Sample records for dust particles interact

  1. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  2. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. Themore » fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.« less

  3. Dust-Particle Transport in Tokamak Edge Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less

  4. The Impacts of Dust Storm Particles on Human Lung Cells - an Analysis at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G.

    2017-12-01

    Aerosols particles (Natural and anthropogenic) are a key component of our atmosphere, their presence defines air quality levels and they can affect our health. Small particles penetrate into our lungs and this exposure can cause our lung cells to stress and in some cases leads to the death of the cells and to inflammation. During dust storm events there is an increase in particle concentration, many of them are breathable particles that can penetrate deep into our lungs. Exposure to dust particles can lead to respiratory problems, particularly for people with asthma. Therefore, during and after a dust storm event the number of people who are hospitalized with inflammation and respiratory problems increase. However, the exact mechanism that causes these health problems is still unclear. In this project, we are investigating the impacts that dust storm particles from different sources and of different concentrations (doses) have on human lung cells, performing a new and unique analysis at the single cell level. To accomplish this, each individual lung cell is continuously tracked after being exposed to dust particles. We monitor the behavior of the cell over time, identify the cells time of death and type of death (e.g. cell explosion). With this analysis, we can quantify cell death as a function of dust concertation (doses); to our surprise, an increase in cells death was not observed only as a function of an increase of dust concertation. In addition, we noticed that the way particles come in contact with cells, by sticking to or being engulfed by, and the interaction duration has an effect; cells that interact with dust particles for a longer period died earlier compared to cells with a shorter interaction period. These findings will help us to better understand the health related consequences of exposure to dust storm events and serve as a baseline for when evaluating other aerosol.

  5. Self-consistent Simulation of Microparticle and Ion Wakefield Configuration

    NASA Astrophysics Data System (ADS)

    Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell

    2017-10-01

    In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.

  6. A parallel direct numerical simulation of dust particles in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.

    2012-04-01

    Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.

  7. Progress in our understanding of cometary dust tails

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.

  8. The global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.

    2016-12-01

    This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.

  9. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  10. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  11. Modified jeans instability for dust grains in a plasma.

    PubMed

    Delzanno, G L; Lapenta, G

    2005-05-06

    An investigation of the properties of linear stability is conducted for a system consisting of particles having mass m and charge q, interacting through the gravitational and electrostatic force (Jeans instability). However, in light of recent works showing that dust particles in a plasma can have a Lennard-Jones-like shielding potential, a new set of equations has been derived, where the electrostatic interaction among the dust particles is Lennard-Jones-like instead of Coulomb-like. A new condition for the gravitational instability is derived, showing a broader spectrum of unstable modes with faster growth rates.

  12. Nonlinear dust-lattice waves: a modified Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, N. F.

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  13. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  14. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Juhász, Antal; Sternovsky, Zoltan; Horányi, Mihály

    2018-07-01

    This article reports on an investigation of the effect of interplanetary coronal mass ejections (ICMEs) on the transport and delivery of nano-dust to 1 AU. Charged nanometer-sized dust particles are expected to be generated close to the Sun and interact strongly with the solar wind as well as solar transient events. Nano-dust generated outside of ∼0.2 AU are picked up and transported away from the Sun due to the electromagnetic forces exerted by the solar wind. A numerical model has been developed to calculate the trajectories of nano-dust through their interaction with the solar wind and explore the potential for their detection near Earth's orbit (Juhasz and Horanyi, 2013). Here, we extend the model to include the interaction with interplanetary coronal mass ejections. We report that ICMEs can greatly alter nano-dust trajectories, their transport to 1 AU, and their distribution near Earth's orbit. The smallest nano-dust (<10 nm) can be delivered to 1 AU in high concentration. Thus, the nature of the interaction between nano-dust and ICMEs could potentially be revealed by simultaneous measurements of nano-dust fluxes and solar wind particles/magnetic fields.

  15. Efficiency determination of an electrostatic lunar dust collector by discrete element method

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta

    2012-07-01

    Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.

  16. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.

  17. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  18. The dusty ballerina skirt of Jupiter

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-12-01

    We suggest a model to explain the unexpected recurrent dust events that were observed during the Jupiter encounter by the dust detector on board the Ulysses spacecraft. This model is based dust-magnetosphere interactions. Dust particles inside the Jovian magnetosphere collect electrostatic charges and their interaction with the magnetic and electric fields can lead to energization and subsequent ejection. We discuss the dusty regions (ring/halo, `gossamer' ring) and also Io as potential sources for the Ulysses events. This model favors Io as a source. The mass and velocity range of the escaping particles are compatible with the observations, and we also suggest internal periodicities to explain the recurrent nature of the Ulysses dust events.

  19. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution

    NASA Astrophysics Data System (ADS)

    Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; Wang, Z.

    2017-12-01

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO3)2) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, `quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  20. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution.

    PubMed

    Pan, Xiaole; Uno, Itsushi; Wang, Zhe; Nishizawa, Tomoaki; Sugimoto, Nobuo; Yamamoto, Shigekazu; Kobayashi, Hiroshi; Sun, Yele; Fu, Pingqing; Tang, Xiao; Wang, Zifa

    2017-03-23

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO 3 ) 2 ) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, 'quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  1. Dust particles interaction with plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  2. Dust in Jupiter's magnetosphere. I - Physical processes. II - Origin of the ring. III - Time variations. IV - Effect on magnetospheric electrons and ions

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1980-01-01

    The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.

  3. Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2018-01-01

    The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.

  4. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.

  5. X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Okada, Kikuo; Naruse, Hiroshi; Tanaka, Toyoaki; Nemoto, Osamu; Iwasaka, Yasunobu; Wu, Pei-Ming; Ono, Akira; Duce, Robert A.; Uematsu, Mitsuo; Merrill, John T.; Arao, Kimio

    Individual aerosol particles were collected during spring 1986 near the surface over the Japanese islands (Nagasaki and Nagoya) and the North Pacific Ocean near Hawaii. Asian dust-storm particles found in these samples were examined by use of an electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). These dust-storm particles usually consisted of Mg, Al, Si, Ca, Ti and Fe, together with S and Cl. For the individual particles collected over Japan, changes in morphological features and in the amounts of elements before and after the dialysis (extraction) of water-soluble material were studied. The examination indicated that the dust particles were present as mixed particles (internal mixture of water-soluble and -insoluble material), wheras the the water-soluble material mainly contained Ca and S. Over the North Pacific Ocean, the dust-storm particles were present internally in sea-salt particles. It is suggested that the internal mixture of minerals and sea-salt is probably due to interaction within clouds. Formation of CaSO 4 on the dust particles was also suggested on the basis of quantitative results obtained by the use of the EDX.

  6. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  7. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  8. Space Dust Collisions as a Planetary Escape Mechanism.

    PubMed

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.

  9. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust

    NASA Astrophysics Data System (ADS)

    Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.

    2016-12-01

    Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.

  10. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  11. Space Dust Collisions as a Planetary Escape Mechanism

    NASA Astrophysics Data System (ADS)

    Berera, Arjun

    2017-12-01

    It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.

  12. Dust-wall and dust-plasma interaction in the MIGRAINe code

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Tolias, P.; Ratynskaia, S.

    2014-09-01

    The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

  13. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  14. On the possibility of collective attraction in complex plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.

    2010-06-15

    An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less

  15. A new hybrid particle/fluid model for cometary dust

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.

    2017-12-01

    Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be presented. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.

  16. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  17. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  18. Flow stagnation at Enceladus: The effects of neutral gas and charged dust

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.

    2012-06-01

    Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.

  19. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.

    2016-03-01

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.

  20. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    PubMed

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  1. Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant

    2011-12-01

    Mineral dust is ubiquitous in the atmosphere and represents a dominant type of particulate matter by mass. Dust particles can serve as cloud condensation nuclei (CCN), giant CCN (GCCN), or ice nuclei (IN), thereby, affecting cloud microphysics, albedo, and lifetime. Despite its well-recognized importance, assessments of dust impacts on clouds and climate remain highly uncertain. This thesis addresses the role of dust as CCN and GCCN with the goal of improving our understanding of dust-warm cloud interactions and their representation in climate models. Most studies to date focus on the soluble fraction of aerosol particles when describing cloud droplet nucleation, and overlook the interactions of the hydrophilic insoluble fraction with water vapor. A new approach to include such interactions (expressed by the process of water vapor adsorption) is explored, by combining multilayer Frenkel-Halsey-Hill (FHH) physical adsorption isotherm and curvature (Kelvin) effects. The importance of adsorption activation theory (FHH-AT) is corroborated by measurements of CCN activity of mineral aerosols generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. A new aerosol generation setup for CCN measurements was developed based on a dry generation technique capable of reproducing natural dust aerosol emission. Based on the dependence of critical supersaturation with particle dry diameter, it is found that the FHH-AT is a better framework for describing fresh (and unprocessed) dust CCN activity than the classical Kohler theory (KT). Ion Chromatography (IC) measurements performed on fresh regional dust samples indicate negligible soluble fraction, and support that water vapor adsorption is the prime source of CCN activity in the dust. CCN measurements with the commonly used wet generated mineral aerosol (from atomization of a dust aqueous suspension) are also carried out. Results indicate that the method is subject to biases as it generates a bimodal size distribution with a broad range of hygroscopicity. It is found that smaller particles generated in the more hygroscopic peak follow CCN activation by KT, while the larger peak is less hydrophilic with activation similar to dry generated dust that follow FHH-AT. Droplet activation kinetics measurements demonstrate that dry generated mineral aerosol display retarded activation kinetics with an equivalent water vapor uptake coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated mineral aerosols, however, display similar activation kinetics to ammonium sulfate. These results suggest that at least a monolayer of water vapor (the rate-limiting step for adsorption) persists during the timescale of aerosol generation in the experiment, and questions the atmospheric relevance of studies on mineral aerosol generated from wet atomization method. A new parameterization of cloud droplet formation from insoluble dust CCN for regional and global climate models is also developed. The parameterization framework considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble aerosol with activation described through KT. The parameterization is validated against a numerical parcel model, agreeing with predictions to within 10% (R2 ˜ 0.98). The potential role of dust GCCN activating by FHH-AT within warm stratocumulus and convective clouds is also evaluated. It is found that under pristine aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-precipitation linkages. Biases introduced from describing dust GCCN activation by KT are also addressed. The results demonstrate that dust particles do not require deliquescent material to act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on warm cloud and precipitation must be considered. Finally, the new parameterization of cloud droplet formation can be implemented in regional and global models providing an improved treatment of mineral aerosol on clouds and precipitation. The new framework is uniquely placed to address dust aerosol indirect effects on climate.

  2. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We show that this change in particles size has important implications for their ability to scatter and absorb light. This behavior is also important for cloud properties since the increase of particles size reduces the supersaturating required for cloud droplet activation.

  3. A New Method Using Single-Particle Mass Spectrometry Data to Distinguish Mineral Dust and Biological Aerosols

    NASA Astrophysics Data System (ADS)

    Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.

    2016-12-01

    The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.

  4. In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond

    NASA Astrophysics Data System (ADS)

    Srama, R.

    2015-10-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies of the E-ring interaction with the large moon Titan.

  5. The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment

    NASA Astrophysics Data System (ADS)

    Srama, Ralf

    2014-05-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.

  6. Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method

    NASA Astrophysics Data System (ADS)

    Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.

    2013-06-01

    Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.

  7. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  8. Interaction force in a vertical dust chain inside a glass box.

    PubMed

    Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W

    2014-07-01

    Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.

  9. The immersion freezing behavior of mineral dust particles mixed with biological substances

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.

    2015-10-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.

  10. Does the presence of desert dust modify the effect of PM10 on mortality in Athens, Greece?

    PubMed

    Samoli, Evangelia; Kougea, Evgenia; Kassomenos, Pavlos; Analitis, Antonis; Katsouyanni, Klea

    2011-05-01

    Recent reports investigate whether windblown desert dust may exacerbate the short-term health effects associated with particulate pollution in urban centers. We have tested this hypothesis by using daily air pollution and mortality data for Athens, Greece during the period 2001-2006. We investigated the effects of exposure to particulate matter with aerodynamic diameter <0μg/m(3) (PM(10)) on total and cause specific mortality, during days with and without windblown desert dust, for all ages, stratified by age groups and by sex. We identified 141 dust days between 2001 and 2006. We used Poisson regression models with penalized splines to control for possible confounding by season, meteorology, day of the week and holiday effect. A 10μg/m(3) increase in PM(10) was associated with a 0.71% (95% confidence interval (CI): 0.42% to 0.99%) increase in all deaths. The effects for total and cause specific mortality were greater for those ≥ 75years of age, while for total mortality higher effects were observed among females. The main effect of desert dust days and its interaction with PM(10) concentrations were significant in all cases except for respiratory mortality and cardiovascular mortality among those < 75years. The negative interaction pointed towards lower particle effects on mortality during dust events. We found evidence of modification of the adverse health effects of PM(10) on mortality in Athens, Greece with desert dust events: the particle effects were significantly higher during non-desert dust days. Our analyses indicate that traffic related particles, which prevail on non-desert dust days, have more toxic effects than the ones originating from long-range transport, such as Sahara dust. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ion-wake field inside a glass box.

    PubMed

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S; Hyde, Truell W

    2016-09-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures as well as their sizes and shapes. In this paper, the electronic confinement of the glass box is mapped, and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box, and its vertical and horizontal extents are measured.

  12. Global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos

    2017-05-01

    The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.

  13. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany

  14. Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2017-08-01

    Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.

  15. Lagrangian Trajectory Modeling of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  16. Kinetic Modeling of the Lunar Dust-Plasma Environment

    NASA Astrophysics Data System (ADS)

    Kallio, Esa; Alho, Markku; Alvarez, Francisco; Barabash, Stas; Dyadechkin, Sergey; Fernandes, Vera; Futaana, Yoshifumi; Harri, Ari-Matti; Haunia, Touko; Heilimo, Jyri; Holmström, Mats; Jarvinen, Riku; Lue, Charles; Makela, Jakke; Porjo, Niko; Schmidt, Walter; Shahab, Fatemi; Siili, Tero; Wurz, Peter

    2014-05-01

    Modeling of the lunar dust and plasma environment is a challenging task because a self-consistent model should include ions, electrons and dust particles and numerous other factors. However, most of the parameters are not well established or constrained by measurements in the lunar environment. More precisely, a comprehensive model should contain electrons originating from 1) the solar wind, 2) the lunar material (photoelectrons, secondary electrons) and 3) the lunar dust. Ions originate from the solar wind, the lunar material, the lunar exosphere and the dust. To model the role of the dust in the lunar plasma environment is a highly complex task since the properties of the dust particles in the exosphere are poorly known (e.g. mass, size, shape, conductivity) or not known (e.g. charge and photoelectron emission) and probably are time dependent. Models should also include the effects of interactions between the surface and solar wind and energetic particles, and micrometeorites. Largely different temporal and spatial scales are also a challenge for the numerical models. In addition, the modeling of a region on the Moon - for example on the South Pole - at a given time requires also knowledge of the solar illumination conditions at that time, mineralogical and electric properties of the local lunar surface, lunar magnetic anomalies, solar UV flux and the properties of the solar wind. Harmful effects of lunar dust to technical devices and to human health as well as modeling of the properties of the lunar plasma and dust environment have been topics of two ESA funded projects L-DEPP and DPEM. In the presentation we will summarize some basic results and characteristics of plasma and fields near and around the Moon as studied and discovered in these projects. Especially, we analyse three different space and time scales by kinetic models: [1] the "microscale" region near surface with an electrostatic PIC (ions and electrons are particles) model, [2] the "mesoscale" region including lunar magnetic anomalies and [3] the global scale Moon-solar wind interaction with hybrid (ions as particles in massless electron fluid) models.

  17. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    PubMed

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  18. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground-based - is composed of mainly silicates and minor amounts of Ca-rich and Fe-/Fe-Ti-rich particles (less than 10 % of dust fraction). The composition of the silicates indicates a major contribution of kaolinite (Al/Si atomic ratio between 0.6 and 1) and a minor contribution of quartz and feldspar particles. The inter-sample variation of the dust composition is generally low, pointing to a very thorough mixing from differently-composed Saharan sources. The temporal evolution of aerosol composition at Ragged Point shows a variation in dust abundance, but strong isolated events could not be identified. An airmass change induced by the passing by of a hurricane, however, is visible in sulfate abundance and their composition. Strong internally mixed particles of dust and sulfate or dust and sea-salt are very rare (up to 1 % of particles in the airborne samples), but a slight increasing tendency with decreasing altitude was found. In the lower MBL at Ragged point, dust/sea-salt mixtures are more frequent (in the same abundance range as pure dust particles). A first conclusion from the data set is that dust aging with respect to internal mixtures does not happen during the long-range transport across the Atlantic Ocean, but rather at the end during the down-mixing of mineral dust into the Caribbean MBL.

  19. Dusty Plasma Effects in the Interplanetary Medium?

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  20. 10 years of Cassini/VIMS observations at Titan

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.

    2014-04-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.

  1. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.

  2. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    NASA Technical Reports Server (NTRS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  3. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

    NASA Astrophysics Data System (ADS)

    Mao, Zirui; Liu, G. R.

    2018-02-01

    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  4. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  5. Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex

    NASA Astrophysics Data System (ADS)

    Long, X.; Huang, J.; Cheng, C.; Wang, W.

    2007-12-01

    The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.

  6. The London Underground: dust and hazards to health.

    PubMed

    Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J F; Tran, C L

    2005-06-01

    To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Concentrations on station platforms were 270-480 microg/m3 PM2.5 and 14,000-29,000 particles/cm3. Cab concentrations over a shift averaged 130-200 microg/m3 and 17,000-23,000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1-2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 microg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters.

  7. The London Underground: dust and hazards to health

    PubMed Central

    Seaton, A; Cherrie, J; Dennekamp, M; Donaldson, K; Hurley, J; Tran, C

    2005-01-01

    Aims: To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Methods: Concentrations of dust, as mass (PM2.5) and particle number, were measured at different underground stations and in train cabs; its size and composition were analysed; likely maximal exposures of staff and passengers were estimated; and in vitro toxicological testing of sample dusts in comparison with other dusts was performed. Results: Concentrations on station platforms were 270–480 µg/m3 PM2.5 and 14 000–29 000 particles/cm3. Cab concentrations over a shift averaged 130–200 µg/m3 and 17 000–23 000 particles/cm3. The dust comprised by mass approximately 67% iron oxide, 1–2% quartz, and traces of other metals, the residue being volatile matter. The finest particles are drawn underground from the surface while the coarser dust is generated by interaction of brakes, wheels, and rails. Taking account of durations of exposure, drivers and station staff would have maximum exposures of about 200 µg/m3 over eight hours; the occupational exposure standard for welding fume, as iron oxide, is 5 mg/m3 over an eight hour shift. Toxicology showed the dust to have cytotoxic and inflammatory potential at high doses, consistent with its composition largely of iron oxide. Discussion: It is unjustifiable to compare PM2.5 exposure underground with that on the surface, since the adverse effects of iron oxide and combustion generated particles differ. Concentrations of ultrafine particles are lower and of coarser (PM2.5) particles higher underground than on the surface. The concentrations underground are well below allowable workplace concentrations for iron oxide and unlikely to represent a significant cumulative risk to the health of workers or commuters. PMID:15901881

  8. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.

  9. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  10. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  11. Cassini-CDA Science in 2014 and beyond

    NASA Astrophysics Data System (ADS)

    Srama, Ralf

    2015-04-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended E-ring were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies of the E-ring interaction with the large moon Titan.

  12. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2014-06-01

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically-relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first order approximation in numerical modeling investigations.

  13. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2015-01-01

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.

  14. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically-relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first order approximation in numerical modeling investigations.« less

  15. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.« less

  16. The footprints of Saharan Air Layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.

    In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.

  17. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids system. Computer-aided design (CAD) models of real particles can be imported to obtain an accurate representation of their shape. EDEM(TradeMark) uses particle-scale behavior models to simulate bulk solids behavior. In addition to particle size and shape, the models can account for physical properties of particles along with interaction between particles and with equipment surfaces and surrounding media, as needed to define the physics of a particular process.

  18. Planetary science

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Bridges, Frank; Gault, Donald; Greeley, Ronald; Houpis, Harry; Lin, Douglas; Weidenschilling, Stuart

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed.

  19. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we will summarize the experimental results, introduce related INP parameterizations for use in weather and climate models, and briefly discuss possible reasons for the discrepancy between the INP fraction of desert and soil dust aerosols.

  20. Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration

    NASA Astrophysics Data System (ADS)

    Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.

    2014-04-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.

  1. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  2. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  3. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  4. Planetesimal formation by an axisymmetric radial bump of the column density of the gas in a protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Onishi, Isamu K.; Sekiya, Minoru

    2017-04-01

    We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.

  5. Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.

    2016-11-01

    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.

  6. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  7. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  8. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  9. Investigations of Wind/WAVES Dust Impacts

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year lifetime. We found a statistically significant and consistent trend of count rate deficits during the ICMEs compared to the periods immediately before and after the ICMEs. These preliminary results suggest that ICMEs may scatter micron-sized dust, or that they may exclude it during their initiation.

  10. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  11. Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission

    NASA Technical Reports Server (NTRS)

    Thanh, Phi Hung X.

    2004-01-01

    Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment. PFC2D is a program that allows the user to control the number of particle's characteristic, and the environment of the particle. With this I can run simulations that mimic the impulse test. This software uses a language called FISH, probably created by the creator of the software. This means that in order to model anything, one must use the command terminal instead of GUI's. I will also use this program to simulate the Moon/Mars simulate adhering to the fabric for the Dust Mitigation project. My goals for this summer are just to complete preliminary studies of the feasibility of the Shaking Fabric, learn the PFC-2D program, and to complete building and testing the wave propagation experiment.

  12. Construction and implementation of a novel dust dropper for the PPPL Dusty Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Tinguely, Roy; Dominguez, Arturo; Carpe, Andrew; Zwicker, Andrew

    2013-10-01

    The applications of dusty plasma research are far-reaching, from understanding astrophysical systems to studying plasma-wall interactions in magnetically confined plasma experiments. Unfortunately, dusty plasma environments can be difficult to control and replicate in laboratory settings. This poster details the construction, vacuum operation, and initial results of a multifaceted dust dropper, which is being implemented in the PPPL Dusty Plasma Experiment and is expected to improve the reproducibility and characterization of dust cloud formation. The cylindrical plastic shaker comprises four pairings of electromagnets and neodymium magnets, with eight stabilizing springs. The amplitude and frequency of a pulsed current determine the dust dispersal rate, while a biased metallic mesh regulates the area of dispersion and size and charge of dropped particles. Preliminary testing shows that, for 44 micron silica dust, steady dispersal rates as fast as 0.2 mg/s (approximately 1700 particles/s) can be achieved.

  13. Nano-Dust Analyzer For the Detection and Chemical Composition Measurement of Particles Originating in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Gruen, E.; Sternovsky, Z.; Horanyi, M.; Juhasz, A.; Eberhard, M.; Srama, R.

    2013-10-01

    The development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration are reported. The two STEREO spacecrafts have indicated that nanometer-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and accelerated outward by the solar wind. The temporal variability reveals the complex interaction with the solar wind magnetic field within 1 AU and provides the means to learn about solar wind conditions and can supply additional parameters or verification for heliospheric magnetic field models. The composition analysis will report on the processes that generated the nanometer-sized particle. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. The instrument is a linear time-of-flight mass analyzer that utilizes dust impact ionization and is modeled after the Cosmic Dust Analyzer (CDA) on Cassini. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed toward the solar direction. A laboratory prototype has been built, tested, and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with 1 to over 50 km/s velocity. NDA is unique in its requirement to operate with the Sun in its field-of-view. A light trap system has been designed and optimized in terms of geometry and surface optical properties to mitigate Solar UV contribution to detector noise. In addition, results from laboratory tests performed with a 1 keV ion beam at the University of New Hampshire’s Space Sciences Facility confirm the effectiveness of the instrument’s solar wind particle rejection system.

  14. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  15. Optimization of the Nano-Dust Analyzer (NDA) for operation under solar UV illumination

    NASA Astrophysics Data System (ADS)

    O`Brien, L.; Grün, E.; Sternovsky, Z.

    2015-12-01

    The performance of the Nano-Dust Analyzer (NDA) instrument is analyzed for close pointing to the Sun, finding the optimal field-of-view (FOV), arrangement of internal baffles and measurement requirements. The laboratory version of the NDA instrument was recently developed (O'Brien et al., 2014) for the detection and elemental composition analysis of nano-dust particles. These particles are generated near the Sun by the collisional breakup of interplanetary dust particles (IDP), and delivered to Earth's orbit through interaction with the magnetic field of the expanding solar wind plasma. NDA is operating on the basis of impact ionization of the particle and collecting the generated ions in a time-of-flight fashion. The challenge in the measurement is that nano-dust particles arrive from a direction close to that of the Sun and thus the instrument is exposed to intense ultraviolet (UV) radiation. The performed optical ray-tracing analysis shows that it is possible to suppress the number of UV photons scattering into NDA's ion detector to levels that allow both high signal-to-noise ratio measurements, and long-term instrument operation. Analysis results show that by avoiding direct illumination of the target, the photon flux reaching the detector is reduced by a factor of about 103. Furthermore, by avoiding the target and also implementing a low-reflective coating, as well as an optimized instrument geometry consisting of an internal baffle system and a conical detector housing, the photon flux can be reduced by a factor of 106, bringing it well below the operation requirement. The instrument's FOV is optimized for the detection of nano-dust particles, while excluding the Sun. With the Sun in the FOV, the instrument can operate with reduced sensitivity and for a limited duration. The NDA instrument is suitable for future space missions to provide the unambiguous detection of nano-dust particles, to understand the conditions in the inner heliosphere and its temporal variability, and to constrain the chemical differentiation and processing of IDPs.

  16. Relevance of wildfires on dust emissions via interaction with near-surface wind pattern

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Jähn, Michael; Schepanski, Kerstin

    2017-04-01

    Mineral dust is a key player in the Earth system and shows diverse impacts on the radiation budget, cloud microphysics, marine and terrestrial ecosystems. Eventually, it also affects our modern way of life. Not only dust emissions from barren or unvegetated soil surfaces like deserts or uncultivated croplands are important sources of airborne mineral dust. Also, during fire events dust is entrained into the atmosphere and appears to contribute noteworthy to the atmospheric dust burden. The underlying process, which drives dust entrainment during fires, is the so-called pyro-convection. The high temperatures in the center of a fire result in an upward motion of the heated air. Subsequently, air flows towards the fire replacing the raising air. The resulting accelerated winds are able to mobilize soil and dust particles up to a size of several millimeters, depending of both the size and the strength of the fire. Several measurements have shown that up to 80% of the mass fraction of the emitted particles during natural or prescribed fires is related to soil or dust particles. The particles are then mixed externally with the combustion aerosols into the convective updraft and were finally inject into altitudes above the planetary boundary layer where they can be distributed and transported over long distances by the atmospheric circulation. To investigate the impacts of such fires on the near-surface wind pattern and the potential for dust emissions via exceeding typical threshold velocities, high resolved Large-Eddy Simulations (LES) with the All Scale Atmospheric Model (ASAM) were executed. In the framework of this study, the influences of different fire properties (fire intensity, size, and shape) and different atmospheric conditions on the strength and extent of fire-related winds and finally their relevance for dust emissions were investigated using sensitivity studies. Prescribed fires are omnipresent during dry seasons and pyro-convection is a mechanism entraining dust particles into boundary layer. As the quantity of dust emitted during fire events is still unclear, the results presented here will support the development of a parameterization of fire-related dust entrainment for meso-scale models. This will allow an estimation of such fire-related dust emissions on a continental scale and can finally reduce the uncertainty in the aerosol-climate feedback.

  17. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  18. Effects of mineral dust on global atmospheric nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.

    2016-02-01

    This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1-3 µg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 µg m-3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

  19. Cda Science Today and in Cassini's Final Three Years

    NASA Astrophysics Data System (ADS)

    Srama, R.

    2014-12-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and and their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries.In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies of the E-ring interaction with the large moon Titan.

  20. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    NASA Astrophysics Data System (ADS)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  1. Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Hess, S. L. G.; Zakharov, A. V.; Cipriani, F.; Seran, E.; Popel, S. I.; Lisin, E. A.; Petrov, O. F.; Dolnikov, G. G.; Lyash, A. N.; Kopnin, S. I.

    2018-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. The upper insulating regolith layer is electrically charged by the solar ultraviolet radiation and the flow of solar wind particles. Resulted electric charge and thus surface potential depend on the lunar local time, latitude and the electrical properties of the regolith. Understanding of mechanisms of the dust electric charging, dust levitation and electric charging of a lander on the lunar surface is essential for interpretation of measurements of the instruments of the Luna-Glob lander payload, e.g. the Dust Impact sensor and the Langmuir Probe. One of the tools, which allows simulating the electric charging of the regolith and lander and also the transport and deposition of the dust particles on the lander surface, is the recently developed Spacecraft Plasma Interaction Software toolkit, called the SPIS-DUST. This paper describes the SPIS-DUST numerical simulation of the interaction between the solar wind plasma, ultraviolet radiation, regolith and a lander and presents as result qualitative and quantitative data of charging the surfaces, plasma sheath and its influence on spacecraft sensors, dust dynamics. The model takes into account the geometry of the Luna-Glob lander, the electric properties of materials used on the lander surface, as well as Luna-Glob landing place. Initial conditions are chosen using current theoretical models of formation of dusty plasma exosphere and levitating charged dust particles. Simulation for the three cases (local lunar noon, evening and sunset) showed us the surrounding plasma sheath around the spacecraft which gives a significant potential bias in the spacecraft vicinity. This bias influences on the spacecraft sensors but with SPIS software we can estimate the potential of uninfluenced plasma with the data from the plasma sensors (Langmuir probes). SPIS-DUST modification allows us to get the dust dynamics properties. For our three cases we've obtained the dust densities around the spacecraft and near the surface of the Moon. As another practical result of this work we can count a suggestion of improving of dusty plasma instrument for the next mission: it must be valuable to relocate the plasma sensors to a distant boom at some distance from the spacecraft.

  2. Discrete Element Modeling of Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and electric field effects requires calculation of the forces due to these effects.

  3. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  4. Statistical analysis of micrometeoroids at the heliocentric distance of Mercury

    NASA Astrophysics Data System (ADS)

    Borin, P.; Cremonese, G.; Marzari, F.

    2007-08-01

    This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. We can distinguish two population of meteoroids depending on their dynamical evolution: small particles (r < 1 cm) dominated by the Poynting-Robertson drag, and large particles (r > 1 cm) driven by gravity only. In this work we consider small particles and, in particular, the micrometeoroids produced by collisional fragmentation of cometary or asteroidal bodies. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We will perform numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. Meteoroid impacts have a very important role in the evolution of Mercury's surface and exosphere. Since the exobase is presently on the surface of the planet, the sources and sinks of the exosphere are tightly linked to the composition and structure of the planet surface. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Y. Z., E-mail: qyzbird@live.com; Chen, H., E-mail: hchen61@ncu.edu.cn; Liu, S. Q., E-mail: sqlgroup@ncu.edu.cn

    The Jeans instability in self-gravitating plasma with Kappa distributed dust grains is investigated basing on assumption that the mutual interaction among dust grains is governed by Lennard-Jones potential. It is shown that the presence of additional suprathermal particles has significant effects on the range of unstable modes and growth rate of Jeans instability. Compared with Maxwellian scenario, suprathermality stabilized the Jeans instability.

  6. The path and surviving tail of a comet that fell into the sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1982-01-01

    A satisfactory orbital solution for Comet Howard-Koomen-Michels 1979 XI is found on the assumption that the comet's line of apsides coincided with that of the Kreutz sungrazing comet group. The derived perihelion distance then shows that this is the first known case of a comet falling into the sun. A dust tail that survived the comet is studied as a particle flow phenomenon controlled by no force other than solar gravity and solar radiation pressure. The tail's outline is interpreted in terms of an onset of dust production, a peak repulsive force on the particles, and a circumsolar dustfree zone due to particle sublimation. It is shown that the surviving debris consisted mostly of absorbing, submicron size particles in hyperbolic trajectories convex to the sun and curving toward the earth. The tail width may be a product of the interaction of charged dust in the tail with a complicated structure of the coronal magnetic field.

  7. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  8. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  9. Some aspects of dust-plasma interactions in the cosmic environment

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Rosenberg, Marlene

    1992-01-01

    In this paper we present a brief, critical review of dust-plasma interactions in the cosmic environment, with emphasis on certain recent results. Both single-particle (e.g. gravitoelectrodynamics) and collective effects (e.g. appearance of new wave modes) are discussed and some areas in which further research is needed are pointed out. Finally the pressing need for laboratory studies, both to provide the necessary data for the theoretical studies and to test the predictions of these theories, is emphasized.

  10. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Dust in Zhangye China During the Asian Monsoon Year Field Experiment (2008)

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A.; Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Bell, Shaun W.; Holben, Brent N.; Ellsworth, Welton J.; Roush, Ted L.; Zhang, Wu; Huang, J.; hide

    2012-01-01

    Tiny suspensions of solid particles or liquid droplets, called aerosols, hover in earth's atmosphere and can be found over just about anywhere including oceans, deserts, vegetated areas, and other global regions. Aerosols come in a variety of sizes, shapes, and compositions which depend on such factors as their origin and how long they have been in the atmosphere (i.e., their residence time). Some of the more common types of aerosols include mineral dust and sea salt which get lifted from the desert and ocean surfaces, respectively by mechanical forces such as strong winds. Depending on their size, aerosols will either fall out gravitationally, as in the case of larger particles, or will remain resident in the atmosphere where they can undergo further change through interactions with other aerosols and cloud particles. Not only do aerosols affect air quality where they pose a health risk, they can also perturb the distribution of radiation in the earth-atmosphere system which can inevitably lead to changes in our climate. One aerosol that has been in the forefront of many recent studies, particularly those examining its radiative effects, is mineral dust. The large spatial coverage of desert source regions and the fact that dust can radiatively interact with such a large part of the electromagnetic spectrum due to its range in particle size, makes it an important aerosol to study. Dust can directly scatter and absorb solar and infrared radiation which can subsequently alter the amount of radiation that would otherwise be present in the absence of dust at any level of the atmosphere like the surface. This is known as radiative forcing. At the surface dust can block incoming solar energy, however at infrared wavelengths, dust acts to partially compensate the solar losses. Evaluating the solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large signal-to-noise ratio in the measurements. At infrared wavelengths, on the other hand, the effect is rather difficult to ascertain since the measured dust signal level is on the same order as the instrumental uncertainties. Although the radiative impact of dust is much smaller in the infrared, it can still have a noticeable influence on the distribution of energy in the Earth-atmosphere system. This is mainly attributed to the strong light-absorptive properties commonly found in many earth minerals.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  12. Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmerski, Lawrence L.; Diniz, Antonia Sonia A. C.; Maia, Cristiana Brasil

    Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Specialmore » microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments.« less

  13. Gaps and rings carved by vortices in protoplanetary dust

    NASA Astrophysics Data System (ADS)

    Barge, Pierre; Ricci, Luca; Carilli, Christopher Luke; Previn-Ratnasingam, Rathish

    2017-09-01

    Context. Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at submillimeter and millimeter wavelengths. Aims: We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at submillimeter and millimeter wavelengths. Methods: Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and Nest Generation Very Large Array (ngVLA) observations. Results: We find that a giant vortex not only captures dust grains with Stokes number St< 1 but can also affect the distribution of larger grains (with St 1) carving a gap associated with a ring composed of incompletely trapped particles. The results are presented for different particle sizes and associated with their possible signatures in disk observations. Conclusions: Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.

  14. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  15. New estimate of the micrometeoroids flux at the heliocentric distance of Mercury

    NASA Astrophysics Data System (ADS)

    Borin, Patrizia; Cremonese, Gabriele; Marzari, Francesco

    This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. Meteoritic flux on Mercury really depends on the particle size, because meteoroids of different size follow different dynamical evolution. In this work we consider meteoritic sizes smaller than 1 cm that are particles with a dynamical evolution dominated by the Poynting-Robertson effect. The meteoroid impact mechanism seems to be an important source of neutral atoms contributing to the exosphere and, according to recent papers, mostly due to particles smaller than 1 cm. Unfortunately the dynamical studies and statistics of meteoroids smaller than 1 cm are based on quite old papers and always extrapolated from calculations made for the Earth. This is the reason why we are working on a dynamical model following small dust particles that may hit the surface of Mercury. Up to now we have taken into account only particles coming from the Main Belt. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We have performed numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. In this work we will report the first interesting estimate of the flux of small particles, and their velocity distribution, hitting the surface of Mercury. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.

  16. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From spheroids to stereo-particles, ηd increases by about 30%. We believe these results may be useful for our understanding of the spatial distribution of mineral dust contained in an aerosol external mixture and to better quantify dust mass concentrations from polarization lidar experiments.

  17. Observation of Dust Aging Processes During Transport from Africa into the Caribbean - A Lagrangian Case Study

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.

    2014-12-01

    Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our presentation, we show vertical profiles of dust size distributions, CCN and dust optical properties. Based on the Lagrangian measurements, we discuss the effects of dust aging processes during long-range transport. Special attention will be given on changes in fine and coarse mode size distribution and aerosol mixing state.

  18. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  19. Sources and properties of non-exhaust particulate matter from road traffic: a review.

    PubMed

    Thorpe, Alistair; Harrison, Roy M

    2008-08-01

    While emissions control regulation has led to a substantial reduction in exhaust emissions from road traffic, currently non-exhaust emissions from road vehicles are unabated. These include particles from brake wear, tyre wear, road surface abrasion and resuspension in the wake of passing traffic. Quantification of the magnitude of such emissions is problematic both in the laboratory and the field and the latter depends heavily upon a knowledge of the physical and chemical properties of non-exhaust particles. This review looks at each source in turn, reviewing the available information on the source materials and particles derived from them in laboratory studies. In a final section, some of the key publications dealing with measurements in road tunnels and the roadside environment are reviewed. It is concluded that with the exception of brake dust particles which may be identified from their copper (Cu) and antimony (Sb) content, unequivocal identification of particles from other sources is likely to prove extremely difficult, either because of the lack of suitable tracer elements or compounds, or because of the interactions between sources prior to the emission process. Even in the case of brake dust, problems will arise in distinguishing directly emitted particles from those arising from resuspension of deposited brake dust from the road surface, or that derived from entrainment of polluted roadside soils, either directly or as a component of road surface dust.

  20. Pulmonary toxicology of silica, coal and asbestos.

    PubMed Central

    Heppleston, A G

    1984-01-01

    Mineral particles are customarily inhaled as mixtures, though one component may predominate and determine the response. Although the lesions often possess a characteristic structure, according to the main type of particle deposited, morphology affords little indication of pathogenesis. Being a major element in the evolution of dust lesions, macrophage behavior has been examined extensively in vitro after treatment with mineral particles, attention being directed to membrane and biochemical changes; however, no clear lead to the origin of the lesions has emerged. Pulmonary fibrosis, as one of the ultimate consequences of dust accumulation, required a direct in vitro approach in which the products of the macrophage-particle interaction were utilized to provoke collagen formation by fibroblasts in a two-phase system. By this means, silica and asbestos stimulated connective tissue formation and application of the technique to coal dusts appears promising. Coal workers may develop a peculiar type of emphysema in relation to lesions whose fibrous content is comparatively small. Type II alveolar epithelium is also stimulated by inhaled particles and lipid accumulation follows. Alveolar lipidosis interferes with the fibrotic response by preventing contact between macrophage and particles. This phenomenon may account in part for anomalies, apparent in coal workers, between epidemiological findings and dust composition. Carcinogenesis is a well-recognized feature of asbestos exposure, but, as with fibrosis, risk prediction on the basis of in vitro tests of cytotoxicity is premature and may not be valid. PMID:6329672

  1. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  2. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    PubMed

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  3. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.

  4. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger

    2017-09-01

    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1° N, 59.6° W), 5000-8000 km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064 nm with respective dual-wavelength (355, 532 nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12 000 km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252 ± 0.030 at 355 nm, 0.280 ± 0.020 at 532 nm, and 0.225 ± 0.022 at 1064 nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1 µm) have sizes around 1.5-2 µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.

  5. Mixed Calcium Dust and Carbonaceous Particles from Asia Contributing to Precipitation Changes in California

    NASA Astrophysics Data System (ADS)

    Kristensen, L.; Cornwell, G.; Sedlacek, A. J., III; Prather, K. A.

    2016-12-01

    Mineral dust particles can serve as cloud condensation nuclei (CCN), with enhanced CCN activity observed when the dust is mixed with additional soluble species. Long range atmospheric transport can change the composition of dust particles through aging, cloud processing and mixing with other particles. The CalWater2 campaign measured single particles and cloud dynamics to investigate the influence aerosols have on the hydrological cycle in California. An Aircraft Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to characterize and identify single particles within clouds potentially acting as ice and cloud nuclei. Two matching flights over California's mountains in March 2015 detected significantly different particle types that resulted in different precipitation totals. Calcium dust dominated the particle composition during the first flight which had an observed decrease in orographic precipitation. Particle composition and air mass back trajectories indicate an Asian desert origin. The calcium dust particles contained secondary acids, in particular oxalic acid, acquired during transport from Asia to California. This chemical processing likely increased the solubility of the dust, enabling the particles to act as more effective CCN. The chemical composition also showed oligomeric carbonaceous species were mixed with the calcium dust particles, potentially further increasing the solubility the particles. A single particle soot photometer (SP2) measured black carbon concurrently and returned intense incandescence when calcium dust was present, confirming the calcium dust particles were internally mixed with a carbonaceous species. Dust particles were greatly reduced during the second flight with local biomass burning particles the dominant type. Observed precipitation in California were within forecast levels during the second flight. These single particle measurements from CalWater2 show that dust particles from Asia can affect cloud process and thus precipitation in California.

  6. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  7. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    PubMed

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  8. Optical extinction dependence on wavelength and size distribution of airborne dust

    NASA Astrophysics Data System (ADS)

    Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.

    2013-05-01

    The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.

  9. Three-dimensional simulation of gas and dust in Io's Pele plume

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  10. Plasma-Based Detector of Outer-Space Dust Particles

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Brinza, David E.; Henry, Michael D.; Clay, Douglas R.

    2006-01-01

    A report presents a concept for an instrument to be flown in outer space, where it would detect dust particles - especially those associated with comets. The instrument would include a flat plate that would intercept the dust particles. The anticipated spacecraft/dust-particle relative speeds are so high that the impingement of a dust particle on the plate would generate a plasma cloud. Simple electric dipole sensors located equidistantly along the circumference of the plate would detect the dust particle indirectly by detecting the plasma cloud. The location of the dust hit could be estimated from the timing of the detection pulses of the different dipoles. The mass and composition of the dust particle could be estimated from the shapes and durations of the pulses from the dipoles. In comparison with other instruments for detecting hypervelocity dust particles, the proposed instrument offers advantages of robustness, large collection area, and simplicity.

  11. Dusty disc-planet interaction with dust-free simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jhih-Wei; Lin, Min-Kai

    2018-05-01

    Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.

  12. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  13. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    NASA Astrophysics Data System (ADS)

    Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-07-01

    To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  14. Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.

    2016-12-01

    The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.

  15. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    NASA Astrophysics Data System (ADS)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  16. Electrostatic effects on dust particles in space

    NASA Astrophysics Data System (ADS)

    Leung, Philip; Wuerker, Ralph

    1992-02-01

    The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.

  17. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    PubMed

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  18. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NASA Astrophysics Data System (ADS)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  19. The flow of a dust particle by highly collisional drifting plasma

    NASA Astrophysics Data System (ADS)

    Grach, Veronika; Semenov, Vladimir; Trakhtengerts, Victor

    We present the study of the flow of a dust particle by a weakly ionized highly collisional drifting plasma. The charging of a conductive sphere and wake formation downstream and upstream of it is analyzed in the case of a strong external field l0 = E0 /(4πen0 ) λD a (E0 is the magnitude of the external field, n0 is plasma density, λD is Debye length and a is a radius of the sphere). Under such conditions, the effects of the space charge field and ionization-recombination processes play crucial role. The sphere charge and the spatial distributions of plasma ions and electrons are calculated nu-merically; analytical expressions are obtained for some limiting cases. We obtain that the size of the wake is determined by the external field and the recombination rate. At low recombination rates (α/(4πµ+,- ) 1, where α is the recombination coefficient, µ+,- are mobilities of positive and negative plasma particles) the longitudinal scale of wake is about 20l0 , at high recombina-tion rates the longitudinal scale is about l0 . The transverse scale of the wake is determined by the ratio of the mobilities and can reach several dust particle radii. It was also shown that the absolute value of the dust particle charge decreases with increasing recombination rate. The total electric charge (the sphere charge plus the plasma space charge) is shown to be zero in accordance with predictions of the theory of static currents in a conducting medium. On the basis of the obtained spatial distributions of charged plasma particles, the electrostatic potential around the sphere is calculated numerically. The interaction potential between two systems "particle+wake" is analyzed for arbitrary locations of such systems. We obtain that the potential can be attractive at moderate and large distances, if the particles are not aligned in the direction perpendicular to the external electric field. The results can be important in understanding intergrain interactions in weakly ionized highly collisional anisotropic dusty plasmas.

  20. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust.

    PubMed

    Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A

    2017-02-07

    Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.

  1. Reactive organic species on natural dust

    NASA Astrophysics Data System (ADS)

    Batsaikhan, A.; Schoeler, H.; Williams, J.

    2008-05-01

    Annually 1000-3000 Tg mineral dust aerosol are emitted into the atmosphere, and transported over the oceans from one continent to the other. During the transport dust particles interact with components in the marine atmosphere and also with seawater as they fall into the ocean. Increased methyl iodide concentrations were observed during a field campaign on the Atlantic Ocean when dust storms occurred. Volatile halogenated organic compounds (VHOC) are photolyzed to produce reactive halogen species which are responsible for ozone depletion. An abiotic production mechanism for VHOC, involving humic-like substance (HULIS), iron and halide, was supposed to produce methyl iodide through the interaction of dust particles with seawater as all necessary ingredients were present. The main goal of this study was to test this hypothesis and to further elucidate the process. For this, simple dust-seawater addition experiments in headspace glasses were conducted in the laboratory, following a purge-and-trap GC-MS analysis of the headspace gas. Dust samples were collected in the source regions in southern Algeria and the Gobi Desert and, as representatives for aeolian dust, samples from Cape Verde Island and Lanzarote Island were used. To exclude the biological contribution, sterilized samples were also employed in this study. As assumed, methyl iodide was produced abiotically and the concentration increased tenfold after addition of Fe (III) within half an hour. Methylene chloride was also produced abiotically along with methyl iodide. In contrast to methyl iodide and methylene chloride, methyl chloride and isoprene were produced biologically, provided the production occurred after at least 24 hours of interaction of only non-sterilized samples with seawater. If the microorganisms responsible for the production of isoprene are common soil organisms found everywhere in the world, this process can be the reason for a hitherto not fully explained increase in atmospheric isoprene concentration during wet seasons, especially when the rain falls practically everyday. The results of this study show the importance of natural dust aerosols for the production and emission of volatile organic compounds to the atmosphere and open interesting questions for further studies.

  2. Model of Image Artifacts from Dust Particles

    NASA Technical Reports Server (NTRS)

    Willson, Reg

    2008-01-01

    A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact is the shape (typically, circular) of the aperture, and the contribution of the particle to the attenuation factor for a given pixel is the fraction of the cross-sectional area of the collection cone occupied by the particle. Assuming that dust particles do not overlap, the net transmission factor for a given pixel is calculated as one minus the sum of attenuation factors contributed by all dust particles affecting that pixel. In a test, the model was used to synthesize attenuation images for random distributions of dust particles on the front surface of a lens at various relative aperture (F-number) settings. As shown in Figure 2, the attenuation images resembled dust artifacts in real test images recorded while the lens was aimed at a white target.

  3. Generation and Evaluation of Lunar Dust Adhesion Mitigating Materials

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.; Lin, Yi; Belcher, Marcus A.; Palmieri, Frank L.

    2011-01-01

    Particulate contamination is of concern in a variety of environments. This issue is especially important in confined spaces with highly controlled atmospheres such as space exploration vehicles involved in extraterrestrial surface missions. Lunar dust was a significant challenge for the Apollo astronauts and will be of greater concern for longer duration, future missions. Passive mitigation strategies, those not requiring external energy, may decrease some of these concerns, and have been investigated in this work. A myriad of approaches to modify the surface chemistry and topography of a variety of substrates was investigated. These involved generation of novel materials, photolithographic techniques, and other template approaches. Additionally, single particle and multiple particle methods to quantitatively evaluate the particle-substrate adhesion interactions were developed.

  4. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  5. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  6. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  7. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    NASA Astrophysics Data System (ADS)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  8. Individual particle analysis in suburban Osaka

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo

    2012-11-01

    Higashi-Osaka is urban area located on the east of Osaka city in Japan. We equip various ground measurement devices in Higashi-Osaka campus of Kinki University. The data supplied by the Cimel instrument are analyzed with a standard AERONET (Aerosol Robotics Network) processing system. We set up an SPM sampler attached to our AERONET site. It is found from the simultaneous measurements and analyses that clear atmosphere with few small particles is not too often, usually polluted particles from diesel vehicles and industries are suspended at Higashi-Osaka and the characterization of atmospheric particles varies especially in dust phenomenon. Then we performed detailed analysis of atmospheric particles in dust days. We analyzed atmospheric particles with scanning electron microscope coupled with energy dispersive X-ray analyzer. This instrument can detect contain elements of sample by X-ray emanated from the surface of the sample. In order to investigate change of particle properties before and after dust event, we select three cases as before dust reaches to Higashi-Osaka, peak of dust event and after dust event and after dust passes. The results of analyses for each case indicate that nonspherical particles with large particle size are dominant and the main component becomes silicon derived from soil particles at the peak of dust event and soil particles remain after dust event. It is found that sometimes anthropogenic pollutant is transported to Higashi-Osaka before dust comes and components from anthropogenic source increase before dust event.

  9. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  10. Hygroscopicity of mineral dust particles: Roles of chemical mixing state and hygroscopic conversion timescale

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.

    2009-05-01

    Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results have important implications for the treatment of mineral dust particles in global chemistry and climate models.

  11. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...

  12. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...

  13. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  14. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  15. A new method to generate dust with astrophysical properties

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Eberly, B.; Graham, G. A.; Remington, B. A.; Taylor, E. A.; Tielens, A. G. G. M.

    2011-05-01

    To model the size distribution and composition of interstellar and interplanetary dust grains, and their effect on a wide range of phenomena, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new laser experiment that subjects dust grains to pressure spikes similar to those of colliding astrophysical dust, and that accelerates the grains to astrophysical velocities. This new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields. We also measure the in-flight velocity ( ~ 4.5km/s) of hundreds of grains simultaneously by use of a particle image velocimetry (PIV) technique.

  16. A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.

    2016-01-01

    Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.

  17. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...

  18. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...

  19. Energetic electron measurements near Enceladus by Cassini during 2005-2015

    NASA Astrophysics Data System (ADS)

    Krupp, N.; Roussos, E.; Paranicas, C.; Mitchell, D. G.; Kollmann, P.; Ye, S.; Kurth, W. S.; Khurana, K. K.; Perryman, R.; Waite, H.; Srama, R.; Hamilton, D. C.

    2018-05-01

    Enceladus is the main source of neutral and charged particles in the Saturnian magnetosphere. The particles originate at more than 100 active geysers forming a plume above the south pole of the moon and are continuously released into Saturn's magnetosphere. Therefore the understanding of the interaction of those particles and the local magnetospheric environment of the moon is very important. One technique to study that interaction is to study the typical motion of charged particles in the perturbed plasma flow and the associated magnetic field lines in the vicinity of the moon especially during close flybys. The Cassini spacecraft flew by Enceladus 23 times between 2005 and 2015 at distances between 25 and 5000 km. During some of the flybys Cassini went directly through the south polar plume. Other flybys happened north of the moon or on high-latitude trajectories with respect to the moon. In this paper we present the energetic electron measurements during those flybys obtained by the Low Energy Magnetosphere Measurement System LEMMS, part of the Magnetosphere Imaging Instrument MIMI onboard Cassini (Krimigis et al., 2004). As already shown in Krupp et al. (2012) for the first 14 flybys MIMI/LEMMS typically observes dropouts in the particle intensities in the region of disturbed field lines and in the presence of the moon itself or dense material blocking the bounce and drift motions of the particles. We present in this paper a continuation of the Krupp et al. (2012) results and add a full classification for all 23 flybys using the full data set of energetic electron measurements of MIMI/LEMMS. We distinguish the observed absorption and dust signatures into four different categories: (1) full absorption signatures when all the particles within a fluxtube connecting the spacecraft with the moon are lost onto the moon during one of the particle motions; (2) partial dropouts (ramp-like feature) when not all the particles inside the fluxtube are lost; (3) short dropouts in the fluxes when particles are suddenly lost for a short period in time; and interpret those features as full or partial losses onto the moon or its environment as a result of different plasma and dust regimes in the vicinity of Enceladus. We compare the results with those of Meier et al. (2014) and Engelhardt et al. (2015); (4) In addition we also show dust-related "false electron" measurements for those flybys when Cassini directly went through the dense regions of the south polar plume. Those "dust-peaks" can be interpreted as the result of impacting dust particles inside the LEMMS aperture or nearby creating a plasma cloud.

  20. Experiments to trap dust particles by a wire simulating an electron beam

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-11-01

    Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.

  1. Assessment of dust aerosol effect on cloud properties over Northwest China using CERES SSF data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Wang, X.; Wang, T.; Su, J.; Minnis, P.; Lin, B.; Hu, Y.; Yi, Y.

    Dust aerosols not only have direct effects on the climate through reflection and absorption of the short and long wave radiation but also modify cloud properties such as the number concentration and size of cloud droplets indirect effect and contribute to diabatic heating in the atmosphere that often enhances cloud evaporation and reduces the cloud water path In this study indirect and semi-direct effects of dust aerosols are analyzed over eastern Asia using two years June 2002 to June 2004 of CERES Clouds and the Earth s Radiant Energy Budget Scanner and MODIS MODerate Resolution Imaging Spectroradiometer Aqua Edition 1B SSF Single Scanner Footprint data sets The statistical analysis shows evidence for both indirect and semi-direct effect of Asia dust aerosols The dust appears to reduce the ice cloud effective particle diameter and increase high cloud amount On average ice cloud effective particle diameters of cirrus clouds under dust polluted conditions dusty cloud are 11 smaller than those derived from ice clouds in dust-free atmospheric environments The water paths of dusty clouds are also considerably smaller than those of dust-free clouds Dust aerosols could warm clouds thereby increasing the evaporation of cloud droplets resulting in reduced cloud water path semi-direct effect The semi-direct effect may be dominated the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation

  2. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  3. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  4. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  5. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  6. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  7. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  8. Electrostatic Levitation of Lunar Dust: Preliminary Experimental Observations

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Davis, S.; Laub, J.

    2007-12-01

    A lunar dust laboratory has been established in the Space Science Division at NASA Ames to evaluate fundamental electrostatic processes at the Moon's surface. Photoelectric charging, triboelectric charging, and interactions of these processes are investigated for dust-size materials. An electric field simulating the solar- plasma induced E-field of the lunar surface has been created with parallel charged capacitance plates. The field is linear, but field-shaping to create lunar-like exponentially decaying E-fields will be conducted in the near future. Preliminary tests of dust tribocharging have been conducted using a vibrating base plate within the electric field and have produced electrostatic levitation of 1.6 micron diameter silicate particles. We were able to achieve levitation in a modest vacuum environment (1.7 Torr) with the particles charged to approximately 15 percent of the Gaussian limit (defined as 2.64 E-5 C/m-2 for atmospheric air) at a threshold field strength of 2250 V/m. This charging corresponds to only a few hundred (negative) charges per particle; the field strength drops to 375 V/m when gravitationally scaled for the Moon, while dust tribocharging to greater than 100 percent of the Gaussian limit would be possible in the ultra high vacuum environment on the Moon and result in even lower threshold field strengths. We conclude therefore, that anthropogenic disturbance of lunar dust (as a result of NASA's proposed base construction, mining, vehicle motion, etc) could potentially pollute the lunar environment with levitated dust and severely impair scientific experiments requiring a pristine lunar exosphere.

  9. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    PubMed Central

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages. PMID:24987712

  10. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  11. ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir

    2016-02-01

    We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less

  12. Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device

    NASA Astrophysics Data System (ADS)

    Thomas, Edward

    2015-11-01

    Dusty (or complex) plasmas are four-component plasma systems consisting of electrons, ions, neutral atoms and charged, solid particulates. These particulates, i.e., the ``dust,'' become charged through interactions with the surrounding plasma particles and are therefore fully coupled to the background. The study of dusty plasmas began with astrophysical studies and has developed into a distinct area of plasma science with contributions to industrial, space, and fundamental plasma science. However, the vast majority of the laboratory studies are performed without the presence of a magnetic field. This is because, compared to the masses of the electrons and ions, the dust particles are significantly more massive and therefore the charge-to-mass ratio of the dust is very small. As a result, large (B > 1 T) magnetic fields are required to achieve conditions in which the dynamics of electrons, ions, and dust particles are dominated by the magnetic field. This presentation will provide a brief description of the design of the large bore (50 cm diameter x 158 cm long), multi-configuration, 4-Tesla class, superconducting magnet and integrated plasma chamber optimized for the study of dusty plasmas at high magnetic field - the MDPX device. The presentation will then focus on initial results of measurements made using MDPX - including observations of a new type of imposed ordered structures formed by the dust particles in a magnetized plasma, E x B driven flows of the particles, and observations of instabilities. This work is a collaboration of the author with Uwe Konopka (Auburn), Robert L. Merlino (Univ. of Iowa), Marlene Rosenberg (UCSD), and the MDPX team at Auburn University. Construction of the MDPX device was supported by the NSF-MRI program. Operations are supported by the NSF and DOE.

  13. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts.

    PubMed

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-12-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0-2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

  15. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  16. Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.

    2000-01-01

    Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be investigated for planetary and astrophysical environments.

  17. Chalk dustfall during classroom teaching: particle size distribution and morphological characteristics.

    PubMed

    Majumdar, Deepanjan; William, S P M Prince

    2009-01-01

    The study was undertaken to examine the nature of particulate chalk dust settled on classroom floor during traditional teaching with dusting and non-dusting chalks on two types of boards viz. rough and smooth. Settling chalk particles were collected for 30 min during teaching in glass Petri plates placed in classrooms within 3 m distance from the teaching boards. Particle size distribution, scanning electron microscopic images of chalk dusts and compressive strength of two types of chalks were tested and evaluated. Results showed that a larger proportion of dusts generated from anti-dusting chalks were of <4.5 and <2.5 microm size on both smooth and rough boards, as compared to dusting chalks. Non-dusting chalks, on an average, produced about 56% and 62% (by volume) of <4.5 microm (respirable) diameter, on rough and smooth boards, respectively, while the corresponding values for dusting chalks were 36% and 45%. Also, on an average, 83% and 94% (by volume) of the particles were <11 microm (thoracic) in case of non-dusting chalks against 61% and 72% for dusting chalks on rough and smooth boards, respectively. Interestingly, taking into account the mass of chalk dust produced per unit time, which was higher in dusting chalks than non dusting chalks, the former was actually producing higher amount of PM <4.5 and <11 particles from both types of boards. Scanning electron microscope images revealed that chalk particles had random shape, although in dusting chalks prevalence of elongated particles was observed, apparently due to the longitudinal breaking of the chalks during writing, which was confirmed during compressive strength testing. We could conclude that dusting chalks could be potentially more harmful than anti dusting chalks, as they produced higher amount of potentially dangerous PM 4.5 and PM 11.

  18. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  19. Comparison of the mixing state of long-range transported Asian and African mineral dust

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.

    2015-08-01

    Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.

  20. Mining cosmic dust from the blue ice lakes of Greenland

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.

    1985-01-01

    Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.

  1. Surface charging of a crater near lunar terminator

    NASA Astrophysics Data System (ADS)

    Anuar, A. K.

    2017-05-01

    Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.

  2. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Ryan Christopher

    Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic and CCN-active, due to the high solubility of these compounds, calcium sulfate and calcium oxalate were not. Particles composed of these two sparingly soluble compounds had apparent hygroscopicities similar to pure calcium carbonate. This implies that the commonly made assumption that all dust particles become more hygroscopic after atmospheric processing must be revisited. Calcium sulfate and oxalate represent two forms of aged mineral dust particles that remain non-hygroscopic and thus have poor CCN nucleation ability. The particle generation method (dry versus wet) was found to significantly affect the chemistry and hygroscopicity of the aerosolized particles. Finally, in Chapter 7 the timescale for the atmospheric conversion of insoluble calcite particles to soluble, CCN-active calcium nitrate particles was derived from aerosol flow tube experiments. The reaction rate is rapid was used to estimate the conversion of calcite particles to very hygroscopic particles can occur in just a few hours of exposure to tropospheric levels of nitric acid. This process will therefore be controlled by the availability of nitric acid and its precursors, as opposed to the available atmospheric reaction time.

  3. Investigations of charged particle motion on the surfaces of dusty, airless solar system bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.

    2013-12-01

    Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.

  4. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  5. Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Flock, M.; Wolf, S.; Dzyurkevich, N.; Fromang, S.; Henning, Th.; Klahr, H.; Meheut, H.

    2016-05-01

    Aims: Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks. Methods: We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μm to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results: Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

  6. On the evolution of Saturn's 'Spokes' - Theory

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Goertz, C. K.; Johnson, T. V.

    1983-01-01

    Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar UV radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated.

  7. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  8. Sulfate and nitrate in Asian dust particles observed in desert, coastal and marine air

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Wu, F.; Junji, C.

    2016-12-01

    Sulfate and nitrate in dust particles are believed to be two key species which can largely alter the physical and chemical properties of the particles in the atmosphere, in particular under humid conditions. Their occurrence in the particles has usually been considered to be the consequence of particles' aging during their long-distance travel in the air although they are present in some crustal minerals. Our observations at two deserts in China during dust episodes revealed that there were soil-derived sulfate and background-like nitrate in atmospheric dust samples. Sulfate in dust samples was proportional to samples' mass and comprised at steady mass percentages in differently sized samples. In contrast, nitrate concentration was approximately stable and independent from dust loading. Our observations at inland and coastal areas of China during dust episodes revealed that sulfate and nitrate were hardly produced on the surface of dust particles that were originated from the deserts areas in northwestern China. This is because the dust particles were in the postfrontal air, where the temperature was low and the relative humidity was small due to the adiabatic properties of the air mass. There are a number studies reporting that sulfate and nitrate had been efficiently produced on mineral particles in inland areas of China. However, those mineral particles were more likely from the local areas rather than from the desert areas. Our observations in the coastal areas of Japan, which is located in the downstream areas of the Asian continent and surrounded by sea areas revealed that dust particles appearing there frequently contained sulfate and nitrate, indicating sulfate and nitrate had been efficiently produced on the surface of the particles when the particles traveled in the marine air between China and Japan.

  9. Remote sensing of dust in the Solar system and beyond using wavelength dependence of polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.

    2011-12-01

    For a long time, the main polarimetric tool to study dust in the Solar system has been the dependence of polarization on phase (scattering) angle. Surprisingly, a variety of cosmic dusts (interplanetary and cometary dust, dust on the surfaces of asteroids and in debris disks) possesses a very similar phase dependence of polarization with a negative bowl-shaped part at small phase angles and a positive bell-shaped region with maximum polarization around 95-105 deg. Numerous laboratory and theoretical simulations showed that a polarimetric phase curve of this shape is typical for fluffy materials, e.g., porous, aggregated particles. By contrast, the wavelength dependence of polarization is different for different types of dust. In the visual, polarization decreases with wavelength (negative gradient) for asteroids and interplanetary dust, but usually increases with wavelength (positive gradient) for cometary dust. In debris disks both signs of the spectral gradient of polarization have been found. Moreover, it was found that a cometary positive spectral gradient can change to a negative one as observations move to longer (near-infrared) wavelengths (Kelley et al. AJ, 127, 2398, 2004) and some comets(Kiselev et al. JQSRT, 109, 1384, 2008) have negative gradient even in the visible. The diversity of the spectral dependence of polarization therefore gives us hope that it can be used for characterization of the aggregates that represent different types of cosmic dust. To accomplish this, the physics behind the spectral dependence of polarization need to be revealed. Our recent study shows that the spectral dependence of polarization depends on the strength of electromagnetic interaction between the monomers in aggregates. The strength of the interaction mainly depends on how many monomers the electromagnetic wave covers on the light path equal to one wavelength. Since the electromagnetic interaction depolarizes the light, the more particles a single wavelength covers the smaller is the polarization of the scattered light. Thus, at a given monomer size the polarization decreases as wavelength increases resulting in the negative spectral gradient of polarization. However, this tendency occurs only for rather compact aggregates. For porous particles, an increase of wavelength may not increase the number of the covered monomers. In this case, polarization increases with wavelength as a result of decreasing monomer's size parameter. We performed computer modeling of light scattering by aggregates of different porosity using MSTM (multisphere T-matrix) code by D. Mackowski (see http://eng.auburn.edu/users/dmckwski/scatcodes/). The results show that for each porosity a critical wavelength exists at which the spectral gradient of polarization changes from positive to negative. The electromagnetic interaction is also stronger for more transparent materials which in turn affects the value of the critical wavelength. Thus, measurements of polarization over a broad range of wavelength can be a powerful tool to study the porosity and composition of dust in a variety of cosmic environments, especially when detailed phase dependence of polarization cannot be established (e.g. for TNO and other distant objects).

  10. Dynamics and Distribution of Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2005-08-01

    We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612, 1206-1213) shows that only asteroidal dust particles cannot explain these observations, and particles produced by high-eccentricity comets (such as Comet Encke) are needed for such explanation. Several our recent papers are presented on astro-ph.

  11. The IPE facility in the ISS

    NASA Astrophysics Data System (ADS)

    Orr, Astrid

    IPE is a micro-gravity experiment that addresses planetary science. It is an ESA study in phase B and is intended to be installed on the Internaional Space Station. The goals of IPE are to: 1) understand the formation of planetesimals, or planet precursors, by studying the mutual interactions of micron-sized dust particles and their agglomeration in conditions representative of pre-planetary conditions 2) study the light scattering behavior of proto-planterary dust aggregates IPE (= ICAPS Precursor Experiment) is linked to a scientific program of ESA to study the Interactions in Cosmic and Atmospheric Particle systems under microgravity: ICAPS. The IPE collaboration includes an international Facility Science Team composed of leading scientists from France, Germany, Belgium, Canada and Spain. It also envolves a European industrial consortium. This paper will present the current status of the IPE project, the scientific objectives and the current payload configuration.

  12. Two moment dust and water ice in the MarsWRF GCM

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark I.; Newman, Claire E.; Mischna, Michael A.

    2016-10-01

    A new two moment dust and water ice microphysics scheme has been developed for the MarsWRF General Circulation Model based on the Morrison and Gettelman (2008) scheme, and includes temperature dependent nucleation processes and energetically constrained condensation and evaporation. Dust consumed in the formation of water ice is also tracked by the model.The two moment dust scheme simulates dust particles in the Martian atmosphere using a Gamma distribution with fixed radius for lifted particles. Within the atmosphere the particle distribution is advected and sedimented within the two moment framework, obviating the requirement for lossy conversion between the continuous Gamma distribution and discritized bins found in some Mars microphysics schemes. Water ice is simulated using the same Gamma distribution and advected and sedimented in the same way. Water ice nucleation occurs heterogeneously onto dust particles with temperature dependent contact parameters (e.g. Trainer et al., 2009) and condensation and evaporation follows energetic constraints (e.g. Pruppacher and Klett, 1980; Montmessin et al., 2002) allowing water ice particles to grow in size where necessary. Dust particles are tracked within the ice cores as nucleation occurs, and dust cores advect and sediment along with their parent ice particle distributions. Radiative properties of dust and water particles are calculated as a function of the effective radius of the particles and the distribution width. The new microphysics scheme requires 5 tracers to be tracked as the moments of the dust, water ice, and ice core. All microphysical processes are simulated entirely within the two moment framework without any discretization of particle sizes.The effect of this new microphysics scheme on dust and water ice cloud distribution will be discussed and compared with observations from TES and MCS.

  13. Migration of Dust Particles and Their Collisions with the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.

  14. Structures and dynamics in a two-dimensional dipolar dust particle system

    NASA Astrophysics Data System (ADS)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  15. Application of Dusty Plasmas for Space

    NASA Astrophysics Data System (ADS)

    Bhavasar, Hemang; Ahuja, Smariti

    In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.

  16. Physical characteristics of cometary dust from dynamical studies - A review

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1980-01-01

    Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.

  17. Dust environment of an airless object: A phase space study with kinetic models

    NASA Astrophysics Data System (ADS)

    Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.

    2016-01-01

    The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.

  18. Charging and shielding of a non-spherical dust grain in a plasma

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delzanno, G.

    2013-12-01

    The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.

  19. Oil refinery dusts: morphological and size analysis by TEM.

    PubMed

    Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek

    2011-03-01

    The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.

  20. Fast camera imaging of dust in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.

    2009-06-01

    Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.

  1. Addition of Electrostatic Forces to EDEM with Applications to Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos; Curry, David

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carryout experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM Tm, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. In this paper we will present overview of the theoretical calculations and experimental data and their comparison to the results of the DEM simulations. We will also discuss current plans to revise the DEM software with advanced electrodynamic and mechanical algorithms.

  2. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    PubMed

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.

  3. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan

    2017-12-01

    Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust particles following cold fronts is likely limited when the particles move from the desert to populated areas within the continent. For an accurate quantification of sulfate and nitrate formed on long-distance-transported desert dust particles at downwind populated areas in eastern China, dust collection efforts are indispensable to minimize any possible influence by locally emitted particles or at least to ensure that the samples are collected after dust arrival.

  4. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater

    USGS Publications Warehouse

    Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, Ralf; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; Wray, J.

    2008-01-01

    The ripple field known as 'El Dorado' was a unique stop on Spirit's traverse where dust-raising, active mafic sand ripples and larger inactive coarse-grained ripples interact, illuminating several long-standing issues of Martian dust mobility, sand mobility, and the origin of transverse aeolian ridges. Strong regional wind events endured by Spirit caused perceptible migration of ripple crests in deposits SSE of El Dorado, erasure of tracks in sandy areas, and changes to dust mantling the site. Localized thermal vortices swept across El Dorado, leaving paths of reduced dust but without perceptibly damaging nearly cohesionless sandy ripple crests. From orbit, winds responsible for frequently raising clay-sized dust into the atmosphere do not seem to significantly affect dunes composed of (more easily entrained) sand-sized particles, a long-standing paradox. This disparity between dust mobilization and sand mobilization on Mars is due largely to two factors: (1) dust occurs on the surface as fragile, low-density, sand-sized aggregates that are easily entrained and disrupted, compared with clay-sized air fall particles; and (2) induration of regolith is pervasive. Light-toned bed forms investigated at Gusev are coarse-grained ripples, an interpretation we propose for many of the smallest linear, light-toned bed forms of uncertain origin seen in high-resolution orbital images across Mars. On Earth, wind can organize bimodal or poorly sorted loose sediment into coarse-grained ripples. Coarse-grained ripples could be relatively common on Mars because development of durable, well-sorted sediments analogous to terrestrial aeolian quartz sand deposits is restricted by the lack of free quartz and limited hydraulic sediment processing. Copyright 2008 by the American Geophysical Union.

  5. Impact of Long-Range Transported African Dust Events on Cloud Composition and Physical Properties at a Caribbean Tropical Montane Cloud Forest

    NASA Astrophysics Data System (ADS)

    Valle-Diaz, C. J.; Torres-Delgado, E.; Lee, T.; Collett, J. L.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Spiegel, J.; Eugster, W.

    2012-12-01

    We studied the impact of long-range transported African Dust (LRTAD) on cloud composition and properties at the Caribbean tropical montane cloud forest (TMCF) of Pico del Este (PE), as part of the Puerto Rico African Dust and Clouds Study (PRADACS). Here we present results from measurements performed in July 2011. Bulk chemical analysis of cloud water and rainwater showed pH and conductivity higher in the presence of dust. pH and conductivity were also higher for larger cloud droplets (size cut of 17 μm at 50% efficiency) suggesting a higher content of dust in this fraction. The concentration of the water-soluble ions in rainwater was found to be lower than for cloud water. This in turn translates to higher pH and lower conductivity. African dust influence at PE was confirmed by the presence of nss-Ca, Fe, Mg, Na, and Al in cloud/rain water, and inferred by HYSPLIT trajectories and the satellite images from the Saharan Air Layer (SAL). Interstitial single-particle size and chemistry measured using aerosol time-of-flight mass spectrometry revealed mostly sea-salt particles (Na, Cl, Ca) and dust particles (Fe, Ti, Mg, nss-Ca). Anthropogenic influence detected as the presence of EC, a tracer for combustion processes, was found to be fairly small according to ATOFMS measurements. An increase of total organic carbon, total nitrogen, and dissolved organic carbon was observed during LRTAD events. Cloud droplet distributions revealed that LRTAD can lead to more numerous, but smaller cloud droplets (around 8 μm in average) at PE. However, total liquid water content appeared to be unaffected by this shift of droplet sizes. Overall, differences in the studied physicochemical properties of aerosols and clouds during dust and non-dust events were observed. Our results show that during LRTAD events, aerosol-cloud-precipitation interactions are altered at PE. Detailed results will be presented at the meeting.

  6. Understanding the ice nucleation characteristics of feldspars suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000), doi:10.1038/35020537. Zobrist et al., (2008). J. Phys. Chem., 112:3965-3975. Nash and Marshall (1957). Proceedings Soil Sci. Society, 21:149-153. Belchinskaya et al., (2013). J. Applied Chemistry, doi:10.1155/2013/789410

  7. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  8. Single particle chemical composition and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical composition. At Tinfou, larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3. Evaluation of the Cape Verde data will show whether a significant difference exists between fresh and aged Saharan dust in aspect ratio.

  9. Laboratory Impact Experiments

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  10. Dust Analyzer Instrument (DANTE) for the detection and elemental analysis of dust particles originating from the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.

    2016-12-01

    Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.

  11. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  12. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  13. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    PubMed

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.

  14. Scavenging of pollutant acid substances by Asian mineral dust particles - article no. L07816

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.

    2006-04-13

    Uptakes of sulfate and nitrate onto Asian dust particles during transport from the Asian continent to the Pacific Ocean were analyzed by using a single-particle time-of-flight mass spectrometer. Observation was conducted at Tsukuba in Japan in the springtime of 2004. Sulfate-rich dust particles made their largest contribution during the 'dust event' in the middle of April 2004. As a result of detailed analysis including backward trajectory calculations, it was confirmed that sulfate components originating from coal combustion in the continent were internally mixed with dust particles. Even in the downstream of the outflow far from the continental coastline, significant contributionmore » of Asian dust to sulfate was observed. Asian dust plays critical roles as the carrier of sulfate over the Pacific Ocean.« less

  15. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  16. Association of Sand Dust Particles with Pulmonary Function and Respiratory Symptoms in Adult Patients with Asthma in Western Japan Using Light Detection and Ranging: A Panel Study

    PubMed Central

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji

    2015-01-01

    Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km−1. By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, −0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307

  17. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    NASA Astrophysics Data System (ADS)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  18. Particle size and metals concentrations of dust from a paint manufacturing plant.

    PubMed

    Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang

    2010-02-15

    In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.

  19. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng

    2011-11-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  20. Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe

    NASA Astrophysics Data System (ADS)

    Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.

    2017-12-01

    Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.

  1. Wet Dust Deposition Across Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.

    2016-12-01

    Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.

  2. Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China.

    PubMed

    Niu, Hongya; Zhang, Daizhou; Hu, Wei; Shi, Jinhui; Li, Ruipeng; Gao, Huiwang; Pian, Wei; Hu, Min

    2016-02-01

    Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao (36.15 °N, 120.49 °E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument (SEM-EDX). The particles appeared in various shapes, and their size mainly varied from 0.4 to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3-0.4 μm before the dust storm and about 0.5-0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number. Copyright © 2015. Published by Elsevier B.V.

  3. Spiral waves in driven strongly coupled Yukawa systems

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Das, Amita

    2018-06-01

    Spiral wave formations are ubiquitous in nature. In the present paper, the excitation of spiral waves in the context of driven two-dimensional dusty plasma (Yukawa system) has been demonstrated at particle level using molecular-dynamics simulations. The interaction amidst dust particles is modeled by the Yukawa potential to take account of the shielding of dust charges by the lighter electron and ion species. The spatiotemporal evolution of these spiral waves has been characterized as a function of the frequency and amplitude of the driving force and dust neutral collisions. The effect of strong coupling has been studied, which shows that the excited spiral wave structures get clearer as the medium gets more strongly coupled. The radial propagation speed of the spiral wave is observed to remain unaltered with the coupling parameter. However, it is found to depend on the screening parameter of the dust medium and decreases when it is increased. In the crystalline phase (with screening parameter κ >0.58 ), the spiral wavefronts are shown to be hexagonal in shape. This shows that the radial propagation speed depends on the interparticle spacing.

  4. Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Stegmann, P.; Yang, P.

    2017-12-01

    It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.

  5. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Schmidt, Jrgen

    2018-06-01

    In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.

  6. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  7. Charge-fluctuation-induced heating of dust particles in a plasma.

    PubMed

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  8. The effect of air dust pollution on semen quality and sperm parameters among infertile men in west of Iran.

    PubMed

    Najafpour, Ali; Aghaz, Faranak; Roshankhah, Shiva; Bakhtiari, Mitra

    2018-06-26

    Pollutants during haze and Asian dust storms are transported out of the Asian continent, affecting the regional climate and the hydrological and biogeochemical cycles. Nonetheless, no specific studies evaluated the dust particles influence on semen quality in a specific geographical area. In this article, we investigated the effect of dust particles on semen quality and sperm parameters among infertile men. A descriptive-analytic study was conducted among 850 infertile men between 2011 and 2015 years. Semen quality was assessed according to the WHO 2010 guidelines, including sperm concentration, progressive motility, and morphology. Four-year average dust particle concentrations were estimated at each participant's address using the Air Pollution Monitoring Station affiliated with the Department of Environment of Kermanshah city were gathered. Dust particle levels were highest in the summer months, in Kermanshah province. Our results show that, dust pollution was found to be significantly negatively correlated with sperm morphology and sperm concentration before and after lab-processing, but sperm progressive motility is low sensitive to dust particles. Our findings showed that exposures to dust particle may influence sperm quantity in infertile men, consistent with the knowledge that sperm morphology and concentration are the most sensitive parameters of dust pollution.

  9. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    NASA Astrophysics Data System (ADS)

    Wiacek, A.; Peter, T.; Lohmann, U.

    2010-02-01

    This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Without explicitly modelling dust emission and deposition processes, dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Practically none of the simulated air parcels reached regions where homogeneous ice nucleation can take place (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through regions supersaturated with respect to ice but subsaturated with respect to water, where "warm" (T≳-40 °C) ice clouds may form prior to supercooled water or mixed-phase clouds. The importance of "warm" ice clouds and the general influence of dust in the mixed-phase cloud region are highly uncertain due to considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work. For "classical" cirrus-forming temperatures, our results show that only mineral dust IN that underwent mixed-phase cloud-processing previously are likely to be relevant, and, therefore, we recommend further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.

  10. Dust arcs in the region of Jupiter's Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Schmidt, Jürgen

    2018-01-01

    Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.

  11. Modification of Saharan Mineral Dust during Transport across the Atlantic Ocean - Overview and Results from the SALTRACE Field Experiment

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos

    2014-05-01

    At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida under different atmospheric conditions. On the eastern side of the Atlantic, dust plumes were quite homogenous and extended up to 6-7 km altitude. In contrast, the dust layers in the Caribbean showed three layers with different dust characteristics and were mainly below 4.5 km altitude. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust microphysical and optical properties was observed between 0.7 and 2.5 km altitude. The aerosol optical thickness of the dust outbreaks studied in the Barabados area ranged from 0.2 to 0.6 at 500 nm. Highlights during SALTRACE included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm Chantal in the dusty environment. In our presentation, we give an overview of the SALTRACE study and investigate the impact of dust aging processes between the Cape Verde region and the Caribbean on dust microphysical and optical properties. We show vertical profiles of dust size distributions, CCN and dust optical properties and compare our results with the ground-based in-situ, sun photometer and lidar measurements. In particular, we show the results from the trans-Atlantic Lagrangian dust study and discuss similarities and differences of the dust plumes observed over Cape Verde and in the Caribbean.

  12. Atmospheric bioaerosols transported via dust storms in the western United States

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig

    2011-09-01

    Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.

  13. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  14. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-07-22

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  15. Physicochemical Characteristics of Dust Particles in HVOF Spraying and Occupational Hazards: Case Study in a Chinese Company

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Li, Haijun; Li, Xinyu

    2016-06-01

    Dust particles generated in thermal spray process can cause serious health problems to the workers. Dust particles generated in high velocity oxy-fuel (HVOF) spraying WC-Co coatings were characterized in terms of mass concentrations, particle size distribution, micro morphologies, and composition. Results show that the highest instantaneous exposure concentration of dust particles in the investigated thermal spray workshop is 140 mg/m3 and the time-weighted average concentration is 34.2 mg/m3, which are approximately 8 and 4 times higher than the occupational exposure limits in China, respectively. The large dust particles above 10 μm in size present a unique morphology of polygonal or irregular block of crushed powder, and smaller dust particles mainly exist in the form of irregular or flocculent agglomerates. Some heavy metals, such as chromium, cobalt, and nickel, are also found in the air of the workshop and their concentrations are higher than the limits. Potential occupational hazards of the dust particles in the thermal spray process are further analyzed based on their characteristics and the workers' exposure to the nanoparticles is assessed using a control banding tool.

  16. Monitoring the airborne dust and water vapor in the low atmosphere of Mars: the MEDUSA experiment for the ESA ExoMars mission

    NASA Astrophysics Data System (ADS)

    Esposito, Francesca; Colangeli, Luigi; Palumbo, Pasquale; Della Corte, Vincenzo; Molfese, Cesare; Merrison, Jonathan; Nornberg, Per; Lopez-Moreno, J. J.; Rodriguez Gomez, Julio

    Dust and water vapour are fundamental components of Martian atmosphere. Dust amount varies with seasons and with the presence of local and global dust storms, but never drops entirely to zero. Aerosol dust has always played a fundamental role on the Martian climate. Dust interaction with solar and thermal radiation and the related condensation and evaporation processes influence the thermal structure and balance, and the dynamics (in terms of circulation) of the atmosphere. Water vapour is a minor constituent of the Martian atmosphere but it plays a fundamental role and it is important as indicator of seasonal climate changes. Moreover, the interest about the water cycle on local and global scales is linked to the fundamental function that water could have played in relation to the existence of living organisms on Mars. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution, on which dust and water vapour have (and have had) strong influence. Moreover, nowadays, dust is a relevant agent that affects environmental conditions in the lower Martian atmosphere and, thus, may interact / interfere with any instrumentation delivered to Mars surface for in situ analyses. So, information on dust properties and deposition rate is also of great interest for future mission design. Knowledge of how much dust settles on solar arrays and the size and shape of particles will be crucial elements for designing missions that will operate by solar power for periods of several years and will have moving parts which will experience degradation by dust. This information is essential also for proper planning of future manned missions in relation to characterisation of environmental hazardous conditions. Little is known about dust structure and dynamics, so far. Size distribution is known only roughly and the mechanism of settling and rising into the atmosphere, the rates and geographic variability are matter of controversy. The instrument MEDUSA (Martian Environmental DUst Systematic Analyser) has been designed to measure directly and quantitatively in situ the cumulative dust mass flux and dust deposition rate, the physical and electrification properties, the size distribution of intercepted particles and the water vapour abundance versus time, a goal that has never been reached so far. MEDUSA has been selected by ESA as one of the environmental instruments to be included in the payload Humboldt of ExoMars lander.

  17. Migration of Interplanetary Dust and Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation. The fraction of particles started from Encke-type comets is not large (<0.15) in order to fit the observational distributions of particles over their distances from the Sun. Studies of velocities of MgI line and corresponding eccentricities and inclinations in our runs showed that the mean eccentricity of zodiacal dust particles is about 0.5. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 46- 65. [2] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471.

  18. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    PubMed

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  19. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    NASA Astrophysics Data System (ADS)

    Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  20. Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting-Robertson drag: An analytical model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo

    2009-05-01

    Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.

  1. Dust-concentration measurement based on Mie scattering of a laser beam

    PubMed Central

    Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu

    2017-01-01

    To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662

  2. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6]. These studies have been largely focused on the coarse-grained terminal particles extracted from aerogel collectors; hypervelocity capture into aerogel resulted in fine-grained material that was melted and intimately mixed with the SiO2 capture medium. Hypervelocity impacts into Al foils surrounding the aerogel tiles produced impact craters that captured material from the impactor without significant oxygen contamination, allowing for analysis of both the coarse and fine-grained components of the Wild 2 dust. To date, no particles with definitive hydrated mineralogy have been observed in Stardust samples, though this may be a result of alteration due to hypervelocity capture. High-carbon hydrated CS-IDPs have been suggested as resulting from the aqueous alteration of CP-IDPs [7], and may retain evidence for interaction with O-17, O-18-enriched "cometary" water predicted by CO self-shielding. Here we present results of oxygen isotope measurements of twelve Stardust foil craters and four C-rich hydrated IDPs [8, 9], and discuss implications for models of oxygen isotope heterogeneity in the early solar system.

  3. A Model for Formation of Dust, Soil and Rock Coatings on Mars: Physical and Chemical Processes on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Bishop, Janice; Murchie, Scott L.; Pieters, Carle M.; Zent, Aaron P.

    2001-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates. Reflectance spectra were measured of the initial particulate mixtures, the cemented products and ground versions of the cemented material. The spectral contrast in the visible/near-infrared and mid-infrared regions is significantly reduced for the cemented material compared to the initial soil, and somewhat reduced for the ground, cemented soil compared to the initial soil. The results of this study suggest that diurnal and seasonal cycling on Mars will have a profound effect on the texture and spectral properties of the dust/soil particles on the surface. The model developed in this study provides an explanation for the generation of cemented or crusted soil units and rock coatings on Mars and may explain albedo variations on the surface observed near large rocks or crater rims.

  4. Lunar Dust Monitor for the orbiter of the next Japanese lunar mission SELENE2

    NASA Astrophysics Data System (ADS)

    Hirai, Takayuki; Sasaki, Sho; Ohashi, Hideo; Kobayashi, Masanori; Fujii, Masayuki; Shibata, Hiromi; Iwai, Takeo; Nogami, Ken-Ichi; Kimura, Hiroshi; Nakamura, Maki

    2010-05-01

    The next Japanese lunar mission SELENE2, after a successful mission Kaguya (a project named SELENE), is planned to launch in mid 2010 and to consists of a lander, a rover, and an orbiter, as a transmitting satellite to the earth [1]. A dust particle detector is proposed to be onboard the orbiter that is planned to be in operation for one year or more. Dust particles around the Moon include interplanetary dust, beta-meteoroids, interstellar dust, and possibly lunar dust that originate from the subsurface materials of the Moon. It is considered that several tens of thousands of tons of dust particles per year fall onto the Moon and supply materials to its surface layer. "Inflow" and "outflow" dust particles are very important for understanding material compositions of lunar surface. In past missions, dust detectors onboard the Hiten and Nozomi (Hiten-MDC and Nozomi-MDC) measured the flues of dust particles in the lunar orbit [2, 3]. These observations by Hiten- and Nozomi-MDCs created a small dataset of statistics of dust particles excluding earth-orbiting dust once in a week, because the dust detectors had small sensitive areas, 0.01 m2 and 0.014 m^2, respectively. The Lunar Dust EXperiment (LDEX) is designed to map a spatial and temporal variability of the dust size and density distributions in the lunar environment and will be onboard LADEE, which will be launched in 2012 [4]. LDEX will observe the lunar environment for 90 days in a nominal case or for a maximum of 9 months. It has a sensor area of 0.01 m2 at 50 km altitude. For a quantitative study of circumlunar dust, we propose a dust monitoring device with a large aperture size and a large sensor area, called the lunar dust monitor (LDM). The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a large target (gold-plated Al) of 400 cm^2, to which a high voltage of +500 V is applied. The LDM also has two meshed grids parallel to the target. The grids are 90% transparent: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. We can deduce the mass and velocity information of the impacted dust particle from the recorded signal waveforms generated by the impacts of dust particles. Dust particles around the Moon are classified based on their origins: interstellar dust, interplanetary dust, beta meteoroids, and possibly dust that originated on the Moon. They can be inferred from their kinematic properties: the velocities and the arrival directions. If the proportion of dust components around the Moon is determined by observation, we can increase our knowledge of the contribution of inflow and outflow dust particles to lunar surface materials. References: [1] Matsumoto, K. et al., Joint Annual Meeting of LEAG-ICEUM-SRR (2008) LPI Contribution No.1446, 86. [2] Iglseder H. et al., Adv. Space Res. 17 (1996) 177-182. [3] Sasaki S., et al., Adv. Space Res., 39 (2007), 485-488. [4] Horanyi, M. et al., (2009) LPSC 40th, Abstract #1741.

  5. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  6. Motion of dust particles in nonuniform magnetic field and applicability of smoothed particle hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Saitou, Y.

    2018-01-01

    An SPH (Smoothed Particle Hydrodynamics) simulation code is developed to reproduce our findings on behavior of dust particles, which were obtained in our previous experiments (Phys. Plasmas, 23, 013709 (2016) and Abst. 18th Intern. Cong. Plasma Phys. (Kaohsiung, 2016)). Usually, in an SPH simulation, a smoothed particle is interpreted as a discretized fluid element. Here we regard the particles as dust particles because it is known that behavior of dust particles in complex plasmas can be described using fluid dynamics equations in many cases. Various rotation velocities that are difficult to achieve in the experiment are given to particles at boundaries in the newly developed simulation and motion of particles is investigated. Preliminary results obtained by the simulation are shown.

  7. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  8. Characteristics of Dust Deposition at High Elevation Sites in Caucasus Over the Past 190 years Recorded in Ice Cores.

    NASA Astrophysics Data System (ADS)

    Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra

    2017-04-01

    The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. Ice cores can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow ice cores have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter ice core has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The ice cores have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An increase of dust and Ca2+ concentration was registered since the beginning of XX century. The ice core record depicts also a prominent increase of dust concentration in 1980's which may be related to the increase of dust sources strength in North Africa.

  9. Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta.

    PubMed

    Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris

    2017-07-13

    The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  10. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more than 100 PM10 samples, addressing mainly their mass concentrations and the chemical composition of water soluble ions and carbon species (carbonates and organic and elemental carbon). Different PM10 samplers worked simultaneously in order to collect enough mass to make the aerosol characterization through the different methodologies and to collect aerosols in different filter matrixes, which have to be appropriated to the chemical and mineralogical analysis. The sampling site was located at Santiago Island, in the surroundings of Praia City (14° 55' N e 23° 29' W, 98 m at sea level). High concentrations, up to more than 400 μg m-3, are connected to north-east and north-northeast winds, and it was identified several dust events characteristic of "bruma seca", whose duration is on average of two to four days. Backward trajectories analysis confirms that the high concentrations in Cape Verde are associated with air masses passing over the Sahara. During dust events the percentage of inorganic water soluble ions for the total PM10 mass concentration decreased significantly to values lower than 10% in comparison with remainder data that range around 45±10%. Acknowledgement: This work was funded by the Portuguese Science Foundation (FCT) through the project PTDD/AAC-CLI/100331/2008 and FCOMP-01-0124-FEDER-008646 (CV-Dust). J. Cardoso acknowledges the PhD grant SFRH-BD-6105-2009 from FCT.

  11. Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.

    2007-08-01

    In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.

  12. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including the Moon, Mercury, and the moons of Mars: Phobos and Deimos.

  13. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    NASA Astrophysics Data System (ADS)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  14. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.

    2014-08-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.

  15. Elongated dust particles growth in a spherical glow discharge in ethanol

    NASA Astrophysics Data System (ADS)

    Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.

    2018-01-01

    The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.

  16. Physicochemical classification of dust particles observed at Gosan ABC superstation in East Asia

    NASA Astrophysics Data System (ADS)

    Shang, X.; Lee, M.; Chung, C. E.

    2013-12-01

    We identified different types of dust particles from long-term measurements of mass and ionic and carbonaceous compositions of PM1.0, PM2.5 and PM10 at Gosan ABC superstation on Jeju Island, Korea from August 2007 to February 2012. The concentration of PM1.0, PM10 mass and PM10 Ca2+ showed clear bimodal distributions, which provided robust criteria to distinguish atmospheric particles in different physiochemical regimes. Dust impacted particles were clearly separated by high PM10 mass over 29μg/m3. Some dust storm often passed over heavily populated areas in China, which made dust particles mixed with pollutants. This type of aerosol showed enhanced concentration of PM1.0 over 22μg/m3. We also recognized high Ca2+ concentration in PM1.0 when air came from northeastern China where salt deposit spreads in dry lakes. The Ca2+ concentration in PM10 was found to be a good indicator for the saline dust particles. In addition, the ratios of mass, SO42-, Mg2+ and organic carbon (OC) to Ca2+ turned out to be useful to distinguish different types of dust-impacted particles.

  17. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  18. Biological effects of contaminated silicon carbide particles from a workstation in a plant producing abrasives.

    PubMed

    Governa, M; Valentino, M; Amati, M; Visonà, I; Botta, G C; Marcer, G; Gemignani, C

    1997-06-01

    A sample of silicon carbide dust taken in the field from a plant producing abrasives was studied in vitro. The SiC particles (part unmilled and part milled) were able to disturb the structure of erythrocyte membranes and to lead to blood red-cell lysis; they also either interfered with complement and activated the alternate pathway, or interacted with biological media and polymorphonuclear leucocyte membranes, thus eliciting reactive oxygen species production. These in vitro properties were detected both in original large particles and unmilled particles, over 40% of which were of respirable size. The ability of these SiC particles to produce complement activation in vitro lends support to the previous hypothesis, that the radiographic opacities found in two workers employed in the same area of the plant from which the dust tested was taken are due to a reaction by pulmonary interstitial structures to SiC particle inhalation. It is speculated that SiC particles could act like asbestos, the ability of which to activate complement through the alternate pathway is considered to be one of the mechanisms by which the initial asbestotic lesions and subsequent fibrotic inflammatory infiltrates are generated in the lung.

  19. Online Characterisation of Mineral Dust Aerosol by Single Particle Mass Spectrometry: Mineralogical Signatures of Potential Source Areas in North Africa.

    NASA Astrophysics Data System (ADS)

    Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.

    2017-12-01

    The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.

  20. Agglomeration of dust in convective clouds initialized by nuclear bursts

    NASA Astrophysics Data System (ADS)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  1. Degradation of radiator performance on Mars due to dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Forkapa, Mark

    1992-01-01

    An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates.

  2. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Hara, Kazutaka; Iwata, Ayumu; Lee, Kevin C.; Kawai, Kei; Kai, Kenji; Kobayashi, Fumihisa; Pointing, Stephen B.; Archer, Stephen; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2017-10-01

    Aerosol particles, including airborne microorganisms, are transported through the free troposphere from the Asian continental area to the downwind area in East Asia and can influence climate changes, ecosystem dynamics, and human health. However, the variations present in airborne bacterial communities in the free troposphere over downwind areas are poorly understood, and there are few studies that provide an in-depth examination of the effects of long-range transport of aerosols (natural and anthropogenic particles) on bacterial variations. In this study, the vertical distributions of airborne bacterial communities at high altitudes were investigated and the bacterial variations were compared between dust events and non-dust events.Aerosols were collected at three altitudes from ground level to the free troposphere (upper level: 3000 or 2500 m; middle level: 1200 or 500 m; and low level: 10 m) during Asian dust events and non-dust events over the Noto Peninsula, Japan, where westerly winds carry aerosols from the Asian continental areas. During Asian dust events, air masses at high altitudes were transported from the Asian continental area by westerly winds, and laser imaging detection and ranging (lidar) data indicated high concentrations of non-spherical particles, suggesting that dust-sand particles were transported from the central desert regions of Asia. The air samples collected during the dust events contained 10-100 times higher concentrations of microscopic fluorescent particles and optical particle counter (OPC) measured particles than in non-dust events. The air masses of non-dust events contained lower amounts of dust-sand particles. Additionally, some air samples showed relatively high levels of black carbon, which were likely transported from the Asian continental coasts. Moreover, during the dust events, microbial particles at altitudes of > 1200 m increased to the concentrations ranging from 1. 2 × 106 to 6. 6 × 106 particles m-3. In contrast, when dust events disappeared, the microbial particles at > 1200 m decreased slightly to microbial-particle concentrations ranging from 6. 4 × 104 to 8. 9 × 105 particles m-3.High-throughput sequencing technology targeting 16S rRNA genes (16S rDNA) revealed that the bacterial communities collected at high altitudes (from 500 to 3000 m) during dust events exhibited higher diversities and were predominantly composed of natural-sand/terrestrial bacteria, such as Bacillus members. During non-dust periods, airborne bacteria at high altitudes were mainly composed of anthropogenic/terrestrial bacteria (Actinobacteria), marine bacteria (Cyanobacteria and Alphaproteobacteria), and plant-associated bacteria (Gammaproteobacteria), which shifted in composition in correspondence with the origins of the air masses and the meteorological conditions. The airborne bacterial structures at high altitudes suggested remarkable changes in response to air mass sources, which contributed to the increases in community richness and to the domination of a few bacterial taxa.

  3. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2012-01-01

    CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  4. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S.; Chhajlani, R. K.

    2016-05-15

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss,more » but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.« less

  5. Description of a dust particle detection system and measurements of particulate contamination from shock, gate valve, and ion pump under ultrahigh vacuum conditions

    NASA Astrophysics Data System (ADS)

    Dorier, J.-L.; Hilleret, N.

    1998-11-01

    Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio-frequency accelerating cavities. Intrinsic dust contamination from sources such as valves or ion pumps has not yet been studied due to the inability of commercial particle counters to be able to detect across large cross sections under ultrahigh vacuum (UHV) conditions. This motivated the development of the dust particle detector described here which is able to quantify, in situ, the level of contamination on a representative part of a vacuum vessel. This system operates under UHV conditions and measures flashes of scattered light from free falling dust particles as they cross a thin laser light sheet across a 100 mm diam vacuum vessel. A calibration using microspheres of known diameter has allowed estimation of the particle size from the scattered signal amplitude. Measurements of particulate contamination generated by shocks onto the vessel walls are presented and determination of the height of origin of dust particles from their transit time across the irradiation sheet is discussed. Measurements of dust particle release right to operation of an all-metal gate valve are also presented in the form of time resolved measurements of dust occurrence during the open/close cycles of the valve, as well as histograms of the particle size distribution. A partial self-cleaning effect is witnessed during the first 10 operation cycles following valve installation. The operation of an ion pump has also been investigated and revealed that, in our conditions, particles were released only at pump startup.

  6. Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.

    2007-01-01

    In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.

  7. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  8. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling.

    PubMed

    Guo, Jianping; Lou, Mengyun; Miao, Yucong; Wang, Yuan; Zeng, Zhaoliang; Liu, Huan; He, Jing; Xu, Hui; Wang, Fu; Min, Min; Zhai, Panmao

    2017-11-01

    East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12-22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km-9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Planetesimal formation by sweep-up coagulation

    NASA Astrophysics Data System (ADS)

    Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.

    2013-07-01

    The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.

  11. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  12. Dust Transport from Enceladus to the moons of Saturn

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.

    2016-12-01

    Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.

  13. Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.

    2003-10-01

    The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.

  14. A two-dimensional particle-in-cell model of a dusty plasma

    NASA Technical Reports Server (NTRS)

    Young, B.; Cravens, T. E.; Armstrong, T. P.; Friauf, R. J.

    1994-01-01

    Dusty plasmas are present in comets, in the ring systems of the outer planets, and in the interstellar medium. A two-dimensional particle-in-cell (PIC) model of a dusty plasma is presented in this paper. The PIC code is best suited for modeling the plasma-dust interaction for large grains, with diameters of the order of a centimeter. We have modeled the charging process for an individual dust grain and the associated potential pattern in the surrounding plasma. We have also considered the case of a large number of grains in a plasma, with intergrain separations of the order of the Debye length, and have shown that the plasma becomes depleted and the charge on a dust grain is reduced, as other workers in this field have predicted (cf. C. K. Goertz, 1989). We examine the electron and ion distribution functions in the vicinity of a charged grain and demonstrate that the ions near a grain have clearly been accelerated by the electrostatic potential.

  15. Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests.

    PubMed

    Patinha, C; Durães, N; Sousa, P; Dias, A C; Reis, A P; Noack, Y; Ferreira da Silva, E

    2015-08-01

    Urban dust is a heterogeneous mix, where traffic-related particles can combine with soil mineral compounds, forming a unique and site-specific material. These traffic-related particles are usually enriched in potentially harmful elements, enhancing the health risk for population by inhalation or ingestion. Urban dust samples from Estarreja city and traffic-related particles (brake dust and white traffic paint) were studied to understand the relative contribution of the traffic particles in the geochemical behaviour of urban dust and to evaluate the long-term impacts of the metals on an urban environment, as well as the risk to the populations. It was possible to distinguish two groups of urban dust samples according to Cu behaviour: (1) one group with low amounts of fine particles (<38 µm), low contents of organic material, high percentage of Cu in soluble phases, and low Cu bioaccessible fraction (Bf) values. This group showed similar chemical behaviour with the brake dust samples of low- to mid-range car brands (with more than 10 years old), composed by coarser wear particles; and (2) another group with greater amounts of fine particles (<38 µm), with low percentage of Cu associated with soluble phases, and with greater Cu Bf values. This group behaved similar to those found for brake dust of mid- to high-range car brands (with less than 10 years old). The results obtained showed that there is no direct correlation between the geoavailability of metals estimated by sequential selective chemical extraction (SSCE) and the in vitro oral bioaccessibility (UBM) test. Thus, oral bioaccessibility of urban dust is site specific. Geoavailability was greatly dependent on particle size, where the bioaccessibility tended to increase with a reduction in particle diameter. As anthropogenic particles showed high metal concentration and a smaller size than mineral particles, urban dusts are of major concern to the populations' health, since fine particles are easily re-suspended, easily ingested, and show high metal bioaccessibility. In addition, Estarreja is a coastal city often influenced by winds, which favours the re-suspension of small-sized contaminated particles. Even if the risk to the population does not represent an acute case, it should not be overlooked, and this study can serve as baseline study for cities under high traffic influence.

  16. Evaluating the effect of soil dust particles from semi-arid areas on clouds and climate

    NASA Astrophysics Data System (ADS)

    Kristjansson, J. E.; Hummel, M.; Lewinschal, A.; Grini, A.

    2016-12-01

    Primary ice production in mixed-phase clouds predominantly takes place by heterogeneous freezing of mineral dust particles. Therefore, mineral dust has a large impact on cloud properties. Organic matter attached to mineral dust particles can expand their already good freezing ability further to warmer subzero temperatures. These dust particles are called "soil dust". Dusts emitted from deserts contribute most to the total dust concentration in the atmosphere and they can be transported over long distances. Soil dust is emitted from semi-arid regions, e.g. agricultural areas. Besides wind erosion, human activities like tillage or harvest might be a large source for soil dust release into the atmosphere. In this study, we analyze the influence of soil dust particles on clouds with the Norwegian Earth System Model (NorESM; Bentsen et al., 2013: GMD). The parameterization of immersion freezing on soil dust is based on findings from the AIDA cloud chamber (Steinke et al., in prep.). Contact angle and activation energy for soil dust are estimated in order to be used in the dust immersion freezing scheme of the model, which is based on classical nucleation theory. Our first results highlight the importance of soil dust for ice nucleation on a global scale. Its influence is expected to be highest in the northern hemisphere due to its higher area for soil dust emission. The immersion freezing rates due to additional soil dust can on average increase by a factor of 1.2 compared to a mineral dust-only simulation. Using a budget tool for NorESM, influences of soil dust ice nuclei on single tendencies of the cloud microphysics can be identified. For example, accretion to snow is sensitive to adding soil dust ice nuclei. This can result in changes e.g. in the ice water path and cloud radiative properties.

  17. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  18. Dust particles investigation for future Russian lunar missions.

    NASA Astrophysics Data System (ADS)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lender missons intends for investigation the dynamics of dusty plasma near lunar surface. PmL consist of three blocks: Impact Sensor and two Electric Field Sensors. Dust Experiment goals are: 1) Impact sensor to investigate the dynamics of dust particles near the lunar surface (speed, charge, mass, vectors of a fluxes) a) high speed micrometeorites b) secondary particles after micrometeorites soil bombardment c) levitating dust particles due to electrostatic fields PmL instrument will measure dust particle impulses. In laboratory tests we used - min impulse so as 7•10-11 N•c, by SiO2 dust particles, 20-40 µm with velocity about 0,5 -2,5 m/c, dispersion 0.3, and - max impulse was 10-6 N•c with possibility increased it by particles Pb-Sn 0,7 mm with velocity 1 m/c, dispersion ±0.3. Also Impact Sensor will measure the charge of dust particle as far as 10-15 C ( 1000 electrons). In case the charge and impulse of a dust particle are measured we can obtain velocity and mass of them. 2) Electric field Sensor will measure the value and dynamics of the electric fields the lunar surface. Two Electric Field Sensors both are measured the concentration and temperature of charged particles (electrons, ions, dust particles). Uncertainty of measurements is 10%. Electric Field Sensors contain of Lengmure probe. Using Lengmure probe to dark and light Moon surface we can obtain the energy spectra photoelectrons in different period of time. PmL instrument is developing, working out and manufacturing in IKI. Simultaneously with the PmL dust instrument to study lunar dust it would be very important to use an onboard TV system adjusted for imaging physical properties of dust on the lunar surface (adhesion, albedo, porosity, etc), and to collect dust particles samples from the lunar surface to return these samples to the Earth for measure a number of physic-chemical properties of the lunar dust, e.g. a quantum yield of photoemission, what is very important for modeling physical processes in the lunar exosphere.

  19. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  20. Single particle chemical composition, state of mixing and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Emmel, Carmen; Ebert, Martin; Lieke, Kirsten; Müller-Ebert, Dörthe; Schütz, Lothar; Weinbruch, Stephan

    2010-05-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosol was measured. The winter campaign of Saharan Mineral Dust Experiment II in 2008 was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Ground-based and airborne measurements were performed in the winter season, where mineral dust from the Western Sahara and biomass burning aerosol from the Sahel region occurred. Samples were collected with a miniature impactor system, a sedimentation trap, a free-wing impactor, and a filter sampler. Beryllium discs as well as carbon coated nickel discs, carbon foils, and nuclepore and fiber filters were used as sampling substrates. The size-resolved particle aspect ratio and the chemical composition are determined by scanning electron microscopy and energy-dispersive X-ray microanalysis of single particles. Mineralogical bulk composition is determined by X-ray diffraction analysis. In Morocco, three size regimes are identified in the aerosol: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 µm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 µm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). More detailed results are found in Kandler et al. (2009) At Praia, Cape Verde, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures of these components. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust dominates the particle mass (more than 90 %). Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. Comparing a high dust period at Cape Verde with the total data from Morocco, it is found that the atomic ratio distributions of Al/Si, K/Si and Fe/Si for the single particles are very similar for the dust component. This indicates that the dominating silicate minerals are the same. In contrast, the content of calcium rich minerals at Cape Verde is significantly lower than in Morocco which is in agreement with the source regions for the Cape Verde dust (E Mali and W Niger) derived from trajectory analysis. The sulfur content of super-micron aerosol particles at Cape Verde scales with the particle surface, indicating the presence of sulfate coatings. For the submicron particles, the sulfur content scales with particle volume, which can be attributed to the large amount of particles identified as ammonium sulfate. In contrast to findings in Japan (Zhang et al., 2006), no internal mixtures between pristine seasalt and mineral dust are present during this dust period at Cape Verde. However, for a significant number of particles a small amount of sodium and chlorine is associated with internal mixtures of dust and sulfate, what may indicate that these particles started as internal mixture of dust with a sea water droplet before taking up more sulfur from the gas phase. In general, the shape of the particles in Morocco and Cape Verde is rather similar: The distributions of the two-dimensional aspect ratio of an ellipse fitted to each particle's shape for the total aerosol show no significant differences. A median value of 1.6 is found for both locations. References Kandler, K., Schütz, L., Deutscher, C., Hofmann, H., Jäckel, S. and co-authors 2009. Tellus 61B, 32-50. Zhang, D., Iwasaka, Y., Matsuki, A., Ueno, K. and Matsuzaki, T. 2006. Atmos. Environ. 40, 1205-1215. Financial support by the Deutsche Forschungsgemeinschaft (research group SAMUM, FOR539) is gratefully acknowledged. We thank TACV - Cabo Verde Airlines and Mr. António Lima Fortes for logistic support.

  1. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  2. Mechanisms and causes of wear in tooth enamel: implications for hominin diets.

    PubMed

    Lucas, Peter W; Omar, Ridwaan; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Henry, Amanda G; Michael, Shaji; Thai, Lidia Arockia; Watzke, Jörg; Strait, David S; Atkins, Anthony G

    2013-03-06

    The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss.

  3. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  4. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  5. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission

    NASA Astrophysics Data System (ADS)

    Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min

    2013-01-01

    The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.

  6. Preliminary Results from the STARDUST Encounter with Wild 2 Comet obtained by the Dust Flux Monitor Instrument

    NASA Astrophysics Data System (ADS)

    Economou, T. E.; Tuzzolino, A. J.; Green, S. F.

    On January 2nd, 2004, the Stardust spacecraft successfully encountered the Wild 2 comet. The Dust Flux Monitor Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distribution throughout the entire flythrough. The DFMI consists of two different dust detector systems --- a polyvinylidene fluoride (PVDF) dust sensor unit (SU), which measures particles in the 10-11 to 10-4 mass, and a dual acoustic sensor system (DASS), which utilizes two piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux ofparticles with mass larger than 10-4 g. The DFMI on the stardust mission was designed, built and tested at the University of Chicago. The Open University provided the calibration and will perform the analysis of the data from the acoustic sensors. The DFMI instrument was turned on 15 minutes before the estimated closest approach. It started to detect the first dust particles just a few minutes before the closest approach with both types of the sensors in the instrument. As the S/C was departing the comet several more dust particle streams were encountered some 2-12 minutes after the closest approach. The time distribution of dust particles detected by DFMI is not uniform and they seem to come in closely spaced swarms of particles separated by many seconds with no events. The source of these particles is believed to be several of the jet streams that were observed in many of the images obtained by the navigation camera on the STARDUST spacecraft. Data flux rates and dust particle mass distribution are currently being evaluated and will be presented at the meeting. The instrument detected thousands of small particles and a few of them were large enough to even penetrate the first layer of the Whipple bumper shield. From the DFMI data it has been estimated that more than several thousands particles larger than 20 μ in diameter have been collected in the aerogel collector that will returned back to Earth in January 2006.

  7. Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru; Onishi, Isamu K.

    2018-06-01

    The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.

  8. Fast camera observations of injected and intrinsic dust in TEXTOR

    NASA Astrophysics Data System (ADS)

    Shalpegin, A.; Vignitchouk, L.; Erofeev, I.; Brochard, F.; Litnovsky, A.; Bozhenkov, S.; Bykov, I.; den Harder, N.; Sergienko, G.

    2015-12-01

    Stereoscopic fast camera observations of pre-characterized carbon and tungsten dust injection in TEXTOR are reported, along with the modelling of tungsten particle trajectories with MIGRAINe. Particle tracking analysis of the video data showed significant differences in dust dynamics: while carbon flakes were prone to agglomeration and explosive destruction, spherical tungsten particles followed quasi-inertial trajectories. Although this inertial nature prevented any validation of the force models used in MIGRAINe, comparisons between the experimental and simulated lifetimes provide a direct evidence of dust temperature overestimation in dust dynamics codes. Furthermore, wide-view observations of the TEXTOR interior revealed the main production mechanism of intrinsic carbon dust, as well as the location of probable dust remobilization sites.

  9. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.

  10. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    PubMed

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RI<105μm) and it combines source and transport factors for road dust particles <105μm in diameter. It could quantify and differentiate the impact of the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RI<105μm in the Beijing region to assess the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RI<105μm method offers a new and useful tool for assessing the potential risks posed by metals associated with road dust on atmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  12. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.

  13. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity values corresponding to the solute concentration (obtained via Koop et al., (2000)). Observations A decrease in ice nucleation ability of the minerals (for immersion freezing) with increasing solute concentration (hence, decreasing water activity) was observed, similar as for homogeneous ice nucleation. Though the decrease was more pronounced in case of microcline and ATD as compared to kaolinite. Therefore, there seem to be specific interactions which needs to be studied further to explain the freezing behavior of minerals. The current study could be helpful in investigating the ice nucleation behavior of individual minerals when present in conjunction with a solute, viz. ammonium sulfate, which is of high atmospheric relevance. References Zobrist et al., (2008), doi: 10.1021/jp7112208. Koop et al., (2000), doi:10.1038/35020537. Kaufmann (PhD Thesis 2015, ETHZ).

  14. Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain

    NASA Astrophysics Data System (ADS)

    Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio

    2017-01-01

    This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.

  15. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  16. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  17. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    NASA Astrophysics Data System (ADS)

    Iwata, Ayumi; Matsuki, Atsushi

    2018-02-01

    In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively pure or fresh calcite, Ca(NO3)2, and (NH4)2SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.

  18. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  19. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    PubMed

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  20. Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC

    NASA Astrophysics Data System (ADS)

    Abdel Kader, M.; Astitha, M.; Lelieveld, J.

    2012-04-01

    This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance will be briefly discussed as it is a subject of future work.

  1. Update on Automated Classification of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  2. Morphology, Spatial Distribution, and Concentration of Flame Retardants in Consumer Products and Environmental Dusts using Scanning Electron Microscopy and Raman Micro-spectroscopy

    PubMed Central

    WAGNER, JEFF; GHOSAL, SUTAPA; WHITEHEAD, TODD; METAYER, CATHERINE

    2013-01-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100 ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. PMID:23739093

  3. Electrostatic dust transport on the surfaces of airless bodies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.

  4. Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?

    NASA Astrophysics Data System (ADS)

    Mann, I.; Hamrin, M.

    2012-04-01

    In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We further use the expression for the magnetopause stagnation point distance used by Treumann and Baumjohann to investigate the possible influence of time-variable nanoddust fluxes on the magnetopause.

  5. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  6. Fine metal dust particles on the wall probes from JET-ILW

    NASA Astrophysics Data System (ADS)

    Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET

    2017-12-01

    Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.

  7. Automated determination of dust particles trajectories in the coma of comet 67P

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.

    2017-09-01

    During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].

  8. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  9. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  10. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers,more » visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.« less

  12. Positively charged particles in dusty plasmas.

    PubMed

    Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F

    2001-11-01

    The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.

  13. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9- to 12-micron absorption, and a lack of structured absorption at 20 microns. The ratios of dust extinction opacities at visible, 9 microns, and 30 microns are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode)= 0.40, r(sub eff)variance= 0.4 microns, r(sub cw mu)= 2.7 microns) predicts the correct ratio of the 9- to 30-micron opacity, but underpredicts the visible/9-micron opacity ratio considerably (1 versus > or equal to 2). A similar particle distribution width with smaller particle sizes (r(sub mode)= 0.17, r(sub eff)variance= 0.4 microns, r(sub cw mu)=1.2 microns) will fit the observed visible/9-micron opacity ratio, but overpredicts the observed 9-micron/30-micron opacity ratio. A smaller and much broader particle size distribution (r(sub mode)= 0.02, r(sub eff)variance= 0.8 microns, r(sub cw mu)= 1.8 microns) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micron dust opacity ratio, the Phobos occultation measurements of dust particle sizes, and the weakness of surface near IR absorptions expected for clay minerals.

  14. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; Mcmillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff) variance approximately 0.8 micrometers), smaller particle size (r(sub mode) approximately 0.02 micrometers) distribution coupled with a 'palagonite-like' composition is argued to fit the complete ultraviolet-to-30-micrometer absorption properties of the dust better than the montmorillonite-basalt, r(sub eff) variance = 0.4 micrometers, r(sub mode) = 0.40 dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971-1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample (Rousch et al., 1991) with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emmission-phase-function (EPF) observations at 9 micrometers are analyzed to retrieve 9-micrometer dust opacities coincident with solar band dust opacities obtained from the same EPF sequences (Clancy and Lee, 1991). These EPF dust opacities provide an independent measurement of the visible/9-micrometer extinction opacity ratio (greater than or = 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-micrometer opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micrometer absorption well. However, it predicts structured, deep aborptions at 20 micrometers which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8-to 9-micrometer absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9-to 12-micrometer absorption, and a lack of structured absorption at 20 micrometers. The ratios of dust extinction opacities at visible, 9 micrometers, and 30 micrometers are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode) = 0.40,r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 2.7 micrometers) predicts the correct ratio of the 9- to 30-micrometer opacity, but underpredicts the visible/9-micrometer opacity ratio considerably (1 versus greater than or = 2). A similar particle distribution width with smaller particle sizes (r(sub mode) = 0.17, r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 1.2 micrometers) will fit the observed visible/9-micrometer opacity ratio, but overpredicts the observed 9-micrometer/30-micrometer opacity ratio. A smaller and much broader particle size distribution (r(sub mode) = 0.002, r(sub eff) variance = 0.8 micrometers, r(sub cwmu) = 1.8 micrometers) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micrometer dust opacity ratio, the Phobos occulation measurements of the dust particle sizes (Chassefiere et al., 1992), and the weakness of surface near IR absorptions expected for clay minerals (Clark, 1992; Bell and Crisp, 1993).

  15. The effects of wood dusts on the redox status and cell death in mouse macrophages (RAW 264.7) and human leukocytes in vitro.

    PubMed

    Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J

    2003-07-11

    Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.

  16. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    A critical evaluation of human exposure to phthalate esters in indoor environments requires the determination of their distribution among the gas phase, airborne particles and settled dust. If sorption from the gas phase is the dominant mechanism whereby a given phthalate is associated with both airborne particles and settled dust, there should be a predictable relationship between its particle and dust concentrations. The present paper tests this for six phthalate esters (DMP, DEP, DnBP, DiBP, BBzP and DEHP) that have been measured in both the air and the settled dust of 30 Berlin apartments. The particle concentration, CParticle, of a given phthalate was calculated from its total airborne concentration and the concentration of airborne particles (PM 4). This required knowledge of the particle-gas partition coefficient, Kp, which was estimated from either the saturation vapor pressure ( ps) or the octanol/air partition coefficient ( KOA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration ( CParticle/ CDust) was calculated. The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite the fact that their vapor pressures span four orders of magnitude. This indicates that measurements of phthalate ester concentrations in settled dust can provide an estimate of their concentration in airborne particles. When the latter information is coupled with measurements of airborne particle concentrations, the gas-phase concentrations of phthalates can also be estimated and, subsequently, the contribution of each of these compartments to indoor phthalate exposures.

  17. Interplanetary dust. [survey of last four years' research

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1979-01-01

    Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.

  18. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema.

    PubMed

    Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T

    2017-07-01

    Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001). Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  19. Physical properties of five grain dust types.

    PubMed Central

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion andmore » (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g., dust growth) to explain the near-IR deficit of some systems.« less

  1. Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove

    2016-10-01

    The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.

  2. Experimental Study of Lunar Dust Transportation due to Electrostatic Forces and Micro-meteorite Impacts

    NASA Astrophysics Data System (ADS)

    Orger, N. C.; Toyoda, K.; Cho, M.

    2017-12-01

    Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.

  3. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai

    2015-05-01

    A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.

  4. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  5. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  6. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  7. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...

  8. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  9. The role of organic polymers in the structure of cometary dust

    NASA Technical Reports Server (NTRS)

    Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.

    1992-01-01

    Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.

  10. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  11. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    PubMed

    Ghio, Andrew J; Kummarapurugu, Suryanaren T; Tong, Haiyan; Soukup, Joleen M; Dailey, Lisa A; Boykin, Elizabeth; Ian Gilmour, M; Ingram, Peter; Roggli, Victor L; Goldstein, Harland L; Reynolds, Richard L

    2014-04-01

    As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO₂ of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.

  12. Biological effects of desert dust in respiratory epithelial cells and a murine model

    USGS Publications Warehouse

    Ghio, Andrew J.; Kummarapurugu, Suryanaren T.; Tong, Haiyan; Soukup, Joleen M.; Dailey, Lisa A.; Boykin, Elizabeth; Gilmour, M. Ian; Ingram, Peter; Roggli, Victor L.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States imparts a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sediment were collected from separate dust sources in northeastern Arizona. Analysis of the PM20 fraction demonstrated that the majority of both dust samples were quartz and clay minerals (total SiO2 of 52 and 57%). Using respiratory epithelial and monocytic cell lines, the two desert dusts increased oxidant generation, measured by Amplex Red fluorescence, along with carbon black (a control particle), silica, and NIST 1649 (an ambient air pollution particle). Cell oxidant generation was greatest following exposures to silica and the desert dusts. Similarly, changes in RNA for superoxide dismutase-1, heme oxygenase-1, and cyclooxygenase-2 were also greatest after silica and the desert dusts supporting an oxidative stress after cell exposure. Silica, desert dusts, and the ambient air pollution particle NIST 1649 demonstrated a capacity to activate the p38 and ERK1/2 pathways and release pro-inflammatory mediators. Mice, instilled with the same particles, showed the greatest lavage concentrations of pro-inflammatory mediators, neutrophils, and lung injury following silica and desert dusts. We conclude that, comparable to other particles, desert dusts have a capacity to (1) influence oxidative stress and release of pro-inflammatory mediators in respiratory epithelial cells and (2) provoke an inflammatory injury in the lower respiratory tract of an animal model. The biological effects of desert dusts approximated those of silica.

  13. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which leads to the addition of more than approximately 3% soluble material will significantly enhance its hygroscopicity and CCN activity.

  14. Toward a complete inventory of stratospheric dust particles with implications and their classification

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.

    1984-01-01

    As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.

  15. Utilization of ultrasonic atomization for dust control in underground mining

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Kawamura, Youhei; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    This study examined dust suppression using water particles generated by ultrasonic atomization (2.4 MHz) at low temperature (10 °C). Green tuff (4 µm), green tuff (6 µm), kaolin, and silica were used as dust samples. Even though ultrasonic atomization makes fine water particles, raising relative air humidity immediately was difficult at low temperature. However, remaining water particles that did not change to water vapor contributed to suppression of dust dispersion. Additionally, the effect of water vapor amount (absolute humidity) and water particles generated by ultrasonic atomization on the amount of dust dispersion was investigated using experimental data at temperatures of 10, 20, and 30 °C. Utilization of ultrasound atomization at low temperature has the advantages of low humidity increments in the working space and water particles remaining stable even with low relative air humidity.

  16. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  17. Atmospheric particles retrieval using satellite remote sensing: Applications for sandstorms and volcanic clouds

    NASA Astrophysics Data System (ADS)

    Gu, Yingxin

    This thesis is concerned with atmospheric particles produced by sandstorms and volcanic eruptions. Three studies were conducted in order to examine particle retrieval methodology, and apply these towards an improved understanding of large-scale sandstorms. A thermal infrared remote sensing retrieval method developed by Wen and Rose [1994], which retrieves particle sizes, optical depth, and total masses of silicate particles in the volcanic cloud, was applied to an April 07, 2001 sandstorm over northern China, using MODIS. Results indicate that the area of the dust cloud observed was 1.34 million km2, the mean particle radius of the dust was 1.44 mum, and the mean optical depth at 11 mum was 0.79. The mean burden of dust was approximately 4.8 tons/km2 and the main portion of the dust storm on April 07, 2001 contained 6.5 million tons of dust. The results are supported by both independent remote sensing data (TOMS) and in-situ data for a similar event in 1998, therefore suggesting that the technique is appropriate for quantitative analysis of silicate dust clouds. This is the first quantitative evaluation of annual and seasonal dust loading in 2003 produced by Saharan dust storms by satellite remote sensing analysis. The retrieved mean particle effective radii of 2003 dust events are between 1.7--2.6 mum which is small enough to be inhaled and is hazardous to human health. The retrieved yearly dust mass load is 658--690 Tg, which is ˜45% of the annual global mineral dust production. Winter is the heaviest dust loading season in the year 2003, which is more than 5 times larger than that in the summer season in 2003.The mean optical depths at 11 mum in the winter season (around 0.7) are higher than those in the summer season (around 0.5). The results could help both meteorologists and environmental scientists to evaluate and predict the hazard degree caused by Saharan dust storms. (Abstract shortened by UMI.)

  18. Molecular dynamic simulation of weakly magnetized complex plasmas

    NASA Astrophysics Data System (ADS)

    Funk, Dylan; Konopka, Uwe; Thomas, Edward

    2017-10-01

    A complex plasma consists of the usual plasma components (electrons, ions and neutrals), as well as a heavier component made of solid, micrometer-sized particles. The particles are in general highly charged as a result of the interaction with the other plasma components. The static and dynamic properties of a complex plasma such as its crystal structure or wave properties are influenced by many forces acting on the individual particles such as the dust particle interaction (a screened Coulomb interaction), neutral (Epstein) drag, the particle inertia and various plasma drag or thermophoretic forces. To study the behavior of complex plasmas we setup an experiment accompanying molecular dynamic simulation. We will present the approach taken in our simulation and give an overview of experimental situations that we want to cover with our simulation such as the particle charge under microgravity condition as performed on the PK-4 space experiment, or to study the detailed influences of high magnetic fields. This work was supported by the US Dept. of Energy (DE-SC0016330), NSF (PHY-1613087) and JPL/NASA (JPL-RSA 1571699).

  19. The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie

    1988-01-01

    In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.

  20. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  1. Detection of dust particles in the coma of Halley's Comet by the Foton detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, S.I.; Kariagin, V.P.; Kudriashov, V.A.

    The first results of direct measurements of the characteristics of dust particles with mass m of greater than 10 to the -9th g by the Foton detector, carried on the VEGA 1 and VEGA 2 space vehicles, are reported. The nature of the changes in the dust flux along the trajectory of the space probe is reported. The mass distribution of the dust particles is also reported. 7 references.

  2. Airborne dust and soil particles at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.

    2009-04-01

    The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et al. (2008) JGR, 113, E00A22.

  3. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  4. Electron density modification in ionospheric E layer by inserting fine dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less

  5. An instrument for discrimination between orbital debris and natural particles in near-Earth space

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Simpson, J. A.; McKibben, R. B.; Voss, H. D.; Gursky, H.

    1993-08-01

    We discuss a SPAce DUSt instrument (SPADUS) under development for flight on the USA ARGOS mission to measure the flux, mass, velocity and trajectory of near-Earth dust. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. Measurements will cover the dust mass range ~5×10-12 g (2 μm diameter) to ~ 1×10-5g (200 μm diameter), with an expected mean error in particle trajectory of ~7° (isotropic flux).

  6. Particle adhesion to surfaces under vacuum

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack B.

    1988-01-01

    The release of glass beads and standard dust from aluminum and glass substrates under centrifugation (simulating atmospheric pressure, low vacuum, and high vacuum conditions) was measured, with application to the estimation of contaminant particle release during spacecraft launch. For particles in the 10-100 micron range, dust was found to adhere more strongly than glass beads in all the cases considered. For most of the cases, dust and glass beads adhered more strongly to glass than to aluminum at all pressures. The adhesion force for dust on glass at 10 torr was shown to be as small as the value for dust on aluminum.

  7. Charging of multiple interacting particles by contact electrification.

    PubMed

    Soh, Siowling; Liu, Helena; Cademartiri, Rebecca; Yoon, Hyo Jae; Whitesides, George M

    2014-09-24

    Many processes involve the movement of a disordered collection of small particles (e.g., powders, grain, dust, and granular foods). These particles move chaotically, interact randomly among themselves, and gain electrical charge by contact electrification. Understanding the mechanisms of contact electrification of multiple interacting particles has been challenging, in part due to the complex movement and interactions of the particles. To examine the processes contributing to contact electrification at the level of single particles, a system was constructed in which an array of millimeter-sized polymeric beads of different materials were agitated on a dish. The dish was filled almost completely with beads, such that beads did not exchange positions. At the same time, during agitation, there was sufficient space for collisions with neighboring beads. The charge of the beads was measured individually after agitation. Results of systematic variations in the organization and composition of the interacting beads showed that three mechanisms determined the steady-state charge of the beads: (i) contact electrification (charging of beads of different materials), (ii) contact de-electrification (discharging of beads of the same charge polarity to the atmosphere), and (iii) a long-range influence across beads not in contact with one another (occurring, plausibly, by diffusion of charge from a bead with a higher charge to a bead with a lower charge of the same polarity).

  8. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    NASA Astrophysics Data System (ADS)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  9. Mineral dust photochemistry induces nucleation events in the presence of SO2

    PubMed Central

    Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian

    2012-01-01

    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230

  10. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  11. Comet Dust: The Diversity of "Primitive" Particles and Implications

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  12. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    DTIC Science & Technology

    2013-04-02

    photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model

  13. Characterization of events of transport over the Mediterranean Basin during summer 2012

    NASA Astrophysics Data System (ADS)

    Bucci, Silvia; Fierli, Federico; Di Donfrancesco, Guido; Diliberto, Luca; Viterbini, Maurizio; Ravetta, François; Pap, Ines; Weinhold, Kay; Größ, Johannes; Wiedensohler, Alfred; Cairo, Francesco

    2014-05-01

    Long-range transport has a great influence on the atmospheric composition in the Mediterranean Basin (MB). This work focuses on the dust intrusion events and the outflows of polluted air from the Po Valley during the PEGASOS (Pan-European Gas-AeroSOls Climate Interaction Study), TRAQA (TRAnsport et Qualité de l'Air au dessus du bassin Méditerranéen) and Supersito Arpa (Emilia Romagna) measurements campaigns of June - July 2012. In order to investigate the sources and identify the transport patterns, numerical simulations, in-situ, remote sensing and airborne aerosol measurements were jointly used. The ground based lidar situated at the San Pietro Capofiume (SPC) station, in the eastern part of the Po Valley, provides continuous measurements of backscatter and depolarization profiles and the Aerodynamical Particle Sizer (APS), in the same site, gives the aerosol spectral distribution at the ground. Observations show two main events of mineral aerosol inflow over north Italy (19- 21 June and 29-01 July). Optical properties provide a primary discrimination between coarser (likely dust) and finer particles (probably anthropogenic). The vertical statistical distribution of the different aerosol classes shows that larger particles are mainly individuated over the Planetary Boundary Layer (PBL) level while smaller particles tend to follow the daily evolution of the PBL or remain confined under it. Dust events are also detected during the TRAQA airborne campaign in the area of the gulf of Genoa, contributing to the identification of the dust plume characterization. Cluster trajectories analysis coupled to mesoscale simulations highlights the effective export of air masses from the Sahara with frequent intrusions of dust over the Po Valley, as recorded in the observational SPC site. Transport analysis also indicates an inversion of the main advection pattern (the Po Valley outflow is mainly directed eastward in the Adriatic region) during 23th and 26th June, with a possible impact of the Po Valley emissions on the Genoa Gulf where simultaneous airborne observations occurred.

  14. Modeling light scattering by mineral dust particles using spheroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Nousiainen, Timo

    Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487

  15. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.

  16. Particle atlas of World Trade Center dust

    USGS Publications Warehouse

    Lowers, Heather; Meeker, Gregory P.

    2005-01-01

    The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.

  17. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  18. The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.

    1987-01-01

    Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.

  19. Diagnostics and characterization of nanodust and nanodusty plasmas★

    NASA Astrophysics Data System (ADS)

    Greiner, Franko; Melzer, Andrè; Tadsen, Benjamin; Groth, Sebastian; Killer, Carsten; Kirchschlager, Florian; Wieben, Frank; Pilch, Iris; Krüger, Harald; Block, Dietmar; Piel, Alexander; Wolf, Sebastian

    2018-05-01

    Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.

  20. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  1. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of clays in the iberulites is suggested to be the result of higher efficiency for clay capture than for the capture of larger mineral grains. The high hygroscopicity of clay minerals probably causes retention of water in the evaporation stage and some secondary minerals (mainly gypsum) are associated with clays.

  2. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and the entire coarse mode nitrate and sulfate were internally mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.

  3. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in dusty plasmas over the lunar surface. This work was supported by the Presidium of the Russian Academy of Sciences (basic research program no. 22 “Fundamental Problems of Research and Exploration of the Solar System”) and by the Russian Foundation for Basic Research (project 12-02-00270-a).

  4. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    NASA Technical Reports Server (NTRS)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  5. Characterization of dust from blast furnace cast house de-dusting.

    PubMed

    Lanzerstorfer, Christof

    2017-10-01

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  6. An opening criterion for dust gaps in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Dipierro, Giovanni; Laibe, Guillaume

    2017-08-01

    We aim to understand under which conditions a low-mass planet can open a gap in viscous dusty protoplanetary discs. For this purpose, we extend the theory of dust radial drift to include the contribution from the tides of an embedded planet and from the gas viscous forces. From this formalism, we derive (I) a grain-size-dependent criterion for dust gap opening in discs, (II) an estimate of the location of the outer edge of the dust gap and (III) an estimate of the minimum Stokes number above which low-mass planets are able to carve gaps that appear only in the dust disc. These analytical estimates are particularly helpful to appraise the minimum mass of a hypothetical planet carving gaps in discs observed at long wavelengths and high resolution. We validate the theory against 3D smoothed particle hydrodynamics simulations of planet-disc interaction in a broad range of dusty protoplanetary discs. We find a remarkable agreement between the theoretical model and the numerical experiments.

  7. Morphology, spatial distribution, and concentration of flame retardants in consumer products and environmental dusts using scanning electron microscopy and Raman micro-spectroscopy.

    PubMed

    Wagner, Jeff; Ghosal, Sutapa; Whitehead, Todd; Metayer, Catherine

    2013-09-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  9. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.

  10. The Martian dust cycle: A proposed model

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1987-01-01

    Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.

  11. Resuspended dust as a novel source of marine ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Cornwell, G.; Sultana, C. M.; Schill, G. P.; Hill, T. C. J.; Cochran, R. E.; DeMott, P. J.; Prather, K. A.

    2017-12-01

    Recent studies of marine ice nucleating particles (INPs) have focused upon their production from phytoplankton blooms, the products of their metabolism, and resulting from their decomposition. In this work, we provide evidence for an additional, inorganic source of marine INPs independent of the marine mesocosm. Laboratory studies of aerosols generated from both synthetic seawater solutions spiked with mineral dust and from nascent coastal Pacific Ocean seawater indicate that dust can be ejected from seawater during the bubble bursting processes. Online and offline measurements of INP concentrations showed that these dust particles were ice nucleation-active in concentrations up to 40 L-1 at -30 °C, an order of magnitude more than those found in marine boundary layers or in laboratory mesocosms. Additional single particle composition measurements using an aerosol time of flight mass spectrometer (ATOFMS) collected along the Californian coast at Bodega Marine Laboratory found dust particles that contained markers from internal mixing with sea salt similar to those observed in the laboratory studies. The evidence from both laboratory and field studies suggests that there is a reservoir of dust particles within the ocean that can be ejected from the ocean's surface and act as INPs.

  12. A planetary dust ring generated by impact-ejection from the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Sachse, Manuel

    2018-03-01

    All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.

  13. Cosmic dust or other similar outer-space particles location detector

    NASA Technical Reports Server (NTRS)

    Aver, S.

    1973-01-01

    Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.

  14. Doped hydrophobic silica nano- and micro-particles as novel agents for developing latent fingerprints.

    PubMed

    Theaker, Brenden J; Hudson, Katherine E; Rowell, Frederick J

    2008-01-15

    Novel hydrophobic silica based particles have been developed to visualise latent fingerprints. The composition of the particles has been designed to maximise both hydrophobic and ionic interactions between a variety of coloured and fluorescent reporter molecules and the silicate backbone within the particles. The resulting doped particles retain the incorporated dyes with high affinity. In addition, a variety of sub-particles have also been embedded to again produce coloured or magnetisable hydrophobic particles. The particles can be harvested as nanoparticles or microparticles. The former are applied to latent fingerprints as an aqueous suspension and the latter as a dusting agent using brushes or a magnetic wand. Examples of the prints produced using these agents are given. The resulting prints have good definition.

  15. Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.

    2004-01-01

    Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.

  16. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    NASA Technical Reports Server (NTRS)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  17. Mechanisms and causes of wear in tooth enamel: implications for hominin diets

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S.; Henry, Amanda G.; Michael, Shaji; Thai, Lidia Arockia; Watzke, Jörg; Strait, David S.; Atkins, Anthony G.

    2013-01-01

    The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss. PMID:23303220

  18. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  19. 3D dust clouds (Yukawa Balls) in strongly coupled dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melzer, A.; Passvogel, M.; Miksch, T.

    2010-06-16

    Three-dimensional finite systems of charged dust particles confined to concentric spherical shells in a dusty plasma, so-called 'Yukawa balls', have been studied with respect to their static and dynamic properties. Here, we review the charging of particles in a dusty plasma discharge by computer simulations and the respective particle arrangements. The normal mode spectrum of Yukawa balls is measured from the 3D thermal Brownian motion of the dust particles around their equilibrium positions.

  20. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.

    2016-11-01

    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.

  1. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  2. Annually resolved Holocene record of dust deposition and size distribution from the South Pole

    NASA Astrophysics Data System (ADS)

    Chesler, A.; Koffman, B. G.; Kreutz, K. J.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Cole-Dai, J.; Wells, M. L.; Handley, M.

    2017-12-01

    Ice cores offer insights into past changes in atmospheric composition and circulation at high temporal resolution. Dust particles preserved in ice cores provide information regarding the atmospheric burden of dust and associated trace elements, changes in atmospheric circulation, and variations in the climates of dust-producing regions. Well resolved ice core dust records, therefore, can be used to gain a better understanding of the dynamics affecting ocean overturning circulation, to constrain atmospheric nutrient deposition to ocean ecosystems, and to assess atmospheric albedo variations. Existing Antarctic ice core dust records are generally either low-resolution and long-duration (glacial/interglacial timescale), or high-resolution and short-duration (past 2400 years), but high-resolution and long-duration records are rare. Here we present a continuous high-resolution record of dust deposition, including particle size distribution (PSD) and concentration, from the South Pole Ice (SPICE) Core, the first Holocene dust record from this location. The SPICE core was drilled during 2014-2016, reaching a depth of 1751 m. Cores were melted and analyzed for particles (1.0-12 µm diameter) using a continuous-flow Abakus laser particle sensor at Dartmouth College. The current SPICE Core chronology is based on: 1) visual stratigraphy from 0-10.2 ka and 2) correlations to the IceCube dust log calibration beyond 10.2 ka. Annual layer counts of Mg, dust (1.0 µm and 2.4 µm), Na, and SO4 demonstrate that the dust record is annually resolved through most of the Holocene ( 10.3 ka), allowing us to assess dust/climate relationships at high temporal resolution. We use meteorological and reanalysis data to understand modern drivers of observed variability in particle concentration and size distribution, and compare the new SPICE dust record to available Antarctic dust records including from EPICA Dome C, WAIS Divide, Taylor Dome, Taylor Glacier, Talos Dome, Siple Dome, and EPICA Dronning Maud Land. Interpretations of the SPICE dust record will be used to improve understanding of dust emissions, transport and deposition processes, and dust/climate relationships, through the Holocene.

  3. Issues related to dust aerosols in the magnesite industry. I. Chamber exposure.

    PubMed

    Reichrtová, E; Takác, L

    1992-01-01

    The present paper is an overview of the experimental research into the effects of flue magnesite dust in the magnesite industry in which the raw material (magnesite) is processed into refractory magnesite clinker. The issues related to dust are divided into two problem areas: a) dust aerosol arising in the process of ore mining and consisting largely of magnesite (MgCO3) and b) dust aerosol originating during ore baking in rotatory furnaces and made up mostly of MgO. Thus, larger groups of people become exposed to these aerosols as a result of solid particles escaping into the atmosphere than in the case of occupational exposure. Experimental research carried out on laboratory animals after chamber exposure provided findings on the deposition, retention and elimination of magnesite dust, on impaired balance between magnesium and calcium leading to damage of biological membranes, on how the immune profile or reproduction and embryogenesis is impacted as well as on the possible interaction with sodium salicylate as a result of an impaired acid base balance. These findings are followed up by evidence produced in the course of biological monitoring (Part II).

  4. Low frequency wave propagation in a cold magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Ghosh, S.; Khan, M.

    1998-12-01

    In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.

  5. Modélisation des disques de débris

    NASA Astrophysics Data System (ADS)

    Beust, H.; Halbwachs, J.-L.

    2006-03-01

    Debris disks are dusty and gaseous circumstellar disks orbiting stars with ages ranging from 10(7 ) yr to a few 10(8 ) yr. In contrast to genuine protoplanetary disk, they are optically thin, and are characterized by a very small amount of gas. As a consequence, their dynamics is basically gravitational. They are mainly observed in scattered light in the near infrared and/or in thermal emission at longer wavelengths. About 12 disks of this kind are known today, but their number increases rapidly thanks to the improvement of the detection techniques and instruments. What is seen in these disks is dust. Observing a scattered light profile in a debris disk, one wants to derive the spatial distribution of the dust particles. The inversion method is close to a deprojection technique. Typically (e.g., in the bp\\ disk), the surface density decreases as r(-1) up to a given distance (120 AU in the bp\\ disk) and falls off more steeply (˜~ r(-4) ) further out. Dust particles in debris disks are usually subject to an intense radiation pressure that drastically affects their dynamics. Combined with collisions, it contributes to quickly erode the dust population by removing the smallest grains. Hence the dust population must be sustained by a large population of colliding and/or evaporating planetesimals. Once produced by the parent bodies, the dust particles diffuse further out in the disk thanks to radiation pressure, or wind pressure in disks orbiting late-type stars. Nearly all debris disks that have been imaged exhibit various structures and asymetries, such as gaps, clumps, warps, and spiral arms. These structures are usually thought to originate in the distribution of the parent bodies, and to be due to gravitational perturbations by hidden planets and/or stellar companions, involving direct or secular perturbations, or interaction with mean-motion resonances. A detailed analysis of the observed structures in a given disk combined with dynamical simulations can in principle give access to the suspected planetary system. Valuable constraints have been derived in some cases. The solution is nevertheless not unique in general and the analysis is complicated by the fact that we only observe the dust particles and not the planetesimal population directly.

  6. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  7. Glow and Dust in Plasma Boundaries

    NASA Astrophysics Data System (ADS)

    Land, Victor; Douglass, Angela; Qiao, Ke; Zhang, Zhuanhao; Matthews, Lorin S.; Hyde, Truell

    2013-04-01

    The sheath region is probed in different complex plasma experiments using dust particles in addition to measurement of the optical emission originating from the plasma. The local maximum in optical emission coincides with the breaking of quasi-neutrality at the sheath boundary as indicated by the vertical force profile reconstructed from dust particle trajectories, as well as by the local onset of dust density waves in high density dust clouds suspended in a dielectric box.

  8. Lunar dust transport and potential interactions with power system components

    NASA Technical Reports Server (NTRS)

    Katzan, Cynthia M.; Edwards, Jonathan L.

    1991-01-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor 3 provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 Lunar Module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future Lunar Lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  9. In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Durand, Pierre; Bourgeois, Quentin; Denjean, Cyrielle; Vignelles, Damien; Couté, Benoit; Jeannot, Matthieu; Verdier, Nicolas; Mallet, Marc

    2018-03-01

    Mineral dust from arid areas is a major component of global aerosol and has strong interactions with climate and biogeochemistry. As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) to investigate atmospheric chemistry and its impacts in the Mediterranean region, an intensive field campaign was performed from mid-June to early August 2013 in the western basin including in situ balloon-borne aerosol measurements with the light optical aerosol counter (LOAC). LOAC is a counter/sizer that provides the aerosol concentrations in 19 size classes between 0.2 and 100 µm, and an indication of the nature of the particles based on dual-angle scattering measurements. A total of 27 LOAC flights were conducted mainly from Minorca Island (Balearic Islands, Spain) but also from Ile du Levant off Hyères city (SE France) under 17 light dilatable balloons (meteorological sounding balloons) and 10 boundary layer pressurised balloons (quasi-Lagrangian balloons). The purpose was to document the vertical extent of the plume and the time evolution of the concentrations at constant altitude (air density) by in situ observations. LOAC measurements are in agreement with ground-based measurements (lidar, photometer), aircraft measurements (counters), and satellite measurements (CALIOP) in the case of fair spatial and temporal coincidences. LOAC has often detected three modes in the dust particle volume size distributions fitted by lognormal laws at roughly 0.2, 4 and 30 µm in modal diameter. Thanks to the high sensitivity of LOAC, particles larger than 40 µm were observed, with concentrations up to about 10-4 cm-3. Such large particles were lifted several days before and their persistence after transport over long distances is in conflict with calculations of dust sedimentation. We did not observe any significant evolution of the size distribution during the transport from quasi-Lagrangian flights, even for the longest ones ( ˜ 1 day). Finally, the presence of charged particles is inferred from the LOAC measurements and we speculate that electrical forces might counteract gravitational settling of the coarse particles.

  10. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flightmore » mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.« less

  11. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Bugiel, Sebastian; Auer, Siegfried; Baust, Günter; Colette, Andrew; Drake, Keith; Fiege, Katherina; Grün, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Kempf, Sascha; Matt, Günter; Mellert, Tobias; Munsat, Tobin; Otto, Katharina; Postberg, Frank; Röser, Hans-Peter; Shu, Anthony; Sternovsky, Zoltán; Srama, Ralf

    2011-09-01

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s-1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s-1 and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

  12. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital periods. Finally, we consider possible observable consequences of individual CME/dust interactions. We show that the dust grains very likely have no observable effect on the dynamics of CMEs. The effect of an individual CME on the dust grains, however, might serve as a forecasting tool for the directions and amplitudes of the magnetic fields within the CME.

  13. Effects of 2 size classes of intratracheally administered airborne dust particles on primary and secondary specific antibody responses and body weight gain of broilers: a pilot study on the effects of naturally occurring dust.

    PubMed

    Lai, H T L; Nieuwland, M G B; Aarnink, A J A; Kemp, B; Parmentier, H K

    2012-03-01

    We studied the effects of a concurrent challenge on slow-growing broilers with 1) airborne particles of 2 sizes: fine dust (smaller than 2.5 microns) and coarse dust (between 2.5 and 10 microns) that were directly collected from a broiler house and 2) lipopolysaccharide on intratracheal immunizations with the specific antigen human serum albumin (HuSA) and measured primary and secondary systemic (total) antibody responses and (isotype-specific) IgM, IgG, and IgA responses at 3 and 7 wk of age. All treatments affected immune responses at several ages, heart morphology, and BW gain, albeit the latter only temporarily. Dust particles significantly decreased primary antibody (IgT and IgG) responses to HuSA at 3 wk of age but enhanced IgM responses to HuSA at 7 wk of age. Dust particles decreased secondary antibody responses to HuSA, albeit not significantly. All of the birds that were challenged with dust particles showed decreased BW gain after the primary but not after the secondary challenge. Relative heart weight was significantly decreased in birds challenged with coarse dust, fine dust, lipopolysaccharide, and HuSA at 3 wk of age, but not in birds challenged at 7 wk of age. Morphology (weight, width, and length) of hearts were also affected by the dust challenge at 3 wk of age. The present results indicate that airborne dust particles obtained from a broiler house when intratracheally administered at an early age affect specific humoral immune responsiveness and BW gain of broilers to simultaneously administered antigens differently than when administered at a later age. The hygienic status of broiler houses at a young age may be of importance for growth and immune responsiveness, and consequently, for vaccine efficacy and disease resistance in broilers. The consequences of our findings are discussed.

  14. Interaction between solar energetic particles and interplanetary grains

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Calcagno, L.; Foti, G.; Sheng, K. L.

    Some laboratory-studied effects induced by the fluence of fast ions on frosts of astrophysical interest are summarized. The results are applied to the interaction between energetic solar ions and interplanetary dust grains assumed to be cometary debris which spends about one-million yr before being collected in the earth's atmosphere or colliding on the moon's surface. The importance of erosion by particles to the stability of ice grains is confirmed. The build up of carbonaceous material by ion fluence on hydrocarbon containing grains is discussed. It is suggested that these new materials could be the glue which cements submicron silicate particles to form a complex agglomeration whose density increases with increasing proton fluence (packing effect). The IR spectra of laboratory synthesized carbonaceous material are compared with those observed in some carbonaceous meteoritic extracts.

  15. Assessment of velocity/trajectory measurement technologies during a particle capture event

    NASA Technical Reports Server (NTRS)

    Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni

    1994-01-01

    Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.

  16. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.

  17. An evaluation of the GCA respirable dust monitor 101-1.

    PubMed

    Marple, V A; Rubow, K L

    1978-01-01

    The GCA RDM 101-1 has been evaluated using aerosols of coal, Arizona road dust, silica, potash, and rock (copper ore) particles. The effects of the dust mass concentration, particle size distribution, and dust material on the instrument response were investigated. The instrument was found to measure the mass concentrations of respirable dust aerosols up to about 16 mg/m3 for coal and rock dust and about 20 mg/m3 for silica, potash, and Arizona road dust, providing there is not appreciable mass in the size range below approximateley 0.7 micrometer aerodynamic diameter.

  18. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  19. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  20. Deciphering human-climate interactions in an ombrotrophic peat record: REE, Nd and Pb isotope signatures of dust supplies over the last 2500 years (Misten bog, Belgium)

    NASA Astrophysics Data System (ADS)

    Fagel, N.; Allan, M.; Le Roux, G.; Mattielli, N.; Piotrowska, N.; Sikorski, J.

    2014-06-01

    A high-resolution peat record from Eastern Belgium reveals the chronology of dust deposition for the last 2500 years. REE and lithogenic elements in addition to Nd and Pb isotopes were measured in a 173 cm age-dated peat profile and provide a continuous chronology of dust source and intensity. Calculated dust flux show pronounced increases c. 300 BC, 600 AD, 1000 AD, 1200 AD and from 1700 AD, corresponding to local and regional human activities combined with climate change. The Industrial Revolution samples (1700-1950 AD) are characterised by a significant enrichment in Sc-normalised REE abundance (sum REE/Sc > 25) due to intensive coal combustion. For the pre-Industrial Revolution samples, the Sc-normalised REE abundance (10 < Sum REE/Sc < 25) and the εNd variability (-13 to -9) are interpreted by a mixing between dust particles from local soils and long-range transport of desert particles. Three periods characterised by dominant-distal sources (c. 320 AD, 1000 AD and 1700 AD) are consistent with local wetter-than-average intervals as indicated by a lower degree of peat humification. Local erosion prevails during the drier (higher humification) intervals (100 AD, 600 AD). On a global scale, more distal supplies are driven during colder periods, in particular during the Oort and Maunder minima, suggesting a potential link between dust deposition and global climate. Combining REE abundance, fractionation between Light REE and Heavy REE and Nd isotope data in ombrotrophic peat allows one to distinguish between dust flux changes related to human and climate forcings.

  1. Factors determining the exposure of dairy farmers to thoracic organic dust.

    PubMed

    Pfister, Hugo; Madec, Laurent; Cann, Pierre Le; Costet, Nathalie; Chouvet, Martine; Jouneau, Stéphane; Vernhet, Laurent

    2018-08-01

    Bronchial respiratory diseases are more common in dairy farmers than in the general population, perhaps because the repeated inhalation of organic dust contributes to the development of these disorders. However, the factors determining the exposure of farmers to particles that can enter the lower bronchial tract and interact with it, i.e. the thoracic fraction of the inhalable dust, remain to be identified. We therefore measured the exposure of dairy farmers to thoracic organic dust and identified the farm features and tasks that increased exposure. We measured thoracic particles (n = 110) and farm characteristics and occupational tasks in 29 Brittany dairy farms. The mean (GM) (geometric standard deviation, GSD) concentration of thoracic dust in air inhaled by farmers was 0.24 mg/m 3 (2.8) and the concentrations of endotoxins, Gram-positive bacteria and fungi in the thoracic fraction were 128 EU/m 3 (4.0), 960 CFU/m 3 (6.3) and 690 CFU/m 3 (5.4), respectively. Model-based estimates of the association between exposure, farm features and tasks indicated that manual grain and feed handling and mechanical bedding spreading significantly increased exposure to thoracic dust, endotoxins, bacteria and fungi. Exposure to bacteria and fungi was reduced by cowsheds divided into cubicles, whereas using automatic muck scrappers in alleyway and automatic milking tended to increase exposure to bacteria and endotoxins. Finally, exposure to endotoxin and fungi were reduced by warmer farm buildings and well-ventilated buildings having walls with large openings. In conclusions, major occupational tasks and specific farm features determine the exposure of Breton dairy farmers to thoracic organic dust. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  3. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  4. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  5. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  6. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... beryllium dust, particles or vapor in the performance of duty? (a) Proof of employment at or physical... during a period when beryllium dust, particles, or vapor may have been present at such a facility, may be...

  7. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.

  8. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  9. Eulerian-Lagrangian CFD modelling of pesticide dust emissions from maize planters

    NASA Astrophysics Data System (ADS)

    Devarrewaere, Wouter; Foqué, Dieter; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2018-07-01

    An Eulerian-Lagrangian 3D computational fluid dynamics (CFD) model of pesticide dust drift from precision vacuum planters in field conditions was developed. Tractor and planter models were positioned in an atmospheric computational domain, representing the field and its edges. Physicochemical properties of dust abraded from maize seeds (particle size, shape, porosity, density, a.i. content), dust emission rates and exhaust air velocity values at the planter fan outlets were measured experimentally and implemented in the model. The wind profile, the airflow pattern around the machines and the dust dispersion were computed. Various maize sowing scenarios with different wind conditions, dust properties, planter designs and vacuum pressures were simulated. Dust particle trajectories were calculated by means of Lagrangian particle tracking, considering nonspherical particle drag, gravity and turbulent dispersion. The dust dispersion model was previously validated with wind tunnel data. In this study, simulated pesticide concentrations in the air and on the soil in the different sowing scenarios were compared and discussed. The model predictions were similar to experimental literature data in terms of concentrations and drift distance. Pesticide exposure levels to bees during flight and foraging were estimated from the simulated concentrations. The proposed CFD model can be used in risk assessment studies and in the evaluation of dust drift mitigation measures.

  10. A new estimate of micrometeoritic flux at Mercury

    NASA Astrophysics Data System (ADS)

    Borin, P.; Cremonese, G.; Marzari, F.; Bruno, M.; Marchi, S.

    2009-04-01

    Meteoroid impacts are an important source of neutral atoms in the exosphere of Mercury. Recent papers attribute to impacting particles smaller than 1 cm the major contribution to exospheric gases. However, fluxes and impact velocities for different sizes are based on old extrapolations of similar quantities at the Earth. In this work, in order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. From our numerical simulations we extrapolate the flux of particles hitting Mercury's surface and the corresponding distribution of impact velocities. A precise calibration of the particle flux on Mercury has been performed by comparing the predictions of our model concerning the dust infall on the Earth with experimental data. The model provide the flux of different size particles impacting Mercury and their collisional velocity distribution. We compare our results with previous estimates, in particular we take into account the work of Cintala (1992), and we find lower velocities but significantly higher fluxes. Our results show that the number of impacts given by Cintala, measured in N/years, is 80.2 times higher, but the flux measured in g• cm2s, is 409.4 times lower. We can conclude that our model predicts a number of impacts smaller than Cintala, but a much higher mass contribution.

  11. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.

  12. Nano-Dust Analyzer for the detection and chemical composition measurement particles originating from near the Sun

    NASA Astrophysics Data System (ADS)

    OBrien, L. E.; Gemer, A.; Gruen, E.; Collette, A.; Horanyi, M.; Moebius, E.; Auer, S.; Juhasz, A.; Srama, R.; Sternovsky, Z.

    2012-12-01

    We report the development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration. The two STEREO spacecrafts have indicated that nano-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and subsequently accelerated outward by the solar wind. The temporal variability and directionality are governed by conditions in the inner heliosphere and the mass analysis of the particles reveals the chemical differentiation of solid matter near the Sun. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. NDA is a linear time-of-flight mass analyzer that modeled after Cosmic Dust Analyzer (CDA) on Cassini and the more recent Lunar Dust EXperiment (LDEX) for the upcoming LADEE mission to the Moon. The ion optics of the instrument is optimized through numerical modeling. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed towards the solar direction. A laboratory prototype is built and tested and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with from 1 to over 50 km/s velocity.

  13. Trajectory-capture cell instrumentation for measurement of dust particle mass, velocity and trajectory, and particle capture

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1989-01-01

    The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.

  14. The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    NASA Astrophysics Data System (ADS)

    Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.

    2017-07-01

    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.

  15. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  16. Airborne sand and dust soiling of solar collecting mirrors

    NASA Astrophysics Data System (ADS)

    Sansom, Christopher; Almond, Heather; King, Peter; Endaya, Essam; Bouaichaoui, Sofiane

    2017-06-01

    The reflectance of solar collecting mirrors can be significantly reduced by sand and dust soiling, particularly in arid environments. Larger airborne sand and dust particles can also cause damage by erosion, again reducing reflectance. This work describes investigations of the airborne particle size, shape, and composition in three arid locations that are considered suitable for CSP plants, namely in Iran, Libya, and Algeria. Sand and dust has been collected at heights between 0.5 to 2.0m by a variety of techniques, but are shown not to be representative of the particle size found either in ground dust and sand, or on the solar collecting mirror facets themselves. The possible reasons for this are proposed, most notably that larger particles may rebound from the mirror surface. The implications for mirror cleaning and collector facet erosion are discussed.

  17. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  18. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity conditions.

  19. Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Ratynskaia, S.; Litnovsky, A.; Ogata, D.; Sahle, W.

    2011-08-01

    Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.

  20. Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Albin, Thomas; Arnold, Walter; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Mewes, Cornelia; Podolak, Morris; Seidensticker, Klaus J.; Volkert, Cynthia; Krüger, Harald

    2018-03-01

    On 12 November 2014, during the descent of the Rosetta lander Philae to the surface of comet 67P/Churyumov-Gerasimenko the Dust Impact Monitor (DIM) on board Philae recorded an impact of a cometary dust impact of a cometary dust particle at 2.4 km from the comet surface (5 km from the nucleus' barycentre). In this work, we report further experiments that support the identification of this particle. We use aerogel as a comet analog material to characterise the properties of this particle. Our experiments show that this particle has a radius of 0.9 mm, a low density of 0.25 g/cm3 and a high porosity close to 90%. The particle likely moved at near 4 m/s with respect to the comet.

  1. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control During Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.

    2009-01-01

    Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.

  2. Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity.

    PubMed

    Okubo, Torahiko; Osaki, Takako; Nozaki, Eriko; Uemura, Akira; Sakai, Kouhei; Matushita, Mizue; Matsuo, Junji; Nakamura, Shinji; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2017-01-01

    Although human occupancy is a source of airborne bacteria, the role of walkers on bacterial communities in built environments is poorly understood. Therefore, we visualized the impact of walker occupancy combined with other factors (temperature, humidity, atmospheric pressure, dust particles) on airborne bacterial features in the Sapporo underground pedestrian space in Sapporo, Japan. Air samples (n = 18; 4,800L/each sample) were collected at 8:00 h to 20:00 h on 3 days (regular sampling) and at early morning / late night (5:50 h to 7:50 h / 22:15 h to 24:45 h) on a day (baseline sampling), and the number of CFUs (colony forming units) OTUs (operational taxonomic units) and other factors were determined. The results revealed that temperature, humidity, and atmospheric pressure changed with weather. The number of walkers increased greatly in the morning and evening on each regular sampling day, although total walker numbers did not differ significantly among regular sampling days. A slight increase in small dust particles (0.3-0.5μm) was observed on the days with higher temperature regardless of regular or baseline sampling. At the period on regular sampling, CFU levels varied irregularly among days, and the OTUs of 22-phylum types were observed, with the majority being from Firmicutes or Proteobacteria (γ-), including Staphylococcus sp. derived from human individuals. The data obtained from regular samplings reveled that although no direct interaction of walker occupancy and airborne CFU and OTU features was observed upon Pearson's correlation analysis, cluster analysis indicated an obvious lineage consisting of walker occupancy, CFU numbers, OTU types, small dust particles, and seasonal factors (including temperature and humidity). Meanwhile, at the period on baseline sampling both walker and CFU numbers were similarly minimal. Taken together, the results revealed a positive correlation of walker occupancy with airborne bacteria that increased with increases in temperature and humidity in the presence of airborne small particles. Moreover, the results indicated that small dust particles at high temperature and humidity may be a crucial factor responsible for stabilizing the bacteria released from walkers in built environments. The findings presented herein advance our knowledge and understanding of the relationship between humans and bacterial communities in built environments, and will help improve public health in urban communities.

  3. Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity

    PubMed Central

    Okubo, Torahiko; Osaki, Takako; Nozaki, Eriko; Uemura, Akira; Sakai, Kouhei; Matushita, Mizue; Matsuo, Junji; Nakamura, Shinji; Kamiya, Shigeru

    2017-01-01

    Although human occupancy is a source of airborne bacteria, the role of walkers on bacterial communities in built environments is poorly understood. Therefore, we visualized the impact of walker occupancy combined with other factors (temperature, humidity, atmospheric pressure, dust particles) on airborne bacterial features in the Sapporo underground pedestrian space in Sapporo, Japan. Air samples (n = 18; 4,800L/each sample) were collected at 8:00 h to 20:00 h on 3 days (regular sampling) and at early morning / late night (5:50 h to 7:50 h / 22:15 h to 24:45 h) on a day (baseline sampling), and the number of CFUs (colony forming units) OTUs (operational taxonomic units) and other factors were determined. The results revealed that temperature, humidity, and atmospheric pressure changed with weather. The number of walkers increased greatly in the morning and evening on each regular sampling day, although total walker numbers did not differ significantly among regular sampling days. A slight increase in small dust particles (0.3–0.5μm) was observed on the days with higher temperature regardless of regular or baseline sampling. At the period on regular sampling, CFU levels varied irregularly among days, and the OTUs of 22-phylum types were observed, with the majority being from Firmicutes or Proteobacteria (γ-), including Staphylococcus sp. derived from human individuals. The data obtained from regular samplings reveled that although no direct interaction of walker occupancy and airborne CFU and OTU features was observed upon Pearson's correlation analysis, cluster analysis indicated an obvious lineage consisting of walker occupancy, CFU numbers, OTU types, small dust particles, and seasonal factors (including temperature and humidity). Meanwhile, at the period on baseline sampling both walker and CFU numbers were similarly minimal. Taken together, the results revealed a positive correlation of walker occupancy with airborne bacteria that increased with increases in temperature and humidity in the presence of airborne small particles. Moreover, the results indicated that small dust particles at high temperature and humidity may be a crucial factor responsible for stabilizing the bacteria released from walkers in built environments. The findings presented herein advance our knowledge and understanding of the relationship between humans and bacterial communities in built environments, and will help improve public health in urban communities. PMID:28922412

  4. Dust Dynamics Near Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude streams observed by Apollo astronauts and potentially also by the Clementine spacecraft. In addition to the Surveyor images of lunar horizon glow and the high altitude streamer measurements, the Apollo 17 Lunar Ejecta and Meteorite surface package detected signals consistent with the impact of relatively slow-moving dust particles that may have been charged dust electrostatically levitated from the surface. There is renewed interest in this near-surface dust environment with plans to return robotic landers and astronauts to the lunar surface. No Apollo-era instruments were specifically designed to detect or measure dust levitated off the lunar surface. One new experiment under study is the Autonomous Lunar Dust Observer (ALDO). ALDO is a high-sensitivity scanning lidar (laser radar) that autonomously maps and records its 3-D dust environment. Flexibility of programmable scan pattern enables ALDO to characterize the dust context in and around experiment sites. Repeated shallow angle scans in a vertical plane enable high vertical resolution studies of dust levitation near the ground. Single elevation angle sector or full azimuth scans enable large-area statistical surveys of the frequency and size of ejecta plumes from micrometeoroid impacts, and vertical or fixed-angle stares enable very high sensitivity dust profiles to extended ranges. It is estimated that backscatter from dust concentrations as low as 1/cm3 can be measured. The concept is equally applicable to surface and atmospheric studies of other airless bodies.

  5. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less

  6. Sources of zodiacal dust particles

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2007-08-01

    The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of dust inside Jupiter's orbit, they can not be dominant in the zodiacal cloud because they can not be dominant between orbits of Jupiter and Saturn. The conclusion on a considerable fraction of cometary dust is also in an agreement with our studies [6] of the dynamics of Jupiter-family comets, which showed that some former cometary objects could get high eccentric orbits located entirely inside of Jupiter's orbit and stay in these orbits for a long time. Some of these objects could disintegrate producing a substantial amount of dust. [1] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [2] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [3] Ipatov S.I. and Mather J.C., (2007) Dust in Planetary Systems, ed. by H. Krüger and A. Graps, ESA Publications, SP-643, p. 91-94. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471. [5] Ipatov S.I. et al., astro-ph/0608141. [6] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80.

  7. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    NASA Astrophysics Data System (ADS)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-11-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

  8. Iceland Polar Vortex 2016 campaign: Winter and high-altitude dust size distributions with the balloon-borne Light Optical Aerosol Counter (LOAC)

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Vignelles, Damien; Verdier, Nicolas

    2017-04-01

    Iceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover 44,000 km2 which makes Iceland the largest Arctic as well as European desert. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2. About 50% of the suspended PM10 are submicron particles. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances as revealed on the satellite MODIS images with dust plumes traveling over 1000 km at times. There is a need to understand better the vertical distribution of such aerosols as well as their residence time in the atmosphere, especially during occasions such as polar vortex. Four LOAC flights were performed under meteorological balloons in Iceland in January 9-13 2016 when stratospheric polar vortex occurred above Iceland. LOAC is an optical aerosol counter that uses a new optical design to retrieve the size concentrations in 19 size classes between 0.2 and 100 micrometers, and to provide an estimate of the main nature of aerosols. Vertical profile of aerosol size distribution showed the presence of volcanic dust particles up to altitudes of 8 km for two of the flights (9-10 January). The MODIS satellite images confirmed a dust plume present above the southern coast from the deposits of September 2015 glacial outburst flood (jökulhlaup) while the rest of the country was covered by snow. These deposits had been actively suspended in November and December 2015. The ground PM10 mass concentration measurements in Reykjavik showed elevated PM measurements over 100 micrograms.m-3, confirming the particle presence 250 km far from the source. The number concentration exceeded 200 particles cm-3 at altitude of 1 km and 60 particles cm-3 at altitude of 5 km, which is at least 5 times higher than during background conditions. The particles were < 3 micrometers in size at altitudes >1 km while largest particles, up to 20 micrometers, were detected close to the ground. Such high number concentrations in several km height were captured by LOAC during a typical Saharan dust plume. On the other hand, aircraft measurements of winter dust storm in 2007 with an aerosol spectrometer (0.1-3 micrometers) detected only 30-50 particles per cm3 in altitude 1900 m. Our results show that fine volcanic glacially reworked dust can reach high altitudes relatively close to the dust source and reside in terms of days under winter atmospheric conditions. The remaining question is the further transport of these high altitude particles outside Iceland.

  9. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solarmore » radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.« less

  10. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  11. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  12. Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.

    2013-12-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.

  13. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  14. Optical properties of non-spherical desert dust particles in the terrestrial infrared - An asymptotic approximation approach

    NASA Astrophysics Data System (ADS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-07-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.

  15. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System

    PubMed Central

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-01-01

    We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962

  16. Association between pulmonary function and daily levels of sand dust particles assessed by light detection and ranging in schoolchildren in western Japan: A panel study.

    PubMed

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Kato, Kazuhiro; Sano, Hiroyuki; Tatsukawa, Toshiyuki; Nakazaki, Hirofumi; Yamasaki, Akira; Shimizu, Eiji

    2016-01-01

    An important aspect of sand dust emissions in association with respiratory disorders is the quantity of particulate matter. This is usually expressed as particulate matter less than 10 μm (PM10) and 2.5 μm (PM2.5). However, the composition of PM10 and PM2.5 varies. Light detection and ranging is used to monitor sand dust particles originating in East Asian deserts and distinguish them from air pollution aerosols. The objective of this study was to investigate the association between the daily levels of sand dust particles and pulmonary function in schoolchildren in western Japan. In this panel study, the peak expiratory flow (PEF) of 399 schoolchildren was measured daily from April to May 2012. A linear mixed model was used to estimate the association of PEF with the daily levels of sand dust particles, suspended particulate matter (SPM), and PM2.5. There was no association between the daily level of sand dust particles and air pollution aerosols, while both sand dust particles and air pollution aerosols had a significant association with SPM and PM2.5. An increment of 0.018 km(-1) in sand dust particles was significantly associated with a decrease in PEF (-3.62 L/min; 95% confidence interval, -4.66 to -2.59). An increase of 14.0 μg/m(3) in SPM and 10.7 μg/m(3) in PM2.5 led to a significant decrease of -2.16 L/min (-2.88 to -1.43) and -2.58 L/min (-3.59 to -1.57), respectively, in PEF. These results suggest that exposure to sand dust emission may relate to pulmonary dysfunction in children in East Asia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  18. Effects of particle mixing and scattering in the dusty gas flow through moving and stationary cascades of airfoils

    NASA Astrophysics Data System (ADS)

    Tsirkunov, Yu. M.; Romanyuk, D. A.; Panfilov, S. V.

    2011-10-01

    Time-dependent two-dimensional (2D) flow of dusty gas through a set of two cascades of airfoils (blades) has been studied numerically. The first cascade was assumed to move (rotor) and the second one to be immovable (stator). Such a flow can be considered, in some sense, as a flow in the inlet stage of a turbomachine, for example, in the inlet compressor of an aircraft turbojet engine. Dust particle concentration was assumed to be very low, so that the interparticle collisions and the effect of the dispersed phase on the carrier gas were negligible. Flow of the carrier gas was described by full Navier-Stokes equations. In calculations of particle motion, the particles were considered as solid spheres. The particle drag force, transverse Magnus force, and damping torque were taken into account in the model of gas-particle interaction. The impact interaction of particles with blades was considered as frictional and partly elastic. The effects of particle size distribution and particle scattering in the course of particle-blade collisions were investigated. Flow fields of the carrier gas and flow patterns of the particle phase were obtained and discussed.

  19. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  20. The fragmentation of dust in the innermost comae of comets: Possible evidence from ground-based images

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1994-01-01

    Dust particles when released from the nucleus of a comet are entrained in the expanding gas flow created by the vaporization of ices (mainly water ice). Traditional approaches to dusty-gas dynamics in the inner comae of comets consider there to be an initial distribution of dust particle sizes which do not fragment or evaporate. The standard Finson-Probstein model (and subsequent variations) yields a one-to-one-to-one correspondence between the size of a dust particle, its terminal velocity owing to gas drag, and its radiation pressure acceleration which creates the notable cometary dust tail. The comparison of a newly developed dust coma model shows that the typical elongated shapes of isophotes in the dust comae of comets on the scale of greater than 10(exp 4) km from the nucleus requires that the one-to-one-to-one relationship between particle size, terminal velocity and radiation pressure acceleration cannot in general be correct. There must be a broad range of particles including those having a small velocity but large radiation pressure acceleration in order to explain the elongated shape. A straightforward way to create such a distribution is if particle fragmentation, or some combination of fragmentation with vaporization, routinely occurs within and/or just outside of the dusty-gas dynamic acceleration region (i.e., up to several hundred km). In this way initially large particles, which are accelerated to fairly slow velocities by gas-drag, fragment to form small particles which still move slowly but are subject to a relatively large radiation pressure acceleration. Fragmentation has already been suggested as one possible interpretation for the flattened gradient in the spatial profiles of dust extracted from Giotto images of Comet Halley. Grain vaporization has been suggested as a possible spatially extended source of coma gases. The general elongated isophote shapes seen in ground-based images for many years represents another possible signature of fragmentation.

  1. Numerical simulation of migration behavior of uranium ore dust particles in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Ye, Yong-jun; Yin, An-song; Li, Zhi; Lei, Bo; Ding, De-xin

    2017-04-01

    There is a certain concentration of radioactive dust particles in the air of workplace of underground uranium mines. Some small diameter particles will pass through the masks and enter the respiratory tract which will cause radiation damage to the human body. In order to study deposition regularity of uranium dust in the human respiratory tract, in this paper, we firstly use the RNG turbulence model to simulate the gas flow field in the human respiratory tract Z0 ∼ Z3 level under different respiratory intensity. Then we use DPM discrete phase model to simulate the concentration, particle size distribution, deposition rate and deposition share of uranium dust particles after being filtered through the masks in the human respiratory tract Z0 to Z3 bronchus. According to the simulation results, we have got the following conclusions: the particles’ number concentration of uranium dust after being filtered through the mask in the human respiratory tract basically decreases with the increasing of particle size under different respiratory intensities on the environment of uranium mine. In addition, the intensity of respiration and the mass concentration of particles have an important influence on the deposition rate and the deposition of particles in the respiratory tract.

  2. Field sampling of loose erodible material: A new method to consider the full particle-size range

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Gill, Thomas E.

    2017-04-01

    The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.

  3. Interactions Between Mineral Dust, Climate, and Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.

    2010-01-01

    Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.

  4. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  5. Aerosol Number Size Distribution and Type Classification from 4-Year Polarization Optical Particle Counter (POPC) Measurements at Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.

    2017-12-01

    The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance of a major mineral dust plume. Co-located aerosol lidar measurements also revealed that spherical pollution particles were observed near the surface prior to a major plume of non-spherical mineral dust.

  6. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  7. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  8. Fractal cometary dust - a window into the early Solar system

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.

    2016-11-01

    The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.

  9. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  10. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.

    1993-01-01

    Within 1 AU from Jupiter, the dust detector aboard the Ulysses spacecraft during the flyby on February 8, 1992 recorded periodic bursts of submicron dust particles with durations ranging from several hours to two days and occurring at about monthly intervals. These particles arrived at Ulysses in collimate streams radiating from close to the line-of-sight direction to Jupiter, suggesting a Jovian origin for the periodic bursts. Ulysses also detected a flux of micron-sized dust particles moving in high-velocity retrograde orbits. These grains are identified here as being of interstellar origin.

  11. Characterization and quantification of bioaerosols in Saharan dust transported across the Atlantic

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Rodriguez-Caballero, Emilio; Ditas, Florian; Klimach, Thomas; Prass, Maria; Hrabe de Angelis, Isabella; Blades, Edmund; Holanda, Bruna; Pöhlker, Mira; Maurus, Isabel; Kopper, Gila; Farrell, David; Stevens, Bjorn; Prospero, Joseph M.; Ulrich, Pöschl; Andreae, Meinrat O.; Fröhlich-Nowoisky, Janine; Pöhlker, Christopher; Weber, Bettina

    2017-04-01

    Primary biological aerosols (bioaerosols), forming a subset of atmospheric particles, are directly released from the biosphere into the atmosphere. They comprise living and dead organisms (e.g., algae, bacteria, archaea), reproduction units (e.g., pollen, seeds, spores) as well as organism fragments and excretions. They play a key role in the dispersal of otherwise mostly sessile organisms (e.g. plants), but also in the spread of pathogens and diseases. Recently, also soil dust has been described to frequently occur in a close connection with biological particles (Conen et al., 2011). Bioaerosols can serve as nuclei for cloud droplets and ice crystals and may influence the radiative properties of the atmosphere, thus influencing the hydrological cycle and climate (Fröhlich-Nowoisky et al., 2016). It has been well described that dust masses are transported across the Atlantic comprising a large variety of bacteria and fungi, but the origin of the biological material remained largely unknown (Prospero et al., 2005). In the present study we aim to accomplish three major tasks, i.e., 1) Thorough identification and quantification of bioaerosol particles, 2) Characterization of ice nucleating (IN) properties of bioaerosols, and 3) Evaluation of similarities between bioaerosols and biological material in source regions of dust. For our field work we utilized filter techniques to collect aerosol samples of transatlantically transported dust at the easternmost site (Ragged Point) on the Caribbean island Barbados. Sampling took place from July to August 2016, when dust transport volumes were expected to reach peak amounts. Total suspended particles were collected ˜30 m above sea level using a high volume sampler (˜ 500 L min-1) and a micro-orifice uniform deposit impactor (MOUDI™) to obtain size-resolved samples. Directly after sampling at different time intervals (i.e. 24-hour, 48-hour, and 7-day samples) the filters were frozen until further analyses. In a complementary approach, soil material was collected in dust source regions in the African Sahel. These filter and soil samples are currently being used to investigate the microbial composition of the aerosols by means of genetic techniques (NGS-sequencing). We also investigate and characterize the IN properties of the filter samples utilizing filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments are performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array (MINA). Utilizing microscopy, we want to understand the connection between biological organisms and dust particles. Cited literature: Conen, F., Morris, C.E., Leifeld, J., Yakutin, M.V., Alewell, C.: Biological residues define the ice nucleation properties of soil dust. Atmospheric Chemistry and Physics 11, 9643-9648, 2011. Fröhlich-Nowoisky, J., Kampf, C.J., Weber, B., Huffman, A., Pöhlker, C., Andreae, M.O., Lang-Yona, N., Gunthe, S.S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Despres, V.R., Pöschl, U.: Bioaerosols in the Earth System: Climate, Health, and Ecosystem Interactions. Atmospheric Research 182, 346-376, 2016. Prospero, J. M., Blades, E., Mathison, G., and Naidu, R.: Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust, Aerobiologia, 21, 1-19, 2005.

  12. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  13. Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide.

    PubMed

    Huang, Liubin; Zhao, Yue; Li, Huan; Chen, Zhongming

    2015-09-15

    Heterogeneous reaction of SO2 on mineral dust seems to be an important sink for SO2. However, kinetic data about this reaction on authentic mineral dust are scarce and are mainly limited to low relative humidity (RH) conditions. In addition, little is known about the role of hydrogen peroxide (H2O2) in this reaction. Here, we investigated the uptake kinetics of SO2 on three authentic mineral dusts (i.e., Asian mineral dust (AMD), Tengger desert dust (TDD), and Arizona test dust (ATD)) in the absence and presence of H2O2 at different RHs using a filter-based flow reactor, and applied a parameter (effectiveness factor) to the estimation of the effective surface area of particles for the calculation of the corrected uptake coefficient (γc). We found that with increasing RH, the γc decreases on AMD particles, but increases on ATD and TDD particles. This discrepancy is probably due to the different mineralogy compositions and aging extents of these dust samples. Furthermore, the presence of H2O2 can promote the uptake of SO2 on mineral dust at different RHs. The probable explanations are that H2O2 rapidly reacts with SO2 on mineral dust in the presence of adsorbed water, and OH radicals, which can be produced from the heterogeneous decomposition of H2O2 on the mineral dust, immediately react with adsorbed SO2 as well. Our results suggest that the removal of SO2 via the heterogeneous reaction on mineral dust is an important sink for SO2 and has the potential to alter the physicochemical properties (e.g., ice nucleation ability) of mineral dust particles in the atmosphere.

  14. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in the coarse fraction is 2.94 versus 1.88 on clear days, quite different from the value of 1.8 found in sea water. It is rather clear that dust events are enriched with Cl. Those findings are to be investigated. The computer controlled SEM-EDX observations of the coarse fraction of PM10 confirmed the results obtained by XRF. The majority of the African dust particles are made up of mixed minerals, mostly carbonates and alumino - silicates. The EDX analysis coupled to CCSEM showed that minerals are mixed often with sea salt particles. Although some of it may be artifact (a sea salt particle is pile up on a mineral particle), it is believed that the results present reality: sea salt particles were often found on the surfaces of the aggregate minerals. Pollen and spores of diameters were not identified. Those results may have implication on the atmospheric chemistry. High concentrations of sulfates were also observed in the coarse fraction of dust episodes, and were not correlated with sea salt particles. They could be part of the soil matrix and may also form by the reaction of sulfur oxides with the natural aerosols. These reactions may be affected by the high concentration of coarse mineral particles during the Saharan and Arabian episodes.

  15. Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Morfill, G. E.

    1984-01-01

    In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.

  16. 3-D Simulations of the Inner Dust Comae for Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Marschall, Raphael; Liao, Ying; Su, Cheng-Chin; Wu, Jong-Shinn; Thomas, Nicolas; Rubin, Martin; Lai, Ian Lin; Ip, Wing-Huen; Keller, Horst Uwe; Knollenberg, Jörg; Kührt, Ekkehard; Skorov, Yuri; Altwegg, Kathrin; Vincent, Jean-Baptiste; Gicquel, Adeline; Shi, Xian; Sierks, Holger; Naletto, Giampiero

    2015-04-01

    The aims of this study are to (1) model the gas flow-field in the innermost coma for a plausible activity distributions of ROSETTA's target comet 67P/Churyumov-Gerasimenko (67P) using the SHAP2 model, (2) compare this with the ROSINA/COPS gas density (3) investigate the acceleration of dust by gas drag and the resulting dust distribution, (4) produce artificial images of the dust coma brightness as seen from different viewing geometries for a range of heliocentric distances and (5) compare the artificial images quantitatively with observations by the OSIRIS imaging system. We calculate the dust distribution in the coma within the first ten kilometers of the nucleus by assuming the dust to be spherical test particles in the gas field without any back coupling. The motion of the dust is driven by the drag force resulting from the gas flow. We assume a quadratic drag force with a velocity and temperature-dependent drag coefficient. The gravitational force of a point nucleus on the dust is also taken into account which will e.g. determine the maximal liftable size of the dust. Surface cohesion is not included. 40 dust sizes in the range between 8 nm and 0.3 mm are considered. For every dust size the dust densities and velocities are calculated by tracking around one million simulation particles in the gas field. We assume the distribution of dust according to size follows a power law, specifically the number of particles n or a particular radius r is specified by n ~ r-β with usual values of 3 ≤ β ≤ 4 where β = 3 corresponds to the case of equal mass per size and β = 4 to a shift of the mass towards the small particles. For the comparison with images of the high resolution camera OSIRIS on board ESAs ROSETTA spacecraft the viewing geometry of the camera can be specified and a line of sight integration through the dust density is performed. By means of Mie scattering on the particles the dust brightness can be determined. A variety of dust size distributions, gas to dust mass ratios, wavelengths and optical properties can thus be studied and compared with the data.

  17. Monitoring non-thermal plasma processes for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  18. Evaluating a filtering and recirculating system to reduce dust drift in simulated sowing of dressed seed and abraded dust particle characteristics.

    PubMed

    Biocca, Marcello; Pochi, Daniele; Fanigliulo, Roberto; Gallo, Pietro; Pulcini, Patrizio; Marcovecchio, Francesca; Perrino, Cinzia

    2017-06-01

    The pneumatic precision drills used in maize sowing can release dust owing to abrasion of dressed seed; the drift of dust containing insecticide active ingredients is harmful to honey bees. Therefore, we developed a device for drills that uses partial recirculation and filtration of the air by means of an antipollen and an electrostatic filter. Tests were carried out by simulating the sowing of seed treated with imidacloprid, thiamethoxam, clothianidin and fipronil. Dust released by the drill in different configurations was analysed to assess its mass and active ingredient concentration, size distribution and particle number concentration. In general, particles with a diameter smaller than 2.5 and 10 µm represent about 40 and 75% of the total dust mass respectively. The finest size fraction (<1 µm) contains a higher content of active ingredient. The prototype equipped with both antipollen and electrostatic filters always showed a reduction in dust emission greater than 90% in terms of both total mass and active ingredient amount, with a greater efficiency in the reduction in particles below 4 µm. This study presents an engineering solution addressing dust losses during sowing, contributes to the description of abrasion dust fractions and provides suggestions for further development of the prototype. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Shape-induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas

    2013-01-01

    Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.

  20. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold

    NASA Technical Reports Server (NTRS)

    Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.

    2005-01-01

    Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.

  1. Comet Gas and Dust Dynamics Modeling

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul A.; Lee, Seungwon

    2010-01-01

    This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.

  2. Developing a new controllable lunar dust simulant: BHLD20

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Yi, Min; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2017-07-01

    Identifying and eliminating the negative effects of lunar dust are of great importance for future lunar exploration. Since the available lunar samples are limited, developing terrestrial lunar dust simulant becomes critical for the study of lunar dust problem. In this work, beyond the three existing lunar dust simulants: JSC-1Avf, NU-LHT-1D, and CLDS-i, we developed a new high-fidelity lunar dust simulant named as BHLD20. And we concluded a methodology that soil and dust simulants can be produced by variations in portions of the overall procedure, whereby the properties of the products can be controlled by adjusting the feedstock preparation and heating process. The key ingredients of our innovative preparation route include: (1) plagioclase, used as a major material in preparing all kinds of lunar dust simulants; (2) a muffle furnace, applied to expediently enrich the glass phase in feedstock, with the production of some composite particles; (3) a one-step sand-milling technique, employed for mass pulverization without wasting feedstock; and (4) a particle dispersant, utilized to prevent the agglomeration in lunar dust simulant and retain the real particle size. Research activities in the development of BHLD20 can help solve the lunar dust problem.

  3. The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Bertini, I.; Della Corte, V.; Güttler, C.; Ivanovski, S.; La Forgia, F.; Lasue, J.; Levasseur-Regourd, A. C.; Marzari, F.; Moreno, F.; Mottola, S.; Naletto, G.; Palumbo, P.; Rinaldi, G.; Rotundi, A.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Groussin, O.; Gutiérrez, P. J.; Hviid, H. S.; Ip, W. H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, M. L.; Lazzarin, M.; López-Moreno, J. J.; Shi, X.; Thomas, N.; Tubiana, C.

    2018-05-01

    The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 ± 8) {per cent} of hydrocarbons versus the (62 ± 8) {per cent} of sulphides and silicates.

  4. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  5. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  6. In situ observations of dust particles in Martian dust belts using a large-sensitive-area dust sensor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi

    2018-07-01

    In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.

  7. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  8. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  9. Immersion freezing of ambient dust using WISDOM setup

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Reicher, N.

    2017-12-01

    A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing. In addition, our results agree with the scaled freezing of K-feldspar obtained by Atkinson et al. (2013). The results provide further evidence that feldspar mineral dominates glaciation in mixed phase clouds. In the talk, we will describe the experiments, new results and their atmospheric significance

  10. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.

  11. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron size silica particles exposed to UV radiation in the 120-200 nm spectral region will be presented.

  12. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    NASA Astrophysics Data System (ADS)

    Wiacek, A.; Peter, T.; Lohmann, U.

    2010-09-01

    This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳-40 °C) theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice clouds" and the general influence of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (T≲-40 °C), our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at T≲-40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei) highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.

  13. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations aremore » carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperaturemore » and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.« less

  15. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  16. Pollination Services at Risk: Asian Dust Poses a Threat on Pollinators' Navigation

    NASA Astrophysics Data System (ADS)

    Cho, Y.

    2016-12-01

    Beijing was hit by a massive sandstorm, which is known as Asian dust or Yellow sand phenomenon in April 2015. The city was enveloped by sand, and the reported visibility was less than 1 km. People could neither work outside nor drive. But can bees forage for their food in this sandy air? The hypothesis in this proposed study is as follows: honey bee (Apis mellifera)'s foraging activity is impeded when Asian dust is severe since the particulate matters dusted on flowers prevent the bees from noticing the ultraviolet marking of the flowers. In an experimental study, flowers dusted with PM 10 showed no specific ultraviolet nectar guides as they do in clear weather. The transport of sand and dust by wind is a powerful erosional force, fills the atmosphere with suspended dust aerosols. The dust, in the atmospheric science, generally refers to solid inorganic particles that can be readily suspended by wind. Once the bees fail to forage as this study hypothesized, they will starve to death, then plant-pollinator interaction will be threatened. Failure of bees' activity can result in loss of pollination services which could significantly affect the maintenance of the ecosystem stability as a whole. Though this research specifically studies the Asian phenomenon, it should be understood in a global context since the dust is believed to be transported one full circuit around the globe.

  17. Laminar Dust Flames: A Program of Microgravity and Ground Based Studies at McGill

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Lee, John

    1999-01-01

    Fundamental knowledge of heterogeneous combustion mechanisms is required to improve utilization of solid fuels (e.g. coal), safe handling of combustible dusts in industry, and solid propulsion systems. The objective of the McGill University research program on dust combustion is to obtain a reliable set of data on basic combustion parameters for dust suspensions (i.e. laminar burning velocity, flame structure, quenching distance, flammability limits, etc.) over a range of particle sizes, dust concentrations, and types of fuel. This set of data then permits theoretical models to be validated and, when necessary, new models to be developed to describe the detailed reaction mechanisms and transport processes. Microgravity is essential to the generation of a uniform dust suspension of arbitrary particle size and concentration. When particles with a characteristic size on the order of tens of microns are suspended, they rapidly settle in a gravitational field. To maintain a particulate in suspension for time duration adequate to carry out combustion experiments invariably requires continuous convective flow in excess of the gravitational settling velocity (which is comparable with and can even exceed the dust laminar burning velocity). This makes the experiments turbulent in nature and thus renders it impossible to study laminar dust flames. Even for small particle sizes on the order of microns, a stable laminar dust flow can be maintained only for relatively low dust concentrations at normal gravity conditions. High dust loading leads to gravitational instability of the dust cloud and to the formation of recirculation cells in the dust suspension in a confined volume, or to the rapid sedimentation of the dense dust cloud, as a whole, in an unconfined volume. Many important solid fuels such as carbon and boron also have low laminar flame speeds (of the order of several centimeters per second). Convection that occurs in combustion products due to buoyancy disrupts the low speed dust flames and makes observation of such flames at normal gravity difficult.

  18. Evidence for a Dynamic Nanodust Cloud Enveloping the Moon

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Cook, A. M.; Colaprete, A.; Glenar, D. A.; Stubbs, T. J.; Shirley, M.

    2015-01-01

    The exospheres that surround airless bodies such as the Moon are tenuous, atmosphere-like layers whose constituent particles rarely collide with one another. Some particles contained within such exospheres are the product of direct interactions between airless bodies and the space environment, and offer insights into space weathering processes. NASAs Lunar Atmosphere and Dust Environment Explorer (LADEE) mission studied the Moons exospheric constituents in situ and detected a permanent dust exosphere1 of particles with radii as small as 300 nm. Here we present evidence from LADEE spectral data for an additional fluctuating nanodust exosphere at the Moon containing a population of particles sufficiently dense to be detectable via scattered sunlight. We compare two anti-Sun spectral observations: one near the peak of the Quadrantidmeteoroid stream, the other during a period of comparativelyweak stream activity. The former shows a negative spectralslope consistent with backscattering of sunlight by nanodustgrains with radii less than 20 to 30 nm; the latter has a flatterspectral slope. We hypothesize that a spatially and temporallyvariable nanodust exosphere may exist at the Moon, and thatit is modulated by changes in meteoroid impact rates, suchas during encounters with meteoroid streams. The findingssuggest that similar nanodust exospheresand the particle ejection and transport processes that form themmay occurat other airless bodies.

  19. [Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011].

    PubMed

    Li, Gui-Ling; Zhou, Min; Chen, Chang-Hong; Wang, Hong-Li; Wang, Qian; Lou, Sheng-Rong; Qiao, Li-ping; Tang, Xi-bin; Li, Li; Huang, Hai-ying; Chen, Ming-hua; Huang, Cheng; Zhang, Gang-Feng

    2014-05-01

    A continuous air quality observation was conducted in the urban area of Shanghai from April 28 to May 18 in 2011. The mass concentration of particle matters and main chemical compositions of fine particle were measured and analyzed. The mass concentrations of PM10 and PM2.5 during the dust episode were much higher than those in non-dust episode, with the maximum daily mass concentrations of PM10 and PM2.5 reaching 787.2 microg.gm-3 and 139.5 microgm(-3) , respectively. The average PM2.5 /PM10 ratio was (32.9 +/-14. 6)% (15. 6% -85.1% ). The total water soluble inorganic ions(TWSII ) contributed (27.2 +/- 19. 2)% (4. 8% -80. 8% ) of total PM2.5, and the secondary water soluble ions (SNA) , including SO(2-)4 , NO-(3) and NH(+)(4) , were (76.9 +/- 13.9)% (41.9%-94.2%) in TWSIl. The concentrations of TWSII and SNA in PM2.5 during dust days became lower than those in non-dust days while the trend of the ratio of Ca2+ to PM2.5, increased. The mean OC/EC value in non-dust days was higher than that in the heavy dust pollution episode, but lower than that in weak dust days. In addition, mineral-rich particle in dust period had an acid-buffer effect, making particle alkaline in dust days stronger. In non-dust days, SO(2-)(4) and NO(-)(3) mainly existed in the form of NH4HSO4, (NH4)SO4, and NH4NO3, and combined with other mineral ions during dust days.

  20. Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results

    NASA Astrophysics Data System (ADS)

    Pabari, J. P.; Bhalodi, P. J.

    2017-05-01

    Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.

  1. Particle emission from artificial cometary materials

    NASA Technical Reports Server (NTRS)

    Koelzer, Gabriele; Kochan, Hermann; Thiel, Klaus

    1992-01-01

    During KOSI (comet simulation) experiments, mineral-ice mixtures are observed in simulated space conditions. Emission of ice-/dust particles from the sample surface is observed by means of different devices. The particle trajectories are recorded with a video system. In the following analysis we extracted the parameters: particle count rate, spatial distribution of starting points on the sample surface, and elevation angle and particle velocity at distances up to 5 cm from the sample surface. Different kinds of detectors are mounted on a frame in front of the sample to register the emitted particles and to collect their dust residues. By means of these instruments the particle count rates, the particle sizes and the composition of the particles can be correlated. The results are related to the gas flux density and the temperature on the sample surface during the insolation period. The particle emission is interpreted in terms of phenomena on the sample surface, e.g., formation of a dust mantle.

  2. Fractal structure of low-temperature plasma of arc discharge as a consequence of the interaction of current sheets

    NASA Astrophysics Data System (ADS)

    Smolanov, N. A.

    2016-01-01

    The structure of the particles deposited from the plasma arc discharge were studied. The flow of plasma spreading from the cathode spot to the walls of the vacuum chamber. Electric and magnetic fields to influence the plasma flow. The fractal nature of the particles from the plasma identified by small-angle X-ray scattering. Possible cause of their formation is due to the instability of the growth front and nonequilibrium conditions for their production - a high speed transition of the vapor-liquid-solid or vapor - crystal. The hypothesis of a plasma arc containing dust particles current sheets was proposed.

  3. Comet Dust: The Diversity of Primitive Particles and Implications

    NASA Technical Reports Server (NTRS)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  4. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  5. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocalitymore » is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.« less

  6. Absorption and scattering properties of the Martian dust in the solar wavelengths.

    PubMed

    Ockert-Bell, M E; Bell JF 3rd; Pollack, J B; McKay, C P; Forget, F

    1997-04-25

    A new wavelength-dependent model of the single-scattering properties of the Martian dust is presented. The model encompasses the solar wavelengths (0.3 to 4.3 micrometers at 0.02 micrometer resolution) and does not assume a particular mineralogical composition of the particles. We use the particle size distribution, shape, and single-scattering properties at Viking Lander wavelengths presented by Pollack et al. [1995]. We expand the wavelength range of the aerosol model by assuming that the atmospheric dust complex index of refraction is the same as that of dust particles in the bright surface geologic units. The new wavelength-dependent model is compared to observations taken by the Viking Orbiter Infrared Thermal Mapper solar channel instrument during two dust storms. The model accurately matches afternoon observations and some morning observations. Some of the early morning observations are much brighter than the model results. The increased reflectance can be ascribed to the formation of a water ice shell around the dust particles, thus creating the water ice clouds which Colburn et al. [1989], among others, have predicted.

  7. Dust Concentrations and Composition During African Dust Incursions in the Caribbean Region

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Santos-Figueroa, G.; Morales-Garcia, F.

    2016-12-01

    The World Health Organization (WHO) indicates that exposure to PM10 concentrations higher than 50 µg/m³ 24-hour mean in both developed and developing countries could have an adverse impact on public health. Recent studies showed that in the Caribbean region the PM10 concentrations often exceed the WHO guidelines for PM10. These exceedances are largely driven by the presence of African Dust particles that reach the Caribbean region every year during the summer months. These dust particles also influence the Earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by affecting cloud formation and, thus, cloud albedo. In order to have a better understanding of the impacts of African Dust on public health and climate, we determine the concentration of dust particles, the carbonaceous fraction (total, elemental and organic carbon: TC, EC, and OC) and water-soluble ions (e.g., Na+, Cl-, Ca+2, NH4+, SO4-2) of aerosol samples in the presence and absence of African Dust. Samples were collected using a Hi-Vol and Stacked-Filter Units for the sampling of total suspended particles (TSP) at two stations in Puerto Rico: a marine site located at Cabezas de San Juan (CSJ) Nature Reserve, in Fajardo, and an urban site located at the University of Puerto Rico, in San Juan. The presence of African Dust was supported with Saharan Air Layer (SAL) imagery and with the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Preliminary results showed that the total mass concentration of aerosols obtained at the urban site is about two times that at the marine site for SFU samples during African Dust incursions. The average dust concentration obtained at CSJ for Hi Vol samples was 22 µg/m³ during the summer 2015. African Dust concentrations, TC, EC, OC, and ionic speciation results for the marine and urban sites will be presented at the conference.

  8. Geochemistry and health risk assessment of arsenic exposure to street dust in the zinc smelting district, Northeast China.

    PubMed

    Xu, Sujuan; Zheng, Na; Liu, Jingshuang; Wang, Yang; Chang, Shouzhi

    2013-02-01

    The aim of this study was to investigate arsenic (As) accumulation in street dust and health risk of population. The investigation concentrated on: a. pollution levels of As in street dust; b. spatial distribution of As in street dust; c. physicochemical properties analysis of street dust; and d. assessment of population health risk due to As exposure to street dust. As concentration in street dust ranged from 3.33 to 185.1 mg kg(-1), with a mean of 33.10 mg kg(-1), which was higher than the background value of Liaoning soil. As contamination level of the area closing to Huludao Zinc Plant (HZP) was highest. Spatial variation showed that the pollution center was close to HZP, formed radial distribution pattern and extended to the northeast and southwest of HZP. The pH and organic matter of street dust were both higher than the background values of soil in Liaoning. There was significantly negative correlation between As concentration and the pH. The mass percentages of particles 180-100, <100-75, <75-63, and <63 μm were 29.8, 3.7, 21.3, and 4.2 %, respectively. The highest of As concentration was found in the smallest particle size (<63 μm). As loadings in the particles of grain size 180-100 and <75-63 μm were higher than other particle fractions. Results of the risk assessment indicated that the highest risk was associated with the ingestion of street dust particles. Health risk for different use scenarios to human decreased in the order of HZP > Industrial district > School > Commercial center > Residential area. Around HZP, Hazard Index (HI) for children and cancer risk of As by street dust exposure exceeded the acceptable values. It indicated that there was a potential adverse effect on children health by As exposure to the street dust of Huludao.

  9. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; hide

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  10. How micron-sized dust particles determine the chemistry of our Universe

    PubMed Central

    Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221

  11. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  12. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  13. Dust grain resonant capture: A statistical study

    NASA Technical Reports Server (NTRS)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  14. Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth

    NASA Technical Reports Server (NTRS)

    McCracken, C. W.; Alexander, W. M.; Dubin, M.

    1961-01-01

    The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.

  15. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  16. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as wellmore » as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of fresh mineral dust which leads to the addition of more than ~3% soluble material is expected to significantly enhance hygroscopicity and CCN activity.« less

  17. Impact Produced and Mobilized Dust in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2001-12-01

    The objective of this work is to study possible mechanisms of new dust production and existing dust entrainment after impacts of meteoroids onto Mars and to assess the possible relationship to dust clouds. We use detailed numerical simulations based on the SOVA multi-dimensional multi-material hydrocode [1]. In the first run of simulations, partially described in [2], only the dust ejected from the crater was taken into account. In the process of ejection soil density decreases near the cavity boundary. At the moment when the density falls below some critical value the solid material is replaced by a set of discrete particles (dust, boulders) of equivalent mass [3]. The distribution of particles by sizes was taken according experimental data obtained in the course of large-scale TNT and nuclear explosions on the Earth's ground [4]. The radius of impactor was varied from 1 to 100 m. The lowest value corresponds to high strength meteoroids passing through the rarefied Martian atmosphere without substantial fragmentation and deceleration. The impact velocity was taken to be 11 and 20 km/s. In all the variants the mass of the dust ejected from the forming craters was about 10 M, where M is the impactor mass. It was suggested [5] that the dust may be mobilized even if the impactor does not reach the ground surface. To check this idea the code was modified to take into account blast produced impulsive winds blowing the preexisting dust from the surface by mechanism similarly to that of the stationary winds [6]. Turbulent viscosity and diffusion were taken into acount. Some portions of dust are deposited on the surface due to gravity. The particles striking the surface increase a flux of the suspended dust. The saltation thresholds were taken according [7-8]. For a 1 m radius stony asteroid releasing its energy (0.15 kt TNT) at an altitude of about 100 m above the surface after first two seconds the mass of the dust in the air was 3.5 M, and after 15 s it decreased to 2.8 M. For a disrupted meteoroid releasing 3/4 of its energy in a long cylindrical channel with the diameter of 17 m the dust is removed at a distance of 700 m from the impact point. At 20 s after the impact the lifted mass is about 0.1 M. In both cases the size of the columnar shaped dust cloud exceeded 1 km. The risen mass in the air is larger than that in a typical dust devil [8-9]. Addition mechanisms such as thermal layer effect due to radiation, explosion of the upper soil layer under decompression, interaction between the ballistic wave and the surface [5,10], interactions between the natural convective and impact generated plumes, impact induced and natural winds and others may produce vortices and increase the amount of mass in the impact produced clouds. The work was supported by NASA Grant NRA 98-OSS-08 JURISS. References:[1] Shuvalov V.V. 1999. Shock Waves 9(6), 391-390[2] Nemtchinov I.V., et al., 1999 5th Int. Conf. on Mars, abstract #6081[3] Teterev A.V. 1999. J. Impact Engn. 23, 921-927[4] Adushkin V.V. and Spivak A.A. 1992. Geomechanics of large scale explosions. Nedra, Moscow, 320 p (in Russian)[5] Rybakov V.A., et al., 1997. JGR 102(E4), 9211-9220.[6] Greeley R. and Iversen J.D. 1985. Wind as a geological process. Cambridge Univ. Press, New York, 330p.[7] Greeley r., et al., 1980. GRL, 7, 121-124[8] Greeley R, et al., 1992. Mars (Eds. Kieffer H.H. et al.) Univ. Arizona Press, Tucson and London, 770-788 [9] Thomas P. and Gierasch P. 1985. Science, 230, 175-177[10] Kosarev I.B. et al. 2000. Meteoritics and Planetary Sci., 3115, Supplement, A91-A92

  18. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markovmore » Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.« less

  19. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  20. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

Top