in the middle of April 2004. As a result of detailed analysis including backward trajectory calculations, it was confirmed that sulfate components originating from coal combustion in the continent were internally mixed with dust particles. Even in the downstream of the outflow far from the continental coastline, significant contributionmore » of Asian dust to sulfate was observed. Asian dust plays critical roles as the carrier of sulfate over the Pacific Ocean.« less
NASA Astrophysics Data System (ADS)
Horanyi, M.; Munsat, T.
2017-12-01
The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.
Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.
Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter
2015-06-16
Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji
2015-01-01
Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km−1. By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, −0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307
The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen
2007-01-01
The Earth s moon presents a hostile environment in which to live and work. There is no atmosphere to protect its surface from the ravages of solar wind and micrometeorite impacts. As a result, the moon s surface is covered with a thin layer of fine, charged, reactive dust capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. During the Apollo missions, lunar dusts were introduced into the crew vehicle, resulting in direct exposure and occasional reports of respiratory, dermal and ocular irritation. In order to study the toxicological effects of lunar dust, NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG). This interdisciplinary group is comprised of leading experts in space toxicology, lunar geology, space medicine and biomedical research. LADTAG has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. These dusts have highly reactive surfaces in the lunar environment; the grains contain surface coatings which are generated by vapor phases formed by hypervelocity impact of micrometeorites. This unique class of dusts has surface properties that are unlike any Earth based analog. These distinctive properties are why lunar dusts are of great toxicological interest. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar dust exposure and produce a lunar health standard. LADTAG s analysis of lunar dusts and lunar dust simulants will include detailed lunar particle characterizations, determining the properties of particle activation, reactivation of lunar dust, the process of dust passivation and discerning the pathology of lunar dust exposure via inhalation, intratracheal instillation, cell culture exposure, dermal exposure and ocular exposure. The resulting health standard will be time-based and will vary by the duration and type of exposure. It may also be necessary to set multiple standards for different types of lunar dust, as well as for dust in its activated form vs. aged & passivated dust. This standard, set to protect the health of our robust astronaut crews, will not only impact NASA medical operations, but engineering designs as well. The data from our multidisciplinary research are vital in developing remediation devices and environmental monitors. Ultimately, the engineering and safety groups will design and develop countermeasures for space vehicles, suits, rovers and habitats that will be sustained within the limits of the health standard.
Particle size and metals concentrations of dust from a paint manufacturing plant.
Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang
2010-02-15
In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.
Frontiers in In-Situ Cosmic Dust Detection and Analysis
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng
2011-11-01
In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.
Wet Dust Deposition Across Texas, USA
NASA Astrophysics Data System (ADS)
Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.
2016-12-01
Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Yang, Hongu; Ishiguro, Masateru
2018-02-01
In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.
Niu, Hongya; Zhang, Daizhou; Hu, Wei; Shi, Jinhui; Li, Ruipeng; Gao, Huiwang; Pian, Wei; Hu, Min
2016-02-01
Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao (36.15 °N, 120.49 °E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument (SEM-EDX). The particles appeared in various shapes, and their size mainly varied from 0.4 to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3-0.4 μm before the dust storm and about 0.5-0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number. Copyright © 2015. Published by Elsevier B.V.
Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties
NASA Astrophysics Data System (ADS)
Stegmann, P.; Yang, P.
2017-12-01
It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.
Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Schmidt, Jrgen
2018-06-01
In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.
A new hybrid particle/fluid model for cometary dust
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.
2017-12-01
Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be presented. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.
Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters
NASA Technical Reports Server (NTRS)
Bos, Brent; Memarsadeghi, Nargess; Kizhner, Semion; Antonille, Scott
2013-01-01
A large depth-of-field particle image velocimeter (PIV) is designed to characterize dynamic dust environments on planetary surfaces. This instrument detects lofted dust particles, and senses the number of particles per unit volume, measuring their sizes, velocities (both speed and direction), and shape factors when the particles are large. To measure these particle characteristics in-flight, the instrument gathers two-dimensional image data at a high frame rate, typically >4,000 Hz, generating large amounts of data for every second of operation, approximately 6 GB/s. To characterize a planetary dust environment that is dynamic, the instrument would have to operate for at least several minutes during an observation period, easily producing more than a terabyte of data per observation. Given current technology, this amount of data would be very difficult to store onboard a spacecraft, and downlink to Earth. Since 2007, innovators have been developing an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that it has to store and downlink. The algorithm analyzes PIV images and automatically reduces the image information down to only the particle measurement data that is of interest, reducing the amount of data that is handled by more than 10(exp 3). The state of development for this innovation is now fairly mature, with a functional algorithm architecture, along with several key pieces of algorithm logic, that has been proven through field test data acquired with a proof-of-concept PIV instrument.
Charge-fluctuation-induced heating of dust particles in a plasma.
Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F
1999-11-01
Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.
Materials characterization of dusts generated by the collapse of the World Trade Center
Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.
2009-01-01
The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.
NASA Technical Reports Server (NTRS)
Salama, F.; Biennier, L.
2004-01-01
The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.
Najafpour, Ali; Aghaz, Faranak; Roshankhah, Shiva; Bakhtiari, Mitra
2018-06-26
Pollutants during haze and Asian dust storms are transported out of the Asian continent, affecting the regional climate and the hydrological and biogeochemical cycles. Nonetheless, no specific studies evaluated the dust particles influence on semen quality in a specific geographical area. In this article, we investigated the effect of dust particles on semen quality and sperm parameters among infertile men. A descriptive-analytic study was conducted among 850 infertile men between 2011 and 2015 years. Semen quality was assessed according to the WHO 2010 guidelines, including sperm concentration, progressive motility, and morphology. Four-year average dust particle concentrations were estimated at each participant's address using the Air Pollution Monitoring Station affiliated with the Department of Environment of Kermanshah city were gathered. Dust particle levels were highest in the summer months, in Kermanshah province. Our results show that, dust pollution was found to be significantly negatively correlated with sperm morphology and sperm concentration before and after lab-processing, but sperm progressive motility is low sensitive to dust particles. Our findings showed that exposures to dust particle may influence sperm quantity in infertile men, consistent with the knowledge that sperm morphology and concentration are the most sensitive parameters of dust pollution.
NASA Astrophysics Data System (ADS)
Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh
2015-04-01
From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground-based - is composed of mainly silicates and minor amounts of Ca-rich and Fe-/Fe-Ti-rich particles (less than 10 % of dust fraction). The composition of the silicates indicates a major contribution of kaolinite (Al/Si atomic ratio between 0.6 and 1) and a minor contribution of quartz and feldspar particles. The inter-sample variation of the dust composition is generally low, pointing to a very thorough mixing from differently-composed Saharan sources. The temporal evolution of aerosol composition at Ragged Point shows a variation in dust abundance, but strong isolated events could not be identified. An airmass change induced by the passing by of a hurricane, however, is visible in sulfate abundance and their composition. Strong internally mixed particles of dust and sulfate or dust and sea-salt are very rare (up to 1 % of particles in the airborne samples), but a slight increasing tendency with decreasing altitude was found. In the lower MBL at Ragged point, dust/sea-salt mixtures are more frequent (in the same abundance range as pure dust particles). A first conclusion from the data set is that dust aging with respect to internal mixtures does not happen during the long-range transport across the Atlantic Ocean, but rather at the end during the down-mixing of mineral dust into the Caribbean MBL.
Dust arcs in the region of Jupiter's Trojan asteroids
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Schmidt, Jürgen
2018-01-01
Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.
NASA Astrophysics Data System (ADS)
Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; Wang, Z.
2017-12-01
Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO3)2) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, `quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.
Pan, Xiaole; Uno, Itsushi; Wang, Zhe; Nishizawa, Tomoaki; Sugimoto, Nobuo; Yamamoto, Shigekazu; Kobayashi, Hiroshi; Sun, Yele; Fu, Pingqing; Tang, Xiao; Wang, Zifa
2017-03-23
Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO 3 ) 2 ) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, 'quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.
Atmospheric bioaerosols transported via dust storms in the western United States
NASA Astrophysics Data System (ADS)
Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig
2011-09-01
Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.
Compositional mapping of Saturn's E-ring during Cassini's flyby of Rhea
NASA Astrophysics Data System (ADS)
Khawaja, Nozair; Postberg, Frank; Srama, Ralf; Moragas-Klostermeyer, Georg; Kempf, Sascha
2015-04-01
The Cassini spacecraft was launched in 2004 towards the Saturnian system to address major scientific questions about the planet, its magnetosphere, rings and icy moons. We have performed compositional mapping of Saturn's E-ring during the Cassini's flyby (R4) of Rhea, the second largest moon of Saturn, on 9th March 2013. The icy or rocky dust particles from the surface of moons without atmosphere are ejected from their surfaces by meteoroid bombardment. The ejected particles from the moon's surface can be detected during a spacecraft flyby. In our campaign we try to identify the footprints of Rhea's surface in the composition of E ring using Cosmic Dust Analyzer (CDA) during the closest approach of Cassini's Rhea flyby. The flyby speed was 9.3km/s and the closest approach was at 997km from Rhea's surface. The Cosmic Dust Analyzer (CDA), onboard Cassini spacecraft, characterizes the micron and sub-micron dust particles at Saturn [1]. One of the tasks of CDA is to determine the chemical composition of icy and mineral dust particles at Saturn. A Time of Flight (TOF) mass spectrometer within the CDA generates mass spectra of positive ions (cations) of impinging dust particles onto the rhodium (Rh) target plate. We sampled dust grains during the entire flyby and divided the flyby into three intervals: (A) ~ -32 minutes before entering Rhea's hill sphere (B) ~ ±15 minutes from the closest approach within Rhea's hill sphere and (C) ~ +28 minutes after leaving Rhea's hill sphere. A Boxcar Analysis (BCA) is performed for compositional mapping of E-ring along the spacecraft trajectory [4]. Most of the TOF mass spectra are identified as one of the three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2][3]. Although we could not identify compositional information from Rhea, we have a compositional profile of the E ring. The CDA will carryout very similar measurements during Dione flyby in 2015. References [1] Srama, R. et.al.: The Cassini Cosmic Dust Analyzer, SSR, Vol. 114, 465 -- 518, 2004. [2] Postberg, F. et.al.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior -- The composition of E-ring particles, Icarus, Vol. 193, 438 -- 454, 2008. [3] Postberg, F. et.al.: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, Vol. 459, 1098 - 1101, 2009. [4] Khawaja, N. et.al.: Compositional differentiation of Enceladus' plume, EPSC, Vol. 9, 2014.
Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif
2016-01-01
Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272
Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif
2016-07-22
Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.
Migration of Interplanetary Dust and Comets
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation. The fraction of particles started from Encke-type comets is not large (<0.15) in order to fit the observational distributions of particles over their distances from the Sun. Studies of velocities of MgI line and corresponding eccentricities and inclinations in our runs showed that the mean eccentricity of zodiacal dust particles is about 0.5. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 46- 65. [2] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Controls on mineral dust emissions at four arid locations in the western USA
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Gillies, John A.; Etyemezian, Vicken; Kuhns, Hampden; Baker, Sophie E.; Zhu, Dongzi; Nikolich, George; Kohl, Steven D.
Dust emission measurements from unique military sources, including tracked and wheeled military vehicles, low flying rotary-winged aircraft, and artillery backblast, were conducted in the course of four field campaigns in 2005-2008, at Yuma Proving Ground (YPG) in Arizona (twice), Yakima Test Center (YTC) in Washington State, and Ft. Carson in Colorado. This paper reports on the observed relationships between levels of dust emission, and the mineralogy, particle size, and chemical composition of the surface sediment and associated airborne mineral dust. We propose a mechanism for the generation of fine particulate matter, providing an explanation for high emissions in certain regions. PM10 (particulate matter with aerodynamic diameter of <10 μm) and PM2.5 (particulate matter with aerodynamic diameter of <2.5 μm) filter as well as bulk samples were collected for laboratory analysis in the course of the field campaigns. Analytical techniques applied include X-ray diffraction, Scanning Electron Microscopy, laser particle size analysis, as well as X-ray fluorescence spectrometry, Ion Chromatography, and Automated Colorimetry. Previous work has shown YTC has higher dust emission factors than YPG and Ft. Carson. The results presented in this paper demonstrate that the high PM10 and PM2.5 emissions measured at YTC can be explained by the high silt and low clay content of the surface sediment, attributed to glacial loess. In the other test areas, the abrasion of microscopic clay and oxide coatings, from and by silicate mineral grains, is considered a factor in the generation of fine particulate matter.
Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J
2018-06-26
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.
Saharan dust plume charging observed over the UK
NASA Astrophysics Data System (ADS)
Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.
2018-05-01
A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.
Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P
2016-01-01
In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.
NASA Astrophysics Data System (ADS)
Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.
2016-01-01
In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.
Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.
2009-12-01
Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed plots. The total amount of dust measured during the initial (no abrader added) run on GFF for the one pass and ten pass plots was almost twice and three times, respectively, that observed on the undisturbed plots. The ten pass treatment generated about 75% more PM10 dust, as measured by the GRIMM particle monitor, than the undisturbed plots during the 30 minute abrader run.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo
2009-05-01
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.
Dust-concentration measurement based on Mie scattering of a laser beam
Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu
2017-01-01
To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662
NASA Astrophysics Data System (ADS)
Okada, Kikuo; Naruse, Hiroshi; Tanaka, Toyoaki; Nemoto, Osamu; Iwasaka, Yasunobu; Wu, Pei-Ming; Ono, Akira; Duce, Robert A.; Uematsu, Mitsuo; Merrill, John T.; Arao, Kimio
Individual aerosol particles were collected during spring 1986 near the surface over the Japanese islands (Nagasaki and Nagoya) and the North Pacific Ocean near Hawaii. Asian dust-storm particles found in these samples were examined by use of an electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). These dust-storm particles usually consisted of Mg, Al, Si, Ca, Ti and Fe, together with S and Cl. For the individual particles collected over Japan, changes in morphological features and in the amounts of elements before and after the dialysis (extraction) of water-soluble material were studied. The examination indicated that the dust particles were present as mixed particles (internal mixture of water-soluble and -insoluble material), wheras the the water-soluble material mainly contained Ca and S. Over the North Pacific Ocean, the dust-storm particles were present internally in sea-salt particles. It is suggested that the internal mixture of minerals and sea-salt is probably due to interaction within clouds. Formation of CaSO 4 on the dust particles was also suggested on the basis of quantitative results obtained by the use of the EDX.
NASA Astrophysics Data System (ADS)
Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.
2016-12-01
Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.
Spatial distribution of mineral dust single scattering albedo based on DREAM model
NASA Astrophysics Data System (ADS)
Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka
2016-04-01
Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.
Dust Composition in Climate Models: Current Status and Prospects
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.
2015-12-01
Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.
NASA Astrophysics Data System (ADS)
Saitou, Y.
2018-01-01
An SPH (Smoothed Particle Hydrodynamics) simulation code is developed to reproduce our findings on behavior of dust particles, which were obtained in our previous experiments (Phys. Plasmas, 23, 013709 (2016) and Abst. 18th Intern. Cong. Plasma Phys. (Kaohsiung, 2016)). Usually, in an SPH simulation, a smoothed particle is interpreted as a discretized fluid element. Here we regard the particles as dust particles because it is known that behavior of dust particles in complex plasmas can be described using fluid dynamics equations in many cases. Various rotation velocities that are difficult to achieve in the experiment are given to particles at boundaries in the newly developed simulation and motion of particles is investigated. Preliminary results obtained by the simulation are shown.
NASA Technical Reports Server (NTRS)
Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew
2012-01-01
Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.
NASA Astrophysics Data System (ADS)
Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra
2017-04-01
The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. Ice cores can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow ice cores have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter ice core has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The ice cores have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An increase of dust and Ca2+ concentration was registered since the beginning of XX century. The ice core record depicts also a prominent increase of dust concentration in 1980's which may be related to the increase of dust sources strength in North Africa.
Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris
2017-07-13
The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Morfill, G. E.; Gruen, E.; Johnson, T. V.
1980-01-01
The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.
Gravitational Instability of Small Particles in Stratified Dusty Disks
NASA Astrophysics Data System (ADS)
Shi, J.; Chiang, E.
2012-12-01
Self-gravity is an attractive means of forming the building blocks of planets, a.k.a. the first-generation planetesimals. For ensembles of dust particles to aggregate into self-gravitating, bound structures, they must first collect into regions of extraordinarily high density in circumstellar gas disks. We have modified the ATHENA code to simulate dusty, compressible, self-gravitating flows in a 3D shearing box configuration, working in the limit that dust particles are small enough to be perfectly entrained in gas. We have used our code to determine the critical density thresholds required for disk gas to undergo gravitational collapse. In the strict limit that the stopping times of particles in gas are infinitesimally small, our numerical simulations and analytic calculations reveal that the critical density threshold for gravitational collapse is orders of magnitude above what has been commonly assumed. We discuss how finite but still short stopping times under realistic conditions can lower the threshold to a level that may be attainable. Nonlinear development of gravitational instability in a stratified dusty disk. Shown are volume renderings of dust density for the bottom half of a disk at t=0, 6, 8, and 9 Omega^{-1}. The initial disk first develops shearing density waves. These waves then steep and form long extending filament along the azimuth. These filaments eventually break and form very dense dust clumps. The time evolution of the maximum dust density within the simulation box. Run std32 stands for a standard run which has averaged Toomre's Q=0.5. Qgtrsim 1.0 for the rest runs in the plot (Z1 has twice metallicity than the standard; Q1 has twice Q_g, the Toomre's Q for the gas disk alone; M1 has twice the dust-to-gas ratio than the standard at the midplane; R1 is constructed so that the midplane density exceeds the Roche criterion however the Toomre's Q is above unity.)
NASA Astrophysics Data System (ADS)
Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.
2007-08-01
In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.
NASA Astrophysics Data System (ADS)
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
NASA Astrophysics Data System (ADS)
Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.
2014-08-01
The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.
The Impacts of Dust Storm Particles on Human Lung Cells - an Analysis at the Single Cell Level
NASA Astrophysics Data System (ADS)
Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G.
2017-12-01
Aerosols particles (Natural and anthropogenic) are a key component of our atmosphere, their presence defines air quality levels and they can affect our health. Small particles penetrate into our lungs and this exposure can cause our lung cells to stress and in some cases leads to the death of the cells and to inflammation. During dust storm events there is an increase in particle concentration, many of them are breathable particles that can penetrate deep into our lungs. Exposure to dust particles can lead to respiratory problems, particularly for people with asthma. Therefore, during and after a dust storm event the number of people who are hospitalized with inflammation and respiratory problems increase. However, the exact mechanism that causes these health problems is still unclear. In this project, we are investigating the impacts that dust storm particles from different sources and of different concentrations (doses) have on human lung cells, performing a new and unique analysis at the single cell level. To accomplish this, each individual lung cell is continuously tracked after being exposed to dust particles. We monitor the behavior of the cell over time, identify the cells time of death and type of death (e.g. cell explosion). With this analysis, we can quantify cell death as a function of dust concertation (doses); to our surprise, an increase in cells death was not observed only as a function of an increase of dust concertation. In addition, we noticed that the way particles come in contact with cells, by sticking to or being engulfed by, and the interaction duration has an effect; cells that interact with dust particles for a longer period died earlier compared to cells with a shorter interaction period. These findings will help us to better understand the health related consequences of exposure to dust storm events and serve as a baseline for when evaluating other aerosol.
Elongated dust particles growth in a spherical glow discharge in ethanol
NASA Astrophysics Data System (ADS)
Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.
2018-01-01
The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.
Physicochemical classification of dust particles observed at Gosan ABC superstation in East Asia
NASA Astrophysics Data System (ADS)
Shang, X.; Lee, M.; Chung, C. E.
2013-12-01
We identified different types of dust particles from long-term measurements of mass and ionic and carbonaceous compositions of PM1.0, PM2.5 and PM10 at Gosan ABC superstation on Jeju Island, Korea from August 2007 to February 2012. The concentration of PM1.0, PM10 mass and PM10 Ca2+ showed clear bimodal distributions, which provided robust criteria to distinguish atmospheric particles in different physiochemical regimes. Dust impacted particles were clearly separated by high PM10 mass over 29μg/m3. Some dust storm often passed over heavily populated areas in China, which made dust particles mixed with pollutants. This type of aerosol showed enhanced concentration of PM1.0 over 22μg/m3. We also recognized high Ca2+ concentration in PM1.0 when air came from northeastern China where salt deposit spreads in dry lakes. The Ca2+ concentration in PM10 was found to be a good indicator for the saline dust particles. In addition, the ratios of mass, SO42-, Mg2+ and organic carbon (OC) to Ca2+ turned out to be useful to distinguish different types of dust-impacted particles.
NASA Astrophysics Data System (ADS)
Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola
2015-04-01
Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We show that this change in particles size has important implications for their ability to scatter and absorb light. This behavior is also important for cloud properties since the increase of particles size reduces the supersaturating required for cloud droplet activation.
Agglomeration of dust in convective clouds initialized by nuclear bursts
NASA Astrophysics Data System (ADS)
Bacon, D. P.; Sarma, R. A.
Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.
Degradation of radiator performance on Mars due to dust
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Forkapa, Mark
1992-01-01
An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates.
NASA Astrophysics Data System (ADS)
Maki, Teruya; Hara, Kazutaka; Iwata, Ayumu; Lee, Kevin C.; Kawai, Kei; Kai, Kenji; Kobayashi, Fumihisa; Pointing, Stephen B.; Archer, Stephen; Hasegawa, Hiroshi; Iwasaka, Yasunobu
2017-10-01
Aerosol particles, including airborne microorganisms, are transported through the free troposphere from the Asian continental area to the downwind area in East Asia and can influence climate changes, ecosystem dynamics, and human health. However, the variations present in airborne bacterial communities in the free troposphere over downwind areas are poorly understood, and there are few studies that provide an in-depth examination of the effects of long-range transport of aerosols (natural and anthropogenic particles) on bacterial variations. In this study, the vertical distributions of airborne bacterial communities at high altitudes were investigated and the bacterial variations were compared between dust events and non-dust events.Aerosols were collected at three altitudes from ground level to the free troposphere (upper level: 3000 or 2500 m; middle level: 1200 or 500 m; and low level: 10 m) during Asian dust events and non-dust events over the Noto Peninsula, Japan, where westerly winds carry aerosols from the Asian continental areas. During Asian dust events, air masses at high altitudes were transported from the Asian continental area by westerly winds, and laser imaging detection and ranging (lidar) data indicated high concentrations of non-spherical particles, suggesting that dust-sand particles were transported from the central desert regions of Asia. The air samples collected during the dust events contained 10-100 times higher concentrations of microscopic fluorescent particles and optical particle counter (OPC) measured particles than in non-dust events. The air masses of non-dust events contained lower amounts of dust-sand particles. Additionally, some air samples showed relatively high levels of black carbon, which were likely transported from the Asian continental coasts. Moreover, during the dust events, microbial particles at altitudes of > 1200 m increased to the concentrations ranging from 1. 2 × 106 to 6. 6 × 106 particles m-3. In contrast, when dust events disappeared, the microbial particles at > 1200 m decreased slightly to microbial-particle concentrations ranging from 6. 4 × 104 to 8. 9 × 105 particles m-3.High-throughput sequencing technology targeting 16S rRNA genes (16S rDNA) revealed that the bacterial communities collected at high altitudes (from 500 to 3000 m) during dust events exhibited higher diversities and were predominantly composed of natural-sand/terrestrial bacteria, such as Bacillus members. During non-dust periods, airborne bacteria at high altitudes were mainly composed of anthropogenic/terrestrial bacteria (Actinobacteria), marine bacteria (Cyanobacteria and Alphaproteobacteria), and plant-associated bacteria (Gammaproteobacteria), which shifted in composition in correspondence with the origins of the air masses and the meteorological conditions. The airborne bacterial structures at high altitudes suggested remarkable changes in response to air mass sources, which contributed to the increases in community richness and to the domination of a few bacterial taxa.
Hydrodynamic model of a self-gravitating optically thick gas and dust cloud
NASA Astrophysics Data System (ADS)
Zhukova, E. V.; Zankovich, A. M.; Kovalenko, I. G.; Firsov, K. M.
2015-10-01
We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L ⊙ per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2-0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50-60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1-7 kms-1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide the proportions 1 : {1-30} : {10-7-10-6}. The density differentials in the dust cocoon (cavity-shell) are much steeper than in the gas one, dust forms multiple flows in the shell so that the dust caustics in the turning points and in the accumulation layer have infinite dust concentration. We give arguments in favor of unstable character of the inverse gas density distribution in the settled dust flow that can power turbulence constantly sustained in the cloud. If this hypothesis is true, the proposed mechanism can explain turbulence in gas and dust clouds on a scale of parsecs and subparsecs.
Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles
NASA Technical Reports Server (NTRS)
Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.
2007-01-01
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
Guo, Jianping; Lou, Mengyun; Miao, Yucong; Wang, Yuan; Zeng, Zhaoliang; Liu, Huan; He, Jing; Xu, Hui; Wang, Fu; Min, Min; Zhai, Panmao
2017-11-01
East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12-22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km-9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.
Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing
2016-11-01
Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.
Governa, M; Valentino, M; Amati, M; Visonà, I; Botta, G C; Marcer, G; Gemignani, C
1997-06-01
A sample of silicon carbide dust taken in the field from a plant producing abrasives was studied in vitro. The SiC particles (part unmilled and part milled) were able to disturb the structure of erythrocyte membranes and to lead to blood red-cell lysis; they also either interfered with complement and activated the alternate pathway, or interacted with biological media and polymorphonuclear leucocyte membranes, thus eliciting reactive oxygen species production. These in vitro properties were detected both in original large particles and unmilled particles, over 40% of which were of respirable size. The ability of these SiC particles to produce complement activation in vitro lends support to the previous hypothesis, that the radiographic opacities found in two workers employed in the same area of the plant from which the dust tested was taken are due to a reaction by pulmonary interstitial structures to SiC particle inhalation. It is speculated that SiC particles could act like asbestos, the ability of which to activate complement through the alternate pathway is considered to be one of the mechanisms by which the initial asbestotic lesions and subsequent fibrotic inflammatory infiltrates are generated in the lung.
Xu, Guang; Ding, Xuhan; Kuruppu, Mahinda; Zhou, Wei; Biswas, Wahidul
2018-03-01
Bauxite residue is a by-product of aluminium processing. It is usually stored in large-scale residue drying area (RDA). The bauxite residue is highly alkaline and contains a large percentage of metal oxides which are hazardous to the environment and human health. Therefore, the generated dust is a major environmental concern that needs to be addressed and efficiently managed. One of the major dust generation sources is from the coarse fraction of the bauxite residue named red sand. To minimize the environmental and health impacts, non-traditional chemical stabilizers can be applied to construct a binding surface crust with certain hardness and strength. Dust emission is reduced due to the increased moisture retention capacity and strong cohesion between sand particles. There are limited number of refereed publications that discuss the application of this method to alleviate dust generation from red sand. By critically reviewing the literature and the application of non-traditional chemical stabilizers to sand-like materials in other fields, this paper introduces some non-traditional chemical stabilizers that can be potentially used for controlling red sand dust. Commonly used evaluation methods in various studies are compared and summarized; the stabilization mechanisms are examined; and the performance of three types of stabilizers are compared and evaluated. This review potentially serves as a reference and guide for further studies in red sand dust control. The findings are especially useful for developing suitable quantitative methods for evaluating the dust suppression efficiency of soil stabilizers, and for determining the appropriate additive quantities that achieve both economic and performance effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.
Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2
NASA Astrophysics Data System (ADS)
Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.
2003-10-01
The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.
Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H
1991-12-01
During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.
LDEX-PLUS: Lunar Dust Experiment with Chemical Analysis Capability to search for Water
NASA Astrophysics Data System (ADS)
Horanyi, M.; Sternovsky, Z.; Gruen, E.; Kempf, S.; Srama, R.; Postberg, F.
2010-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphee and Dust Explorer Mission (LADEE) is scheduled for launch in early 2013. It will map the variability of the density and size distributions of dust in the lunar vicinity. LDEX is an impact ionization instrument, at an impact speed of > 1.6 km/s, it is capable of measuring the mass of grains with m > 10^(-11) g, and it can also identify a population of smaller grains with m > 10^(-14) kg with a density of n > 10^(-4) cm^(-3). This talk is to introduce the LDEX-PLUS instrument that extends the LDEX capabilities to also measure the chemical composition of the impacting particles with a mass resolution of M/ΔM > 30. We will summarize the science goals, measurement requirements, and the resource needs of this instrument. Traditional methods to analyze surfaces of airless planetary objects from an orbiter are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. The Moon, Mercury, and all other airless planetary object are exposed to the ambient meteoroid bombardment that erodes their surface and generates secondary ejecta particles. Therefore, such objects are enshrouded in clouds of dust particles that have been lifted from their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition, and the origin of each analyzed grain can be determined with an accuracy at the surface that is approximately the altitude of the orbit. Since the detection rates can be on the order of thousands per day, a spatially resolved mapping of the surface composition can be achieved. Possible enhancements include the addition of a dust trajectory sensor to improve the spatial resolution on the surface to ~ 10 km from an altitude of 100 km, and a reflectron type instrument geometry to increase the chemical composition mass resolution to M/ΔM >> 100, enabling isotopic measurements. This ‘dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body’s geological evolution. The method is in principal applicable to orbiters about any planetary object with a radius > 1000 km and with only a thin or no atmosphere. Here we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth’s Moon, as LDEX-PLUS is of particular interest to verify from orbit the presence of water ice in the permanently shadowed lunar craters.
Simulation of dust voids in complex plasmas
NASA Astrophysics Data System (ADS)
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
Patinha, C; Durães, N; Sousa, P; Dias, A C; Reis, A P; Noack, Y; Ferreira da Silva, E
2015-08-01
Urban dust is a heterogeneous mix, where traffic-related particles can combine with soil mineral compounds, forming a unique and site-specific material. These traffic-related particles are usually enriched in potentially harmful elements, enhancing the health risk for population by inhalation or ingestion. Urban dust samples from Estarreja city and traffic-related particles (brake dust and white traffic paint) were studied to understand the relative contribution of the traffic particles in the geochemical behaviour of urban dust and to evaluate the long-term impacts of the metals on an urban environment, as well as the risk to the populations. It was possible to distinguish two groups of urban dust samples according to Cu behaviour: (1) one group with low amounts of fine particles (<38 µm), low contents of organic material, high percentage of Cu in soluble phases, and low Cu bioaccessible fraction (Bf) values. This group showed similar chemical behaviour with the brake dust samples of low- to mid-range car brands (with more than 10 years old), composed by coarser wear particles; and (2) another group with greater amounts of fine particles (<38 µm), with low percentage of Cu associated with soluble phases, and with greater Cu Bf values. This group behaved similar to those found for brake dust of mid- to high-range car brands (with less than 10 years old). The results obtained showed that there is no direct correlation between the geoavailability of metals estimated by sequential selective chemical extraction (SSCE) and the in vitro oral bioaccessibility (UBM) test. Thus, oral bioaccessibility of urban dust is site specific. Geoavailability was greatly dependent on particle size, where the bioaccessibility tended to increase with a reduction in particle diameter. As anthropogenic particles showed high metal concentration and a smaller size than mineral particles, urban dusts are of major concern to the populations' health, since fine particles are easily re-suspended, easily ingested, and show high metal bioaccessibility. In addition, Estarreja is a coastal city often influenced by winds, which favours the re-suspension of small-sized contaminated particles. Even if the risk to the population does not represent an acute case, it should not be overlooked, and this study can serve as baseline study for cities under high traffic influence.
Evaluating the effect of soil dust particles from semi-arid areas on clouds and climate
NASA Astrophysics Data System (ADS)
Kristjansson, J. E.; Hummel, M.; Lewinschal, A.; Grini, A.
2016-12-01
Primary ice production in mixed-phase clouds predominantly takes place by heterogeneous freezing of mineral dust particles. Therefore, mineral dust has a large impact on cloud properties. Organic matter attached to mineral dust particles can expand their already good freezing ability further to warmer subzero temperatures. These dust particles are called "soil dust". Dusts emitted from deserts contribute most to the total dust concentration in the atmosphere and they can be transported over long distances. Soil dust is emitted from semi-arid regions, e.g. agricultural areas. Besides wind erosion, human activities like tillage or harvest might be a large source for soil dust release into the atmosphere. In this study, we analyze the influence of soil dust particles on clouds with the Norwegian Earth System Model (NorESM; Bentsen et al., 2013: GMD). The parameterization of immersion freezing on soil dust is based on findings from the AIDA cloud chamber (Steinke et al., in prep.). Contact angle and activation energy for soil dust are estimated in order to be used in the dust immersion freezing scheme of the model, which is based on classical nucleation theory. Our first results highlight the importance of soil dust for ice nucleation on a global scale. Its influence is expected to be highest in the northern hemisphere due to its higher area for soil dust emission. The immersion freezing rates due to additional soil dust can on average increase by a factor of 1.2 compared to a mineral dust-only simulation. Using a budget tool for NorESM, influences of soil dust ice nuclei on single tendencies of the cloud microphysics can be identified. For example, accretion to snow is sensitive to adding soil dust ice nuclei. This can result in changes e.g. in the ice water path and cloud radiative properties.
Dust particles investigation for future Russian lunar missions.
NASA Astrophysics Data System (ADS)
Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny
One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lender missons intends for investigation the dynamics of dusty plasma near lunar surface. PmL consist of three blocks: Impact Sensor and two Electric Field Sensors. Dust Experiment goals are: 1) Impact sensor to investigate the dynamics of dust particles near the lunar surface (speed, charge, mass, vectors of a fluxes) a) high speed micrometeorites b) secondary particles after micrometeorites soil bombardment c) levitating dust particles due to electrostatic fields PmL instrument will measure dust particle impulses. In laboratory tests we used - min impulse so as 7•10-11 N•c, by SiO2 dust particles, 20-40 µm with velocity about 0,5 -2,5 m/c, dispersion 0.3, and - max impulse was 10-6 N•c with possibility increased it by particles Pb-Sn 0,7 mm with velocity 1 m/c, dispersion ±0.3. Also Impact Sensor will measure the charge of dust particle as far as 10-15 C ( 1000 electrons). In case the charge and impulse of a dust particle are measured we can obtain velocity and mass of them. 2) Electric field Sensor will measure the value and dynamics of the electric fields the lunar surface. Two Electric Field Sensors both are measured the concentration and temperature of charged particles (electrons, ions, dust particles). Uncertainty of measurements is 10%. Electric Field Sensors contain of Lengmure probe. Using Lengmure probe to dark and light Moon surface we can obtain the energy spectra photoelectrons in different period of time. PmL instrument is developing, working out and manufacturing in IKI. Simultaneously with the PmL dust instrument to study lunar dust it would be very important to use an onboard TV system adjusted for imaging physical properties of dust on the lunar surface (adhesion, albedo, porosity, etc), and to collect dust particles samples from the lunar surface to return these samples to the Earth for measure a number of physic-chemical properties of the lunar dust, e.g. a quantum yield of photoemission, what is very important for modeling physical processes in the lunar exosphere.
NASA Astrophysics Data System (ADS)
Kandler, Konrad; Emmel, Carmen; Ebert, Martin; Lieke, Kirsten; Müller-Ebert, Dörthe; Schütz, Lothar; Weinbruch, Stephan
2010-05-01
The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosol was measured. The winter campaign of Saharan Mineral Dust Experiment II in 2008 was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Ground-based and airborne measurements were performed in the winter season, where mineral dust from the Western Sahara and biomass burning aerosol from the Sahel region occurred. Samples were collected with a miniature impactor system, a sedimentation trap, a free-wing impactor, and a filter sampler. Beryllium discs as well as carbon coated nickel discs, carbon foils, and nuclepore and fiber filters were used as sampling substrates. The size-resolved particle aspect ratio and the chemical composition are determined by scanning electron microscopy and energy-dispersive X-ray microanalysis of single particles. Mineralogical bulk composition is determined by X-ray diffraction analysis. In Morocco, three size regimes are identified in the aerosol: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 µm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 µm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). More detailed results are found in Kandler et al. (2009) At Praia, Cape Verde, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures of these components. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust dominates the particle mass (more than 90 %). Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. Comparing a high dust period at Cape Verde with the total data from Morocco, it is found that the atomic ratio distributions of Al/Si, K/Si and Fe/Si for the single particles are very similar for the dust component. This indicates that the dominating silicate minerals are the same. In contrast, the content of calcium rich minerals at Cape Verde is significantly lower than in Morocco which is in agreement with the source regions for the Cape Verde dust (E Mali and W Niger) derived from trajectory analysis. The sulfur content of super-micron aerosol particles at Cape Verde scales with the particle surface, indicating the presence of sulfate coatings. For the submicron particles, the sulfur content scales with particle volume, which can be attributed to the large amount of particles identified as ammonium sulfate. In contrast to findings in Japan (Zhang et al., 2006), no internal mixtures between pristine seasalt and mineral dust are present during this dust period at Cape Verde. However, for a significant number of particles a small amount of sodium and chlorine is associated with internal mixtures of dust and sulfate, what may indicate that these particles started as internal mixture of dust with a sea water droplet before taking up more sulfur from the gas phase. In general, the shape of the particles in Morocco and Cape Verde is rather similar: The distributions of the two-dimensional aspect ratio of an ellipse fitted to each particle's shape for the total aerosol show no significant differences. A median value of 1.6 is found for both locations. References Kandler, K., Schütz, L., Deutscher, C., Hofmann, H., Jäckel, S. and co-authors 2009. Tellus 61B, 32-50. Zhang, D., Iwasaka, Y., Matsuki, A., Ueno, K. and Matsuzaki, T. 2006. Atmos. Environ. 40, 1205-1215. Financial support by the Deutsche Forschungsgemeinschaft (research group SAMUM, FOR539) is gratefully acknowledged. We thank TACV - Cabo Verde Airlines and Mr. António Lima Fortes for logistic support.
NASA Astrophysics Data System (ADS)
Alexander, Jennifer Mary
Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.
Dust ablation in Pluto's atmosphere
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan
2016-04-01
Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.
Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.
1998-01-01
This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.
2014-12-01
Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.
NASA Astrophysics Data System (ADS)
Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min
2013-01-01
The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.
Cassini Ring Plane Crossings: Hypervelocity Impact Risks to Sun Sensor Assemblies
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2016-01-01
For both F/G and D-ring crossings: Probability of a penetration damage of the SSH (Sun Sensor Head) window glass is very low; Optical attenuation due to craters on the surface of the window glass caused by direct HVI (Hyper-Velocity Impact) by dust particle is estimated to be less than 1 percent; Optical attenuation due to secondary debris cloud generated by the disintegrated ring dust particles is estimated to be less than 1 percent. To better manage the Sun sensor damage risk during selected proximal orbit crossings, it is highly desirable to follow the contingency procedures mentioned in Section VII of the paper: Details of this contingency procedure are given in the paper entitled "Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings" authored by David M. Bates. Based on results of risk analyses documented in this work and contingency planning work described in the paper mentioned above, we judge that the proximal orbit campaign will be safe from the viewpoint of dust HVI hazard.
NASA Astrophysics Data System (ADS)
Economou, T. E.; Tuzzolino, A. J.; Green, S. F.
On January 2nd, 2004, the Stardust spacecraft successfully encountered the Wild 2 comet. The Dust Flux Monitor Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distribution throughout the entire flythrough. The DFMI consists of two different dust detector systems --- a polyvinylidene fluoride (PVDF) dust sensor unit (SU), which measures particles in the 10-11 to 10-4 mass, and a dual acoustic sensor system (DASS), which utilizes two piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux ofparticles with mass larger than 10-4 g. The DFMI on the stardust mission was designed, built and tested at the University of Chicago. The Open University provided the calibration and will perform the analysis of the data from the acoustic sensors. The DFMI instrument was turned on 15 minutes before the estimated closest approach. It started to detect the first dust particles just a few minutes before the closest approach with both types of the sensors in the instrument. As the S/C was departing the comet several more dust particle streams were encountered some 2-12 minutes after the closest approach. The time distribution of dust particles detected by DFMI is not uniform and they seem to come in closely spaced swarms of particles separated by many seconds with no events. The source of these particles is believed to be several of the jet streams that were observed in many of the images obtained by the navigation camera on the STARDUST spacecraft. Data flux rates and dust particle mass distribution are currently being evaluated and will be presented at the meeting. The instrument detected thousands of small particles and a few of them were large enough to even penetrate the first layer of the Whipple bumper shield. From the DFMI data it has been estimated that more than several thousands particles larger than 20 μ in diameter have been collected in the aerogel collector that will returned back to Earth in January 2006.
NASA Astrophysics Data System (ADS)
Sekiya, Minoru; Onishi, Isamu K.
2018-06-01
The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.
Fast camera observations of injected and intrinsic dust in TEXTOR
NASA Astrophysics Data System (ADS)
Shalpegin, A.; Vignitchouk, L.; Erofeev, I.; Brochard, F.; Litnovsky, A.; Bozhenkov, S.; Bykov, I.; den Harder, N.; Sergienko, G.
2015-12-01
Stereoscopic fast camera observations of pre-characterized carbon and tungsten dust injection in TEXTOR are reported, along with the modelling of tungsten particle trajectories with MIGRAINe. Particle tracking analysis of the video data showed significant differences in dust dynamics: while carbon flakes were prone to agglomeration and explosive destruction, spherical tungsten particles followed quasi-inertial trajectories. Although this inertial nature prevented any validation of the force models used in MIGRAINe, comparisons between the experimental and simulated lifetimes provide a direct evidence of dust temperature overestimation in dust dynamics codes. Furthermore, wide-view observations of the TEXTOR interior revealed the main production mechanism of intrinsic carbon dust, as well as the location of probable dust remobilization sites.
Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.
Hughs, Sidney E; Wakelyn, Phillip J
2017-04-26
It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.
Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong
2016-04-15
The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RI<105μm) and it combines source and transport factors for road dust particles <105μm in diameter. It could quantify and differentiate the impact of the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RI<105μm in the Beijing region to assess the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RI<105μm method offers a new and useful tool for assessing the potential risks posed by metals associated with road dust on atmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.
Dust particle radial confinement in a dc glow discharge.
Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E
2013-01-01
A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.
Self-consistent Simulation of Microparticle and Ion Wakefield Configuration
NASA Astrophysics Data System (ADS)
Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell
2017-10-01
In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.
Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.;
2010-01-01
Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.
Dust measurements in tokamaks (invited).
Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C
2008-10-01
Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
NASA Astrophysics Data System (ADS)
Flandes, Alberto
2004-08-01
The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.
Lunar Dust Monitor to BE Onboard the Next Japanese Lunar Mission SELENE-2
NASA Astrophysics Data System (ADS)
Ohashi, Hideo
The next Japanese lunar mission SELENE-2, after a successful mission Kaguya (a project named SELENE), is planned to be launched in mid 2010s and is consisted of a lander, a rover, and an orbiter, as a transmitting satellite to the earth. A dust particle detector LDM (Lunar Dust Monitor) is proposed to be onboard the orbiter. The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a sensor part (LDM-S, upper module) and an electronics part (LDM-E, lower module). The LDM-S has a large target (gold-plated Al) of 400 cm2 , to which a high voltage of +500 V is applied. The LDM-S also has two meshed grids parallel to the target. The grids are etched stainless steel with 90% transparency: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. When a charged dust particle passes through the outer and inner grids, it induces an electric signal on the grids separated by a certain time interval, determined by the velocity of the incident particle and the distance between the outer and inner grids. By measuring the time interval, we can calculate the velocity of the particle, with the ambiguity of its trajectory to the target. When the incident particle impacts on the target, plasma gas of electrons and ions is generated. The electrons of the plasma are collected by the target and the ions are accelerated toward the inner grids as a result of the electric field. Some of the ions drift through the inner grid and reach the outer grid. The outer and inner grids and the target are connected to charge-sensitive amplifiers, which convert charge signals induced by the electrons and ions to voltage signals that are fed to a following flash ADC driven with 10 MHz. The waveforms from two grids and the target can be stored and be sent back to ground for data analysis. We can deduce the mass and velocity information of the incident dust particle from the recorded waveforms. The orbiter of SELENE-2 is planned to be in operation for one year or more, and the LDM will observe circumlunar dust for as long as possible. We report scientific importance of dust measurement around the Moon, and current status of LDM in this conference.
NASA Astrophysics Data System (ADS)
Iwata, Ayumi; Matsuki, Atsushi
2018-02-01
In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively pure or fresh calcite, Ca(NO3)2, and (NH4)2SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.
Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory
NASA Astrophysics Data System (ADS)
Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.
2008-09-01
Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.
In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond
NASA Astrophysics Data System (ADS)
Srama, R.
2015-10-01
Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies of the E-ring interaction with the large moon Titan.
Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma
NASA Astrophysics Data System (ADS)
Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.
2008-11-01
In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)
Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro
2016-03-01
The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.
Update on Automated Classification of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Maroger, I.; Lasue, J.; Zolensky, M.
2018-01-01
Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.
WAGNER, JEFF; GHOSAL, SUTAPA; WHITEHEAD, TODD; METAYER, CATHERINE
2013-01-01
We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100 ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. PMID:23739093
Electrostatic dust transport on the surfaces of airless bodies
NASA Astrophysics Data System (ADS)
Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2015-12-01
The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.
Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?
NASA Astrophysics Data System (ADS)
Mann, I.; Hamrin, M.
2012-04-01
In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We further use the expression for the magnetopause stagnation point distance used by Treumann and Baumjohann to investigate the possible influence of time-variable nanoddust fluxes on the magnetopause.
NASA Astrophysics Data System (ADS)
Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.
2012-12-01
Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.
Automated determination of dust particles trajectories in the coma of comet 67P
NASA Astrophysics Data System (ADS)
Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.
2017-09-01
During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].
Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta
NASA Astrophysics Data System (ADS)
Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.
2011-12-01
Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least 1000km and with only a thin or no atmosphere. Thus, this method is ideal on a spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The approach has a ppm-level sensitivity to salts and many rock forming materials as well as water and organic compounds. It provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) could be distinguished and investigated. In particular exchange processes with subsurface ocean on the Galileian moons could be determined with high quantitative precision.
Performance of high flow rate samplers for respirable particle collection.
Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin
2010-08-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 microm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted.
Performance of High Flow Rate Samplers for Respirable Particle Collection
Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin
2010-01-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 μm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted. PMID:20660144
Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization
NASA Astrophysics Data System (ADS)
Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei
2012-07-01
The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.
Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.
2015-01-01
The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..
Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing
2015-04-01
The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.
Implications of Atmospheric Test Fallout Data for Nuclear Winter.
NASA Astrophysics Data System (ADS)
Baker, George Harold, III
1987-09-01
Atmospheric test fallout data have been used to determine admissable dust particle size distributions for nuclear winter studies. The research was originally motivated by extreme differences noted in the magnitude and longevity of dust effects predicted by particle size distributions routinely used in fallout predictions versus those used for nuclear winter studies. Three different sets of historical data have been analyzed: (1) Stratospheric burden of Strontium -90 and Tungsten-185, 1954-1967 (92 contributing events); (2) Continental U.S. Strontium-90 fallout through 1958 (75 contributing events); (3) Local Fallout from selected Nevada tests (16 events). The contribution of dust to possible long term climate effects following a nuclear exchange depends strongly on the particle size distribution. The distribution affects both the atmospheric residence time and optical depth. One dimensional models of stratospheric/tropospheric fallout removal were developed and used to identify optimum particle distributions. Results indicate that particle distributions which properly predict bulk stratospheric activity transfer tend to be somewhat smaller than number size distributions used in initial nuclear winter studies. In addition, both ^{90}Sr and ^ {185}W fallout behavior is better predicted by the lognormal distribution function than the prevalent power law hybrid function. It is shown that the power law behavior of particle samples may well be an aberration of gravitational cloud stratification. Results support the possible existence of two independent particle size distributions in clouds generated by surface or near surface bursts. One distribution governs late time stratospheric fallout, the other governs early time fallout. A bimodal lognormal distribution is proposed to describe the cloud particle population. The distribution predicts higher initial sunlight attenuation and lower late time attenuation than the power law hybrid function used in initial nuclear winter studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudakov, D. L.; Yu, J. H.; Boedo, J. A.
Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers,more » visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.« less
Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu
2015-01-01
An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.
Positively charged particles in dusty plasmas.
Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F
2001-11-01
The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.
1995-01-01
We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9- to 12-micron absorption, and a lack of structured absorption at 20 microns. The ratios of dust extinction opacities at visible, 9 microns, and 30 microns are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode)= 0.40, r(sub eff)variance= 0.4 microns, r(sub cw mu)= 2.7 microns) predicts the correct ratio of the 9- to 30-micron opacity, but underpredicts the visible/9-micron opacity ratio considerably (1 versus > or equal to 2). A similar particle distribution width with smaller particle sizes (r(sub mode)= 0.17, r(sub eff)variance= 0.4 microns, r(sub cw mu)=1.2 microns) will fit the observed visible/9-micron opacity ratio, but overpredicts the observed 9-micron/30-micron opacity ratio. A smaller and much broader particle size distribution (r(sub mode)= 0.02, r(sub eff)variance= 0.8 microns, r(sub cw mu)= 1.8 microns) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micron dust opacity ratio, the Phobos occultation measurements of dust particle sizes, and the weakness of surface near IR absorptions expected for clay minerals.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; Mcmillan, W. W.; Rousch, T.
1995-01-01
We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff) variance approximately 0.8 micrometers), smaller particle size (r(sub mode) approximately 0.02 micrometers) distribution coupled with a 'palagonite-like' composition is argued to fit the complete ultraviolet-to-30-micrometer absorption properties of the dust better than the montmorillonite-basalt, r(sub eff) variance = 0.4 micrometers, r(sub mode) = 0.40 dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971-1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample (Rousch et al., 1991) with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emmission-phase-function (EPF) observations at 9 micrometers are analyzed to retrieve 9-micrometer dust opacities coincident with solar band dust opacities obtained from the same EPF sequences (Clancy and Lee, 1991). These EPF dust opacities provide an independent measurement of the visible/9-micrometer extinction opacity ratio (greater than or = 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-micrometer opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micrometer absorption well. However, it predicts structured, deep aborptions at 20 micrometers which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8-to 9-micrometer absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9-to 12-micrometer absorption, and a lack of structured absorption at 20 micrometers. The ratios of dust extinction opacities at visible, 9 micrometers, and 30 micrometers are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode) = 0.40,r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 2.7 micrometers) predicts the correct ratio of the 9- to 30-micrometer opacity, but underpredicts the visible/9-micrometer opacity ratio considerably (1 versus greater than or = 2). A similar particle distribution width with smaller particle sizes (r(sub mode) = 0.17, r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 1.2 micrometers) will fit the observed visible/9-micrometer opacity ratio, but overpredicts the observed 9-micrometer/30-micrometer opacity ratio. A smaller and much broader particle size distribution (r(sub mode) = 0.002, r(sub eff) variance = 0.8 micrometers, r(sub cwmu) = 1.8 micrometers) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micrometer dust opacity ratio, the Phobos occulation measurements of the dust particle sizes (Chassefiere et al., 1992), and the weakness of surface near IR absorptions expected for clay minerals (Clark, 1992; Bell and Crisp, 1993).
Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles
NASA Astrophysics Data System (ADS)
Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar
2016-04-01
Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany
CHARACTERIZATION OF MUD/DIRT CARRYOUT ONTO PAVED ROADS FROM CONSTRUCTION AND DEMOLITION ACTIVITIES
The report characterizes fugitive dust generated by vehicular traffic on paved streets and highways resulting from mud/dirt carryout from unpaved areas as a primary source of PM-10 (particles = or < 10 micrometers in aerodynamic diameter), and evaluates three technologies for eff...
Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J
2003-07-11
Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.
NASA Astrophysics Data System (ADS)
Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann
A critical evaluation of human exposure to phthalate esters in indoor environments requires the determination of their distribution among the gas phase, airborne particles and settled dust. If sorption from the gas phase is the dominant mechanism whereby a given phthalate is associated with both airborne particles and settled dust, there should be a predictable relationship between its particle and dust concentrations. The present paper tests this for six phthalate esters (DMP, DEP, DnBP, DiBP, BBzP and DEHP) that have been measured in both the air and the settled dust of 30 Berlin apartments. The particle concentration, CParticle, of a given phthalate was calculated from its total airborne concentration and the concentration of airborne particles (PM 4). This required knowledge of the particle-gas partition coefficient, Kp, which was estimated from either the saturation vapor pressure ( ps) or the octanol/air partition coefficient ( KOA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration ( CParticle/ CDust) was calculated. The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite the fact that their vapor pressures span four orders of magnitude. This indicates that measurements of phthalate ester concentrations in settled dust can provide an estimate of their concentration in airborne particles. When the latter information is coupled with measurements of airborne particle concentrations, the gas-phase concentrations of phthalates can also be estimated and, subsequently, the contribution of each of these compartments to indoor phthalate exposures.
Interplanetary dust. [survey of last four years' research
NASA Technical Reports Server (NTRS)
Brownlee, D. E.
1979-01-01
Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.
Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T
2017-07-01
Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001). Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.
Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove
2016-10-01
The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.
NASA Astrophysics Data System (ADS)
Orger, N. C.; Toyoda, K.; Cho, M.
2017-12-01
Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.
NASA Astrophysics Data System (ADS)
Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai
2015-05-01
A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2012 CFR
2012-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...
The role of organic polymers in the structure of cometary dust
NASA Technical Reports Server (NTRS)
Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.
1992-01-01
Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.
Dusty disc-planet interaction with dust-free simulations
NASA Astrophysics Data System (ADS)
Chen, Jhih-Wei; Lin, Min-Kai
2018-05-01
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.;
2012-01-01
Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.
NASA Astrophysics Data System (ADS)
Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.
2018-06-01
The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.
1984-01-01
As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.
NASA Astrophysics Data System (ADS)
Gu, Yingxin
This thesis is concerned with atmospheric particles produced by sandstorms and volcanic eruptions. Three studies were conducted in order to examine particle retrieval methodology, and apply these towards an improved understanding of large-scale sandstorms. A thermal infrared remote sensing retrieval method developed by Wen and Rose [1994], which retrieves particle sizes, optical depth, and total masses of silicate particles in the volcanic cloud, was applied to an April 07, 2001 sandstorm over northern China, using MODIS. Results indicate that the area of the dust cloud observed was 1.34 million km2, the mean particle radius of the dust was 1.44 mum, and the mean optical depth at 11 mum was 0.79. The mean burden of dust was approximately 4.8 tons/km2 and the main portion of the dust storm on April 07, 2001 contained 6.5 million tons of dust. The results are supported by both independent remote sensing data (TOMS) and in-situ data for a similar event in 1998, therefore suggesting that the technique is appropriate for quantitative analysis of silicate dust clouds. This is the first quantitative evaluation of annual and seasonal dust loading in 2003 produced by Saharan dust storms by satellite remote sensing analysis. The retrieved mean particle effective radii of 2003 dust events are between 1.7--2.6 mum which is small enough to be inhaled and is hazardous to human health. The retrieved yearly dust mass load is 658--690 Tg, which is ˜45% of the annual global mineral dust production. Winter is the heaviest dust loading season in the year 2003, which is more than 5 times larger than that in the summer season in 2003.The mean optical depths at 11 mum in the winter season (around 0.7) are higher than those in the summer season (around 0.5). The results could help both meteorologists and environmental scientists to evaluate and predict the hazard degree caused by Saharan dust storms. (Abstract shortened by UMI.)
The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie
1988-01-01
In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.
The nature of (sub-)micrometre cometary dust particles detected with MIDAS
NASA Astrophysics Data System (ADS)
Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.
2015-10-01
The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.
Detection of dust particles in the coma of Halley's Comet by the Foton detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimov, S.I.; Kariagin, V.P.; Kudriashov, V.A.
The first results of direct measurements of the characteristics of dust particles with mass m of greater than 10 to the -9th g by the Foton detector, carried on the VEGA 1 and VEGA 2 space vehicles, are reported. The nature of the changes in the dust flux along the trajectory of the space probe is reported. The mass distribution of the dust particles is also reported. 7 references.
Airborne dust and soil particles at the Phoenix landing site, Mars
NASA Astrophysics Data System (ADS)
Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.
2009-04-01
The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et al. (2008) JGR, 113, E00A22.
Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.
2017-02-15
The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.
Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET
NASA Technical Reports Server (NTRS)
Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.;
2010-01-01
Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed improved definition in the 870nm wavelength absorption weighting due to the increased absorption in the near-infrared wavelengths, while the 440nm wavelength provided better definition when black carbon mixed with dust. Utilization of this particle type scheme provides necessary information for remote sensing applications, which needs a priori knowledge of aerosol type to model the retrieved properties especially over semi-bright surfaces. In fact, this analysis reveals that the aerosol types occurred in mixtures with varying magnitudes of absorption and requires the use of more than one assumed aerosol mixture model. Furthermore, this technique will provide the aerosol transport model community a data set for validating aerosol type.
Electron density modification in ionospheric E layer by inserting fine dust particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.
2015-02-15
In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less
An instrument for discrimination between orbital debris and natural particles in near-Earth space
NASA Astrophysics Data System (ADS)
Tuzzolino, A. J.; Simpson, J. A.; McKibben, R. B.; Voss, H. D.; Gursky, H.
1993-08-01
We discuss a SPAce DUSt instrument (SPADUS) under development for flight on the USA ARGOS mission to measure the flux, mass, velocity and trajectory of near-Earth dust. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. Measurements will cover the dust mass range ~5×10-12 g (2 μm diameter) to ~ 1×10-5g (200 μm diameter), with an expected mean error in particle trajectory of ~7° (isotropic flux).
Particle adhesion to surfaces under vacuum
NASA Technical Reports Server (NTRS)
Barengoltz, Jack B.
1988-01-01
The release of glass beads and standard dust from aluminum and glass substrates under centrifugation (simulating atmospheric pressure, low vacuum, and high vacuum conditions) was measured, with application to the estimation of contaminant particle release during spacecraft launch. For particles in the 10-100 micron range, dust was found to adhere more strongly than glass beads in all the cases considered. For most of the cases, dust and glass beads adhered more strongly to glass than to aluminum at all pressures. The adhesion force for dust on glass at 10 torr was shown to be as small as the value for dust on aluminum.
The global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.
2016-12-01
This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.
Mineral dust photochemistry induces nucleation events in the presence of SO2
Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian
2012-01-01
Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230
Progress in our understanding of cometary dust tails
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.
Comet Dust: The Diversity of "Primitive" Particles and Implications
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.
2016-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.
2013-04-02
photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model
Nonlinear dust-lattice waves: a modified Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, N. F.
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
Space Dust Collisions as a Planetary Escape Mechanism.
Berera, Arjun
2017-12-01
It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.
Modeling light scattering by mineral dust particles using spheroids
NASA Astrophysics Data System (ADS)
Merikallio, Sini; Nousiainen, Timo
Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487
Saharan Dust Particle Size And Concentration Distribution In Central Ghana
NASA Astrophysics Data System (ADS)
Sunnu, A. K.
2010-12-01
A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.
Particle atlas of World Trade Center dust
Lowers, Heather; Meeker, Gregory P.
2005-01-01
The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.
Distribution of Dust from Kuiper Belt Objects
NASA Technical Reports Server (NTRS)
Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)
2000-01-01
Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.
The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley
NASA Technical Reports Server (NTRS)
Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.
1987-01-01
Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.
Diagnostics and characterization of nanodust and nanodusty plasmas★
NASA Astrophysics Data System (ADS)
Greiner, Franko; Melzer, Andrè; Tadsen, Benjamin; Groth, Sebastian; Killer, Carsten; Kirchschlager, Florian; Wieben, Frank; Pilch, Iris; Krüger, Harald; Block, Dietmar; Piel, Alexander; Wolf, Sebastian
2018-05-01
Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.
Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene
2016-10-01
Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
Acute Meteorite Dust Exposure and Pulmonary Inflammation - Implications for Human Space Exploration
NASA Technical Reports Server (NTRS)
Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.
2017-01-01
The previous manned missions to the Moon represent milestones of human ingenuity, perseverance, and intellectual curiosity. However, one of the major ongoing concerns is the array of hazards associated with lunar surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness [1-3]" (Figure 1). It was further reported that the allergic response to the dust worsened with each exposure [4]. The lack of gravity exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles [1]. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern [5]. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. Studies on the lunar highland regolith indicate that the dust is not only respirable but also reactive [2, 6-9], and previous studies concluded that it is moderately toxic; generating a greater response than titanium oxide but a lower response than quartz [6]. The presence of reactive oxygen species (ROS) on the surface of the dust has been implicated. However, there is actually little data related to physicochemical characteristics of particulates and pulmonary toxicity, especially as it relates to celestial dust exposure. As a direct response to this deficit, the present study evaluates the role of a particulate's innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. This highly interdisciplinary study evaluates the relative toxicity of six meteorite samples representing either basalt or regolith breccia on the surfaces of the Moon, Mars, and Asteroid 4Vesta (Table 1); three potential candidates for future human exploration or colonization. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison as a control sample.
NASA Technical Reports Server (NTRS)
Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.
2017-01-01
The previous manned missions to the Moon represent milestones of human ingenuity, perseverance, and intellectual curiosity. However, one of the major ongoing concerns is the array of hazards associated with lunar surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" (Figure 1). It was further reported that the allergic response to the dust worsened with each exposure. The lack of gravity exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. Studies on the lunar highland regolith indicate that the dust is not only respirable but also reactive, and previous studies concluded that it is moderately toxic; generating a greater response than titanium oxide but a lower response than quartz. The presence of reactive oxygen species (ROS) on the surface of the dust has been implicated. However, there is actually little data related to physicochemical characteristics of particulates and pulmonary toxicity, especially as it relates to celestial dust exposure. As a direct response to this deficit, the present study evaluates the role of a particulate's innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. This highly interdisciplinary study evaluates the relative toxicity of six meteorite samples representing either basalt or regolith breccia on the surfaces of the Moon, Mars, and Asteroid 4Vesta; three potential candidates for future human exploration or colonization. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison as a control sample.
Analysis of Physical Properties of Dust Suspended in the Mars Atmosphere
NASA Technical Reports Server (NTRS)
Snook, Kelly; McKay, Chris; Cantwell, Brian
1998-01-01
Methods for iteratively determining the infrared optical constants for dust suspended in the Mars atmosphere are described. High quality spectra for wavenumbers from 200 to 2000 1/cm were obtained over a wide range of view angles by the Mariner 9 spacecraft, when it observed a global Martian dust storm in 1971-2. In this research, theoretical spectra of the emergent intensity from Martian dust clouds are generated using a 2-stream source-function radiative transfer code. The code computes the radiation field in a plane-parallel, vertically homogeneous, multiply scattering atmosphere. Calculated intensity spectra are compared with the actual spacecraft data to iteratively retrieve the optical properties and opacity of the dust, as well as the surface temperature of Mars at the time and location of each measurement. Many different particle size distributions a-re investigated to determine the best fit to the data. The particles are assumed spherical and the temperature profile was obtained from the CO2 band shape. Given a reasonable initial guess for the indices of refraction, the searches converge in a well-behaved fashion, producing a fit with error of less than 1.2 K (rms) to the observed brightness spectra. The particle size distribution corresponding to the best fit was a lognormal distribution with a mean particle radius, r(sub m) 0.66 pm, and variance, omega(sup 2) = 0.412 (r(sub eff) = 1.85 microns, v(sub eff) =.51), in close agreement with the size distribution found to be the best fit in the visible wavelengths in recent studies. The optical properties and the associated single scattering properties are shown to be a significant improvement over those used in existing models by demonstrating the effects of the new properties both on heating rates of the Mars atmosphere and in example spectral retrieval of surface characteristics from emission spectra.
Direct Characterization of Comets and Asteroids via Cosmic Dust Analysis from the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Fries, M.; Fisher, K.
2018-01-01
The Deep Space Gateway (DSG) may provide a platform for direct sampling of a large number of comets and asteroids, through employment of an instrument for characterizing dust from these bodies. Every year, the Earth traverses through debris streams of dust and small particles from comets and asteroids in Earth-crossing orbits, generating short-lived outbursts of meteor activity commonly known as "meteor showers" (Figure 1). The material in each debris stream originates from a distinct parent body, many of which have been identified. By sampling this material, it is possible to quantitatively analyze the composition of a dozen or more comets and asteroids (See Figure 2, following page) without leaving cislunar space.
[The mutagenic action of the dust of natural zeolites and chrysotile asbestos].
Durnev, A D; Suslova, T B; Cheremisina, Z P; Dubovskaia, O Iu; Nigarova, E A; Korkina, L G; Seredenin, S B; Velichkovskiĭ, B T
1990-01-01
The cell chemiluminescence method was used to demonstrate the ability of asbest and zeolite dusts from 8 deposits of the USSR to induce generation of free oxygen radicals in the phagocytosing cells suspension. It has been found that asbest and zeolite (0.01 and 0.05 mg/ml) increase levels of cells with chromosome aberrations in human cell cultures. The cytogenetic effect of asbest was inhibited by superoxide dismutase (50 mg/ml). The damaging effect of zeolite was decreased by the pharmacological drug bemithyl (0.007-0.07 mM) and completely eliminated by catalase (20 mg/ml). The results obtained indicate that mutagenic effect of dust particles of asbest and zeolite is mediated by oxygen radicals.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu
2017-06-01
The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and the entire coarse mode nitrate and sulfate were internally mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.
Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly
The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in dusty plasmas over the lunar surface. This work was supported by the Presidium of the Russian Academy of Sciences (basic research program no. 22 “Fundamental Problems of Research and Exploration of the Solar System”) and by the Russian Foundation for Basic Research (project 12-02-00270-a).
Characterization of dust from blast furnace cast house de-dusting.
Lanzerstorfer, Christof
2017-10-01
During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.
Dust emissions of organic soils observed in the field and laboratory
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.
2011-12-01
According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.
NASA Astrophysics Data System (ADS)
Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas
2009-01-01
Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.
Wagner, Jeff; Ghosal, Sutapa; Whitehead, Todd; Metayer, Catherine
2013-09-01
We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle
2009-02-01
The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.
Role of clay minerals in the formation of atmospheric aggregates of Saharan dust
NASA Astrophysics Data System (ADS)
Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio
2015-11-01
Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of clays in the iberulites is suggested to be the result of higher efficiency for clay capture than for the capture of larger mineral grains. The high hygroscopicity of clay minerals probably causes retention of water in the evaporation stage and some secondary minerals (mainly gypsum) are associated with clays.
The competition between mineral dust and soot ice nuclei in mixed-phase clouds (Invited)
NASA Astrophysics Data System (ADS)
Murray, B. J.; Atkinson, J.; Umo, N.; Browse, J.; Woodhouse, M. T.; Whale, T.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O'Sullivan, D.; Malkin, T. L.
2013-12-01
The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. In this talk our recent laboratory and global aerosol modelling work on mineral dust and soot ice nuclei will be presented. We have performed immersion mode experiments to quantify ice nucleation by the individual minerals which make up desert mineral dusts and have shown that the feldspar component, rather than the clay component, is most important for ice nucleation (Atkinson et al. 2013). Experiments with well-characterised soot generated with eugenol, an intermediate in biomass burning, and n-decane show soot has a significant ice nucleation activity in mixed-phase cloud conditions. Our results for soot are in good agreement with previous results for acetylene soot (DeMott, 1990), but extend the efficiency to much higher temperatures. We then use a global aerosol model (GLOMAP) to map the distribution of soot and feldspar particles on a global basis. We show that below about -15oC that dust and soot together can explain most observed ice nuclei in the Earth's atmosphere, while at warmer temperatures other ice nuclei types are needed. We show that in some regions soot is the most important ice nuclei (below -15oC), while in others feldspar dust dominates. Our results suggest that there is a strong anthropogenic contribution to the ice nuclei population, since a large proportion of soot aerosol in the atmosphere results from human activities. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013). Demott, P. J. 1990. An Exploratory-Study of Ice Nucleation by Soot Aerosols. Journal of Applied Meteorology, 29, 1072-1079.
Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.
2002-01-01
A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.
The Martian dust cycle: A proposed model
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1987-01-01
Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.
NASA Technical Reports Server (NTRS)
Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.
2016-01-01
Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.
Cosmic dust or other similar outer-space particles location detector
NASA Technical Reports Server (NTRS)
Aver, S.
1973-01-01
Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.
Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution
NASA Technical Reports Server (NTRS)
Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.
2004-01-01
Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.
NASA Technical Reports Server (NTRS)
Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.
2011-01-01
The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).
3D dust clouds (Yukawa Balls) in strongly coupled dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melzer, A.; Passvogel, M.; Miksch, T.
2010-06-16
Three-dimensional finite systems of charged dust particles confined to concentric spherical shells in a dusty plasma, so-called 'Yukawa balls', have been studied with respect to their static and dynamic properties. Here, we review the charging of particles in a dusty plasma discharge by computer simulations and the respective particle arrangements. The normal mode spectrum of Yukawa balls is measured from the 3D thermal Brownian motion of the dust particles around their equilibrium positions.
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.
2016-11-01
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
The ionization efficiency of aluminum and iron at meteoric velocities
NASA Astrophysics Data System (ADS)
DeLuca, Michael; Munsat, Tobin; Thomas, Evan; Sternovsky, Zoltan
2018-07-01
The ionization efficiency of aluminum was measured in the laboratory over an extended velocity range of 10.8-73.4 km/s and compared to available models. The measurements were made by shooting submicron-sized aluminum dust particles into an air chamber using the University of Colorado's dust accelerator facility. The ionization efficiency, β, is calculated from the total charge generated in the chamber during the complete ablation of particles of known mass. An array of photomultiplier tubes observed the light production by a subset of particles in the chamber to confirm that a moderate deceleration of the ablating particles occurred at low velocities. This information allows the interpretation of the β measurements to be extended to velocities <20 km/s, with the understanding that the low-velocity β measurements are lower limits. Updated β measurements for iron particles are also reported over an extended velocity range compared to previously published data: 10.5-87.3 km/s. The measurements are fit to functions for the ionization efficiency across the entire velocity range, and a semi-empirical function is presented which matches the shape of the measured β curves for aluminum and iron at both high and low velocities.
Annually resolved Holocene record of dust deposition and size distribution from the South Pole
NASA Astrophysics Data System (ADS)
Chesler, A.; Koffman, B. G.; Kreutz, K. J.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Cole-Dai, J.; Wells, M. L.; Handley, M.
2017-12-01
Ice cores offer insights into past changes in atmospheric composition and circulation at high temporal resolution. Dust particles preserved in ice cores provide information regarding the atmospheric burden of dust and associated trace elements, changes in atmospheric circulation, and variations in the climates of dust-producing regions. Well resolved ice core dust records, therefore, can be used to gain a better understanding of the dynamics affecting ocean overturning circulation, to constrain atmospheric nutrient deposition to ocean ecosystems, and to assess atmospheric albedo variations. Existing Antarctic ice core dust records are generally either low-resolution and long-duration (glacial/interglacial timescale), or high-resolution and short-duration (past 2400 years), but high-resolution and long-duration records are rare. Here we present a continuous high-resolution record of dust deposition, including particle size distribution (PSD) and concentration, from the South Pole Ice (SPICE) Core, the first Holocene dust record from this location. The SPICE core was drilled during 2014-2016, reaching a depth of 1751 m. Cores were melted and analyzed for particles (1.0-12 µm diameter) using a continuous-flow Abakus laser particle sensor at Dartmouth College. The current SPICE Core chronology is based on: 1) visual stratigraphy from 0-10.2 ka and 2) correlations to the IceCube dust log calibration beyond 10.2 ka. Annual layer counts of Mg, dust (1.0 µm and 2.4 µm), Na, and SO4 demonstrate that the dust record is annually resolved through most of the Holocene ( 10.3 ka), allowing us to assess dust/climate relationships at high temporal resolution. We use meteorological and reanalysis data to understand modern drivers of observed variability in particle concentration and size distribution, and compare the new SPICE dust record to available Antarctic dust records including from EPICA Dome C, WAIS Divide, Taylor Dome, Taylor Glacier, Talos Dome, Siple Dome, and EPICA Dronning Maud Land. Interpretations of the SPICE dust record will be used to improve understanding of dust emissions, transport and deposition processes, and dust/climate relationships, through the Holocene.
NASA Technical Reports Server (NTRS)
Brownlee, Donald E.; Sandford, Scott A.
1992-01-01
Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.
Glow and Dust in Plasma Boundaries
NASA Astrophysics Data System (ADS)
Land, Victor; Douglass, Angela; Qiao, Ke; Zhang, Zhuanhao; Matthews, Lorin S.; Hyde, Truell
2013-04-01
The sheath region is probed in different complex plasma experiments using dust particles in addition to measurement of the optical emission originating from the plasma. The local maximum in optical emission coincides with the breaking of quasi-neutrality at the sheath boundary as indicated by the vertical force profile reconstructed from dust particle trajectories, as well as by the local onset of dust density waves in high density dust clouds suspended in a dielectric box.
NASA Astrophysics Data System (ADS)
Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.
2016-12-01
The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocker, Anna; Bugiel, Sebastian; Srama, Ralf
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flightmore » mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.« less
A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research
NASA Astrophysics Data System (ADS)
Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf
2011-09-01
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.
Lai, H T L; Nieuwland, M G B; Aarnink, A J A; Kemp, B; Parmentier, H K
2012-03-01
We studied the effects of a concurrent challenge on slow-growing broilers with 1) airborne particles of 2 sizes: fine dust (smaller than 2.5 microns) and coarse dust (between 2.5 and 10 microns) that were directly collected from a broiler house and 2) lipopolysaccharide on intratracheal immunizations with the specific antigen human serum albumin (HuSA) and measured primary and secondary systemic (total) antibody responses and (isotype-specific) IgM, IgG, and IgA responses at 3 and 7 wk of age. All treatments affected immune responses at several ages, heart morphology, and BW gain, albeit the latter only temporarily. Dust particles significantly decreased primary antibody (IgT and IgG) responses to HuSA at 3 wk of age but enhanced IgM responses to HuSA at 7 wk of age. Dust particles decreased secondary antibody responses to HuSA, albeit not significantly. All of the birds that were challenged with dust particles showed decreased BW gain after the primary but not after the secondary challenge. Relative heart weight was significantly decreased in birds challenged with coarse dust, fine dust, lipopolysaccharide, and HuSA at 3 wk of age, but not in birds challenged at 7 wk of age. Morphology (weight, width, and length) of hearts were also affected by the dust challenge at 3 wk of age. The present results indicate that airborne dust particles obtained from a broiler house when intratracheally administered at an early age affect specific humoral immune responsiveness and BW gain of broilers to simultaneously administered antigens differently than when administered at a later age. The hygienic status of broiler houses at a young age may be of importance for growth and immune responsiveness, and consequently, for vaccine efficacy and disease resistance in broilers. The consequences of our findings are discussed.
Assessment of velocity/trajectory measurement technologies during a particle capture event
NASA Technical Reports Server (NTRS)
Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni
1994-01-01
Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.
Impact-generated dust clouds around planetary satellites: asymmetry effects
NASA Astrophysics Data System (ADS)
Sremčević, Miodrag; Krivov, Alexander V.; Spahn, Frank
2003-06-01
In a companion paper (Krivov et al., Impact-generated dust clouds around planetary satellites: spherically symmetric case, Planet. Space. Sci. 2003, 51, 251-269) an analytic model of an impact-generated, steady-state, spherically symmetric dust cloud around an atmosphereless planetary satellite (or planet - Mercury, Pluto) has been developed. This paper lifts the assumption of spherical symmetry and focuses on the asymmetry effects that result from the motion of the parent body through an isotropic field of impactors. As in the spherically symmetric case, we first consider the dust production from the surface and then derive a general phase-space distribution function of the ensemble of ejected dust motes. All quantities of interest, such as particle number densities and fluxes, can be obtained by integrating this phase-space distribution function. As an example, we calculate an asymmetric distribution of dust number density in a cloud. It is found that the deviation from the symmetric case can be accurately described by a cosine function of the colatitude measured from the apex of the satellite motion. This property of the asymmetry is rather robust. It is shown that even an extremely asymmetric dust production at the surface, when nearly all dust is ejected from the leading hemisphere, turns rapidly into the cosine modulation of the number density at distances larger than a few satellite radii. The amplitude of the modulation depends on the ratio of the moon orbital velocity to the speed of impactors and on the initial angular distribution of the ejecta. Furthermore, regardless of the functional form of the initial angular distribution, the number density distribution of the dust cloud is only sensitive to the mean ejecta angle. When the mean angle is small - ejection close to the normal of the surface - the initial dust production asymmetry remains persistent even far from the satellite, but when this angle is larger than about 45°, the asymmetry coefficient drops very rapidly with the increasing distance. The dependence of the asymmetric number density on other parameters is very weak. On the whole, our results provide necessary theoretical guidelines for a dedicated quest of asymmetries in the dust detector data, both those obtained by the Galileo dust detector around the Galilean satellites of Jupiter and those expected from the Cassini dust experiment around outer Saturnian moons.
An evaluation of the GCA respirable dust monitor 101-1.
Marple, V A; Rubow, K L
1978-01-01
The GCA RDM 101-1 has been evaluated using aerosols of coal, Arizona road dust, silica, potash, and rock (copper ore) particles. The effects of the dust mass concentration, particle size distribution, and dust material on the instrument response were investigated. The instrument was found to measure the mass concentrations of respirable dust aerosols up to about 16 mg/m3 for coal and rock dust and about 20 mg/m3 for silica, potash, and Arizona road dust, providing there is not appreciable mass in the size range below approximateley 0.7 micrometer aerodynamic diameter.
NASA Astrophysics Data System (ADS)
DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.
2014-06-01
Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically-relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first order approximation in numerical modeling investigations.
NASA Astrophysics Data System (ADS)
DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.
2015-01-01
Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.
DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...
2014-06-27
Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically-relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first order approximation in numerical modeling investigations.« less
DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...
2015-01-13
Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.« less
Exposure-Reducing Behaviors among Residents Living near a Coal Ash Storage Site
ERIC Educational Resources Information Center
Zierold, Kristina M.; Sears, Clara G.; Brock, Guy N.
2016-01-01
Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods,…
40 CFR 63.545 - What are my standards for fugitive dust sources?
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (4) Battery storage area. (5) Equipment maintenance. (6) Material storage areas. (7) Material... achieve 99.97 percent capture efficiency for 0.3 micron particles in a manner that does not generate... 40 CFR 302.4). (4) Battery storage areas. You must inspect any batteries that are not stored in a...
40 CFR 63.545 - What are my standards for fugitive dust sources?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (4) Battery storage area. (5) Equipment maintenance. (6) Material storage areas. (7) Material... achieve 99.97 percent capture efficiency for 0.3 micron particles in a manner that does not generate... 40 CFR 302.4). (4) Battery storage areas. You must inspect any batteries that are not stored in a...
40 CFR 63.545 - What are my standards for fugitive dust sources?
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (4) Battery storage area. (5) Equipment maintenance. (6) Material storage areas. (7) Material... achieve 99.97 percent capture efficiency for 0.3 micron particles in a manner that does not generate... 40 CFR 302.4). (4) Battery storage areas. You must inspect any batteries that are not stored in a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2013 CFR
2013-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2010 CFR
2010-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2012 CFR
2012-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
Code of Federal Regulations, 2011 CFR
2011-04-01
... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...
The morphology of cometary dust: Subunit size distributions down to tens of nanometres
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus
2017-04-01
The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.
Physics of spacecraft-based interplanetary dust collection by impact into low-density media
NASA Technical Reports Server (NTRS)
Anderson, William W.; Ahrens, T. J.
1994-01-01
A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotsuka, R.N.; Peck, R.W. Jr.; Drew, R.T.
1985-02-01
A fluidizing bed aerosol generator (FBG), designed for inhalation toxicity studies, was constructed and tested. A key design feature contributing to its operational stability was the partial masking of the screen supporting the bronze beads. This caused 20-80% of the bed to fluidize under normal operating conditions. The non-fluidizing areas functioned as reservoirs to feed the fluidizing areas. Using a bed volume of 1000 cc of bronze beads and 20 g of MnO/sub 2/ dust, the mass output rate ranged from 0.1 to 1.0 mg/min when operated at plenum pressures of 1.04 x 10/sup 2/ to 2.42 x 10/sup 2/more » kPa (minimum fluidization pressure was approximately 82.8 kPa). During daily operation at three different output rates, the FBG produced aerosols with little change in particle size distributions or concentration when operated six hours/day for five days. Furthermore, when the FBG was operated at a fixed output rate for 15 days with two recharges of MnO/sub 2/ dust, the particle size distribution did not show any cumulative increase. Thus, long-term operation of this FBG should result in a reproducible range of concentration and particle size distribution.« less
NASA Astrophysics Data System (ADS)
El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.
This paper investigates some of the air pollution problems which have been created as a result of the Gulf war in early 1991. Temporary periods of increased dust storm activity have been observed in Saudi Arabia. This is presumably due to disturbance of the desert surface by the extremely large number of tanks and other war machines before and during the war. The concentrations of inhalable dust particles (<15 μm) increased during the months just after the war by a factor of about 1.5 of their values during the same months of the previous year, 1990. The total horizontal solar energy flux in Riyadh has been significantly reduced during dry days with no clouds. This is attributed to the presence of soot particles, which have been generated at an extremely high rate from the fired oil fields in Kuwait. The direct normal solar insolation were also measured at the photovoltaic solar power plant in Riyadh during these days and significant reductions were observed due to the effective absorption of solar radiation by soot particles. The generated power from the plant has been reduced during days with a polluted atmosphere by about 50-80% of the expected value for such days, if the atmosphere were dry and clear.
Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe
NASA Technical Reports Server (NTRS)
Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.
2013-01-01
We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
Rauert, C; Harrad, S; Suzuki, G; Takigami, H; Uchida, N; Takata, K
2014-09-15
Brominated flame retardants (BFRs) have been detected in indoor dust in many studies, at concentrations spanning several orders of magnitude. Limited information is available on the pathways via which BFRs migrate from treated products into dust, yet the different mechanisms hypothesized to date may provide an explanation for the range of reported concentrations. In particular, transfer of BFRs to dust via abrasion of particles or fibers from treated products may explain elevated concentrations (up to 210 mg g(-1)) of low volatility BFRs like decabromodiphenyl ether (BDE-209). In this study, an indoor dust sample containing a low concentration of hexabromocyclododecane, or HBCD, (110 ng g(-1) ΣHBCDs) was placed on the floor of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a mesh shelf 3 cm above the chamber floor and abrasion induced using a stirrer bar. This induced abrasion generated fibers of the curtain, which contaminated the dust, and ΣHBCD concentrations in the dust increased to between 4020 and 52 500 ng g(-1) for four different abrasion experiment times. The highly contaminated dust (ΣHBCD at 52 500 ng g(-1)) together with three archived dust samples from various UK microenvironments, were investigated with forensic microscopy techniques. These techniques included Micro X-ray fluorescent spectroscopy, scanning emission microscopy coupled with an energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy with further BFR analysis on LC-MS/MS. Using these techniques, fibers or particles abraded from a product treated with BFRs were identified in all dust samples, thereby accounting for the elevated concentrations detected in the original dust (3500 to 88 800 ng g(-1) ΣHBCD and 24 000 to 1,438 000 ng g(-1) for BDE-209). This study shows how test chamber experiments alongside forensic microscopy techniques, can provide valuable insights into the pathways via which BFRs contaminate indoor dust. Copyright © 2014 Elsevier B.V. All rights reserved.
Eulerian-Lagrangian CFD modelling of pesticide dust emissions from maize planters
NASA Astrophysics Data System (ADS)
Devarrewaere, Wouter; Foqué, Dieter; Nicolai, Bart; Nuyttens, David; Verboven, Pieter
2018-07-01
An Eulerian-Lagrangian 3D computational fluid dynamics (CFD) model of pesticide dust drift from precision vacuum planters in field conditions was developed. Tractor and planter models were positioned in an atmospheric computational domain, representing the field and its edges. Physicochemical properties of dust abraded from maize seeds (particle size, shape, porosity, density, a.i. content), dust emission rates and exhaust air velocity values at the planter fan outlets were measured experimentally and implemented in the model. The wind profile, the airflow pattern around the machines and the dust dispersion were computed. Various maize sowing scenarios with different wind conditions, dust properties, planter designs and vacuum pressures were simulated. Dust particle trajectories were calculated by means of Lagrangian particle tracking, considering nonspherical particle drag, gravity and turbulent dispersion. The dust dispersion model was previously validated with wind tunnel data. In this study, simulated pesticide concentrations in the air and on the soil in the different sowing scenarios were compared and discussed. The model predictions were similar to experimental literature data in terms of concentrations and drift distance. Pesticide exposure levels to bees during flight and foraging were estimated from the simulated concentrations. The proposed CFD model can be used in risk assessment studies and in the evaluation of dust drift mitigation measures.
NASA Technical Reports Server (NTRS)
Simpson, J. A.; Tuzzolino, A. J.
1989-01-01
The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.
NASA Technical Reports Server (NTRS)
2005-01-01
Desert dust particles tend to be larger in size than aerosols that originate from the processes of combustion. How precisely do the size of the aerosol particles comprising the dust that obscured the Red Sea on July 26, 2005, contrast with the size of the haze particles that obscured the United States eastern seaboard on the same day? NASA's Multi-angle Imaging SpectroRadiometer (MISR), which views Earth at nine different angles in four wavelengths, provides information about the amount, size, and shape of airborne particles. Here, MISR aerosol amount and size is presented for these two events. These MISR results distinguish desert dust, the most common non-spherical aerosol type, from pollution and forest fire particles. Determining aerosol characteristics is a key to understanding how aerosol particles influence the size, abundance, and rate of production of cloud droplets, and to a better understanding of how aerosols influence clouds and climate. The left panel of each of these two image sets (Red Sea, left; U.S. coastline, right) is a natural-color view from MISR's 70-degree forward viewing camera. The color-coded maps in the central panels show aerosol optical depth; the right panels provide a measure of aerosol size, expressed as the 'Angstrom exponent.' For the optical depth maps, yellow pixels indicate the most optically-thick aerosols, whereas the red, green and blue pixels represent progressively decreasing aerosol amounts. For this dramatic dust storm over the Red Sea, the aerosol is quite thick, and in some places, the dust over water is too optically thick for MISR to retrieve the aerosol amount. For the eastern seaboard haze, the thickest aerosols have accumulated over the Atlantic Ocean off the coasts of South Carolina and Georgia. Cases where no successful retrieval occurred, either due to extremely high aerosol optical thickness or to clouds, appear as dark gray pixels. For the Angstrom exponent maps, the blue and green pixels (smaller values) correspond with more large particles, whilst the yellow and red pixels, representing higher Angstrom exponents, correspond with more small particles. Angstrom exponent is related to the way the aerosol optical depth (AOD) changes with wavelength -- a more steeply decreasing AOD with wavelength indicates smaller particles. The greater the magnitude of the Angstrom exponent, the greater the contribution of smaller particles to the overall particle distribution. For optically thick desert dust storms, as in this case, the Angstrom exponent is expected to be relatively low -- likely below 1. For the eastern seaboard haze, the Angstrom exponent is significantly higher, indicating the relative abundance of small pollution particles, especially over the Atlantic where the aerosol optical depth is also very high. With a nearly simultaneous data acquisition time, the MODIS instrument also collected data for these events, and image features for both the dust storm and the haze are available. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82 north and 82 south latitude every nine days. This image covers an area of about 1,265 kilometers by 400 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 29809 and 29814 and utilize data from blocks 60 to 67 and 71 to 78 within World Reference System-2 paths 17 and 170, respectively. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.Comparison of the predictions of two road dust emission models with the measurements of a mobile van
NASA Astrophysics Data System (ADS)
Kauhaniemi, M.; Stojiljkovic, A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Kupiainen, K.; Kangas, L.; Aarnio, M. A.; Omstedt, G.; Denby, B. R.; Kukkonen, J.
2014-09-01
The predictions of two road dust suspension emission models were compared with the on-site mobile measurements of suspension emission factors. Such a quantitative comparison has not previously been reported in the reviewed literature. The models used were the Nordic collaboration model NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and the Swedish-Finnish FORE model (Forecasting Of Road dust Emissions). These models describe particulate matter generated by the wear of road surface due to traction control methods and processes that control the suspension of road dust particles into the air. An experimental measurement campaign was conducted using a mobile laboratory called SNIFFER, along two selected road segments in central Helsinki in 2007 and 2008. The suspended PM10 concentration was measured behind the left rear tyre and the street background PM10 concentration in front of the van. Both models reproduced the measured seasonal variation of suspension emission factors fairly well during both years at both measurement sites. However, both models substantially under-predicted the measured emission values. The article illustrates the challenges in conducting road suspension measurements in densely trafficked urban conditions, and the numerous requirements for input data that are needed for accurately applying road suspension emission models.
NASA Astrophysics Data System (ADS)
Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.
2017-07-01
Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.
Space Dust Collisions as a Planetary Escape Mechanism
NASA Astrophysics Data System (ADS)
Berera, Arjun
2017-12-01
It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.
Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank
2008-01-25
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.
Airborne sand and dust soiling of solar collecting mirrors
NASA Astrophysics Data System (ADS)
Sansom, Christopher; Almond, Heather; King, Peter; Endaya, Essam; Bouaichaoui, Sofiane
2017-06-01
The reflectance of solar collecting mirrors can be significantly reduced by sand and dust soiling, particularly in arid environments. Larger airborne sand and dust particles can also cause damage by erosion, again reducing reflectance. This work describes investigations of the airborne particle size, shape, and composition in three arid locations that are considered suitable for CSP plants, namely in Iran, Libya, and Algeria. Sand and dust has been collected at heights between 0.5 to 2.0m by a variety of techniques, but are shown not to be representative of the particle size found either in ground dust and sand, or on the solar collecting mirror facets themselves. The possible reasons for this are proposed, most notably that larger particles may rebound from the mirror surface. The implications for mirror cleaning and collector facet erosion are discussed.
NASA Astrophysics Data System (ADS)
Authier-Martin, Monique
Dustiness of calcined alumina is a major concern, causing undesirable working conditions and serious alumina losses. These losses occur primarily during unloading and handling or pot loading and crust breaking. The handling side of the problem is first addressed. The Perra pulvimeter constitutes a simple and reproducible tool to quantify handling dustiness and yields results in agreement with plant experience. Attempts are made to correlate dustiness with bulk properties (particle size, attrition index, …) for a large number of diverse aluminas. The characterization of the dust generated with the Perra pulvimeter is most revealing. The effect of the addition of E.S.P. dust is also reported.
NASA Astrophysics Data System (ADS)
Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun
2018-03-01
Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.
Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source
NASA Astrophysics Data System (ADS)
Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.
2015-12-01
In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity conditions.
Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors
NASA Astrophysics Data System (ADS)
Bergsåker, H.; Ratynskaia, S.; Litnovsky, A.; Ogata, D.; Sahle, W.
2011-08-01
Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.
Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material
NASA Astrophysics Data System (ADS)
Flandes, Alberto; Albin, Thomas; Arnold, Walter; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Mewes, Cornelia; Podolak, Morris; Seidensticker, Klaus J.; Volkert, Cynthia; Krüger, Harald
2018-03-01
On 12 November 2014, during the descent of the Rosetta lander Philae to the surface of comet 67P/Churyumov-Gerasimenko the Dust Impact Monitor (DIM) on board Philae recorded an impact of a cometary dust impact of a cometary dust particle at 2.4 km from the comet surface (5 km from the nucleus' barycentre). In this work, we report further experiments that support the identification of this particle. We use aerogel as a comet analog material to characterise the properties of this particle. Our experiments show that this particle has a radius of 0.9 mm, a low density of 0.25 g/cm3 and a high porosity close to 90%. The particle likely moved at near 4 m/s with respect to the comet.
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.
2009-01-01
Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.
Dust particles interaction with plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticos, C. M.; Jepu, I.; Lungu, C. P.
2009-11-10
The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.
Dust Dynamics Near Planetary Surfaces
NASA Astrophysics Data System (ADS)
Colwell, Joshua; Hughes, Anna; Grund, Chris
Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude streams observed by Apollo astronauts and potentially also by the Clementine spacecraft. In addition to the Surveyor images of lunar horizon glow and the high altitude streamer measurements, the Apollo 17 Lunar Ejecta and Meteorite surface package detected signals consistent with the impact of relatively slow-moving dust particles that may have been charged dust electrostatically levitated from the surface. There is renewed interest in this near-surface dust environment with plans to return robotic landers and astronauts to the lunar surface. No Apollo-era instruments were specifically designed to detect or measure dust levitated off the lunar surface. One new experiment under study is the Autonomous Lunar Dust Observer (ALDO). ALDO is a high-sensitivity scanning lidar (laser radar) that autonomously maps and records its 3-D dust environment. Flexibility of programmable scan pattern enables ALDO to characterize the dust context in and around experiment sites. Repeated shallow angle scans in a vertical plane enable high vertical resolution studies of dust levitation near the ground. Single elevation angle sector or full azimuth scans enable large-area statistical surveys of the frequency and size of ejecta plumes from micrometeoroid impacts, and vertical or fixed-angle stares enable very high sensitivity dust profiles to extended ranges. It is estimated that backscatter from dust concentrations as low as 1/cm3 can be measured. The concept is equally applicable to surface and atmospheric studies of other airless bodies.
Preliminary Examination of the Interstellar Collector of Stardust
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bastien, R.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Butterworth, A. L.; Floss, C.; Flynn, G.;
2008-01-01
The findings of the Stardust spacecraft mission returned to earth in January 2006 are discussed. The spacecraft returned two unprecedented and independent extraterrestrial samples: the first sample of a comet and the first samples of contemporary interstellar dust. An important lesson from the cometary Preliminary Examination (PE) was that the Stardust cometary samples in aerogel presented a technical challenge. Captured particles often separate into multiple fragments, intimately mix with aerogel and are typically buried hundreds of microns to millimeters deep in the aerogel collectors. The interstellar dust samples are likely much more challenging since they are expected to be orders of magnitudes smaller in mass, and their fluence is two orders of magnitude smaller than that of the cometary particles. The goal of the Stardust Interstellar Preliminary Examination (ISPE) is to answer several broad questions, including: which features in the interstellar collector aerogel were generated by hypervelocity impact and how much morphological and trajectory information may be gained?; how well resolved are the trajectories of probable interstellar particles from those of interplanetary origin?; and, by comparison to impacts by known particle dimensions in laboratory experiments, what was the mass distribution of the impacting particles? To answer these questions, and others, non-destructive, sequential, non-invasive analyses of interstellar dust candidates extracted from the Stardust interstellar tray will be performed. The total duration of the ISPE will be three years and will differ from the Stardust cometary PE in that data acquisition for the initial characterization stage will be prolonged and will continue simultaneously and parallel with data publications and release of the first samples for further investigation.
Thin film surface treatments for lowering dust adhesion on Mars Rover calibration targets
NASA Astrophysics Data System (ADS)
Sabri, F.; Werhner, T.; Hoskins, J.; Schuerger, A. C.; Hobbs, A. M.; Barreto, J. A.; Britt, D.; Duran, R. A.
The current generation of calibration targets on Mars Rover serve as a color and radiometric reference for the panoramic camera. They consist of a transparent silicon-based polymer tinted with either color or grey-scale pigments and cast with a microscopically rough Lambertian surface for a diffuse reflectance pattern. This material has successfully withstood the harsh conditions existent on Mars. However, the inherent roughness of the Lambertian surface (relative to the particle size of the Martian airborne dust) and the tackiness of the polymer in the calibration targets has led to a serious dust accumulation problem. In this work, non-invasive thin film technology was successfully implemented in the design of future generation calibration targets leading to significant reduction of dust adhesion and capture. The new design consists of a μm-thick interfacial layer capped with a nm-thick optically transparent layer of pure metal. The combination of these two additional layers is effective in burying the relatively rough Lambertian surface while maintaining diffuse properties of the samples which is central to the correct operation as calibration targets. A set of these targets are scheduled for flight on the Mars Phoenix mission.
Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla
2015-04-28
Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less
Sources of zodiacal dust particles
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2007-08-01
The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of dust inside Jupiter's orbit, they can not be dominant in the zodiacal cloud because they can not be dominant between orbits of Jupiter and Saturn. The conclusion on a considerable fraction of cometary dust is also in an agreement with our studies [6] of the dynamics of Jupiter-family comets, which showed that some former cometary objects could get high eccentric orbits located entirely inside of Jupiter's orbit and stay in these orbits for a long time. Some of these objects could disintegrate producing a substantial amount of dust. [1] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [2] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [3] Ipatov S.I. and Mather J.C., (2007) Dust in Planetary Systems, ed. by H. Krüger and A. Graps, ESA Publications, SP-643, p. 91-94. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471. [5] Ipatov S.I. et al., astro-ph/0608141. [6] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80.
Development and Tests of Elements of a Dust Telescope
NASA Astrophysics Data System (ADS)
Gruen, E.; Srama, R.; Rachev, M.; Srowig, A.; Sternovsky, Z.; Horanyi, M.; Amyx, K.; Auer, S.
2005-08-01
A dust telescope is a combination of a dust trajectory sensor together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through a position sensitive electrode system. The objective of the trajectory sensor is to measure dust charges in the range 10-16 to 10-13 C and dust speeds in the range 6 to 100 km/s. The trajectory sensor has four sensor planes consisting of about 16 wire electrodes each. Two adjacent planes have orthogonal wire direction. An ASIC charge sensitive amplifier has been developed with a RMS noise of about 1.5 10-17 C. The signals from 32 electrodes are digitized and sampled at 20 MHz rate by an ASIC transient recorder. First tests with a laboratory set-up have been performed and demonstrate a charge sensitivity corresponding to 100 electrons. The dust chemical analyzers shall have sufficient mass resolution in order to resolve ions with atomic mass number up to 100. The annular impact area of the mass analyzer will be > 0.1 m2. The mass spectrometer consists of the target area with an acceleration grid and the single-stage reflectron consisting of two grids and the central ion detector. Different field configurations have been found that have a mass resolution of M/Δ M > 150 for impacts onto the annular target between 100 and 240 mm from the center. An Ion Detector of 50 to 110 mm radius is necessary to collect all generated ions. A lab model has been constructed and first dust accelerator tests demonstrate a mass resolution (FWHM) of M/Δ M 250. Acknowledgements: This research is supported by NASA grant NAG5-11782 and by DLR grant 50OO0201.
Indirect Charged Particle Detection: Concepts and a Classroom Demonstration
NASA Astrophysics Data System (ADS)
Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew
2013-11-01
We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.
Morgan, Daniel L
2006-08-01
Cellulose insulation (CI) is a type of thermal insulation produced primarily from recycled newspapers. The newspapers are shredded, milled, and treated with fire-retardant chemicals. The blowing process for installing CI generates a significant quantity of airborne material that presents a potential inhalation hazard to workers. CI was selected for study based upon the high production volume, the potential for widespread human exposure, and a lack of toxicity data; insufficient information was available to determine whether inhalation studies in laboratory animals were technically feasible or necessary. Studies were conducted to characterize the chemical and physical properties of CI aerosols, to evaluate the potential acute pulmonary toxicity of CI, and to assess occupational exposure of CI installers. Workplace exposure assessments were conducted in collaboration with the National Institute for Occupational Safety and Health (NIOSH, 2001). Chemical analyses were performed on samples of bulk CI from four major United States manufacturers. All samples of the bulk CI were found to contain primarily amorphous cellulose (60% to 65%) with a smaller crystalline component (35% to 40%). The crystalline phase was primarily native cellulose (75% to 85%) with a minor amount of cellulose nitrate (15% to 25%). Elemental analyses of acid digests of CI materials indicated that the major components (>0.1% by weight) included aluminum, boron, calcium, sodium, and sulfur. An acid-insoluble residue present in all four materials (3% to 5% of original sample weight) was found to consist primarily of aluminum silicate hydroxide (kaolinite; approximately 85%) with minor amounts (<5% each) of magnesium silicate hydroxide (talc), potassium aluminum silicate hydroxide (muscovite), and titanium oxide (rutile). Solvent extracts of the bulk materials were analyzed for organic components by gas chromatography with flame ionization detection. Analyses revealed a mass of poorly resolved peaks. Because of the very low concentrations, further quantitative and qualitative analyses were not performed. An aerosol generation system was designed to separate CI particles based upon aerodynamic size and to simulate the process used during CI installation at work sites. Less than 0.1% of each of the CI samples was collected as the small respirable particle fraction. The mean equivalent diameter of respirable particles ranged from 0.6 to 0.7 mum. The numbers of fibers in the respirable fractions ranged from 9.7 x 103 to 1.4 x 106 fibers/g of CI. The respirable particle fractions did not contain cellulose material and consisted mainly of fire retardants and small quantities of clays. The respirable fraction from one CI sample was administered by intratracheal instillation to male Fischer 344 rats at doses of 0, 0.625, 1.25, 2.5, 5, or 10 mg/kg body weight; the bronchoalveolar lavage (BAL) fluid cellularity was evaluated 3 days later. Based upon the relatively mild severity of the inflammatory response, a dose of 5 mg/kg body weight was selected for use in a subsequent 28-day study. Rats received CI, titanium dioxide (particle controls), or sterile saline (controls). BAL fluid was evaluated 1, 3, 7, 14, and 28 days after instillation, and lung histopathology was evaluated 14 and 28 days after treatment. CI caused a greater influx of inflammatory cells than titanium dioxide and caused significant increases in BAL fluid protein and lactate dehydrogenase. These CI-induced changes in BAL fluid parameters were transient and by day 14 were not significantly different than those observed in rats treated with titanium dioxide or phosphate-buffered saline. Unlike titanium dioxide, CI treatment caused a minimal to mild nonprogressive, minimally fibrosing granulomatous pneumonitis characterized by nodular foci of macrophages and giant cells. These results indicated that few respirable particles or fibers are likely generated during the CI application and that the acute pulmonary toxicity is minimal. The CI exposure assessment was conducted with 10 contractors located across the United States. Air samples of total dust and respirable dust were collected for scanning electron microscopy (SEM) to characterize any fibers in the dust. Two SEM air samples for each day of CI activities were collected from the installer and hopper operator. Bulk CI samples were collected and analyzed for metal, boron, and sulfate content. Real-time and video exposure monitoring was conducted to further characterize the CI dust and workers' exposures. The exposure assessment also included a medical component. Investigators collected 175 personal breathing zone (PBZ) total dust, 106 area total dust, and 90 area respirable dust air samples during CI-related activities at the 10 contractor sites. Twenty-six employees' total dust 8-hour time-weighted averages (TWAs) exceeded the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 15 mg/m3, and 42 exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold-limit value (TLV) of 10 mg/m3. Respirable dust air sampling and real-time monitoring with particle size discrimination indicated low levels of respirable dust generation. The SEM analyses revealed that fibers were an average 28 mum in length and ranged from 5 mum to 150 mum. CI installers' PBZ total dust, area total dust, and area respirable dust air samples were all significantly higher during dry attic applications than wet attic applications (P<0.01). Conversely, the hopper operators' total dust exposures were significantly higher during wet wall and ceiling applications than dry wall and ceiling applications (P=0.02). Analyses of variance tests revealed that exposure concentrations in total dust air samples collected in the PBZ of all CI workers, including installers working in attics, installers during wall applications, hopper operators during attic applications, and hopper operators during wall and ceiling applications, varied significantly during dry applications (P<0.01). The respirable dust air samples collected in attic areas, hopper areas during attic applications, and hopper areas during wall and ceiling applications also differed significantly during dry applications (P=0.03). Twenty-three workers participated in the medical phase of the investigation. The workers completed medical and work history questionnaires, performed serial peak flow tests, and completed multiple acute symptom surveys. The medical questionnaires indicated respiratory, nasal, and skin symptoms that employees attributed to CI exposure. The most common symptoms reported while working with CI included nasal symptoms (35%), eye symptoms (35%), and morning phlegm production (25%). There was a temporal association between CI exposure and eye symptoms, but there was little evidence of lower respiratory system health conditions associated with CI exposure. Chemical analyses of the four bulk CI samples revealed only minor differences in additives. The major elemental components detected were aluminum, boron, calcium, sodium, and sulfur, but they were attributed to the fire retardants aluminum sulfate, boric acid, and sodium sulfate. For all four CI samples, less than 0.1% by weight was collected as the small respirable particle fraction. The fractions consisted mainly of fire retardants and smaller quantities of clays and did not contain cellulose material. Intratracheal instillation of the respirable fraction in rats produced minimal to mild inflammatory responses in the lungs with no increase in severity by 28 days after dosage. Although a significant increase in lung collagen was detected at day 28 in treated rats, microscopic evaluation revealed only a minimal to mild increase in collagen fibrils associated with granulomatous nodules. The results of these studies indicated that few respirable particles or fibers are generated during the aerosolization of CI, and that even at very high doses of respirable CI particles, acute pulmonary toxicity is minimal. These results are supported by the NIOSH workplace exposure assessment conducted on CI workers. Based on the air sample data collected from the 10 contractor site visits, there is a potential for overexposure to CI; however, respirable dust concentrations were typically low. There was increased potential for 8-hour TWAs exceeding the OSHA PEL for total and respirable dust when employees were involved in CI application activities for longer periods of time. There was evidence of work-related eye and mucous membrane irritation among some workers, which were possibly caused by the additives present in CI, such as boric acid. There was little evidence of lower respiratory system health conditions associated with CI exposure. Based upon the results of the CI chemical characterization studies, the pulmonary toxicity study, and the worksite exposure assessment, the NTP concluded that additional studies of CI in laboratory animals are not warranted at this time. However, the animal pulmonary toxicity studies and worker health surveys focused on acute CI exposures and do not preclude the possibility of toxicity resulting from chronic exposure. Although exposure concentrations of respirable CI particulate matter were low, additional information is needed on the biodurability and reactivity of CI particles and fibers in the respiratory tract. CI should continue to be regarded as a nuisance dust, and workers should continue to wear protective masks to prevent inhalation exposure to CI dusts.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Vignelles, Damien; Verdier, Nicolas
2017-04-01
Iceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover 44,000 km2 which makes Iceland the largest Arctic as well as European desert. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2. About 50% of the suspended PM10 are submicron particles. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances as revealed on the satellite MODIS images with dust plumes traveling over 1000 km at times. There is a need to understand better the vertical distribution of such aerosols as well as their residence time in the atmosphere, especially during occasions such as polar vortex. Four LOAC flights were performed under meteorological balloons in Iceland in January 9-13 2016 when stratospheric polar vortex occurred above Iceland. LOAC is an optical aerosol counter that uses a new optical design to retrieve the size concentrations in 19 size classes between 0.2 and 100 micrometers, and to provide an estimate of the main nature of aerosols. Vertical profile of aerosol size distribution showed the presence of volcanic dust particles up to altitudes of 8 km for two of the flights (9-10 January). The MODIS satellite images confirmed a dust plume present above the southern coast from the deposits of September 2015 glacial outburst flood (jökulhlaup) while the rest of the country was covered by snow. These deposits had been actively suspended in November and December 2015. The ground PM10 mass concentration measurements in Reykjavik showed elevated PM measurements over 100 micrograms.m-3, confirming the particle presence 250 km far from the source. The number concentration exceeded 200 particles cm-3 at altitude of 1 km and 60 particles cm-3 at altitude of 5 km, which is at least 5 times higher than during background conditions. The particles were < 3 micrometers in size at altitudes >1 km while largest particles, up to 20 micrometers, were detected close to the ground. Such high number concentrations in several km height were captured by LOAC during a typical Saharan dust plume. On the other hand, aircraft measurements of winter dust storm in 2007 with an aerosol spectrometer (0.1-3 micrometers) detected only 30-50 particles per cm3 in altitude 1900 m. Our results show that fine volcanic glacially reworked dust can reach high altitudes relatively close to the dust source and reside in terms of days under winter atmospheric conditions. The remaining question is the further transport of these high altitude particles outside Iceland.
The Need for Medical Geology in Space Exploration: Implications for the Journey to Mars and Beyond
NASA Technical Reports Server (NTRS)
Harrington, A. D.; Zeigler, R. A.; McCubbin, F. M.
2018-01-01
The previous manned missions to the Moon represent milestones in human ingenuity, perseverance, and intellectual curiosity. They also highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust "storm" generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness". It was further reported that the allergic response to the dust worsened with each exposure. The lower gravity environment exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. However, even then the returned samples could also put the Curators, technicians, and scientists at risk during processing and examination.
The terminal Velocity of the Deep Impact dust Ejecta
NASA Astrophysics Data System (ADS)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.
2009-05-01
The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.
Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?
Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier
2017-09-01
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.
Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.
2013-12-01
The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.
NASA Astrophysics Data System (ADS)
Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.
2016-07-01
Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.
Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo
2012-09-01
Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.
Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo
2012-01-01
Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Kato, Kazuhiro; Sano, Hiroyuki; Tatsukawa, Toshiyuki; Nakazaki, Hirofumi; Yamasaki, Akira; Shimizu, Eiji
2016-01-01
An important aspect of sand dust emissions in association with respiratory disorders is the quantity of particulate matter. This is usually expressed as particulate matter less than 10 μm (PM10) and 2.5 μm (PM2.5). However, the composition of PM10 and PM2.5 varies. Light detection and ranging is used to monitor sand dust particles originating in East Asian deserts and distinguish them from air pollution aerosols. The objective of this study was to investigate the association between the daily levels of sand dust particles and pulmonary function in schoolchildren in western Japan. In this panel study, the peak expiratory flow (PEF) of 399 schoolchildren was measured daily from April to May 2012. A linear mixed model was used to estimate the association of PEF with the daily levels of sand dust particles, suspended particulate matter (SPM), and PM2.5. There was no association between the daily level of sand dust particles and air pollution aerosols, while both sand dust particles and air pollution aerosols had a significant association with SPM and PM2.5. An increment of 0.018 km(-1) in sand dust particles was significantly associated with a decrease in PEF (-3.62 L/min; 95% confidence interval, -4.66 to -2.59). An increase of 14.0 μg/m(3) in SPM and 10.7 μg/m(3) in PM2.5 led to a significant decrease of -2.16 L/min (-2.88 to -1.43) and -2.58 L/min (-3.59 to -1.57), respectively, in PEF. These results suggest that exposure to sand dust emission may relate to pulmonary dysfunction in children in East Asia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Martian Methane From a Cometary Source: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.;
2016-01-01
In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.
NASA Technical Reports Server (NTRS)
Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.
2013-01-01
We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.
Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.
Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S
2016-01-01
Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.
Lagrangian Trajectory Modeling of Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Immer, Christopher D.
2008-01-01
Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.
NASA Technical Reports Server (NTRS)
Combi, Michael R.
1994-01-01
Dust particles when released from the nucleus of a comet are entrained in the expanding gas flow created by the vaporization of ices (mainly water ice). Traditional approaches to dusty-gas dynamics in the inner comae of comets consider there to be an initial distribution of dust particle sizes which do not fragment or evaporate. The standard Finson-Probstein model (and subsequent variations) yields a one-to-one-to-one correspondence between the size of a dust particle, its terminal velocity owing to gas drag, and its radiation pressure acceleration which creates the notable cometary dust tail. The comparison of a newly developed dust coma model shows that the typical elongated shapes of isophotes in the dust comae of comets on the scale of greater than 10(exp 4) km from the nucleus requires that the one-to-one-to-one relationship between particle size, terminal velocity and radiation pressure acceleration cannot in general be correct. There must be a broad range of particles including those having a small velocity but large radiation pressure acceleration in order to explain the elongated shape. A straightforward way to create such a distribution is if particle fragmentation, or some combination of fragmentation with vaporization, routinely occurs within and/or just outside of the dusty-gas dynamic acceleration region (i.e., up to several hundred km). In this way initially large particles, which are accelerated to fairly slow velocities by gas-drag, fragment to form small particles which still move slowly but are subject to a relatively large radiation pressure acceleration. Fragmentation has already been suggested as one possible interpretation for the flattened gradient in the spatial profiles of dust extracted from Giotto images of Comet Halley. Grain vaporization has been suggested as a possible spatially extended source of coma gases. The general elongated isophote shapes seen in ground-based images for many years represents another possible signature of fragmentation.
NASA Astrophysics Data System (ADS)
Ye, Yong-jun; Yin, An-song; Li, Zhi; Lei, Bo; Ding, De-xin
2017-04-01
There is a certain concentration of radioactive dust particles in the air of workplace of underground uranium mines. Some small diameter particles will pass through the masks and enter the respiratory tract which will cause radiation damage to the human body. In order to study deposition regularity of uranium dust in the human respiratory tract, in this paper, we firstly use the RNG turbulence model to simulate the gas flow field in the human respiratory tract Z0 ∼ Z3 level under different respiratory intensity. Then we use DPM discrete phase model to simulate the concentration, particle size distribution, deposition rate and deposition share of uranium dust particles after being filtered through the masks in the human respiratory tract Z0 to Z3 bronchus. According to the simulation results, we have got the following conclusions: the particles’ number concentration of uranium dust after being filtered through the mask in the human respiratory tract basically decreases with the increasing of particle size under different respiratory intensities on the environment of uranium mine. In addition, the intensity of respiration and the mass concentration of particles have an important influence on the deposition rate and the deposition of particles in the respiratory tract.
The ESA mission to Comet Halley
NASA Technical Reports Server (NTRS)
Reinhard, R.
1981-01-01
The Europeon Space Agency's approximately Giotto mission plans for a launch in July 1985 with a Halley encounter in mid-March 1986 4 weeks after the comet's perihelion passage. Giotto carries 10 scientific experiments, a camera, neutral, ion and dust mass spectrometers, a dust impact detector system, various plasma analyzers, a magnetometer and an optical probe. The instruments are described, the principles on which they are based are described, and the experiment key performance data are summarized. The launch constraints the helicentric transfer trajectory, and the encounter scenario are analyzed. The Giotto spacecraft major design criteria, spacecraft subsystem and the ground system are described. The problem of hypervelocity dust particle impacts in the innermost part of the coma, the problem of spacecraft survival, and the adverse effects of impact-generated plasma aroung the spacecraft are considered.
NASA Astrophysics Data System (ADS)
Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.
2017-12-01
The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance of a major mineral dust plume. Co-located aerosol lidar measurements also revealed that spherical pollution particles were observed near the surface prior to a major plume of non-spherical mineral dust.
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.
2016-12-01
The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.
Fractal cometary dust - a window into the early Solar system
NASA Astrophysics Data System (ADS)
Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.
2016-11-01
The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.
NASA Astrophysics Data System (ADS)
Hoshyaripour, A.; Vogel, B.; Vogel, H.
2017-12-01
Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.
Carbohydrate and protein contents of grain dusts in relation to dust morphology.
Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A
1986-01-01
Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476
Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft
NASA Technical Reports Server (NTRS)
Gruen, E.; Zook, H. A.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.
1993-01-01
Within 1 AU from Jupiter, the dust detector aboard the Ulysses spacecraft during the flyby on February 8, 1992 recorded periodic bursts of submicron dust particles with durations ranging from several hours to two days and occurring at about monthly intervals. These particles arrived at Ulysses in collimate streams radiating from close to the line-of-sight direction to Jupiter, suggesting a Jovian origin for the periodic bursts. Ulysses also detected a flux of micron-sized dust particles moving in high-velocity retrograde orbits. These grains are identified here as being of interstellar origin.
NASA Technical Reports Server (NTRS)
Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.
2005-01-01
In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.
Huang, Liubin; Zhao, Yue; Li, Huan; Chen, Zhongming
2015-09-15
Heterogeneous reaction of SO2 on mineral dust seems to be an important sink for SO2. However, kinetic data about this reaction on authentic mineral dust are scarce and are mainly limited to low relative humidity (RH) conditions. In addition, little is known about the role of hydrogen peroxide (H2O2) in this reaction. Here, we investigated the uptake kinetics of SO2 on three authentic mineral dusts (i.e., Asian mineral dust (AMD), Tengger desert dust (TDD), and Arizona test dust (ATD)) in the absence and presence of H2O2 at different RHs using a filter-based flow reactor, and applied a parameter (effectiveness factor) to the estimation of the effective surface area of particles for the calculation of the corrected uptake coefficient (γc). We found that with increasing RH, the γc decreases on AMD particles, but increases on ATD and TDD particles. This discrepancy is probably due to the different mineralogy compositions and aging extents of these dust samples. Furthermore, the presence of H2O2 can promote the uptake of SO2 on mineral dust at different RHs. The probable explanations are that H2O2 rapidly reacts with SO2 on mineral dust in the presence of adsorbed water, and OH radicals, which can be produced from the heterogeneous decomposition of H2O2 on the mineral dust, immediately react with adsorbed SO2 as well. Our results suggest that the removal of SO2 via the heterogeneous reaction on mineral dust is an important sink for SO2 and has the potential to alter the physicochemical properties (e.g., ice nucleation ability) of mineral dust particles in the atmosphere.
Lyman alpha radiation in external galaxies
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Mckee, Christopher F.
1990-01-01
The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.
NASA Astrophysics Data System (ADS)
Mamane, Y.; Perrino, C.; Yossef, O.
2009-12-01
Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in the coarse fraction is 2.94 versus 1.88 on clear days, quite different from the value of 1.8 found in sea water. It is rather clear that dust events are enriched with Cl. Those findings are to be investigated. The computer controlled SEM-EDX observations of the coarse fraction of PM10 confirmed the results obtained by XRF. The majority of the African dust particles are made up of mixed minerals, mostly carbonates and alumino - silicates. The EDX analysis coupled to CCSEM showed that minerals are mixed often with sea salt particles. Although some of it may be artifact (a sea salt particle is pile up on a mineral particle), it is believed that the results present reality: sea salt particles were often found on the surfaces of the aggregate minerals. Pollen and spores of diameters were not identified. Those results may have implication on the atmospheric chemistry. High concentrations of sulfates were also observed in the coarse fraction of dust episodes, and were not correlated with sea salt particles. They could be part of the soil matrix and may also form by the reaction of sulfur oxides with the natural aerosols. These reactions may be affected by the high concentration of coarse mineral particles during the Saharan and Arabian episodes.
NASA Astrophysics Data System (ADS)
Borgie, Mireille; Ledoux, Frédéric; Dagher, Zeina; Verdin, Anthony; Cazier, Fabrice; Courcot, Lucie; Shirali, Pirouz; Greige-Gerges, Hélène; Courcot, Dominique
2016-11-01
Located on the eastern side of the Mediterranean Basin at the intersection of air masses circulating between three continents, the agglomeration of Beirut, capital of Lebanon is an important investigating area for air pollution and more studies are needed to elucidate the composition of the smallest particles classified as carcinogenic to humans. PM2.5-0.3 and PM0.3 samples were collected during the spring-summer period in an urban background site of Beirut, after a dust storm episode occurred, and their chemical composition was determined. Our findings showed that components formed by gas to particle conversion (SO42 - and NH4+) and related to combustion processes are mainly found in the PM0.3 fraction. Typical crustal (Ca2+, Fe, Ti, Mg2+), sea-salt (Na+, Cl-, Mg2+, Sr) species, and NO3- are mainly associated with the PM2.5-0.3 fraction. We have also evidenced that the dust episode which occurred in Lebanon in May 2011 originated from the Iraqian and Syrian deserts, which are the least studied, and had a direct influence on the composition of PM2.5-0.3 during the beginning of the first sampling period, and then an indirect and persistent influence by the re-suspension of deposited dust particles. Moreover, PAHs concentrations were much higher in PM0.3 than in PM2.5-0.3 and their composition appeared influenced by diesel (buses, trucks and generator sets) and gasoline (private cars) emissions.
Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings
NASA Technical Reports Server (NTRS)
Northrop, T. G.; Morfill, G. E.
1984-01-01
In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.
3-D Simulations of the Inner Dust Comae for Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Marschall, Raphael; Liao, Ying; Su, Cheng-Chin; Wu, Jong-Shinn; Thomas, Nicolas; Rubin, Martin; Lai, Ian Lin; Ip, Wing-Huen; Keller, Horst Uwe; Knollenberg, Jörg; Kührt, Ekkehard; Skorov, Yuri; Altwegg, Kathrin; Vincent, Jean-Baptiste; Gicquel, Adeline; Shi, Xian; Sierks, Holger; Naletto, Giampiero
2015-04-01
The aims of this study are to (1) model the gas flow-field in the innermost coma for a plausible activity distributions of ROSETTA's target comet 67P/Churyumov-Gerasimenko (67P) using the SHAP2 model, (2) compare this with the ROSINA/COPS gas density (3) investigate the acceleration of dust by gas drag and the resulting dust distribution, (4) produce artificial images of the dust coma brightness as seen from different viewing geometries for a range of heliocentric distances and (5) compare the artificial images quantitatively with observations by the OSIRIS imaging system. We calculate the dust distribution in the coma within the first ten kilometers of the nucleus by assuming the dust to be spherical test particles in the gas field without any back coupling. The motion of the dust is driven by the drag force resulting from the gas flow. We assume a quadratic drag force with a velocity and temperature-dependent drag coefficient. The gravitational force of a point nucleus on the dust is also taken into account which will e.g. determine the maximal liftable size of the dust. Surface cohesion is not included. 40 dust sizes in the range between 8 nm and 0.3 mm are considered. For every dust size the dust densities and velocities are calculated by tracking around one million simulation particles in the gas field. We assume the distribution of dust according to size follows a power law, specifically the number of particles n or a particular radius r is specified by n ~ r-β with usual values of 3 ≤ β ≤ 4 where β = 3 corresponds to the case of equal mass per size and β = 4 to a shift of the mass towards the small particles. For the comparison with images of the high resolution camera OSIRIS on board ESAs ROSETTA spacecraft the viewing geometry of the camera can be specified and a line of sight integration through the dust density is performed. By means of Mie scattering on the particles the dust brightness can be determined. A variety of dust size distributions, gas to dust mass ratios, wavelengths and optical properties can thus be studied and compared with the data.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Tegen, Ina; Miller, Ron L.
2000-01-01
The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.
NASA Astrophysics Data System (ADS)
Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh
2018-01-01
Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by traditional XRD (X-ray diffraction) analysis.
Biocca, Marcello; Pochi, Daniele; Fanigliulo, Roberto; Gallo, Pietro; Pulcini, Patrizio; Marcovecchio, Francesca; Perrino, Cinzia
2017-06-01
The pneumatic precision drills used in maize sowing can release dust owing to abrasion of dressed seed; the drift of dust containing insecticide active ingredients is harmful to honey bees. Therefore, we developed a device for drills that uses partial recirculation and filtration of the air by means of an antipollen and an electrostatic filter. Tests were carried out by simulating the sowing of seed treated with imidacloprid, thiamethoxam, clothianidin and fipronil. Dust released by the drill in different configurations was analysed to assess its mass and active ingredient concentration, size distribution and particle number concentration. In general, particles with a diameter smaller than 2.5 and 10 µm represent about 40 and 75% of the total dust mass respectively. The finest size fraction (<1 µm) contains a higher content of active ingredient. The prototype equipped with both antipollen and electrostatic filters always showed a reduction in dust emission greater than 90% in terms of both total mass and active ingredient amount, with a greater efficiency in the reduction in particles below 4 µm. This study presents an engineering solution addressing dust losses during sowing, contributes to the description of abrasion dust fractions and provides suggestions for further development of the prototype. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas
2013-01-01
Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.
Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold
NASA Technical Reports Server (NTRS)
Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.
2005-01-01
Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.
Comet Gas and Dust Dynamics Modeling
NASA Technical Reports Server (NTRS)
Von Allmen, Paul A.; Lee, Seungwon
2010-01-01
This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.
Developing a new controllable lunar dust simulant: BHLD20
NASA Astrophysics Data System (ADS)
Sun, Hao; Yi, Min; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin
2017-07-01
Identifying and eliminating the negative effects of lunar dust are of great importance for future lunar exploration. Since the available lunar samples are limited, developing terrestrial lunar dust simulant becomes critical for the study of lunar dust problem. In this work, beyond the three existing lunar dust simulants: JSC-1Avf, NU-LHT-1D, and CLDS-i, we developed a new high-fidelity lunar dust simulant named as BHLD20. And we concluded a methodology that soil and dust simulants can be produced by variations in portions of the overall procedure, whereby the properties of the products can be controlled by adjusting the feedstock preparation and heating process. The key ingredients of our innovative preparation route include: (1) plagioclase, used as a major material in preparing all kinds of lunar dust simulants; (2) a muffle furnace, applied to expediently enrich the glass phase in feedstock, with the production of some composite particles; (3) a one-step sand-milling technique, employed for mass pulverization without wasting feedstock; and (4) a particle dispersant, utilized to prevent the agglomeration in lunar dust simulant and retain the real particle size. Research activities in the development of BHLD20 can help solve the lunar dust problem.
The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Fulle, Marco; Bertini, I.; Della Corte, V.; Güttler, C.; Ivanovski, S.; La Forgia, F.; Lasue, J.; Levasseur-Regourd, A. C.; Marzari, F.; Moreno, F.; Mottola, S.; Naletto, G.; Palumbo, P.; Rinaldi, G.; Rotundi, A.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Groussin, O.; Gutiérrez, P. J.; Hviid, H. S.; Ip, W. H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, M. L.; Lazzarin, M.; López-Moreno, J. J.; Shi, X.; Thomas, N.; Tubiana, C.
2018-05-01
The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 ± 8) {per cent} of hydrocarbons versus the (62 ± 8) {per cent} of sulphides and silicates.
NASA Astrophysics Data System (ADS)
Walton, Otis R.
2007-04-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2007-01-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
NASA Astrophysics Data System (ADS)
Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi
2018-07-01
In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.
NASA Astrophysics Data System (ADS)
Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.
2009-04-01
As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust aerosol is involved in many important processes in Earth's climate system, with important implications for air quality, climate, atmospheric chemistry, and the biosphere, and different impacts on human health. The relative importance of mineral dust in particulate matter depends on location, season and particle size, mainly concentrated in the coarse fraction. Its impacts on climate and environment have increased years after years and needs to be more understood. In the present work, the relationships between the meteorological conditions and dust transport phenomena from the Saharan regions of north Africa and their transport, deposition in both modes, dry and wet deposition in the Mediterranean region, and the Atlantic Ocean, during two dust events namely: case I (01/03/04 - 06/03/04), case II (29/05/05 - 03/06/05), that have been analysed and their major characteristics have been discussed. This analysis has been performed with the aid of the SKIRON modelling system of the University of Athens. The dust module of SKIRON/Eta model incorporates the state of the art parameterization of all the major phases of the desert dust cycle such as production, diffusion, advection and removal. Model results have been compared with TOMS-AI (Total Ozone Mapping Spectrophotometer Aerosol Index) data for a qualitative comparison of the model. The work has been conducted at the framework of TEMPUS project MADEPODIM.
Martian extratropical cyclones
NASA Technical Reports Server (NTRS)
Hunt, G. E.; James, P. B.
1979-01-01
Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.
Electrodynamic Dust Shield Demonstrator
NASA Technical Reports Server (NTRS)
Stankie, Charles G.
2013-01-01
The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid running a multiphase low frequency AC signal. Electrostatically charged particles, such as those encountered on the moon, Mars, or an asteroid, are carried along by the traveling field due to the action of Coulomb and dielectrophoretic forces."2 The technical details have been described in a separate article. This document details the design and construction process of a small demonstration unit. Once finished, this device will go to the Office of the ChiefTechnologist at NASA headquarters, where it will be used to familiarize the public with the technology. 1 NASA KSC FO Intern, Prototype Development Laboratory, Kennedy Space Center, University of Central Florida Kennedy Space
Treated and untreated rock dust: Quartz content and physical characterization.
Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin
2016-11-01
Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.
Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less
NASA Technical Reports Server (NTRS)
Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.
2017-01-01
New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.
Veghte, Daniel P; Freedman, Miriam A
2012-11-06
It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.
Immersion freezing of ambient dust using WISDOM setup
NASA Astrophysics Data System (ADS)
Rudich, Y.; Reicher, N.
2017-12-01
A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing. In addition, our results agree with the scaled freezing of K-feldspar obtained by Atkinson et al. (2013). The results provide further evidence that feldspar mineral dominates glaciation in mixed phase clouds. In the talk, we will describe the experiments, new results and their atmospheric significance
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)
2002-01-01
A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron size silica particles exposed to UV radiation in the 120-200 nm spectral region will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun
Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperaturemore » and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.« less
Lunar Airborne Dust Toxicity Hazard Assessments (Invited)
NASA Astrophysics Data System (ADS)
Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.
2009-12-01
The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system was developed for this task. The dust separation system includes a fluidized bed, an elutriation flask, and a cyclone. The product dust is collected on a membrane filter with 0.45 micrometer pore size. Collection and separation efficiencies, and particle size distribution measurements of the material retained in the various components are tracked as development and tests proceed. Calculations show that respirable-sized particles, if released in a habitat, would remain suspended in the air for extended periods of time. Without active dust control, most of this fine dust would end up in the crew’s lungs. Dust exposure standards, similar to those established for quartz on Earth, will determine the design, mass, power, and cost of dust control systems incorporated into lunar habitats and pressurized rovers.
Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations
NASA Technical Reports Server (NTRS)
Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.;
2007-01-01
The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.
Li, Gui-Ling; Zhou, Min; Chen, Chang-Hong; Wang, Hong-Li; Wang, Qian; Lou, Sheng-Rong; Qiao, Li-ping; Tang, Xi-bin; Li, Li; Huang, Hai-ying; Chen, Ming-hua; Huang, Cheng; Zhang, Gang-Feng
2014-05-01
A continuous air quality observation was conducted in the urban area of Shanghai from April 28 to May 18 in 2011. The mass concentration of particle matters and main chemical compositions of fine particle were measured and analyzed. The mass concentrations of PM10 and PM2.5 during the dust episode were much higher than those in non-dust episode, with the maximum daily mass concentrations of PM10 and PM2.5 reaching 787.2 microg.gm-3 and 139.5 microgm(-3) , respectively. The average PM2.5 /PM10 ratio was (32.9 +/-14. 6)% (15. 6% -85.1% ). The total water soluble inorganic ions(TWSII ) contributed (27.2 +/- 19. 2)% (4. 8% -80. 8% ) of total PM2.5, and the secondary water soluble ions (SNA) , including SO(2-)4 , NO-(3) and NH(+)(4) , were (76.9 +/- 13.9)% (41.9%-94.2%) in TWSIl. The concentrations of TWSII and SNA in PM2.5 during dust days became lower than those in non-dust days while the trend of the ratio of Ca2+ to PM2.5, increased. The mean OC/EC value in non-dust days was higher than that in the heavy dust pollution episode, but lower than that in weak dust days. In addition, mineral-rich particle in dust period had an acid-buffer effect, making particle alkaline in dust days stronger. In non-dust days, SO(2-)(4) and NO(-)(3) mainly existed in the form of NH4HSO4, (NH4)SO4, and NH4NO3, and combined with other mineral ions during dust days.
Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results
NASA Astrophysics Data System (ADS)
Pabari, J. P.; Bhalodi, P. J.
2017-05-01
Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.
Particle emission from artificial cometary materials
NASA Technical Reports Server (NTRS)
Koelzer, Gabriele; Kochan, Hermann; Thiel, Klaus
1992-01-01
During KOSI (comet simulation) experiments, mineral-ice mixtures are observed in simulated space conditions. Emission of ice-/dust particles from the sample surface is observed by means of different devices. The particle trajectories are recorded with a video system. In the following analysis we extracted the parameters: particle count rate, spatial distribution of starting points on the sample surface, and elevation angle and particle velocity at distances up to 5 cm from the sample surface. Different kinds of detectors are mounted on a frame in front of the sample to register the emitted particles and to collect their dust residues. By means of these instruments the particle count rates, the particle sizes and the composition of the particles can be correlated. The results are related to the gas flux density and the temperature on the sample surface during the insolation period. The particle emission is interpreted in terms of phenomena on the sample surface, e.g., formation of a dust mantle.
Comet Dust: The Diversity of Primitive Particles and Implications
NASA Technical Reports Server (NTRS)
John Bradley; Zolensky, Michael E.
2016-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice--rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.
Indirect Charged Particle Detection: Concepts and a Classroom Demonstration
ERIC Educational Resources Information Center
Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew
2013-01-01
We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A.; Kostenko, A. S.
2014-11-15
The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocalitymore » is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.« less
Absorption and scattering properties of the Martian dust in the solar wavelengths.
Ockert-Bell, M E; Bell JF 3rd; Pollack, J B; McKay, C P; Forget, F
1997-04-25
A new wavelength-dependent model of the single-scattering properties of the Martian dust is presented. The model encompasses the solar wavelengths (0.3 to 4.3 micrometers at 0.02 micrometer resolution) and does not assume a particular mineralogical composition of the particles. We use the particle size distribution, shape, and single-scattering properties at Viking Lander wavelengths presented by Pollack et al. [1995]. We expand the wavelength range of the aerosol model by assuming that the atmospheric dust complex index of refraction is the same as that of dust particles in the bright surface geologic units. The new wavelength-dependent model is compared to observations taken by the Viking Orbiter Infrared Thermal Mapper solar channel instrument during two dust storms. The model accurately matches afternoon observations and some morning observations. Some of the early morning observations are much brighter than the model results. The increased reflectance can be ascribed to the formation of a water ice shell around the dust particles, thus creating the water ice clouds which Colburn et al. [1989], among others, have predicted.
Dust Concentrations and Composition During African Dust Incursions in the Caribbean Region
NASA Astrophysics Data System (ADS)
Mayol-Bracero, O. L.; Santos-Figueroa, G.; Morales-Garcia, F.
2016-12-01
The World Health Organization (WHO) indicates that exposure to PM10 concentrations higher than 50 µg/m³ 24-hour mean in both developed and developing countries could have an adverse impact on public health. Recent studies showed that in the Caribbean region the PM10 concentrations often exceed the WHO guidelines for PM10. These exceedances are largely driven by the presence of African Dust particles that reach the Caribbean region every year during the summer months. These dust particles also influence the Earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by affecting cloud formation and, thus, cloud albedo. In order to have a better understanding of the impacts of African Dust on public health and climate, we determine the concentration of dust particles, the carbonaceous fraction (total, elemental and organic carbon: TC, EC, and OC) and water-soluble ions (e.g., Na+, Cl-, Ca+2, NH4+, SO4-2) of aerosol samples in the presence and absence of African Dust. Samples were collected using a Hi-Vol and Stacked-Filter Units for the sampling of total suspended particles (TSP) at two stations in Puerto Rico: a marine site located at Cabezas de San Juan (CSJ) Nature Reserve, in Fajardo, and an urban site located at the University of Puerto Rico, in San Juan. The presence of African Dust was supported with Saharan Air Layer (SAL) imagery and with the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Preliminary results showed that the total mass concentration of aerosols obtained at the urban site is about two times that at the marine site for SFU samples during African Dust incursions. The average dust concentration obtained at CSJ for Hi Vol samples was 22 µg/m³ during the summer 2015. African Dust concentrations, TC, EC, OC, and ionic speciation results for the marine and urban sites will be presented at the conference.
Xu, Sujuan; Zheng, Na; Liu, Jingshuang; Wang, Yang; Chang, Shouzhi
2013-02-01
The aim of this study was to investigate arsenic (As) accumulation in street dust and health risk of population. The investigation concentrated on: a. pollution levels of As in street dust; b. spatial distribution of As in street dust; c. physicochemical properties analysis of street dust; and d. assessment of population health risk due to As exposure to street dust. As concentration in street dust ranged from 3.33 to 185.1 mg kg(-1), with a mean of 33.10 mg kg(-1), which was higher than the background value of Liaoning soil. As contamination level of the area closing to Huludao Zinc Plant (HZP) was highest. Spatial variation showed that the pollution center was close to HZP, formed radial distribution pattern and extended to the northeast and southwest of HZP. The pH and organic matter of street dust were both higher than the background values of soil in Liaoning. There was significantly negative correlation between As concentration and the pH. The mass percentages of particles 180-100, <100-75, <75-63, and <63 μm were 29.8, 3.7, 21.3, and 4.2 %, respectively. The highest of As concentration was found in the smallest particle size (<63 μm). As loadings in the particles of grain size 180-100 and <75-63 μm were higher than other particle fractions. Results of the risk assessment indicated that the highest risk was associated with the ingestion of street dust particles. Health risk for different use scenarios to human decreased in the order of HZP > Industrial district > School > Commercial center > Residential area. Around HZP, Hazard Index (HI) for children and cancer risk of As by street dust exposure exceeded the acceptable values. It indicated that there was a potential adverse effect on children health by As exposure to the street dust of Huludao.
Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA
NASA Technical Reports Server (NTRS)
Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.;
2014-01-01
Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.
Dust Observations by Faraday Cups Onboard Spektr-R
NASA Astrophysics Data System (ADS)
Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.
2017-12-01
Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Enos, David
In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensorsmore » and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO 4 , but also Na - SO 4 , K - SO 4 , and Na - Al - SO 4 . It is likely that these salts were formed by particle - gas conversion reactions, either prior to, or after, deposition. These reactions involve reaction of carbonate, chloride, or nitrate salts with at mospheric SO 2, sulfuric acid, or a mmonium sulfate to form sulfate minerals. The Na - Al - SO 4 phase is unusual, and may have formed by reaction of Na - Al containing phases in aluminum smelter emissions with SO 2 , also present in smelter emissions. An aluminum smelter is located in Camden, NJ, 40 miles NE of the Hope Creek Site.« less
How micron-sized dust particles determine the chemistry of our Universe
Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie
2013-01-01
In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221
On the size and velocity distribution of cosmic dust particles entering the atmosphere
Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.
2015-01-01
Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282
Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Horanyi, M.; Morfill, G.; Gruen, E.
1993-01-01
The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.