Science.gov

Sample records for dvd-video disc set

  1. Overview: DVD-video disc set of seafloor transects during USGS research cruises in the Pacific Ocean

    USGS Publications Warehouse

    Chezar, Henry; Newman, Ivy

    2006-01-01

    Many USGS research programs involve the gathering of underwater seafloor video footage. This footage was captured on a variety of media, including Beta III and VHS tapes. Much of this media is now deteriorating, prompting the migration of this video footage onto DVD-Video discs. Advantages of using DVD-Video discs are: less storage space, ease of transport, wider distribution, and non-degradational viewing of the media. The videos in this particular collection (328 of them) were made on the ocean floor under President Reagan's Exclusive Economic Zone proclamation of 1983. There are now five copies of these 328 discs in existence: at the USGS libraries in Menlo Park, Calif., Denver, Colo., and Reston, Va.; at the USGS Publications Warehouse (masters from which to make copies for customers); and Hank Chezar's USGS Western Coastal and Marine Geology team archives. The purpose of Open-File Report 2004-1101 is to provide users with a listing of the available DVD-Video discs (with their Open-File Report numbers) along with a brief description of their associated USGS research activities. Each disc was created by first encoding the source video and audio into MPEG-2 streams using the MediaPress Pro hardware encoder. A menu for the disc was then made using Adobe Photoshop 6.0. The disc was then authored using DVD Studio Pro and subsequently written onto a DVD-R recordable disc.

  2. Lights... camera... action! a guide for creating a DVD/video.

    PubMed

    Fleming, Susan E; Reynolds, Jerry; Wallace, Barb

    2009-01-01

    The DVD/video format offers an educational program that is convenient, consistent, and interactive for the viewer. Faculty members are essential and instrumental in creating storyboards from a script, which is an initial step in the production of DVD/videos. The authors discuss how faculty can participate in the process of developing an educational DVD/video program.

  3. NASA GES DISC Efforts for Preserving Nimbus Atmospheric and Meteorological Data Sets

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Esfandiari, A. E.; Zamkoff, E. B.; Gerasimov, I. V.; Al-Jazrawi, A. F.; Alcott, G. T.

    2014-12-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) has been active for the past several years in preserving data and documentation from the heritage Nimbus data sets. There were seven NASA Nimbus satellites launched from 1964 through 1978 providing some of the earliest measurements of atmospheric and meteorological data. In this presentation we describe the process, implementation and issues encountered while preserving these important heritage data sets for use by future researchers.The first data set that was recovered was the Nimbus-2 High-Resolution Infrared Radiometer (HRIR). These data were processed on archaic IBM 7094 computers, which used 36-bit encoded bytes, and were copied and stored on 7-track magnetic tapes at NASA's National Space Science Data Center (NSSDC). NSSDC transferred custody of these tapes to the Earth Science Data and Information System (ESDIS) Project who enlisted the GES DISC to recover the data. Since NASA no longer has machines for reading these old tapes, an outside contractor was used to retrieve the binary information. Digital images of the tapes were sent back to the GES DISC where we then extracted the data files and metadata. The old HRIR data were also processed and saved as images on 70 mm film strips which we had scanned as JPEG-2000 files. Old documentation describing the HRIR mission were located, and hardcopies were scanned and saved as PDF files.Since successfully preserving the Nimbus-2 HRIR, we have also completed the preservation of data from the rest of HRIR on Nimbus-1 and 3, as well as MRIR on Nimbus-2 and 3, THIR on Nimbus-4 through 7, and Nimbus-6 HIRS and SCAMS. Each of these data sets had its own unique file format and set of challenges. Up next we will recover data from the SIRS, SCR, ESMR, ITPR, NEMS, ERB, SAM2, SAMS, and SMMR missions. Nimbus data previously archived from an earlier NSSDC transfer to the GES DISC include TOMS, BUV and SBUV, LIMS and IRIS. In the future, we also have

  4. New and Improved GLDAS Data Sets and Data Services at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko; Teng, William; Vollmer, Bruce; Rodell, Matthew; Lei, Guang-Dih

    2012-01-01

    The goal of a Land Data Assimilation System (LDAS) is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast. With the motivation of creating more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory has generated more than 60 years (Jan. 1948-- Dec. 2008) of Global LDAS Version 2 (GLDAS-2) data, by using the Princeton Forcing Data Set and upgraded versions of Land Surface Models (LSMs). GLDAS data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL and LDAS.

  5. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.

    PubMed

    Akram, M Usman; Tariq, Anam; Khalid, Shehzad; Javed, M Younus; Abbas, Sarmad; Yasin, Ubaid Ullah

    2015-12-01

    Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient's vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.

  6. Application of Optical Disc Databases and Related Technology to Public Access Settings

    DTIC Science & Technology

    1992-03-01

    computer based CD-ROM instruction tool. CD-ROM Professional 3, no. 6: 12-15. Harter , Stephen P. and Susan M. Jackson. 1988. Optical disc systems in...incumbent upon the reference librarian to assist the patron in matching his/her research needs to the resources available ( Harter and Jackson 1988, 521...users rather than serving them." Harter and Jackson (1988, 521) assert that librarians should be aggressive in assisting users to identify the reference

  7. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  8. Redundant disc

    NASA Technical Reports Server (NTRS)

    Barack, W. N.; Domas, P. A.; Beekman, S. W. (Inventor)

    1978-01-01

    A rotatable disc is described that consists of parallel plates tightly joined together for rotation about a hub. Each plate is provided with several angularly projecting spaced lands. The lands of each plate are interposed in alternating relationship between the lands of the next adjacent plate. In this manner, circumferential displacement of adjacent sectors in any one plate is prevented in the event that a crack develops. Each plate is redundantly sized so that, in event of structural failure of one plate, the remaining plates support a proportionate share of the load of the failed plate. The plates are prevented from separating laterally through the inclusion of generally radially extending splines which are inserted to interlock cooperating, circumferentially adjacent lands.

  9. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  10. Stellar discs in Aquarius dark matter haloes

    NASA Astrophysics Data System (ADS)

    DeBuhr, Jackson; Ma, Chung-Pei; White, Simon D. M.

    2012-10-01

    We investigate the gravitational interactions between live stellar discs and their dark matter haloes, using Λ cold dark matter haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract and change from prolate to oblate as the disc grows to its full size. When the disc's normal is initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier amplitude of the disc surface density. The bars are not destroyed by the buckling but continue to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0, following a coherent reorientation of their inner haloes. Larger reorientations produce more strongly warped discs, suggesting a tight link between the two phenomena. The origins of bars and warps appear independent: some discs with strong bars show little disturbances at the outskirts, while the discs with the weakest bars show severe warps.

  11. Chemical separation of disc components using RAVE

    NASA Astrophysics Data System (ADS)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Matijevič, Gal; Binney, James; Wyse, Rosemary F. G.; Boeche, Corrado; Just, Andreas; Grebel, Eva K.; Siebert, Arnaud; Bienaymé, Olivier; Gibson, Brad K.; Zwitter, Tomaž; Bland-Hawthorn, Joss; Navarro, Julio F.; Parker, Quentin A.; Reid, Warren; Seabroke, George; Watson, Fred

    2016-10-01

    We present evidence from the RAdial Velocity Experiment (RAVE) survey of chemically separated, kinematically distinct disc components in the solar neighbourhood. We apply probabilistic chemical selection criteria to separate our sample into α-low (`thin disc') and α-high (`thick disc') sequences. Using newly derived distances, which will be utilized in the upcoming RAVE DR5, we explore the kinematic trends as a function of metallicity for each of the disc components. For our α-low disc, we find a negative trend in the mean rotational velocity (Vφ) as a function of iron abundance ([Fe/H]). We measure a positive gradient ∂Vφ/∂[Fe/H] for the α-high disc, consistent with results from high-resolution surveys. We also find differences between the α-low and α-high discs in all three components of velocity dispersion. We discuss the implications of an α-low, metal-rich population originating from the inner Galaxy, where the orbits of these stars have been significantly altered by radial mixing mechanisms in order to bring them into the solar neighbourhood. The probabilistic separation we propose can be extended to other data sets for which the accuracy in [α/Fe] is not sufficient to disentangle the chemical disc components a priori. For such data sets which will also have significant overlap with Gaia DR1, we can therefore make full use of the improved parallax and proper motion data as it becomes available to investigate kinematic trends in these chemical disc components.

  12. Modeling and optimization of an elastic arthroplastic disc for a degenerated disc

    NASA Astrophysics Data System (ADS)

    Ghouchani, Azadeh; Ravari, Mohammad; Mahmoudi, Farid

    2011-10-01

    A three-dimensional finite element model (FEM) of the L3-L4 motion segment using ABAQUS v 6.9 has been developed. The model took into account the material nonlinearities and is imposed different loading conditions. In this study, we validated the model by comparison of its predictions with several sets of experimental data. Disc deformation under compression and segmental rotational motions under moment loads for the normal disc model agreed well with the corresponding in vivo studies. By linking ABAQUS with MATLAB 2010.a, we determined the optimal Young s modulus as well as the Poisson's ratio for the artificial disc under different physiologic loading conditions. The results of the present study confirmed that a well-designed elastic arthroplastic disc preferably has an annulus modulus of 19.1 MPa and 1.24 MPa for nucleus section and Poisson ratio of 0.41 and 0.47 respectively. Elastic artificial disc with such properties can then achieve the goal of restoring the disc height and mechanical function of intact disc under different loading conditions and so can reduce low back pain which is mostly caused due to disc degeneration.

  13. Area Minimizing Discs in Metric Spaces

    NASA Astrophysics Data System (ADS)

    Lytchak, Alexander; Wenger, Stefan

    2017-03-01

    We solve the classical problem of Plateau in the setting of proper metric spaces. Precisely, we prove that among all disc-type surfaces with prescribed Jordan boundary in a proper metric space there exists an area minimizing disc which moreover has a quasi-conformal parametrization. If the space supports a local quadratic isoperimetric inequality for curves we prove that such a solution is locally Hölder continuous in the interior and continuous up to the boundary. Our results generalize corresponding results of Douglas Radò and Morrey from the setting of Euclidean space and Riemannian manifolds to that of proper metric spaces.

  14. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  15. Bryan total disc arthroplasty: a replacement disc for cervical disc disease

    PubMed Central

    Wenger, Markus; Markwalder, Thomas-Marc

    2010-01-01

    Total disc arthroplasty is a new option in the treatment of cervical degenerative disc disease. Several types of cervical disc prostheses currently challenge the gold-standard discectomy and fusion procedures. This review describes the Bryan Cervical Disc System and presents the Bryan prosthesis, its indications, surgical technique, complications, and outcomes, as given in the literature. PMID:22915917

  16. The origin of thick discs

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien

    2015-03-01

    Thick discs are defined to be disc-like components with a scale height larger than that of the classical discs. They are ubiquitous (Yoachim & Dalcanton 2006; Comerón et al. 2011a), they are made of mostly old and metal-poor stars and are most easily detected in close to edge-on galaxies. Their origin has been considered mysterious and several formation theories have been proposed: • The thick disc being formed secularly by thin disc stars heated by disc overdensities such as giant molecular clouds or spiral arms (Villumsen 1985, ApJ, 290, 75) and by stars moved outwards from their original orbits by radial migration mechanisms (Schönrich & Binney 2009). • The thick disc being formed by the heating of the thin disc by satellites (Quinn et al. 1993) and the tidal stripping of them (Abadi et al. 2003). • The thick disc being formed fast and already thick at high redshift in an highly unstable disc. Inside that thick disc, a thin disc would form afterwards as suggested by Elemgreen & Elmegreen (2006). • The thick disc being formed originally thick at high redshift by the merger of gas-rich protogalactic fragments and a thin disc forming afterwards within it (Brook et al. 2007). The first mechanism is a secular evolution mechanism. The time-scale of the second one is dependent on the merger history of the main galaxy. In the two last mechanisms, the thick disc forms already thick in a short time-scale at high redshift. Recent Milky Way studies, (see, e.g., Bovy et al. 2012), have shown indications that there is no discontinuity between the thin and the thick disc chemical and kinematic properties. Instead, those studies indicate the presence of a monotonic distribution of disc thicknesses. This would suggest a secular origin for the Milky Way thick disc. Studies in external galaxies (Yoachim & Dalcanton 2006; Comerón et al. 2011b), have shown that low-mass disc galaxies have thick disc relative masses much larger than those found in large-mass galaxies

  17. On the Development of a Digital Video Motion Detection Test Set

    SciTech Connect

    Pritchard, Daniel A.; Vigil, Jose T.

    1999-06-07

    This paper describes the current effort to develop a standardized data set, or suite of digital video sequences, that can be used for test and evaluation of digital video motion detectors (VMDS) for exterior applications. We have drawn from an extensive video database of typical application scenarios to assemble a comprehensive data set. These data, some existing for many years on analog videotape, have been converted to a reproducible digital format and edited to generate test sequences several minutes long for many scenarios. Sequences include non- alarm video, intrusions and nuisance alarm sources, taken with a variety of imaging sensors including monochrome CCD cameras and infrared (thermal) imaging cameras, under a variety of daytime and nighttime conditions. The paper presents an analysis of the variables and estimates the complexity of a thorough data set. Some of this video data test has been digitized for CD-ROM storage and playback. We are considering developing a DVD disk for possible use in screening and testing VMDs prior to government testing and deployment. In addition, this digital video data may be used by VMD developers for fhrther refinement or customization of their product to meet specific requirements. These application scenarios may also be used to define the testing parameters for futore procurement qualification. A personal computer may be used to play back either the CD-ROM or the DVD video data. A consumer electronics-style DVD player may be used to replay the DVD disk. This paper also discusses various aspects of digital video storage including formats, resolution, CD-ROM and DVD storage capacity, formats, editing and playback.

  18. The Galactic stellar disc

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Bensby, T.

    2008-12-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Also based on observations collected at the Nordic Optical Telescope on La Palma, Spain, and at the European Southern Observatories on La Silla and Paranal, Chile, Proposals no. 65.L-0019(B), 67.B-0108(B), 69.B-0277.

  19. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  20. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  1. Hybrid cervical disc arthroplasty.

    PubMed

    Tu, Tsung-Hsi; Wu, Jau-Ching; Cheng, Henrich; Mummaneni, Praveen V

    2017-01-01

    For patients with multilevel cervical stenosis at nonadjacent segments, one of the traditional approaches has included a multilevel fusion of the abnormal segments as well as the intervening normal segment. In this video we demonstrate an alternative treatment plan with tailored use of a combination of anterior cervical discectomy and fusion (ACDF) and cervical disc arthroplasty (CDA) with an intervening skipped level. The authors present the case of a 72-year-old woman with myeloradiculopathy and a large disc herniation with facet joint degeneration at C3-4 and bulging disc at C5-6. After nonoperative treatment failed, she underwent a single-level ACDF at C3-4 and single-level arthroplasty at C5-6, which successfully relieved her symptoms. No intervention was performed at the normal intervening C4-5 segment. By using ACDF combined with arthroplasty, the authors have avoided a 3-level fusion for this patient and maintained the range of motion of 2 disc levels. The video can be found here: https://youtu.be/OrxcPUBvqLk .

  2. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  3. Cometary ices in forming protoplanetary disc midplanes

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria N.; Walsh, Catherine; van Dishoeck, Ewine F.; Furuya, Kenji; Marboeuf, Ulysse; Thiabaud, Amaury; Harsono, Daniel; Visser, Ruud

    2016-10-01

    Low-mass protostars are the extrasolar analogues of the natal Solar system. Sophisticated physicochemical models are used to simulate the formation of two protoplanetary discs from the initial prestellar phase, one dominated by viscous spreading and the other by pure infall. The results show that the volatile prestellar fingerprint is modified by the chemistry en route into the disc. This holds relatively independent of initial abundances and chemical parameters: physical conditions are more important. The amount of CO2 increases via the grain-surface reaction of OH with CO, which is enhanced by photodissociation of H2O ice. Complex organic molecules are produced during transport through the envelope at the expense of CH3OH ice. Their abundances can be comparable to that of methanol ice (few per cent of water ice) at large disc radii (R > 30 au). Current Class II disc models may be underestimating the complex organic content. Planet population synthesis models may underestimate the amount of CO2 and overestimate CH3OH ices in planetesimals by disregarding chemical processing between the cloud and disc phases. The overall C/O and C/N ratios differ between the gas and solid phases. The two ice ratios show little variation beyond the inner 10 au and both are nearly solar in the case of pure infall, but both are subsolar when viscous spreading dominates. Chemistry in the protostellar envelope en route to the protoplanetary disc sets the initial volatile and prebiotically significant content of icy planetesimals and cometary bodies. Comets are thus potentially reflecting the provenances of the midplane ices in the solar nebula.

  4. LUMBAR DISC HERNIATION

    PubMed Central

    Vialle, Luis Roberto; Vialle, Emiliano Neves; Suárez Henao, Juan Esteban; Giraldo, Gustavo

    2015-01-01

    Lumbar disc herniation is the most common diagnosis among the degenerative abnormalities of the lumbar spine (affecting 2 to 3% of the population), and is the principal cause of spinal surgery among the adult population. The typical clinical picture includes initial lumbalgia, followed by progressive sciatica. The natural history of disc herniation is one of rapid resolution of the symptoms (four to six weeks). The initial treatment should be conservative, managed through medication and physiotherapy, sometimes associated with percutaneous nerve root block. Surgical treatment is indicated if pain control is unsuccessful, if there is a motor deficit greater than grade 3, if there is radicular pain associated with foraminal stenosis, or if cauda equina syndrome is present. The latter represents a medical emergency. A refined surgical technique, with removal of the extruded fragment and preservation of the ligamentum flavum, resolves the sciatic symptoms and reduces the risk of recurrence over the long term. PMID:27019834

  5. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  6. Mechanotransduction in intervertebral discs

    PubMed Central

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-01-01

    Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. PMID:25267492

  7. Structure of radiation-dominated gravitoturbulent quasar discs

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen; Khajenabi, Fazeleh; Dib, Sami

    2017-02-01

    Self-gravitating accretion discs in a gravitoturbulent state, including radiation and gas pressures, are studied using a set of new analytical solutions. While the Toomre parameter of the disc remains close to its critical value for the onset of gravitational instability, the dimensionless stress parameter is uniquely determined from the thermal energy reservoir of the disc and its cooling rate. Our solutions are applicable to the accretion discs with dynamically important radiation pressure such as that in the quasars discs. We show that physical quantities of a gravitoturbulent disc in the presence of radiation are significantly modified compared to solutions with only gas pressure. We show that the dimensionless stress parameter is an increasing function of the radial distance so that its steepness strongly depends on the accretion rate. In a disc without radiation its slope is 4.5; however, we show that in the presence of radiation, it varies between 2 and 4.5 depending on the accretion rate and the central mass. As for the surface density, we find a shallower profile with an exponent -2 in a disc with sub-Eddington accretion rate compared to a similar disc, but without radiation, where its surface density slope is -3 independent of the accretion rate. We then investigate gravitational stability of the disc when the stress parameter reaches to its critical value. In order to self-consistently determine the fragmentation boundary, however, it is shown that the critical value of the stress parameter is a power-law function of the ratio of gas pressure and the total pressure and its exponent is around 1.7. We also estimate the maximum mass of the central black hole using our analytical solutions.

  8. Total disc replacement.

    PubMed

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine.

  9. Mechanics of Actuated Disc Cutting

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Sevda; Detournay, Emmanuel

    2017-02-01

    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  10. Polarimetric microlensing of circumstellar discs

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  11. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  12. Heat distribution in disc brake

    NASA Astrophysics Data System (ADS)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  13. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  14. Preparation of ormetoprim sulfadimethoxine medicated discs for disc diffusion assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Romet (a blend of ormetoprim and sulfadimethoxine) is a typeA medicated article for the manufacture of medicated feed in the catfish industry. Recently, the commercial manufacture of ormetoprim–sulfadimethoxine susceptibility discs was discontinued. Ormetoprim–sulfadimethoxine discs were prepared at...

  15. Sizes of protoplanetary discs after star-disc encounters

    NASA Astrophysics Data System (ADS)

    Breslau, Andreas; Steinhausen, Manuel; Vincke, Kirsten; Pfalzner, Susanne

    2014-05-01

    Most stars do not form in isolation, but as part of a star cluster or association. These young stars are initially surrounded by protoplanetary discs. In these cluster environments tidal interactions with other cluster members can alter the disc properties. Besides the disc frequency, its mass, angular momentum, and energy, the disc's size is particularly prone to being changed by a passing star. So far the change in disc size has only been investigated for a small number of very specific encounters. Several studies investigated the effect of the cluster environment on the sizes of planetary systems like our own solar system, based on a generalisation of information from this limited sample. We performed numerical simulations covering the wide parameter space typical of young star clusters, to test the validity of this approach. Here the sizes of discs after encounters are presented, based on a size definition that is comparable to the one used in observational studies. We find that, except for encounters between equal-mass stars, the usually applied estimates are insufficient. They tend to severely overestimate the remaining disc size. We show that the disc size after an encounter can be described by a relatively simple dependence on the periastron distance and the mass ratio of the encounter partners. This knowledge allows us, for example, to pin down the types of encounter possibly responsible for the structure of today's solar system. Appendix A is available in electronic form at http://www.aanda.org

  16. Fu Ori outbursts and the planet-disc mass exchange

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei; Lodato, Giuseppe

    2012-10-01

    It has been recently proposed that giant protoplanets migrating inwards through the disc more rapidly than they contract could be tidally disrupted when they fill their Roche lobes ˜0.1 au away from their parent protostars. Here we consider the process of mass and angular momentum exchange between the tidally disrupted planet and the surrounding disc in detail. We find that the planet's adiabatic mass-radius relation and its ability to open a deep gap in the disc determine whether the disruption proceeds as a sudden runaway or a balanced quasi-static process. In the latter case, the planet feeds the inner disc through its Lagrangian L1 point like a secondary star in a stellar binary system. As the planet loses mass, it gains specific angular momentum and normally migrates in the outward direction until the gap closes. Numerical experiments show that planet disruption outbursts are preceded by long 'quiescent' periods during which the disc inward of the planet is empty. The hole in the disc is created when the planet opens a deep gap, letting the inner disc to drain on to the star while keeping the outer one stalled behind the planet. We find that the mass-losing planet embedded in a realistic protoplanetary disc spawns an extremely rich set of variability patterns. In a subset of parameter space, there is a limit cycle behaviour caused by non-linear interaction between the planet mass-loss and the disc hydrogen ionization instability. We suggest that tidal disruptions of young massive planets near their stars may be responsible for the observed variability of young accreting protostars such as FU Ori, EXor and T Tauri stars in general.

  17. A truly Newtonian softening length for disc simulations

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Trova, A.

    2015-02-01

    The softened point mass model is commonly used in simulations of gaseous discs including self-gravity while the value of associated length λ remains, to some degree, controversial. This `parameter' is however fully constrained when, in a discretized disc, all fluid cells are demanded to obey Newton's law. We examine the topology of solutions in this context, focusing on cylindrical cells more or less vertically elongated. We find that not only the nominal length depends critically on the cell's shape (curvature, radial extension, height), but it is either a real or an imaginary number. Setting λ as a fraction of the local disc thickness - as usually done - is indeed not the optimal choice. We then propose a novel prescription valid irrespective of the disc properties and grid spacings. The benefit, which amounts to 2-3 more digits typically, is illustrated in a few concrete cases. A detailed mathematical analysis is in progress.

  18. Imaginal disc regeneration takes flight.

    PubMed

    Hariharan, Iswar K; Serras, Florenci

    2017-04-01

    Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.

  19. Intraoral micro-identification discs.

    PubMed

    Hansen, R W

    1991-12-01

    Intraoral micro-identification discs have recently been utilized to provide a more permanent method of personal identification. A wafer of plastic or metal with a surface area of 2.5 to 5 mm2 and carrying identifying numbers and/or letters (indicia) is bonded to the buccal enamel surface of the posterior teeth. Personal identification can occur after the I.D. disc is identified and the indicia is read. Reading of photoreduced indicia requires the aid of a microscope subsequent to the removal of the microdisc. In situ reading of disc indicia is possible using low power handheld magnifiers if the size of the indicia approximates 0.3 mm. Computerization is an integral part of non-custom alpha/numeric type designs, but a custom disc carries a name, address, and other specific information unique to the manufacturer. The use of a computer improves access to the database and it decreases the amount of data placed on the disc. Microdisc bases may be fabricated using a mylar type plastic or they may be manufactured from a stainless steel blank. Plastic discs are constructed with an internal sandwich containing the photo-reduced indicia. Metal discs are marked with a photochemical etch or engraved with a computer driven YAG laser. Attachment of the disc to the enamel surface is accomplished by conventional etching and bonding techniques and are typically bonded to the buccal surface of the maxillary first permanent molar or the second primary molar. Clear composite bonding material covers the disc so that salivary contamination does not result in degradation of the indicia. Orthodontic style discs with a mesh back carry laser written information that may be cemented with conventional orthodontic bonding cement. Standardization of the indicia and overall design is considered to be an important aspect of patient and professional acceptance.

  20. Cervical Total Disc Arthroplasty

    PubMed Central

    Basho, Rahul; Hood, Kenneth A.

    2012-01-01

    Symptomatic adjacent segment degeneration of the cervical spine remains problematic for patients and surgeons alike. Despite advances in surgical techniques and instrumentation, the solution remains elusive. Spurred by the success of total joint arthroplasty in hips and knees, surgeons and industry have turned to motion preservation devices in the cervical spine. By preserving motion at the diseased level, the hope is that adjacent segment degeneration can be prevented. Multiple cervical disc arthroplasty devices have come onto the market and completed Food and Drug Administration Investigational Device Exemption trials. Though some of the early results demonstrate equivalency of arthroplasty to fusion, compelling evidence of benefits in terms of symptomatic adjacent segment degeneration are lacking. In addition, non-industry-sponsored studies indicate that these devices are equivalent to fusion in terms of adjacent segment degeneration. Longer-term studies will eventually provide the definitive answer. PMID:24353955

  1. Double-disc gate valve

    DOEpatents

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  2. Reactive thin film flows over spinning discs

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2015-11-01

    We consider the dynamics of a thin film flowing over a spinning disc in the presence of a chemical reaction, and associated heat and mass transfer. We use a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film to derive a set of coupled one-dimensional evolution equations for the film thickness, radial and azimuthal flow rates, concentration of the reagents and products, and temperature. These highly nonlinear partial differential equations are solved numerically to reveal the formation of large-amplitude waves that travel from the disc inlet to its periphery. The influence of these waves on the concentration and temperature profiles is analysed for a wide range of system parameters: the Damkohler and Schmidt numbers, the thermal Peclet numbers, and the dimensionless disc radius (a surrogate for the Eckman number). It is shown that these waves lead to significant enhancement of the rates of heat and mass transfer associated with the reactive flow; these are measured by tracking the temporal evolution of local and spatially-averaged Nusselt and Sherwood numbers, respectively. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  3. Medical Information on Optical Disc*

    PubMed Central

    Schipma, Peter B.; Cichocki, Edward M.; Ziemer, Susan M.

    1987-01-01

    Optical discs may permit a revolutionary change in the distribution and use of medical information. A single compact disc, similar in size to that used for digital audio recording, can contain over 500 million characters of information that is accessible by a Personal Computer. These discs can be manufactured at a cost lower than that of print on paper, at reasonable volumes. Software can provide the health care professional with nearly instantaneous access to the information. Thus, for the first time, the opportunity exists to have large local medical information collections. This paper describes an application of this technology in the field of Oncology.

  4. Mitral disc-valve variance

    PubMed Central

    Berroya, Renato B.; Escano, Fernando B.

    1972-01-01

    This report deals with a rare complication of disc-valve prosthesis in the mitral area. A significant disc poppet and struts destruction of mitral Beall valve prostheses occurred 20 and 17 months after implantation. The resulting valve incompetence in the first case contributed to the death of the patient. The durability of Teflon prosthetic valves appears to be in question and this type of valve probably will be unacceptable if there is an increasing number of disc-valve variance in the future. Images PMID:5017573

  5. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    NASA Astrophysics Data System (ADS)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  6. Design Issues in Video Disc Map Display.

    DTIC Science & Technology

    1984-10-01

    Tables: disc storage capacities under various conditions. Photos: map frames. Constanzo , D.J. (1984a), "The Potential for Video Disc Technology in...discs. Constanzo , D.J. (1984b), "Requirements and Specifications for Cartographic Video Discs", presented as a poster paper at the 1984 Army Science

  7. Enlivening Physics, a Local Video Disc Project.

    ERIC Educational Resources Information Center

    McInerney, M.

    1989-01-01

    Describes how to make and use an inexpensive video disc of physics demonstrations. Discusses the background, production of the disc, subject of the disc including angular momentum, "monkey and the hunter" experiment, Doppler shift, pressure of a constant volume of gas thermometer, and wave effects, and using the disc in classroom. (YP)

  8. Disc Golf: Teaching a Lifetime Activity

    ERIC Educational Resources Information Center

    Eastham, Susan L.

    2015-01-01

    Disc golf is a lifetime activity that can be enjoyed by students of varying skill levels and abilities. Disc golf follows the principles of ball golf but is generally easier for students to play and enjoy success. The object of disc golf is similar to ball golf and involves throwing a disc from the teeing area to the target in as few throws as…

  9. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  10. Are They Listening Better? Supporting EFL College Students' DVD Video Comprehension with Advance Organizers in a Multimedia English Course

    ERIC Educational Resources Information Center

    Li, Chen-Hong

    2012-01-01

    As technology continues to evolve, authentic multimedia-based teaching materials are widely used in the English as a Foreign Language (EFL) classrooms. However, they may lie beyond most language learners' proficiency level. The purpose of this study was to investigate the use of advance organizers in conjunction with the cognitive theory of…

  11. Eclipse Mapping of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, R.

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc throughout its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  12. Tissue engineering: A live disc

    NASA Astrophysics Data System (ADS)

    Hukins, David W. L.

    2005-12-01

    A material-cell hybrid device that mimics the anatomic shape of the intervertebral disc has been made and successfully implanted into mice to show that tissue engineering may, in the future, benefit sufferers from back pain.

  13. Disc Golf, a Growing Sport

    PubMed Central

    Nelson, Joseph T.; Jones, Richard E.; Runstrom, Michael; Hardy, Jolene

    2015-01-01

    Background Disc golf is a sport played much like traditional golf, but rather than using a ball and club, players throw flying discs with various throwing motions. It has been played by an estimated 8 to 12 million people in the United States. Like all sports, injuries sustained while playing disc golf are not uncommon. Although formalized in the 1970s, it has grown at a rapid pace; however, disc golf–related injuries have yet to be described in the medical literature. Purpose To describe the most common injuries incurred by disc golf players while comparing the different types of throwing styles. Study Design Descriptive epidemiology study. Methods The data in this study were collected from 883 disc golf players who responded to an online survey collected over a 1-month period. Respondents answered 49 questions related to demographics, experience, style of play, and injury details. Using a chi-square analysis, common injuries sustained in players using backhand and forehand throwing styles were compared. Results More than 81% of respondents stated that they had sustained an injury playing disc golf, including injuries to the elbow (n = 325), shoulder (n = 305), back (n = 218), and knee (n = 199). The injuries were most commonly described as a muscle strain (n = 241), sprain (n = 162), and tendinitis (n = 145). The type of throw primarily used by players varied, with 86.2% using backhand, 12.7% using forehand, and 1.1% using an overhead throw. Players using a forehand throw were more likely to sustain an elbow injury (P = .014). Many players (n = 115) stated they had undergone surgery due to a disc golf–related injury, with the most common surgeries including meniscal, shoulder, spine, and foot/ankle surgeries. Conclusion The majority of surveyed disc golfers sustained at least 1 injury while playing disc golf, with many requiring surgery. The types of injuries sustained by players varied by the types of throw primarily used. As the sport of disc golf continues

  14. Percutaneous diode laser disc nucleoplasty

    NASA Astrophysics Data System (ADS)

    Menchetti, P. P.; Longo, Leonardo

    2004-09-01

    The treatment of herniated disc disease (HNP) over the years involved different miniinvasive surgical options. The classical microsurgical approach has been substituted over the years both by endoscopic approach in which is possible to practice via endoscopy a laser thermo-discoplasty, both by percutaneous laser disc nucleoplasty. In the last ten years, the percutaneous laser disc nucleoplasty have been done worldwide in more than 40000 cases of HNP. Because water is the major component of the intervertebral disc, and in HNP pain is caused by the disc protrusion pressing against the nerve root, a 980 nm Diode laser introduced via a 22G needle under X-ray guidance and local anesthesia, vaporizes a small amount of nucleous polposus with a disc shrinkage and a relief of pressure on nerve root. Most patients get off the table pain free and are back to work in 5 to 7 days. Material and method: to date, 130 patients (155 cases) suffering for relevant symptoms therapy-resistant 6 months on average before consulting our department, have been treated. Eightyfour (72%) males and 46 (28%) females had a percutaneous laser disc nucleoplasty. The average age of patients operated was 48 years (22 - 69). The level of disc removal was L3/L4 in 12 cases, L4/L5 in 87 cases and L5/S1 in 56 cases. Two different levels were treated at the same time in 25 patients. Results: the success rate at a minimum follow-up of 6 months was 88% with a complication rate of 0.5%.

  15. AIRS Mission Support from GES DISC

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Hearty, Thomas; Savtchenko, Audrey; Ding, Feng; Esfandiari, Ed; Theobald, Mike; Vollmer, Bruce; Kempler, Steve

    2015-01-01

    This talk will describe the support and distribution of AIRS (Atmospheric Infra Red Sounding) data products that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. Along with data stewardship, an important mission of GES DISC is to enhance the usability of data and broaden the user base. We will provide a brief summary of the current online archive and distribution metrics for the AIRS v5 and v6 products. We will also describe collaborative data sets and services (e.g., visualization and potential science applications) and solicit feedback for potential future services.

  16. Evolution of protoplanetary discs with magnetically driven disc winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan

    2016-12-01

    Aims: We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating. Methods: We considered an initially massive disc with 0.1 M⊙ to track the evolution from the early stage of PPDs. We solved the time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of the vertical magnetic flux in weakly ionized PPDs. Results: Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the radial dependence of the surface density can be positive in the inner region <1-10 au. The mass accretion rates are consistent with observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid bodies, and it also slows down or even reversed the inward type-I migration of protoplanets. Conclusions: The variety of our calculated PPDs should yield a wide variety of exoplanet systems.

  17. Efficiency of thin magnetically arrested discs around black holes

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2016-10-01

    The radiative and jet efficiencies of thin magnetized accretion discs around black holes (BHs) are affected by BH spin and the presence of a magnetic field that, when strong, could lead to large deviations from Novikov-Thorne (NT) thin disc theory. To seek the maximum deviations, we perform general relativistic magnetohydrodynamic simulations of radiatively efficient thin (half-height H to radius R of H/R ≈ 0.10) discs around moderately rotating BHs with a/M = 0.5. First, our simulations, each evolved for more than 70 000 rg/c (gravitational radius rg and speed of light c), show that large-scale magnetic field readily accretes inward even through our thin disc and builds-up to the magnetically arrested disc (MAD) state. Secondly, our simulations of thin MADs show the disc achieves a radiative efficiency of ηr ≈ 15 per cent (after estimating photon capture), which is about twice the NT value of ηr ˜ 8 per cent for a/M = 0.5 and gives the same luminosity as an NT disc with a/M ≈ 0.9. Compared to prior simulations with ≲10 per cent deviations, our result of an ≈80 per cent deviation sets a new benchmark. Building on prior work, we are now able to complete an important scaling law which suggests that observed jet quenching in the high-soft state in BH X-ray binaries is consistent with an ever-present MAD state with a weak yet sustained jet.

  18. A self-similar solution for thermal disc winds

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Alexander, R. D.

    2016-08-01

    We derive a self-similar description for the 2D streamline topology and flow structure of an axisymmetric, thermally driven wind originating from a disc in which the density is a power-law function of radius. Our scale-free solution is strictly only valid in the absence of gravity or centrifugal support; comparison with 2D hydrodynamic simulations of winds from Keplerian discs however demonstrates that the scale-free solution is a good approximation also in the outer regions of such discs, and can provide a reasonable description even for launch radii well within the gravitational radius of the flow. Although other authors have considered the flow properties along streamlines whose geometry has been specified in advance, this is the first isothermal calculation in which the flow geometry and variation of flow variables along streamlines is determined self-consistently. It is found that the flow trajectory is very sensitive to the power-law index of radial density variation in the disc: the steeper the density gradient, the stronger is the curvature of streamlines close to the flow base that is required in order to maintain momentum balance perpendicular to the flow. Steeper disc density profiles are also associated with more rapid acceleration, and a faster fall-off of density, with height above the disc plane. The derivation of a set of simple governing equations for the flow structure of thermal winds from the outer regions of power-law discs offers the possibility of deriving flow observables without having to resort to hydrodynamical simulation.

  19. Automated localization of the optic disc and the fovea.

    PubMed

    Niemeijer, M; Abramoff, M D; van Ginneken, B

    2008-01-01

    The detection of the position of the normal anatomy in color fundus photographs is an important step in the automated analysis of retinal images. An automatic system for the detection of the position of the optic disc and the fovea is presented. The method integrates the use of local vessel geometry and image intensity features to find the correct positions in the image. A kNN regressor is used to accomplish the integration. Evaluation was performed on a set of 250 digital color fundus photographs and the detection performance for the optic disc and the fovea were 99.2% and 96.4% respectively.

  20. OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients

    PubMed Central

    Kikawa, Tsutomu; Takagi, Airi; Matsumoto, Akiko; Yokoyama, Yu; Shiga, Yukihiro; Maruyama, Kazuichi; Takahashi, Hidetoshi; Akiba, Masahiro; Nakazawa, Toru

    2016-01-01

    Purpose To objectively classify the optic discs of open-angle glaucoma (OAG) patients into Nicolela's four disc types, i.e., focal ischemic (FI), myopic (MY), senile sclerotic (SS), and generalized enlargement (GE), with swept-source optical coherence tomography (SS-OCT). Methods This study enrolled 113 eyes of 113 OAG patients (mean age: 62.5 ± 12.6; Humphrey field analyzer-measured mean deviation: -9.4 ± 7.3 dB). Newly developed software was used to quantify a total of 20 optic disc parameters in SS-OCT (DRI OCT-1, TOPCON) images of the optic disc. The most suitable reference plane (RP) above the plane of Bruch’s membrane opening was determined by comparing, at various RP heights, the SS-OCT-measured rim parameters and spectral-domain OCT-measured circumpapillary retinal nerve fiber layer thickness (cpRNFLT), with Pearson's correlation analysis. To obtain a discriminant formula for disc type classification, a training group of 72 eyes of 72 OAG patients and a validation group of 60 eyes of 60 OAG patients were set up. Results Correlation with cpRNFLT differed with disc type and RP height, but overall, a height of 120 μm minimized the influence of disc type. Six parameters were most significant for disc type discrimination: disc angle (horizontal), average cup depth, cup/disc ratio, rim-decentering ratio, average rim/disc ratio (upper and lower nasal). Classifying the validation group with these parameters returned an identification rate of 80.0% and a Cohen’s Kappa of 0.73. Conclusion Our new, objective SS-OCT-based method enabled us to classify glaucomatous optic discs with high reproducibility and accuracy. PMID:27557112

  1. Gravitoturbulence in magnetized protostellar discs

    NASA Astrophysics Data System (ADS)

    Riols, A.; Latter, H.

    2016-08-01

    Gravitational instability (GI) features in several aspects of protostellar disc evolution, most notably in angular momentum transport, fragmentation, and the outbursts exemplified by FU Ori and EX Lupi systems. The outer regions of protostellar discs may also be coupled to magnetic fields, which could then modify the development of GI. To understand the basic elements of their interaction, we perform local 2D ideal and resistive magnetohydrodynamics simulations with an imposed toroidal field. In the regime of moderate plasma beta, we find that the system supports a hot gravitoturbulent state, characterized by considerable magnetic energy and stress and a surprisingly large Toomre parameter Q ≳ 10. This result has potential implications for disc structure, vertical thickness, ionization, etc. Our simulations also reveal the existence of long-lived and dense `magnetic islands' or plasmoids. Lastly, we find that the presence of a magnetic field has little impact on the fragmentation criterion of the disc. Though our focus is on protostellar discs, some of our results may be relevant for the outer radii of AGN.

  2. Atomic gas in debris discs

    NASA Astrophysics Data System (ADS)

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.

    2017-04-01

    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  3. Coevolution of binaries and circumbinary gaseous discs

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Quinn, Thomas R.

    2017-01-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc which drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for 104 binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentric binaries which strongly couple to the disc develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance which corresponds to an alignment of gas particle longitude of periastrons. All systems display binary semimajor axis decay due to dissipation from the viscous disc.

  4. Photoevaporating transitional discs and molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Li, Min; Sui, Ning

    2017-04-01

    We investigate the evolution of photoevaporating protoplanetary discs including mass influx from molecular cloud cores. We examine the influence of cloud core properties on the formation and evolution of transitional discs. We use one-dimensional thin disc assumption and calculate the evolution of the protoplanetary disc. The effects of X-ray photoevaporation are also included. Our calculations suggest that most discs should experience the transitional disc phase within 10 Myr. The formation time of a gap and its initial location are functions of the properties of the cloud cores. In some circumstances, discs can open two gaps by photoevaporation alone. The two gaps form when the gas in the disc can expand to large radius and if the mass at large radius is sufficiently small. The surface density profile of the disc determines whether the two gaps can form. Since the structure of a disc is determined by the properties of a molecular cloud core, the core properties determine the formation of two gaps in the disc. We further find that even when the photoevaporation rate is reduced to 10 per cent of the standard value, two gaps can still form in the disc. The only difference is that the formation time is delayed.

  5. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  6. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; White, Simon D. M.

    2017-01-01

    We introduce a suite of thirty cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code AREPO, together with a comprehensive model for galaxy formation physics, including AGN feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two component disc dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scale lengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion onto the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.

  7. Peripheral Disc Margin Shape and Internal Disc Derangement: Imaging Correlation in Significantly Painful Discs Identified at Provocation Lumbar Discography

    PubMed Central

    Bartynski, W.S.; Rothfus, W.E.

    2012-01-01

    Summary Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain. PMID:22681741

  8. [Optic disc granuloma secondary to sarcoidosis].

    PubMed

    Qu-Knafo, L; Auregan-Giocanti, A

    2017-02-01

    We report a case of optic disc granuloma due to sarcoidosis. A 64-year-old, caucasian female with a history of pulmonary sarcoidosis presented with a vision loss on her left eye. The ophthalmologic examination revealed a discrete optic disc infiltrate compatible with the diagnosis of optic disc granuloma. Fluorescein angiography showed diffusion and impregnation of the granuloma without vascularitis. The optical coherence tomography demonstrated a homogenous and isoreflective lesion at the optic disc. The patient recovered her visual acuity after systemic corticosteroid treatment. Isolated optic disc granuloma is a rare condition of ocular sarcoidosis.

  9. The chemical compositions of Galactic disc F and G dwarfs

    NASA Astrophysics Data System (ADS)

    Reddy, Bacham E.; Tomkin, Jocelyn; Lambert, David L.; Allende Prieto, Carlos

    2003-03-01

    Photospheric abundances are presented for 27 elements from carbon to europium in 181 F and G dwarfs from a differential local thermodynamic equilibrium (LTE) analysis of high-resolution and high signal-to-noise ratio spectra. Stellar effective temperatures (Teff) were adopted from an infrared flux method calibration of Strömgren photometry. Stellar surface gravities (g) were calculated from Hipparcos parallaxes and stellar evolutionary tracks. Adopted Teff and g values are in good agreement with spectroscopic estimates. Stellar ages were determined from evolutionary tracks. Stellar space motions (U, V, W) and a Galactic potential were used to estimate Galactic orbital parameters. These show that the vast majority of the stars belong to the Galactic thin disc. Relative abundances expressed as [X/Fe] generally confirm previously published results. We give results for C, N, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu. The α elements - O, Mg, Si, Ca and Ti - show [α/Fe] to increase slightly with decreasing [Fe/H]. Heavy elements with dominant contributions at solar metallicity from the s-process show [s/Fe] to decrease slightly with decreasing [Fe/H]. Scatter in [X/Fe] at a fixed [Fe/H] is entirely attributable to the small measurement errors, after excluding the few thick disc stars and the s-process-enriched CH subgiants. Tight limits are set on `cosmic' scatter. If a weak trend with [Fe/H] is taken into account, the composition of a thin disc star expressed as [X/Fe] is independent of the star's age and birthplace for elements contributed in different proportions by massive stars (Type II supernovae), exploding white dwarfs (Type Ia supernovae) and asymptotic red giant branch stars. By combining our sample with various published studies, comparisons between thin and thick disc stars are made. In this composite sample, thick disc stars are primarily identified by their VLSR in the range -40 to -100 km s-1. These are

  10. Sacral Perineural Cyst Accompanying Disc Herniation

    PubMed Central

    Ju, Chang Il; Shin, Ho; Kim, Hyeun Sung

    2009-01-01

    Although most of sacral perineural cysts are asymptomatic, some may produce symptoms. Specific radicular pain may be due to distortion, compression, or stretching of nerve root by a space occupying cyst. We report a rare case of S1 radiculopathy caused by sacral perineural cyst accompanying disc herniation. The patient underwent a microscopic discectomy at L5-S1 level. However, the patient's symptoms did not improved. The hypesthesia persisted, as did the right leg pain. Cyst-subarachnoid shunt was set to decompress nerve root and to equalize the cerebrospinal fluid pressure between the cephalad thecal sac and cyst. Immediately after surgery, the patient had no leg pain. After 6 months, the patient still remained free of leg pain. PMID:19352483

  11. Lack of association between lumbar disc degeneration and osteophyte formation in elderly japanese women with back pain.

    PubMed

    Oishi, Y; Shimizu, K; Katoh, T; Nakao, H; Yamaura, M; Furuko, T; Narusawa, K; Nakamura, T

    2003-04-01

    Our study was designed to assess the contributions of the physical and constitutional factors to osteophyte formation, disc degeneration, and bone mineral density (BMD) in lumbar vertebrae of elderly postmenopausal women. A total of 126 Japanese women with back pain, aged over 60 years, were invited to participate in the study. Then 80 subjects with a full set of data for physical examinations, radiographs, MRI, and DXA were examined. TaqI polymorphism of vitamin D receptor (VDR) gene was examined in 60 subjects. Prevalence rates of osteophytes (on radiographs) and disc degeneration (on MRI) were 61 and 68%, respectively. Body weight and BMI correlated significantly with anteroposterior (AP) and lateral (LAT) BMD (r = 0.354 for weight, r = 0.347 for BMI) and mean osteophyte area (r = 0.557 for weight, r = 0.486 for BMI), and body weight also correlated with number of discs with osteophytes. However, these did not correlate with the disc area or the number of degenerated discs. Stepwise regression analysis revealed that body weight and LAT-BMD values independently related to the osteophyte area. Disc area (r = 0.386 for AP view) and osteophyte area (r = 0.384 for AP view) significantly correlated with BMD. However, disc area and osteophyte area did not correlate with each other (r = 0.056). The proportion of degenerated discs was higher in the lower lumbar discs, but not the proportion of discs with osteophytes. Frequencies of T and t alleles of VDR did not correlate with disc degeneration, osteophyte formation, or osteoporosis. Our data showed that increases in osteophyte formation and BMD in the lumbar vertebrae are influenced by body weight and BMI, but did not correlate with disc area, which correlated inversely with BMD. Disc degeneration and osteophyte formation seem to represent two different factors that affect lumbar spine in elderly women.

  12. Black hole mergers: can gas discs solve the `final parsec' problem?

    NASA Astrophysics Data System (ADS)

    Lodato, G.; Nayakshin, S.; King, A. R.; Pringle, J. E.

    2009-09-01

    We compute the effect of an orbiting gas disc in promoting the coalescence of a central supermassive black hole binary. Unlike earlier studies, we consider a finite mass of gas with explicit time dependence: we do not assume that the gas necessarily adopts a steady state or a spatially constant accretion rate, i.e. that the merging black hole was somehow inserted into a pre-existing accretion disc. We consider the tidal torque of the binary on the disc, and the binary's gravitational radiation. We study the effects of star formation in the gas disc in a simple energy feedback framework. The disc spectrum differs in detail from that found before. In particular, tidal torques from the secondary black hole heat the edges of the gap, creating bright rims around the secondary. These rims do not in practice have uniform brightness either in azimuth or time, but can on average account for as much as 50 per cent of the integrated light from the disc. This may lead to detectable high-photon-energy variability on the relatively long orbital time-scale of the secondary black hole, and thus offer a prospective signature of a coalescing black hole binary. We also find that the disc can drive the binary to merger on a reasonable time-scale only if its mass is at least comparable with that of the secondary black hole, and if the initial binary separation is relatively small, i.e. a0 <~ 0.05 pc. Star formation complicates the merger further by removing mass from the disc. In the feedback model we consider, this sets an effective limit to the disc mass. As a result, binary merging is unlikely unless the black hole mass ratio is <~0.001. Gas discs thus appear not to be an effective solution to the `last parsec' problem for a significant class of mergers.

  13. Reliable Magnetic Resonance Imaging Based Grading System for Cervical Intervertebral Disc Degeneration

    PubMed Central

    Chen, Antonia F.; Kang, James D.; Lee, Joon Y.

    2016-01-01

    Study Design Observational. Purpose To develop a simple and comprehensive grading system for cervical discs that precisely, consistently and meaningfully presents radiologic and morphologic data. Overview of Literature The Thompson grading system is commonly used to classify the severity of degenerative lumbar discs on magnetic resonance imaging (MRI). Inherent differences in the morphological and physiological characteristics of cervical discs have hindered development of precise classification systems. Other grading systems have been developed for degenerating cervical discs, but their versatility and feasibility in the clinical setting is suboptimal. Methods MRIs of 46 human cervical discs were de-identified and displayed in PowerPoint format. Each slide depicted a single disc with a normal (grade 0) disc displayed in the top right corner for reference. The presentation was given to 25 physicians comprising attending spine surgeons, spine fellows, orthopaedic residents, and two attending musculoskeletal radiologists. The grading system included Grade 0 (normal height compared to C2–3, mid cleft still visible), grade 1 (dark disc, normal height), grade 2 (collapsed disc, few osteophytes), and grade 3 (collapsed disc, many osteophytes). The ease of use of the system was gauged in the participants and the interobserver reliability was calculated. Results The intraclass correlation coefficient for interobserver reliability was 0.87, and 0.94 for intraobserver reliability, indicating excellent reliability. Ninety-five percent and 85 percent of the clinicians judged the grading system to be clinically feasible and useful in daily practice, respectively. Conclusions The grading system is easy to use, has excellent reliability, and can be used for precise and consistent clinician communication. PMID:26949461

  14. Proto-planetary disc evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni Pietro

    2015-05-01

    Planets form from gas and dust discs in orbit around young stars. The timescale for planet formation is constrained by the lifetime of these discs. The properties of the formed planetary systems depend thus on the evolution and final dispersal of the discs, which is the main topic of this thesis. Observations reveal the existence of a class of discs called "transitional", which lack dust in their inner regions. They are thought to be the last stage before the complete disc dispersal, and hence they may provide the key to understanding the mechanisms behind disc evolution. X-ray photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the final dispersal of discs. However up to now, these two phenomena have been studied separately, neglecting any possible feedback or interaction. In this thesis we have investigated what is the interplay between these two processes. We show that the presence of a giant planet in a photo-evaporating disc can significantly shorten its lifetime, by cutting the inner regions from the mass reservoir in the exterior of the disc. This mechanism produces transition discs that for a given mass accretion rate have larger holes than in models considering only X-ray photo-evaporation, constituting a possible route to the formation of accreting transition discs with large holes. These discs are found in observations and still constitute a puzzle for the theory. Inclusion of the phenomenon called "thermal sweeping", a violent instability that can destroy a whole disc in as little as 10 4 years, shows that the outer disc left can be very short-lived (depending on the X-ray luminosity of the star), possibly explaining why very few non accreting transition discs are observed. However the mechanism does not seem to be efficient enough to reconcile with observations. In this thesis we also show that X-ray photo-evaporation naturally explains the observed correlation between stellar masses and accretion

  15. [Polish nomenclature of lumbar disc disease].

    PubMed

    Radło, Paweł; Smetkowski, Andrzej; Tesiorowski, Maciej

    2014-01-01

    Lumbar disc herniation is one of the most common damage of musculoskeletal system. The incidence of pain of lumbosacral spine is estimated approximately on 60-90% in general population, whereas the incidence of disc herniation in patients experiencing low back pain is about 91%. Despite the high incidence and uncomplicated pathogenesis of disc disease there is a problem with the nomenclature. In the vast majority of cases, the naming confusion stems from ignorance of the etiology of low back pain. Different terminologies: morphological, topographical, Radiological and Clinical are used interchangeably. In addition, diagnosis is presented in a variety of languages: Polish, English and Latin. Moreover, the medical and traditional language are used alternately. The authors found in Polish literature more, than 20 terms to describe lumbar disc herniation. All of these terms in the meaning of the authors are used to determine one pathology--mechanical damage to the intervertebral disc and moving the disc material beyond the anatomical area.

  16. Close-packing of growing discs

    SciTech Connect

    Bursill, L.A.; Xudong, F. . School of Physics)

    1988-12-01

    Spiral lattices are derived by allowing growing discs to aggregate under a close-packing rule. Both Fibonacci and Lucas numbers of visible spirals arise naturally, dependent only on the choice of growth centre. Both the rate of convergence towards an ideal spiral, and chirality, are determined by the initial placement of the first few discs (initial conditions). Thus the appearance of spiral packings is no more or less mysterious than the appearance of hexagonal packed arrays of equal discs.

  17. Fast migration of low-mass planets in radiative discs

    NASA Astrophysics Data System (ADS)

    Pierens, A.

    2015-12-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an underdense trapped region appears near the planet, with an entropy excess compared to the ambient disc. If the viscosity and thermal diffusivity are small enough so that the entropy excess is conserved during migration, the planet then experiences strong corotation torques arising from the material flowing across the planet orbit. During fast migration, we observe that a protoplanet can pass through the zero-torque line predicted by static torques. We also find that fast migration may help in disrupting the mean-motion resonances that are formed by convergent migration of embryos.

  18. Outcomes following cervical disc arthroplasty: a retrospective review.

    PubMed

    Cody, John P; Kang, Daniel G; Tracey, Robert W; Wagner, Scott C; Rosner, Michael K; Lehman, Ronald A

    2014-11-01

    Cervical disc arthroplasty has emerged as a viable technique for the treatment of cervical radiculopathy and myelopathy, with the proposed benefit of maintenance of segmental range of motion. There are relatively few, non-industry sponsored studies examining the outcomes and complications of cervical disc arthroplasty. Therefore, we set out to perform a single center evaluation of the outcomes and complications of cervical disc arthroplasty. We performed a retrospective review of all patients from a single military tertiary medical center undergoing cervical disc arthroplasty from August 2008 to August 2012. The clinical outcomes and complications associated with the procedure were evaluated. A total of 219 consecutive patients were included in the review, with an average follow-up of 11.2 (±11.0)months. Relief of pre-operative symptoms was noted in 88.7% of patients, and 92.2% of patients were able to return to full pre-operative activity. There was a low rate of complications related to the anterior cervical approach (3.2% with recurrent laryngeal nerve injury, 8.9% with dysphagia), with no device/implant related complications. Symptomatic cervical radiculopathy is a common problem in both the civilian and active duty military populations and can cause significant disability leading to loss of work and decreased operational readiness. There exist several surgical treatment options for appropriately indicated patients. Based on our findings, cervical disc arthroplasty is a safe and effective treatment for symptomatic cervical radiculopathy and myelopathy, with a low incidence of complications and high rate of symptom relief.

  19. Accretion Discs Show Their True Colours

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Quasars are the brilliant cores of remote galaxies, at the hearts of which lie supermassive black holes that can generate enough power to outshine the Sun a trillion times. These mighty power sources are fuelled by interstellar gas, thought to be sucked into the hole from a surrounding 'accretion disc'. A paper in this week's issue of the journal Nature, partly based on observations collected with ESO's Very Large Telescope, verifies a long-standing prediction about the intensely luminous radiation emitted by these accretion discs. Uncovering the disc ESO PR Photo 21/08 Uncovering the inner disc "Astronomers were puzzled by the fact that the best models of these discs couldn't quite be reconciled with some of the observations, in particular, with the fact that these discs did not appear as blue as they should be," explains lead-author Makoto Kishimoto. Such a discrepancy could be the signal that there was something very wrong with the models. With his colleagues, he investigated this discrepancy by studying the polarised light from six quasars. This enabled them to demonstrate that the disc spectrum is as blue as predicted. "The crucial observational difficulty here has been that the disc is surrounded by a much larger torus containing hot dust, whose light partly outshines that of the disc," says Kishimoto. "Because the light coming from the disc is scattered in the disc vicinity and thus polarised, by observing only polarised light from the quasars, one can uncover the buried light from the disc." In a similar way that a fisherman would wear polarised sunglasses to help get rid of the glare from the water surface and allow him to see more clearly under the water, the filter on the telescope allowed the astronomers to see beyond surrounding clouds of dust and gas to the blue colour of the disc in infrared light. The observations were done with the FORS and ISAAC instruments on one of the 8.2-m Unit Telescopes of ESO's Very Large Telescope, located in the Atacama

  20. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-07-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age-velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  1. Circumplanetary discs around young giant planets: a comparison between core-accretion and disc instability

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Mayer, L.; Quinn, T.

    2017-01-01

    Circumplanetary discs can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary discs for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disc mass and temperature between the two formation mechanisms. We found that the circumplanetary discs' mass linearly scales with the circumstellar disc mass. Therefore, in an equally massive protoplanetary disc, the circumplanetary discs formed in the disc instability model can be only a factor of 8 more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disc temperature differs by more than an order of magnitude between the two cases. The subdiscs around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core-accretion circumplanetary discs are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary discs. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disc instability; hence, our result provides a convenient criterion for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.

  2. Total Disc Replacement in Lumbar Degenerative Disc Diseases

    PubMed Central

    2015-01-01

    More than 10 years have passed since lumbar total disc replacement (LTDR) was introduced for the first time to the world market for the surgical management of lumbar degenerative disc disease (DDD). It seems like the right time to sum up the relevant results in order to understand where LTDR stands on now, and is heading forward to. The pathogenesis of DDD has been currently settled, but diagnosis and managements are still controversial. Fusion is recognized as golden standard of surgical managements but has various kinds of shortcomings. Lately, LTDR has been expected to replace fusion surgery. A great deal of LTDR reports has come out. Among them, more than 5-year follow-up prospective randomized controlled studies including USA IDE trials were expected to elucidate whether for LTDR to have therapeutic benefit compared to fusion. The results of these studies revealed that LTDR was not inferior to fusion. Most of clinical studies dealing with LTDR revealed that there was no strong evidence for preventive effect of LTDR against symptomatic degenerative changes of adjacent segment disease. LTDR does not have shortcomings associated with fusion. However, it has a potentiality of the new complications to occur, which surgeons have never experienced in fusion surgeries. Consequently, longer follow-up should be necessary as yet to confirm the maintenance of improved surgical outcome and to observe any very late complications. LTDR still may get a chance to establish itself as a substitute of fusion both nominally and virtually if it eases the concerns listed above. PMID:26713139

  3. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  4. The circumstellar disc in the Bok globule CB 26. Multi-wavelength observations and modelling of the dust disc and envelope

    NASA Astrophysics Data System (ADS)

    Sauter, J.; Wolf, S.; Launhardt, R.; Padgett, D. L.; Stapelfeldt, K. R.; Pinte, C.; Duchêne, G.; Ménard, F.; McCabe, C.-E.; Pontoppidan, K.; Dunham, M.; Bourke, T. L.; Chen, J.-H.

    2009-10-01

    Context: Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. Aims: We present a detailed model of the edge-on circumstellar disc and its envelope in the Bok globule CB 26. Methods: The model is based on HST near-infrared maps in the I, J, H, and K bands, OVRO and SMA radio maps at 1.1 mm, 1.3 mm and 2.7 mm, and the spectral energy distribution (SED) from 0.9 {μ m} to 3 mm. New photometric and spectroscopic data from the Spitzer Space Telescope and the Caltech Submilimeter Observatory are also part of our analysis. Using the self-consistent radiative transfer code MC3D, the model we construct is able to discriminate between parameter sets and dust properties of both envelope and disc. Results: We find that the data are fit by a disc that has an inner hole with a radius of 45±5 AU. Based on a dust model including silicate and graphite, the maximum grain size needed to reproduce the spectral millimetre index is 2.5 {μ m}. Features seen in the near-infrared images, dominated by scattered light, can be described as a result of a rotating envelope. Conclusions: Successful employment of ISM dust in both the disc and envelope hint that grain growth may not yet play a significant role for the appearance of this system. A large inner hole implies that CB 26 is a circumbinary disc.

  5. [Standardized terminology for disc disease].

    PubMed

    Sánchez Pérez, M; Gil Sierra, A; Sánchez Martín, A; Gallego Gómez, P; Pereira Boo, D

    2012-01-01

    This article reviews the terminology used to describe morphological alterations in the intervertebral discs. Radiologists must be able to communicate information about the type, location, and severity of these alterations to medical and surgical clinicians. It is crucial to use simple, standard, and unified terminology to ensure comprehension not only among radiologists but also with professionals from the different specialties for whom the radiology reports are written (fundamentally traumatologists and neurosurgeons). This terminology will help ensure a more accurate diagnosis and better patient management.

  6. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy

    PubMed Central

    Ruzicka, Filip; Schmitz, Jonathan E.; James, Garth A.; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S.; Alamin, Todd F.; Anand, Neel; Baird, John C.; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K.; Fisher, Steve; Garfin, Steven R.; Gogia, Jaspaul S.; Gokaslan, Ziya L.; Kuo, Calvin C.; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A. Nick; Stewart, Philip S.; Stonemetz, Jerry L.; Wang, Jeffrey C.; Witham, Timothy F.; Coscia, Michael F.; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2017-01-01

    Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it

  7. Use NASA GES DISC Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  8. From Disc Wind Models to Observations of TTauri Microjets

    NASA Astrophysics Data System (ADS)

    Ferreira, Jonathan; Casse, Fabien; Garcia, Paulo; Darren, O'brien; Sylvie, Cabrit; Catherine, Dougados; Pesenti, Nicolas; Luc, Binette

    Two decades after their discovery jets from accreting young stars still represent a major challenge for theorists. Several theoretical scenarii have been proposed but only models involving large scale magnetic fields have proved capable of producing self-collimated jets. However the launching region remains unknown: is it the star the surrounding accretion disc or their interaction zone? Progresses in high angular resolution offer now the opportunity to test the various proposed models. I will first review the results on magnetized disc winds based on the only MHD model describing self-consistently these accretion-ejection structures. Then I will show how the thermal and ionization states of the outflowing matter can be consistently computed once the dominant heating source has been chosen (ambipolar diffusion alfven wave damping or some local mechanical heating). A set of observational predictions (emission maps line fluxes/ratios and line profiles) for selected optical forbidden lines can then be calculated. As an illustration I will compare these predictions with new sub-arcsecond spectroimaging observations of the DG Tau and RW Aur jets and discuss the constraints they set on disc winds in TTauri stars.

  9. Optic disc and cup segmentation from color fundus photograph using graph cut with priors.

    PubMed

    Zheng, Yuanjie; Stambolian, Dwight; O'Brien, Joan; Gee, James C

    2013-01-01

    For automatic segmentation of optic disc and cup from color fundus photograph, we describe a fairly general energy function that can naturally fit into a global optimization framework with graph cut. Distinguished from most previous work, our energy function includes priors on the shape & location of disc & cup, the rim thickness and the geometric interaction of "disc contains cup". These priors together with the effective optimization of graph cut enable our algorithm to generate reliable and robust solutions. Our approach is able to outperform several state-of-the-art segmentation methods, as shown by a set of experimental comparisons with manual delineations and a series of results of correlations with the assessments of a merchant-provided software from Optical Coherence Tomography (OCT) regarding several cup and disc parameters.

  10. Intervertebral disc replacement. Experimental study.

    PubMed

    Kostuik, J P

    1997-04-01

    Arthrodesis of the lumbosacral spine, although satisfactory for a majority of patients, has long term sequelae in 30% of patients. This is particularly true for adjacent segment degeneration. Numerous attempts at providing a mobile motion segment have been made in the past. The current status of the development of dynamic intervertebral prosthesis, including biomechanical and clinical data have been presented. The relevant material properties of plastics, ceramics, and metal are presented with the conclusion that metals currently present with the greatest longevity without undue fatigue and wear as many as 100,000,000 cycles (40 years use) as an alternative to spinal fusion. An analysis of the kinematics of the motion segment have resulted, together with the material properties in the development of a dynamic intervertebral disc for use in the lumbar spine. The disc resembles a normal motion segment. In motion stiffness and center of rotation, wear debris development in 1/300 equivalent to that of a total hip prosthesis for the same given time. Safety features include immediate screw fixation to prevent displacement, a wedge elastic (spring) shape, and a bony porous ingrowth surface. The prosthesis is constructed of cobalt chromium and titanium with minimal corrosive properties on long term testing.

  11. Spiral Waves in Accretion Discs - Theory

    NASA Astrophysics Data System (ADS)

    Boffin, H. M. J.

    Spirals shocks have been widely studied in the context of galactic dynamics and protostellar discs. They may however also play an important role in some classes of close binary stars, and more particularly in cataclysmic variables. In this paper, we review the physics of spirals waves in accretion discs, present the results of numerical simulations and consider whether theory can be reconcilied with observations.

  12. Circular plate capacitor with different discs

    NASA Astrophysics Data System (ADS)

    Paffuti, Giampiero; Cataldo, Enrico; Di Lieto, Alberto; Maccarrone, Francesco

    2016-10-01

    In this paper, we write a system of integral equations for a capacitor composed of two discs of different radii, generalizing Love's equation for equal discs. We compute the complete asymptotic form of the capacitance matrix for both large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  13. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  14. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  15. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  16. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  17. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.61 Rupture disc. If a rupture...

  18. The inner cavity of the circumnuclear disc

    NASA Astrophysics Data System (ADS)

    Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.

    2016-06-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.

  19. Rapid radiative clearing of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Clarke, Cathie J.; Owen, James E.

    2016-04-01

    The lack of observed transition discs with inner gas holes of radii greater than ˜50 au implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called `thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scalelengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. This less efficient clearing of discs by X-ray driven thermal sweeping leaves open the issue of what mechanism (e.g. far-ultraviolet heating) can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.

  20. About detection of precessing circumpulsar discs

    NASA Astrophysics Data System (ADS)

    Grimani, Catia

    2016-08-01

    Detections of circumpulsar discs and planetary systems through electromagnetic observations appear quite rare. In the case of PSR 1931+24 and B0656+14, the hypothesis of a precessing disc penetrating the pulsar light cylinder is found consistent with radio and gamma observations from these stars. Disc self-occultation and precession may affect electromagnetic measurements. We investigate here under which conditions gravitational waves generated by circumpulsar disc precession may be detected by the proposed second-generation space interferometers DECI-hertz Interferometer Gravitational Wave Observatory and Big Bang Observer. The characteristics of circumpulsar detectable precessing discs are estimated as a function of distance from the Solar system. Speculations on detection rates are presented.

  1. Lumbar Epidural Varix Mimicking Disc Herniation

    PubMed Central

    Bursalı, Adem; Guvenal, Ahmet Burak; Yaman, Onur

    2016-01-01

    Lumbar radiculopathy is generally caused by such well-recognized entity as lumbar disc herniation in neurosurgical practice; however rare pathologies such as thrombosed epidural varix may mimic them by causing radicular symptoms. In this case report, we present a 26-year-old man with the complaint of back and right leg pain who was operated for right L4–5 disc herniation. The lesion interpreted as an extruded disc herniation preoperatively was found to be a thrombosed epidural varix compressing the nerve root preoperatively. The nerve root was decompressed by shrinking the lesion with bipolar thermocoagulation and excision. The patient's complaints disappeared in the postoperative period. Thrombosed lumbar epidural varices may mimic lumbar disc herniations both radiologically and clinically. Therefore, must be kept in mind in the differential diagnosis of lumbar disc herniations. Microsurgical techniques are mandatory for the treatment of these pathologies and decompression with thermocoagulation and excision is an efficient method. PMID:27446525

  2. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  3. Roentgenographic measurement of lumbar intervertebral disc height.

    PubMed

    Andersson, G B; Schultz, A; Nathan, A; Irstam, L

    1981-01-01

    The influences of differences in both intervertebral motion segment orientations and in reader judgments on measurements of the apparent intervertebral disc heights in lateral roentgenographs of the lumbar spine were examined. Forty-nine roentgenographs were obtained of nine discs that were titled laterally up to +/- 10 degrees, and rotated longitudinally up to +/- 20 degrees. Three orthopaedic surgeons and three radiologists measured disc heights from five of these roentgenographs, all using the same measurement method. The differences in apparent height that resulted from the orientation changes and differences in judgments among the six readers were considerable, usually of the order of one half of the nominal disc height. The results show that, while roentgenographic measurements can be used to estimate disc height, accurate measurements cannot readily be made from routine roentgenographs, and the interpretation should always be cautious.

  4. The role of thermodynamics in disc fragmentation

    NASA Astrophysics Data System (ADS)

    Stamatellos, Dimitris; Whitworth, Anthony P.

    2009-12-01

    Thermodynamics play an important role in determining the way a protostellar disc fragments to form planets, brown dwarfs and low-mass stars. We explore the effect that different treatments of radiative transfer have in simulations of fragmenting discs. Three prescriptions for the radiative transfer are used: (i) the diffusion approximation of Stamatellos et al.; (ii) the barotropic equation of state (EOS) of Goodwin et al. and (iii) the barotropic EOS of Bate et al. The barotropic approximations capture the general evolution of the density and temperature at the centre of each proto-fragment but (i) they do not make any adjustments for particular circumstances of a proto-fragment forming in the disc and (ii) they do not take into account thermal inertia effects that are important for fast-forming proto-fragments in the outer disc region. As a result, the number of fragments formed in the disc and their properties are different, when a barotropic EOS is used. This is important not only for disc studies but also for simulations of collapsing turbulent clouds, as in many cases in such simulations stars form with discs that subsequently fragment. We also examine the difference in the way proto-fragments condense out in the disc at different distances from the central star using the diffusion approximation and following the collapse of each proto-fragment until the formation of the second core (ρ ~= 10-3gcm-3). We find that proto-fragments forming closer to the central star tend to form earlier and evolve faster from the first to the second core than proto-fragments forming in the outer disc region. The former have a large pool of material in the inner disc region that they can accrete from and grow in mass. The latter accrete more slowly and they are hotter because they generally form in a quick abrupt event.

  5. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    pressure inside the disc from tens to hundred atmospheres. We simulated unsteady processes in massive circumstellar discs around YSO class O and I. In the computational experiments, we have shown that at a certain stage of its evolution the circumstellar discs of gas and solids produces local areas of high pressure. According to the classical heterogeneous catalysis, a wide range of organic and prebiotic compounds could have been synthesized in these areas. Can we capture these areas of high pressure synthesis in observation of circumstellar discs? Due to the small sizes of such areas they can be hardly ever resolved even with the modern telescopes such as ALMA. However, we can try to detect their signatures in the disc, since the gas of the disc keep the set of organic synthesis products. The idea is to define the signature of the process using laboratory experiments. Varying gas temperature and pressure in laboratory setup we can carry out the catalytic high pressure syntheses and specify the set of gaseous products. These sets of organic compounds observed in the discs may serve as indicators of the emergence of high-pressure areas of prebiotic chemistry. Thus, there is a special interest to the study of YSO class 0 and I by means of observational astronomy. For these objects, first data on the presence of individual organic compounds in massive hydrogen-helium component of the discs appear. The origin of the organic compounds that are associated with chemical reactions in the discs should be separated from the set of organic compounds of the initial molecular cloud.

  6. Lumbar herniated disc: spontaneous regression

    PubMed Central

    Yüksel, Kasım Zafer

    2017-01-01

    Background Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. Methods This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3−L4, L4−L5 or L5−S1 were enrolled. Results The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3−L4, L4−L5, and L5−S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5−22). Conclusions It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery. PMID:28119770

  7. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc

    PubMed Central

    Ahtiainen, Katja; Mauno, Jari; Ellä, Ville; Hagström, Jaana; Lindqvist, Christian; Miettinen, Susanna; Ylikomi, Timo; Kellomäki, Minna; Seppänen, Riitta

    2013-01-01

    The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement. PMID:23720535

  8. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    PubMed Central

    Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome. PMID:27429818

  9. Role of biomechanics on intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair?

    PubMed Central

    Iatridis, James C.; Nicoll, Steven B.; Michalek, Arthur J.; Walter, Benjamin A.; Gupta, Michelle S.

    2013-01-01

    Background Context Degeneration and injuries of the intervertebral disc result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on biomechanical and biological requirements. Purpose To review current literature on 1) effects of degeneration, simulated degeneration, and injury on biomechanics of the intervertebral disc with special attention paid to needle puncture injuries which are a pathway for diagnostics and regenerative therapies; and 2) promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. Study Design/Setting A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for screening of such repair strategies are also briefly described. Methods Papers were selected from two main Pubmed searches using keywords: intervertebral AND biomechanics (1823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow articles to the topics most relevant to this review. Results Degeneration and acute disc injuries have the capacity to influence nucleus pulposus pressurization and annulus fibrosus integrity, which are necessary for effective disc function, and therefore, require repair. Needle injection injuries are of particular clinical relevance with potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small, and more research is required to evaluate and reduce potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore NP pressurization or lost volume. AF repair strategies, including crosslinked hydrogels

  10. Intervertebral disc properties: challenges for biodevices.

    PubMed

    Costi, John J; Freeman, Brian J C; Elliott, Dawn M

    2011-05-01

    Intervertebral disc biodevices that employ motion-preservation strategies (e.g., nucleus replacement, total disc replacement and posterior stabilization devices) are currently in use or in development. However, their long-term performance is unknown and only a small number of randomized controlled trials have been conducted. In this article, we discuss the following biodevices: interbody cages, nuclear pulposus replacements, total disc replacements and posterior dynamic stabilization devices, as well as future biological treatments. These biodevices restore some function to the motion segment; however, contrary to expectations, the risk of adjacent-level degeneration does not appear to have been reduced. The short-term challenge is to replicate the complex biomechanical function of the motion segment (e.g., biphasic, viscoelastic behavior and nonlinearity) to improve the quality of motion and minimize adjacent level problems, while ensuring biodevice longevity for the younger, more active patient. Biological strategies for regeneration and repair of disc tissue are being developed and these offer exciting opportunities (and challenges) for the longer term. Responsible introduction and rigorous assessment of these new technologies are required. In this article, we will describe the properties of the disc, explore biodevices currently in use for the surgical treatment of low back pain (with an emphasis on lumbar total disc replacement) and discuss future directions for biological treatments. Finally, we will assess the challenges ahead for the next generation of biodevices designed to replace the disc.

  11. The Quiescent Growth Of Galactic Discs

    NASA Astrophysics Data System (ADS)

    Binney, James

    2016-09-01

    We use N-bodies to simulate the growth since redshift 2 of an isolated disc in a live halo. Giant molecular clouds (GMCs), The bar and spiral structure all play key roles in the evolution of the disc. Our GMCs are short-lived and have masses drawn from a mass spectrum. Their number density is related to the SFR. For the expected number densities and likely maximum masses of GMCs, they heat the disc very effectively at early times, and either postpone or cancel bar formation. They generate remarkably exponential vertical profiles. Spiral structure drives a level of radial migration that agrees well with that predicted by models of local chemical evolution. The radial patterns of star formation include different levels of inside-out growth. The radial scale length of the final disc is always greater than any of the scale lengths used for star formation and rather independent of the extent of inside-out growth. The only way to obtain a thick disc nearly as massive as those observed is to include in the initial conditions a massive, extended object that will be compressed into the present thick disc by the gravity of the thin disc.

  12. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  13. A two-fluid model for black-hole accretion flows: particle acceleration and disc structure

    NASA Astrophysics Data System (ADS)

    Lee, Jason P.; Becker, Peter A.

    2017-02-01

    Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.

  14. Squeal and chatter phenomena generated in a mountain bike disc brake

    NASA Astrophysics Data System (ADS)

    Nakae, Takashi; Ryu, Takahiro; Sueoka, Atsuo; Nakano, Yutaka; Inoue, Takumi

    2011-05-01

    This paper examines squeal and chatter phenomena generated experimentally in mountain bike disc brakes. There are two kinds of frictional self-excited vibrations in the bike disc brakes, called squeal with frequency of 1 kHz and chatter with frequency of 500 Hz. In order to reproduce the squeal and chatter, a bench test apparatus using an actual bike was set up to determine the associated frequency characteristics experimentally. The results show the frequencies to be independent of pad temperature and disc rotating speed. Squeal is shown to be in-plane vibration in the direction of the disc surface which is caused by the frictional characteristics having negative slope with respect to the relative velocity in the vibrating system, which includes brake unit, spokes and hub. Chatter is generated within a limited high temperature region. Again, it is frictional vibration in which the squeal and out-of-plane vibration of the disc due to Coulomb friction combine through the internal resonance relation between in-plane and out-of-plane nonlinear vibration caused by the temperature increase of the disc during braking.

  15. Correlation between T2∗ (T2 star) relaxation time and cervical intervertebral disc degeneration

    PubMed Central

    Huang, Minghua; Guo, Yong; Ye, Qiong; Chen, Lei; Zhou, Kai; Wang, Qingjun; Shao, Lixin; Shi, Qinglei; Chen, Chun

    2016-01-01

    Abstract Purpose: To demonstrate the potential benefits of T2∗ relaxation time of intervertebral discs (IVDs) regarding the detection and grading of degenerative disc disease using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Materials and Methods: Cervical sagittal T2-weighted, T2∗ relaxation MRI was performed at 3.0-T in 61 subjects, covering discs C2–3 to C6–7. All discs were morphologically assessed based on the Pfirrmann grade, and regions of interests (ROIs) were drawn over the T2∗ mapping. Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. Results: Cervical intervertebral discs (IVDs) of patients were commonly determined to be at Pfirrmann grades III to V. The nucleus pulposus (NP) values did not differ significantly between sexes at the same anatomic level (P > 0.05). In the NP, the T2∗ values tended to decrease with increasing grade (P < 0.000), and a significant difference was found in the T2 values between grades I to V (P < 0.05). T2∗ values based on disc degeneration level classification were as follows: grade I (>30 milliseconds), grade II (24.55–29.99 milliseconds), grade III (21.65–24.54 milliseconds), grade IV (18.35–21.64 milliseconds), and grade V (<18.34 milliseconds). Conclusion: Our standardized method of region-specific quantitative T2∗ relaxation time evaluation seems capable of characterizing different degrees of disc degeneration quantitatively. The T2∗ values obtained in these cervical IVDs may serve as baseline values for future T2∗ measurements in both healthy and degenerated cervical discs. PMID:27893652

  16. How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?

    PubMed Central

    Wang, Shaobai; Xia, Qun; Passias, Peter; Li, Weishi; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Case-control study. Objective . To evaluate the effect of lumbar degenerative disc disease (DDD) on the disc deformation at the adjacent level and at the level one above the adjacent level during end ranges of lumbar motion. Summary of Background Data It has been reported that in patients with DDD, the intervertebral discs adjacent to the diseased levels have a greater tendency to degenerate. Although altered biomechanics have been suggested to be the causative factors, few data have been reported on the deformation characteristics of the adjacent discs in patients with DDD. Methods Ten symptomatic patients with discogenic low back pain between L4 and S1 and with healthy discs at the cephalic segments were involved. Eight healthy subjects recruited in our previous studies were used as a reference comparison. The in vivo kinematics of L3–L4 (the cephalic adjacent level to the degenerated discs) and L2–L3 (the level one above the adjacent level) lumbar discs of both groups were obtained using a combined magnetic resonance imaging and dual fluoroscopic imaging technique at functional postures. Deformation characteristics, in terms of areas of minimal deformation (defined as less than 5%), deformations at the center of the discs, and maximum tensile and shear deformations, were compared between the two groups at the two disc levels. Results In the patients with DDD, there were significantly smaller areas of minimal disc deformation at L3–L4 and L2–L3 than the healthy subjects (18% compared with 45% of the total disc area, on average). Both L2–L3 and L3–L4 discs underwent larger tensile and shear deformations in all postures than the healthy subjects. The maximum tensile deformations were higher by up to 23% (of the local disc height in standing) and the maximum shear deformations were higher by approximately 25% to 40% (of the local disc height in standing) compared with those of the healthy subjects. Conclusion Both the discs of the adjacent

  17. Effects of supernova feedback on the formation of galaxy discs

    NASA Astrophysics Data System (ADS)

    Scannapieco, Cecilia; Tissera, Patricia B.; White, Simon D. M.; Springel, Volker

    2008-09-01

    We use cosmological simulations in order to study the effects of supernova (SN) feedback on the formation of a Milky Way-type galaxy of virial mass ~1012h-1Msolar. We analyse a set of simulations run with the code described by Scannapieco et al., where we have tested our star formation and feedback prescription using isolated galaxy models. Here, we extend this work by simulating the formation of a galaxy in its proper cosmological framework, focusing on the ability of the model to form a disc-like structure in rotational support. We find that SN feedback plays a fundamental role in the evolution of the simulated galaxy, efficiently regulating the star-formation activity, pressurizing the gas and generating mass-loaded galactic winds. These processes affect several galactic properties such as final stellar mass, morphology, angular momentum, chemical properties, and final gas and baryon fractions. In particular, we find that our model is able to reproduce extended disc components with high specific angular momentum and a significant fraction of young stars. The galaxies are also found to have significant spheroids composed almost entirely of stars formed at early times. We find that most combinations of the input parameters yield disc-like components, although with different sizes and thicknesses, indicating that the code can form discs without fine-tuning the implemented physics. We also show how our model scales to smaller systems. By analysing simulations of virial masses 109 and 1010h-1Msolar, we find that the smaller the galaxy, the stronger the SN feedback effects.

  18. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  19. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  20. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interarticular disc prosthesis (interpositional... disc prosthesis (interpositional implant). (a) Identification. An interarticular disc prosthesis... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  1. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  2. Archival-grade optical disc design and international standards

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  3. Treatment of lumbar disc herniation by percutaneous laser disc decompression (PLDD) and modified PLDD

    NASA Astrophysics Data System (ADS)

    Chi, Xiao fei; Li, Hong zhi; Wu, Ru zhou; Sui, Yun xian

    2005-07-01

    Objective: To study the micro-invasive operative method and to compare the effect of treatment of PLDD and modified PLDD for Lumbar Disc Herniation. Method: Vaporized part of the nucleus pulposus in single or multiple point after acupuncture into lumbar disc, to reach the purpose of the decompression of the lumbar disc. Result: Among the 19 cases of the regular PLDD group, the excellent and good rate was 63.2%, and among the 40 cases of the modified PLDD group, the excellent and good rate was 82.5%. Conclusion: The modified PLDD has good effect on the treatment for lumbar disc herniation.

  4. Genetics Home Reference: intervertebral disc disease

    MedlinePlus

    ... link) National Institute of Neurological Disorders and Stroke: Low Back Pain Fact Sheet Educational Resources (8 links) American Association ... MalaCards: intervertebral disc disease Merck Manual Consumer Version: Low Back Pain Merck Manual Consumer Version: Neck Pain The Children's ...

  5. Dynamical modelling of galactic disc outskirts

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.

    2017-03-01

    I review briefly some dynamical models of structures in the outer parts of disc galaxies, including models of polar rings, tidal tails and bridges. I then discuss the density distribution in the outer parts of discs. For this, I compare observations to results of a model in which the disc galaxy is in fact the remnant of a major merger, and find good agreement. This comparison includes radial profiles of the projected surface density and of stellar age, as well as time evolution of the break radius and of the inner and outer disc scale lengths. I also compare the radial projected surface density profiles of dynamically motivated mono-age populations and find that, compared to older populations, younger ones have flatter density profiles in the inner region and steeper in the outer one. The break radius, however, does not vary with stellar age, again in good agreement with observations.

  6. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  7. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  8. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, John E.; Dinsmore, Stanley R.; Chandler, Edward W.

    1986-01-01

    A four-port disc valve for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of .alpha. silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions.

  9. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  10. Radio Monitoring of Protoplanetary Discs

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-01-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  11. Circumplanetary disc or circumplanetary envelope?

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.

    2016-08-01

    We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.

  12. Lumbar Disc Degenerative Disease: Disc Degeneration Symptoms and Magnetic Resonance Image Findings

    PubMed Central

    Saleem, Shafaq; Rehmani, Muhammad Asim Khan; Raees, Aisha; Alvi, Arsalan Ahmad; Ashraf, Junaid

    2013-01-01

    Study Design Cross sectional and observational. Purpose To evaluate the different aspects of lumbar disc degenerative disc disease and relate them with magnetic resonance image (MRI) findings and symptoms. Overview of Literature Lumbar disc degenerative disease has now been proven as the most common cause of low back pain throughout the world. It may present as disc herniation, lumbar spinal stenosis, facet joint arthropathy or any combination. Presenting symptoms of lumbar disc degeneration are lower back pain and sciatica which may be aggravated by standing, walking, bending, straining and coughing. Methods This study was conducted from January 2012 to June 2012. Study was conducted on the diagnosed patients of lumbar disc degeneration. Diagnostic criteria were based upon abnormal findings in MRI. Patients with prior back surgery, spine fractures, sacroiliac arthritis, metabolic bone disease, spinal infection, rheumatoid arthritis, active malignancy, and pregnancy were excluded. Results During the targeted months, 163 patients of lumbar disc degeneration with mean age of 43.92±11.76 years, came into Neurosurgery department. Disc degeneration was most commonly present at the level of L4/L5 105 (64.4%).Commonest types of disc degeneration were disc herniation 109 (66.9%) and lumbar spinal stenosis 37 (22.7%). Spondylolisthesis was commonly present at L5/S1 10 (6.1%) and associated mostly with lumbar spinal stenosis 7 (18.9%). Conclusions Results reported the frequent occurrence of lumbar disc degenerative disease in advance age. Research efforts should endeavor to reduce risk factors and improve the quality of life. PMID:24353850

  13. The role of disc self-gravity in circumbinary planet systems - I. Disc structure and evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-03-01

    We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.

  14. 26 CFR 1.994-1 - Inter-company pricing rules for DISC's.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... further adjustments to transfer prices are set forth in paragraph (e)(4) of this section. Export promotion... material, the excess of such costs over such price is an export promotion expense. For rules relating to... this section, section 994 permits a person related to a DISC to determine the allowable transfer...

  15. DENVER DISC FILTER IN CO91107, SHOWING FIVE DOUBLESIDED DISCS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DENVER DISC FILTER IN CO-91-107, SHOWING FIVE DOUBLE-SIDED DISCS AND DRIVE MOTOR. NOTE FOUR VERTICAL SLURRY FEED PIPES FROM OVERHEAD MANIFOLD AND SUCTION PIPE IN FOREGROUND. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  16. Preparation of ormetoprim-sulfadimethoxine-medicated discs for disc diffusion assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Romet ( a blend of ormetoprim and sulfadimethoxine) is a type A medicated article for the manufacture of medicated feed in the catfish industry. Recently, the commercial manufacture of ormetoprim-sulfadimethoxine susceptibility discs was discontinued. Ormetoprim-sulfadimethoxine discs were prepare...

  17. Colours of bulges and discs within galaxy clusters and the signature of disc fading on infall

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Stevenson, Jeffrey B.; Smith, Russell J.; Wegner, Gary A.; Lucey, John R.; Simard, Luc

    2010-11-01

    The origins of the bulge and disc components of galaxies are of primary importance to understanding galaxy formation. Here bulge-disc decomposition is performed simultaneously in B and R bands for 922 bright galaxies in eight nearby (z < 0.06) clusters with deep redshift coverage using photometry from the National Optical Astronomy Observatory (NOAO) Fundamental Plane Survey. The total galaxy colours follow a universal colour-magnitude relation (CMR). The discs of L* galaxies are 0.24 mag bluer in B - R than bulges. Bulges have a significant CMR slope while the CMR slope of discs is flat. Thus the slope of the CMR of the total light is driven primarily (60 per cent) by the bulge CMR, and to a lesser extent (40 per cent) by the change in the bulge-to-total ratio as a function of magnitude. The colours of the bulge and disc components do not depend on the bulge-to-total ratio, for galaxies with bulge-to-total ratios greater than 0.2. While the colours of the bulge components do not depend significantly on environment, the median colours of discs vary significantly, with discs in the cluster centre redder by 0.10 mag than those at the virial radius. Thus while star formation in bulges appears to be regulated primarily by mass-dependent, and hence presumably internal, processes, that of discs is affected by the cluster environment.

  18. Reoperations Following Cervical Disc Replacement

    PubMed Central

    Skovrlj, Branko; Lee, Dong-Ho; Caridi, John Michael

    2015-01-01

    Cervical disc replacement (CDR) has emerged as an alternative surgical option to cervical arthrodesis. With increasing numbers of patients and longer follow-ups, complications related to the device and/or aging spine are growing, leaving us with a new challenge in the management and surgical revision of CDR. The purpose of this study is to review the current literature regarding reoperations following CDR and to discuss about the approaches and solutions for the current and future potential complications associated with CDR. The published rates of reoperation (mean, 1.0%; range, 0%-3.1%), revision (mean, 0.2%; range, 0%-0.5%), and removal (mean, 1.2%; range, 0%-1.9%) following CDR are low and comparable to the published rates of reoperation (mean, 1.7%; range; 0%-3.4%), revision (mean, 1.5%; range, 0%-4.7%), and removal (mean, 2.0%; range, 0%-3.4%) following cervical arthrodesis. The surgical interventions following CDR range from the repositioning to explantation followed by fusion or the reimplantation to posterior foraminotomy or fusion. Strict patient selection, careful preoperative radiographic review and surgical planning, as well as surgical technique may reduce adverse events and the need for future intervention. Minimal literature and no guidelines exist for the approaches and techniques in revision and for the removal of implants following CDR. Adherence to strict indications and precise surgical technique may reduce the number of reoperations, revisions, and removals following CDR. Long-term follow-up studies are needed, assessing the implant survivorship and its effect on the revision and removal rates. PMID:26097667

  19. Structures induced by companions in galactic discs

    NASA Astrophysics Data System (ADS)

    Kyziropoulos, P. E.; Efthymiopoulos, C.; Gravvanis, G. A.; Patsis, P. A.

    2016-12-01

    Using N-body simulations, we study the structures induced on a galactic disc by repeated flybys of a companion in decaying eccentric orbit around the disc. Our system is composed of a stellar disc, bulge and live dark matter halo, and we study the system's dynamical response to a sequence of a companion's flybys, when we vary (i) the disc's temperature (parametrized by Toomre's Q-parameter) and (ii) the companion's mass and initial orbit. We use a new 3D Cartesian grid code: MAIN (Mesh-adaptive Approximate Inverse N-body solver). The main features of MAIN are reviewed, with emphasis on the use of a new Symmetric Factored Approximate Sparse Inverse matrix in conjunction with the multigrid method that allows the efficient solution of Poisson's equation in three space variables. We find that (i) companions need to be assigned initial masses in a rather narrow window of values in order to produce significant and more long-standing non-axisymmetric structures (bars and spirals) in the main galaxy's disc by the repeated flyby mechanism. (ii) A crucial phenomenon is the antagonism between companion-excited and self-excited modes on the disc. Values of Q > 1.5 are needed in order to allow for the growth of the companion-excited modes to prevail over the growth of the disc's self-excited modes. (iii) We give evidence that the companion-induced spiral structure is best represented by a density wave with pattern speed nearly constant in a region extending from the inner Lindblad resonance to a radius close to, but inside, corotation.

  20. Cervical disc hernia operations through posterior laminoforaminotomy

    PubMed Central

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. Results: The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Conclusion: Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis. PMID:27217655

  1. Clues on the Milky Way disc formation from population synthesis simulations

    NASA Astrophysics Data System (ADS)

    Robin, A. C.; Reylé, C.; Bienaymé, O.; Fernandez-Trincado, J. G.; Amôres, E. B.

    2016-09-01

    In recent years the stellar populations of the Milky Way have been investigated from large scale surveys in different ways, from pure star count analysis to detailed studies based on spectroscopic surveys. While in the former case the data can constrain the scale height and scale length thanks to completeness, they suffer from high correlation between these two values. On the other hand, spectroscopic surveys suffer from complex selection functions which hardly allow to derive accurate density distributions. The scale length in particular has been difficult to be constrained, resulting in discrepant values in the literature. Here, we investigate the thick disc characteristics by comparing model simulations with large scale data sets. The simulations are done from the population synthesis model of Besançon. We explore the parameters of the thick disc (shape, local density, age, metallicity) using a Monte Carlo Markov Chain method to constrain the model free parameters (Robin et al. 2014). Correlations between parameters are limited due to the vast spatial coverage of the used surveys (SDSS + 2MASS). We show that the thick disc was created during a long phase of formation, starting about 12 Gyr ago and finishing about 10 Gyr ago, during which gravitational contraction occurred, both vertically and radially. Moreover, in its early phase the thick disc was flaring in the outskirts. We conclude that the thick disc has been created prior to the thin disc during a gravitational collapse phase, slowed down by turbulence related to a high star formation rate, as explained for example in Bournaud et al. (2009) or Lehnert et al. (2009). Our result does not favor a formation from an initial thin disc thickened later by merger events or by secular evolution of the thin disc. We then study the in-plane distribution of stars in the thin disc from 2MASS and show that the thin disc scale length varies as a function of age, indicating an inside out formation. Moreover, we

  2. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    NASA Astrophysics Data System (ADS)

    Snaith, O.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.; Katz, D.; Gómez, A.

    2015-06-01

    We develop a chemical evolution model to study the star formation history of the Milky Way. Our model assumes that the Milky Way has formed from a closed-box-like system in the inner regions, while the outer parts of the disc have experienced some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age to recover the star formation history of the Galaxy. Our method enables us to recover the star formation history of the Milky Way in the first Gyrs with unprecedented accuracy in the inner (R < 7-8 kpc) and outer (R > 9-10 kpc) discs, as sampled in the solar vicinity. We show that half the stellar mass formed during the thick-disc phase in the inner galaxy during the first 4-5 Gyr. This phase was followed by a significant dip in star formation activity (at 8-9 Gyr) and a period of roughly constant lower-level star formation for the remaining 8 Gyr. The thick-disc phase has produced as many metals in 4 Gyr as the thin-disc phase in the remaining 8 Gyr. Our results suggest that a closed-box model is able to fit all the available constraints in the inner disc. A closed-box system is qualitatively equivalent to a regime where the accretion rate maintains a high gas fraction in the inner disc at high redshift. In these conditions the SFR is mainly governed by the high turbulence of the interstellar medium. By z ~ 1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas that is not consumed during the thick-disc phase and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z ~ 2, about 2 Gyr before the onset of the thin-disc formation in the inner disc.

  3. Interpreting the extended emission around three nearby debris disc host stars

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Kirchschlager, F.; Ertel, S.; Augereau, J.-C.; Kennedy, G. M.; Booth, M.; Wolf, S.; Montesinos, B.; Eiroa, C.; Matthews, B.

    2014-10-01

    Context. Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. Aims: The Herschel open time key programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around ~20% of stars. Herschel's high angular resolution (~7'' FWHM at 100 μm) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50-100 au). Methods: As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs' radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. Results: We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.

  4. MRI quantification of human spine cartilage endplate geometry: Comparison with age, degeneration, level, and disc geometry.

    PubMed

    DeLucca, John F; Peloquin, John M; Smith, Lachlan J; Wright, Alexander C; Vresilovic, Edward J; Elliott, Dawn M

    2016-08-01

    Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3-1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1410-1417, 2016.

  5. Design concepts in lumbar total disc arthroplasty

    PubMed Central

    Bellini, Chiara M.; Zweig, Thomas; Ferguson, Stephen; Raimondi, Manuela T.; Lamartina, Claudio; Brayda-Bruno, Marco; Fornari, Maurizio

    2008-01-01

    The implantation of lumbar disc prostheses based on different design concepts is widely accepted. This paper reviews currently available literature studies on the biomechanics of TDA in the lumbar spine, and is targeted at the evaluation of possible relationships between the aims of TDA and the geometrical, mechanical and material properties of the various available disc prostheses. Both theoretical and experimental studies were analyzed, by a PUBMED search (performed in February 2007, revised in January 2008), focusing on single level TDA. Both semi-constrained and unconstrained lumbar discs seem to be able to restore nearly physiological IAR locations and ROM values. However, both increased and decreased ROM was stated in some papers, unrelated to the clinical outcome. Segmental lordosis alterations after TDA were reported in most cases, for both constrained and unconstrained disc prostheses. An increase in the load through the facet joints was documented, for both semi-constrained and unconstrained artificial discs, but with some contrasting results. Semi-constrained devices may be able to share a greater part of the load, thus protecting the surrounding biological structure from overloading and possible early degeneration, but may be more susceptible to wear. The next level of development will be the biomechanical integration of compression across the motion segment. All these findings need to be supported by long-term clinical outcome studies. PMID:18946684

  6. Lubrication regimes in lumbar total disc arthroplasty.

    PubMed

    Shaheen, A; Shepherd, D E T

    2007-08-01

    A number of total disc arthroplasty devices have been developed. Some concern has been expressed that wear may be a potential failure mode for these devices, as has been seen with hip arthroplasty. The aim of this paper was to investigate the lubrication regimes that occur in lumbar total disc arthroplasty devices. The disc arthroplasty was modelled as a ball-and-socket joint. Elastohydrodynamic lubrication theory was used to calculate the minimum film thickness of the fluid between the bearing surfaces. The lubrication regime was then determined for different material combinations, size of implant, and trunk velocity. Disc arthroplasties with a metal-polymer or metal-metal material combination operate with a boundary lubrication regime. A ceramic-ceramic material combination has the potential to operate with fluid-film lubrication. Disc arthroplasties with a metal-polymer or metal-metal material combination are likely to generate wear debris. In future, it is worth considering a ceramic-ceramic material combination as this is likely to reduce wear.

  7. Fast detection of the optic disc and fovea in color fundus photographs.

    PubMed

    Niemeijer, Meindert; Abràmoff, Michael D; van Ginneken, Bram

    2009-12-01

    A fully automated, fast method to detect the fovea and the optic disc in digital color photographs of the retina is presented. The method makes few assumptions about the location of both structures in the image. We define the problem of localizing structures in a retinal image as a regression problem. A kNN regressor is utilized to predict the distance in pixels in the image to the object of interest at any given location in the image based on a set of features measured at that location. The method combines cues measured directly in the image with cues derived from a segmentation of the retinal vasculature. A distance prediction is made for a limited number of image locations and the point with the lowest predicted distance to the optic disc is selected as the optic disc center. Based on this location the search area for the fovea is defined. The location with the lowest predicted distance to the fovea within the foveal search area is selected as the fovea location. The method is trained with 500 images for which the optic disc and fovea locations are known. An extensive evaluation was done on 500 images from a diabetic retinopathy screening program and 100 specially selected images containing gross abnormalities. The method found the optic disc in 99.4% and the fovea in 96.8% of regular screening images and for the images with abnormalities these numbers were 93.0% and 89.0% respectively.

  8. The influence of dust grain porosity on the analysis of debris disc observations

    NASA Astrophysics Data System (ADS)

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve

    2017-02-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  9. Material considerations for intervertebral disc replacement implants.

    PubMed

    Taksali, Sudeep; Grauer, Jonathan N; Vaccaro, Alexander R

    2004-01-01

    Cervical and lumbar disc replacements are being performed with increasing frequency. Much of the background for the development for these implants is drawn from the literature of other joint replacements that have been in evolution and use for decades. Important variables for the function and longevity of such disc arthroplasty implants are clearly defined by the material properties of the components used for their production. The most frequently considered materials are cobalt-chrome alloys, titanium alloys, stainless steels, polyethylene, polyurethane and ceramics. In addition to implant materials, the interfaces of such materials must be considered. The bearing surfaces of an implant, in particular, are at risk of wear and failure. Overall, successful, long-term total disc arthroplasty requires a thorough understanding of biomaterials and how they can be used to achieve their desired goals.

  10. The debris disc around HIP 17439

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Löhne, Torsten; Krivov, Alexander

    2013-07-01

    In the framework of the Herschel Open Time Key Programme DUNES the debris disc around the K2 V star HIP 17439 was observed. In PACS images the disc emission is spatially clearly extended. A simultaneous analysis of photometric observations and radial brightness profiles from the resolved images provides valuable hints for the disc structure. In an analytical model we adopted power laws for the size and radial distribution of the circumstellar dust and tested two different scenarios: (1) a broad dust ring with a radial extent of about 200AU, (2) two independent dust rings separated by a gap of several tens of AU. Both models fit the spectral energy distribution and the radial profiles quite well. In case (1) the parameters found are consistent with dust stemming from an outer planetesimal belt at ~140AU and strong transport mechanisms that drag the particles inward. Model (2) would imply two planetesimal belts, producing a narrow inner and wider outer distribution of dust.

  11. Effects of disc midplane evolution on CO snowline location

    NASA Astrophysics Data System (ADS)

    Panić, O.; Min, M.

    2017-01-01

    Temperature changes in the planet forming disc midplanes carry important physico-chemical consequences, such as the effect on the locations of the condensation fronts of molecules - the snowlines. Snowlines impose major chemical gradients and possibly foster grain growth. The aim of this paper is to understand how disc midplane temperature changes with gas and dust evolution, and identify trends that may influence planet formation or allow to constrain disc evolution observationally. We calculate disc temperature, hydrostatic equilibrium and dust settling in a mutually consistent way from a grid of disc models at different stages of gas loss, grain growth and hole opening. We find that the CO snowline location depends very strongly on disc properties. The CO snowline location migrates closer to the star for increasing degrees of gas dispersal and dust growth. Around a typical A type star, the snowline can be anywhere between several tens and a few hundred au, depending on the disc properties such as gas mass and grain size. In fact, gas loss is as efficient as dust evolution in settling discs, and flat discs may be gas-poor counterparts of flared discs. Our results, in the context of different pre-main sequence evolution of the luminosity in low- and intermediate-mass stars suggests very different thermal (and hence chemical) histories in these two types of discs. Discs of T Tauri stars settle and cool down while discs of Herbig Ae stars may remain rather warm throughout the pre-main sequence.

  12. Shift in apparent contrast of disc at Secchi disc depth in coastal sea areas.

    PubMed

    Arakawa, Hisayuki; Inada, Mari; Choi, Sokjin; Narita, Miho

    2013-03-01

    The relationship between Secchi disc depth and amount of suspended material in seawater varies depending on the particular marine area. To identify the cause of this dependence, we calculated the apparent contrast (C (SD)) at each Secchi disc depth in different coastal sea areas. When the turbidity from the surface to the Secchi disc depth was uniform, the C (SD) was distributed in the range of 1.3 to 0.001 for a Secchi disc depth (Z (SD)) of 2-18 m. Z (SD) tended to decrease as C (SD) became larger. The dominant wavelength for the sea color was 475-500 nm for a Secchi disc depth of 13-18 m, and 500-575 nm for a Z(SD) of 2-6 m, shifting to longer wavelengths as the Secchi disc depth increased. That is, when Z (SD) decreased, the dominant wavelength of the sea color, and the C (SD) increased simultaneously. This phenomenon seems to occur because the contrast threshold for the human eye is higher at longer wavelengths. In other words, the contrast threshold is visibly indistinguishable when the apparent contrast in ocean waters with low Secchi disc depths is high. This phenomenon occurs because the human eye is affected by the color of the sea.

  13. Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration

    PubMed Central

    Johnson, Zariel I.; Schoepflin, Zachary R.; Choi, Hyowon; Shapiro, Irving M.; Risbud, Makarand V.

    2016-01-01

    The intervertebral disc is an important mechanical structure that allows range of motion of the spinal column. Degeneration of the intervertebral disc, incited by aging, traumatic insult, genetic predisposition, or other factors, is often defined by functional and structural changes in the tissue, including excessive breakdown of the extracellular matrix, increased disc cell senescence and death, and compromised biomechanical function of the tissue. Intervertebral disc degeneration is strongly correlated with low back pain, which is a highly prevalent and costly condition, significantly contributing to loss in productivity and health care costs. Disc degeneration is a chronic, progressive condition, and current therapies are limited and often focused on symptomatic pain relief rather than curtailing the progression of the disease. Inflammatory processes, exacerbated by cytokines TNF-α and IL-1β are believed to be key mediators of disc degeneration and low back pain. In this review, we describe the contributions of TNF-α and IL-1β to changes seen during disc degeneration at the cellular and tissue level, new evidence suggesting a link between infection of the spine and low back pain, and the emerging therapeutic modalities aimed at combating these processes. PMID:26388614

  14. Aerodynamic investigations of a disc-wing

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin

    2017-01-01

    The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.

  15. Splint-assisted disc plication surgery

    PubMed Central

    Sheikh, Omar; Logan, Greg; Komath, Deepak; Grossman, Patrick; Ayliffe, Peter

    2016-01-01

    Summary Chronic disc displacement may lead to long-term pain. Temporomandibular joint surgery is reserved for those patients whose symptoms remain severe despite conservative treatment. We looked at the of effect of modified meniscopexy on patients with chronic disc displacement without reduction who did not respond to non-surgical pain management treatment. In this retrospective study a total of 59 joints was treated and all patients except one underwent splint assisted bilateral meniscopexy: this patient had splint assisted unilateral meniscopexy. At the time of presentation and following treatment all patients underwent clinical examination and were required to complete a pain and functional questionnaire. All patients reported improvement following treatment. PMID:28149454

  16. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  17. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    2017-01-24

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair.

  18. Fractured occluder disc: a previously unrecognized complication of the Starr-Edwards disc prosthesis.

    PubMed

    Malouf, J F; Hannoush, H M; Odell, J A

    2001-01-01

    Fracture of the occluder disc of a low-profile Starr-Edwards prosthesis is a hitherto unrecognized complication. We describe a patient who presented with right heart failure and severe pulmonary hypertension 27 years after mitral valve replacement with a model 6520 caged-disc prosthesis. At surgery, there was a longitudinal split in the occluder disc, and organized thrombus was lodged between the split segments. This case offers a unique opportunity to study the long-term effects of wear on the polyethylene poppet and Stellite cage.

  19. The effectiveness of percutaneous laser disc decompression for the prolapsed lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Mu, Ming Wei; Liu, Wei; Feng, Wei; Ma, Nan

    2009-07-01

    Objective: to investigate the role of associated factors in the effectiveness of laser treatment for prolapsed lumber intervertebral disc. Method: 302 prolapsed lumber intervertebral discs in 212 patients were treated with percutaneous laser disc decompression (PLDD). Patients were followed up by 12month, the associated factors which affecting the effectiveness of treatment, ie age, duration of illness were analyzed. Results: Punctual Success rate was 100%. After 12 month's follow up, 86% successful outcomes were obtained, in which 93% successful outcomes were obtained in patients less than 50 years old, 92% successful outcomes was obtained in the patients whose duration of illness less than 1 year.

  20. Intervertebral disc degeneration: evidence for two distinct phenotypes

    PubMed Central

    Adams, Michael A; Dolan, Patricia

    2012-01-01

    We review the evidence that there are two types of disc degeneration. ‘Endplate-driven’ disc degeneration involves endplate defects and inwards collapse of the annulus, has a high heritability, mostly affects discs in the upper lumbar and thoracic spine, often starts to develop before age 30 years, usually leads to moderate back pain, and is associated with compressive injuries such as a fall on the buttocks. ‘Annulus-driven’ disc degeneration involves a radial fissure and/or a disc prolapse, has a low heritability, mostly affects discs in the lower lumbar spine, develops progressively after age 30 years, usually leads to severe back pain and sciatica, and is associated with repetitive bending and lifting. The structural defects which initiate the two processes both act to decompress the disc nucleus, making it less likely that the other defect could occur subsequently, and in this sense the two disc degeneration phenotypes can be viewed as distinct. PMID:22881295

  1. Cell transplantation in lumbar spine disc degeneration disease.

    PubMed

    Hohaus, C; Ganey, T M; Minkus, Y; Meisel, H J

    2008-12-01

    Low back pain is an extremely common symptom, affecting nearly three-quarters of the population sometime in their life. Given that disc herniation is thought to be an extension of progressive disc degeneration that attends the normal aging process, seeking an effective therapy that staves off disc degeneration has been considered a logical attempt to reduce back pain. The most apparent cellular and biochemical changes attributable to degeneration include a decrease in cell density in the disc that is accompanied by a reduction in synthesis of cartilage-specific extracellular matrix components. With this in mind, one therapeutic strategy would be to replace, regenerate, or augment the intervertebral disc cell population, with a goal of correcting matrix insufficiencies and restoring normal segment biomechanics. Biological restoration through the use of autologous disc chondrocyte transplantation offers a potential to achieve functional integration of disc metabolism and mechanics. We designed an animal study using the dog as our model to investigate this hypothesis by transplantation of autologous disc-derived chondrocytes into degenerated intervertebral discs. As a result we demonstrated that disc cells remained viable after transplantation; transplanted disc cells produced an extracellular matrix that contained components similar to normal intervertebral disc tissue; a statistically significant correlation between transplanting cells and retention of disc height could displayed. Following these results the Euro Disc Randomized Trial was initiated to embrace a representative patient group with persistent symptoms that had not responded to conservative treatment where an indication for surgical treatment was given. In the interim analyses we evaluated that patients who received autologous disc cell transplantation had greater pain reduction at 2 years compared with patients who did not receive cells following their discectomy surgery and discs in patients that

  2. The Bosma effect revisited. I. HI and stellar disc scaling models

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.; Ziebart, M.

    2011-08-01

    Context. The observed proportionality between the centripetal contribution of the dynamically insignificant HI gas in the discs of spiral galaxies and the dominant contribution of dark matter (DM) - the "Bosma effect" - has been repeatedly mentioned in the literature but largely ignored. Since this phenomenology, if statistically significant, tells us something about the relationship between the visible baryonic and invisible DM, it is important to re-examine the reality of this effect using formal tests and more modern data. Aims: We have re-examined the evidence for the Bosma effect, either by scaling the contribution of the HI gas alone or by using both the observed stellar disc and HI gas as proxies. Methods: We have calculated Bosma effect models for 17 galaxies in The HI Nearby Galaxy Survey data set. The results are compared with two models for exotic cold DM: internally consistent cosmological Navarro-Frenk-White (NFW) models with constrained compactness parameters, and "universal rotation curve" (URC) models using fully unconstrained Burkert density profiles. Results: Fits to spiral galaxy rotation curves computed using just HI scaling are inadequate, despite the clear proportionality seen in the outer discs. The poor performance is obviously related to the prominent decrease in the HI surface density in regions of high stellar surface density, where HI has been converted into molecules and stars. The Bosma models that partially correct for this physical effect using the stellar discs as additional proxies are statistically nearly as good as the URC models and clearly better than the NFW ones. Conclusions: We confirm the correlation between the centripetal effects of DM and that of the interstellar medium of spiral galaxies. The efficacy of "maximal disc" models is explained as the natural consequence of "classic" Bosma models which include the stellar disc as a proxy in regions of reduced atomic gas. The perception that the Bosma effect could be due to

  3. Indications for Lumbar Total Disc Replacement: Selecting the Right Patient with the Right Indication for the Right Total Disc

    PubMed Central

    Guyer, Richard D.; Ohnmeiss, Donna D.

    2014-01-01

    Summary of Background Data As with any surgery, care should be taken to determine patient selection criteria for lumbar TDR based on safety and optimizing outcome. These goals may initially be addressed by analyzing biomechanical implant function and early clinical experience, ongoing evaluation is needed to refine indications. Objective The purpose of this work was to synthesize information published on general indications for lumbar TDR. A secondary objective was to determine if indications vary for different TDR designs. Methods A comprehensive literature search was conducted to identify lumbar TDR articles. Articles were reviewed and patient selection criteria and indications were synthesized. Results With respect to safety, there was good agreement in the literature to exclude patients with osteopenia/osteoporosis or fracture. Risk of injury to vascular structures due to the anterior approach was often addressed by excluding patients with previous abdominal surgery in the area of disc pathology or increased age. The literature was very consistent on the primary indication for TDR being painful disc degeneration unresponsive to at least 6 months of nonoperative care. Literature investigating the impact of previous spine surgery was mixed; however, prior surgery was not necessarily a contra-indication, provided the patient otherwise met selection criteria. The literature was mixed on setting a minimum preoperative disc height as a selection criterion. There were no publications investigating whether some patients are better/worse candidates for specific TDR designs. Based on the literature a proposal for patient selection criteria is offered. Conclusions Several TDR indications and contra-indications are widely accepted. No literature addresses particular TDR design being preferable for some patients. As with any spine surgery, ongoing evaluation of TDR outcomes will likely lead to more detailed general and device design specific indications. PMID:25694946

  4. Interactive Optical Disc Systems: Part 1: Analog Storage.

    ERIC Educational Resources Information Center

    Hessler, David W.

    1984-01-01

    Details distinction between digital and analog data, advantages of analog storage, and optical disc use to store analog data. Configuration and potential of three levels of laser disc systems are explained. Selection of display devices for use with laser disc systems and accessing audio data are addressed. (Continued in next issue.) (EJS)

  5. 26 CFR 1.992-1 - Requirements of a DISC.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... election to be treated as a DISC be in effect for such year, as described in paragraph (e) of this section... stock. (e) Election in effect. In order for a corporation to be a DISC for a taxable year, an election... for purposes of § 1.992-2(e)(3) (relating to the termination of a DISC election if a corporation...

  6. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    NASA Astrophysics Data System (ADS)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  7. DISC-BASED IMMUNOASSAY MICROARRAYS. (R825433)

    EPA Science Inventory

    Microarray technology as applied to areas that include genomics, diagnostics, environmental, and drug discovery, is an interesting research topic for which different chip-based devices have been developed. As an alternative, we have explored the principle of compact disc-based...

  8. Eclipse Mapping: Astrotomography of Accretion Discs

    NASA Astrophysics Data System (ADS)

    Baptista, Raymundo

    The Eclipse Mapping Method is an indirect imaging technique that transforms the shape of the eclipse light curve into a map of the surface brightness distribution of the occulted regions. Three decades of application of this technique to the investigation of the structure, the spectrum and the time evolution of accretion discs around white dwarfs in cataclysmic variables have enriched our understanding of these accretion devices with a wealth of details such as (but not limited to) moving heating/cooling waves during outbursts in dwarf novae, tidally-induced spiral shocks of emitting gas with sub-Keplerian velocities, elliptical precessing discs associated to superhumps, and measurements of the radial run of the disc viscosity through the mapping of the disc flickering sources. This chapter reviews the principles of the method, discusses its performance, limitations, useful error propagation procedures, as well as highlights a selection of applications aimed at showing the possible scientific problems that have been and may be addresses with it.

  9. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1984-08-16

    This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

  10. Frictional Torque on a Rotating Disc

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    Resistance to motion often includes a dry frictional term independent of the speed of an object and a fluid drag term varying linearly with speed in the viscous limit. (At higher speeds, quadratic drag can also occur.) Here, measurements are performed for an aluminium disc mounted on bearings that is given an initial twist and allowed to spin…

  11. Nonsurgical management of disc-interference disorders.

    PubMed

    Okeson, J P

    1991-01-01

    Disc-interference disorders are a group of intracapsular problems that make up one category of temporomandibular disorders. The dental profession's understanding of these disorders has changed greatly in recent years. This article reviews current concepts regarding the diagnosis and management of these disorders as revealed through recent clinical studies.

  12. Extradural cavernous haemangioma simulating a disc protrusion.

    PubMed

    Slavotinek, J P; Fowler, S; Sage, M R; Brophy, B P

    1999-02-01

    Cavernous haemangiomas confined to the epidural space are rare and are therefore infrequently considered in the differential diagnosis of spinal epidural masses. In order to draw attention to this diagnosis, a case in which an epidural cavernous haemangioma simulates a lateral/foraminal disc protrusion is presented.

  13. Evolution of gas in debris discs

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Wyatt, Mark; Pringle, Jim

    2015-12-01

    A non negligible quantity of gas has been discovered in an increasing number of debris disc systems. ALMA high sensitivity and high resolution is changing our perception of the gaseous component of debris discs as CO is discovered in systems where it should be rapidly photodissociated. It implies that there is a replenishment mechanism and that the observed gas is secondary. Past missions such as Herschel probed the atomic part of the gas through O I and C II emission lines. Gas science in debris discs is still in its infancy, and these new observations raise a handful of questions concerning the mechanisms to create the gas and about its evolution in the planetary system when it is released. The latter question will be addressed in this talk as a self-consistent gas evolution scenario is proposed and is compared to observations for the peculiar case of β Pictoris.Our model proposes that carbon and oxygen within debris discs are created due to photodissociation of CO which is itself created from the debris disc dust (due to grain-grain collisions or photodesorption). The evolution of the carbon atoms is modelled as viscous spreading, with viscosity parameterised using an α model. The temperature, ionisation fraction and population levels of carbon are followed with a PDR model called Cloudy, which is coupled to the dynamical viscous α model. Only carbon gets ionised due to its lower ionisation potential than oxygen. The carbon gas disc can end up with a high ionisation fraction due to strong FUV radiation field. A high ionisation fraction means that the magnetorotational instability (MRI) is very active, so that α is very high. Gas density profiles can be worked out for different input parameters such as the α value, the CO input rate, the location of the input and the incoming radiation field. Observability predictions can be made for future observations, and our model is tested on β Pictoris observations. This new gas evolution model fits the carbon and CO

  14. Scaling from discs to pleated devices.

    PubMed

    Giglia, Sal; Yavorsky, David

    2007-01-01

    Membrane discs offer a convenient format for evaluating membrane performance in normal flow filtration. However, while pleated devices of different sizes tend to scale in close proportion to their contained areas, they do not necessarily scale in direct proportion from flat discs. The objectives of this study are to quantify differences in performance among sterilizing-grade membrane devices as a function of device type and size, to develop an understanding of the factors that affect device scalability, and to develop a mathematical model to predict a cartridge-to-disc scalability factor based on membrane properties and porous support properties and dimensions. Measured and predicted normalized water permeability scalability factors for seven types of pleated cartridges, including 0.1-micro and 0.2-micro rated PES, and 0.2-micro rated polyvinylidene fluoride (PVDF) sterilizing-grade filters in nominal 1-inch to 5-inch lengths, were determined. The results of this study indicate that pleated cartridge performance can be closely predicted based on 47-mm disc performance provided that a number of measured device parameters are properly accounted for, most importantly parasitic pressure losses in the filter device and plumbing connections, intrinsic membrane variability, true effective device filtration area, and the hydraulic properties of all porous support materials. Throughput scalability factors (discs to devices) tend to converge towards unity, especially for highly plugging streams. As the membrane fouls, the resistance through the membrane dominates other resistances, so the flux scales more linearly with membrane area and the overall scaling factor becomes close to one. The results of throughput tests on seven different cartridge types and five different challenge streams (with widely varying fouling characteristics) show that most of the throughput scaling factors were within +/-10% of 1.0. As part of this study, the effects of pressure and temperature were

  15. Enhancement of Overgrowth by Gene Interactions in Lethal(2)giant Discs Imaginal Discs from Drosophila Melanogaster

    PubMed Central

    Buratovich, M. A.; Bryant, P. J.

    1997-01-01

    Recessive lethal mutations of the lethal(2)giant discs (l(2)gd) and lethal(2)fat (l(2)ft) loci of Drosophila melanogaster cause imaginal disc hyperplasia during a prolonged larval stage. Imaginal discs from l(2)ft l(2)gd or Gl(2)gd double homozygotes show more extensive overgrowth than in either single homozygote, and double homozygous l(2)ft l(2)gd mitotic clones in adult flies show much more overgrowth than is seen in clones homozygous for either l(2)gd or l(2)ft alone. dachsous (ds) also acts as an enhancer of l(2)gd, producing dramatically overgrown discs and causing failure to pupariate in double homozygotes. The comb gap (cg) mutation, which also interacts with ds, greatly enhances the tendency of imaginal discs from l(2)gd larvae to duplicate as they overgrow. If l(2)gd homozygotes are made heterozygous for l(2)ft, then several discs duplicate, indicating that l(2)ft acts as a dominant enhancer of l(2)gd. l(2)ft also acts as a dominant enhancer of l(2)gd, and conversely l(2)gd acts as a dominant modifier of l(2)ft. The enhancement of overgrowth caused by various mutant combinations is accompanied by changes in expression of Decapentaplegic and Wingless. These results show that tumor suppressor genes act in combination to control cell proliferation, and that tissue hyperplasia can be associated with ectopic expression of genes involved in pattern formation. PMID:9335602

  16. Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content

    PubMed Central

    Risbud, Makarand V.; Shapiro, Irving. M

    2014-01-01

    Degeneration of the intervertebral disc is the major contributor to back/neck and radicular pain. It is characterized by an elevation in levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1 α/β, IL-6 and IL-17 secreted by the disc cells themselves; these cytokines promote matrix degradation, chemokine production and changes in cell phenotype. The resulting imbalance between catabolic and anabolic responses leads to degeneration, as well as herniation and radicular pain. Release of chemokines from degenerating discs promote infiltration and activation of T and B cells, macrophages, neutrophils, and mast cells further amplifying the inflammatory cascade. Immunocyte migration into the disc is accompanied by the appearance of microvasculature and nerve fibers arising from the dorsal root ganglion (DRG). In this inflammatory milieu, neurogenic factors in particular nerve growth factor (NGF) and brain-derive neurotrophic factor (BDNF) generated by disc and immune cells induce expression of pain associated cation channels in DRGs. Depolarization of these channels is likely to promote discogenic and radicular pain and reinforce the cytokine-mediated degenerative cascade. Taken together, the enhanced understanding of the contribution of cytokines and immune cells to catabolic and nociceptive processes provide new targets for treating symptomatic disc disease. PMID:24166242

  17. Fusion versus Bryan Cervical Disc in two-level cervical disc disease: a prospective, randomised study

    PubMed Central

    Nie, Lin; Zhang, Li; Hou, Yong

    2008-01-01

    In this prospective study, our aim was to compare the functional results and radiographic outcomes of fusion and Bryan Cervical Disc replacement in the treatment of two-level cervical disc disease. A total of 65 patients with two-level cervical disc disease were randomly assigned to two groups, those operated on with Bryan Cervical Disc replacement (31) and those operated on with anterior cervical fusion with an iliac crest autograft and plate (34). Clinical evaluation was carried out using the visual analogue scale (VAS), the Short Form 36 (SF-36) and the neck disability index (NDI) during a two year follow-up. Radiological evaluation sought evidence of range of motion, stability and subsidence of the prosthesis. Substantial reduction in NDI scores occurred in both groups, with greater percent improvement in the Bryan group (P = 0.023). The arm pain VAS score improvement was substantial in both groups. Bryan artificial cervical disc replacement seems reliable and safe in the treatment of patients with two-level cervical disc disease. PMID:18956190

  18. Influence of blade profile of disc cutter on numerical simulation of the disc slitting process

    NASA Astrophysics Data System (ADS)

    Zeng, J.; Lu, J. B.; Yan, Q. S.; Li, S.

    2015-03-01

    The disc slitting machining experiments for electrical steel sheet were conducted to investigate the wear process of carbide alloy disc cutter and the slitting quality in the disc slitting process, and the blade contour shape of disc cutter in different slitting distance was measured by the surface profiler. A DEFORM-2D model, where the real blade profile or arc fitting profile was used as the blade contour of the cutter, was built to simulate the disc slitting process. Results show that the blade wear of disc cutter increases. The blade wear presents uneven in the side surface and cylindrical surface of the cutter, and the side wear is more serious with the increase of the slitting distance of electrical steel sheet. As the blade wear increases, the height of the rollover increases gradually, the height of the shear area increases at first and then decreases, but the height of the fracture area decreases at first and then increases. Compared with the arc fitting profile, the simulation surface morphology using the real blade profile is in good agreement with the experimental result. The variation of blade profile can change the distribution of the hydrostatic stress of sheet metal and the occurring and propagating of the crack, and the maximum hydrostatic stress can be used to estimate the change tendency of the fracture area.

  19. Differentiation of glaucomatous optic discs with different appearances using optic disc topography parameters: The Glaucoma Stereo Analysis Study

    PubMed Central

    Tanito, Masaki; Nitta, Koji; Katai, Maki; Kitaoka, Yasushi; Yokoyama, Yu; Omodaka, Kazuko; Nakazawa, Toru

    2017-01-01

    The Glaucoma Stereo Analysis Study (GSAS) is a multicenter collaborative study of the characteristics of glaucomatous optic disc morphology using a stereo fundus camera. Using GSAS dataset, the formulas for predicting different glaucomatous optic disc appearances were established. The GSAS dataset containing three-dimensionally-analyzed optic disc topographic parameters from 187 eyes with primary open-angle glaucoma was assessed with discrimination analyses to obtain formulas predictive of glaucomatous optic disc appearances: focal ischemic (FI); generalized enlargement (GE), myopic glaucomatous (MY), and senile sclerotic (SS). Using 38 optic disc parameters-substituted discrimination analyses with a stepwise forward-selection method, six parameters (temporal and nasal rim-disc ratios, mean cup depth, height variation contour, disc tilt angle, and rim decentering absolute) were selected into the formulas. The area under the receiver operating characteristic curves for predicting the four disc types with established formulas were 0.88, 0.91, 0.93, and 0.86 for FI, MY, SS, and GE, respectively. Age, visual acuity, refractive error, glaucoma (normal or high-tension glaucoma), and baseline intraocular pressure differed significantly among the four optic disc types, suggesting the appearances represent different clinical glaucoma phenotypes. Using six optic disc topographic parameters obtained by stereo fundus camera, the GSAS classification formulas predicted and quantified each component of different optic disc appearances in each eye and provided a novel parameter to describe glaucomatous optic disc characteristics. PMID:28178303

  20. Adipose-Derived Stromal Cells Protect Intervertebral Disc Cells in Compression: Implications for Stem Cell Regenerative Disc Therapy

    PubMed Central

    Sun, Zhen; Luo, Beier; Liu, Zhi-Heng; Samartzis, Dino; Liu, Zhongyang; Gao, Bo; Huang, Liangliang; Luo, Zhuo-Jing

    2015-01-01

    Introduction: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. Methods: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. Results: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). Conclusions: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3

  1. Creep Behavior of Anisotropic Functionally Graded Rotating Discs

    NASA Astrophysics Data System (ADS)

    Rattan, Minto; Chamoli, Neeraj; Singh, Satya Bir; Gupta, Nishi

    2013-08-01

    The creep behavior of an anisotropic rotating disc of functionally gradient material (FGM) has been investigated in the present study using Hill's yield criteria and the creep behavior in this case is assumed to follow Sherby's constitutive model. The stress and strain rate distributions are calculated for disc having different types of anisotropy and the results obtained are compared graphically. It is concluded that the anisotropy of the material has a significant effect on the creep behavior of the FGM disc. It is also observed that the FGM disc shows better creep behavior than the non-FGM disc.

  2. Origin and evolution of two-component debris discs and an application to the q1 Eridani system

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Krivov, Alexander V.; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-09-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an `asteroid belt' closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-temperature debris disc around a nearby solar-type star q1 Eridani. This implies a Solar system-like architecture of the system, with an outer massive `Kuiper belt', an inner `asteroid belt', and a few Neptune- to Jupiter-mass planets in between.

  3. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc

    2015-01-01

    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.

  4. Dipper discs not inclined towards edge-on orbits

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Gaidos, E.; Williams, J. P.; Kennedy, G.; Wyatt, M. C.; LaCourse, D. M.; Jacobs, T. L.; Mann, A. W.

    2016-10-01

    The so-called dipper stars host circumstellar discs and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disc. Most of the proposed mechanisms explaining the dips - i.e. occulting disc warps, vortices, and forming planetesimals - assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals discs with a range of inclinations, most notably the face-on transition disc J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disc processes that regularly produce dusty structures far above the outer disc mid-plane in regions relevant to planet formation.

  5. The avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: Implications for evolution of the vertebrate disc

    PubMed Central

    Bruggeman, Bradley J.; Maier, Jennifer A.; Mohiuddin, Yasmin S.; Powers, Rae; Lo, YinTing; Guimarães-Camboa, Nuno; Evans, Sylvia M.; Harfe, Brian D.

    2012-01-01

    Deterioration of the intervertebral discs is an unfortunate consequence of aging. The intervertebral disc in mammals is composed of three parts: a jelly-like center called the nucleus pulposus, the cartilaginous annulus fibrosus and anterior and posterior endplates that attach the discs to vertebrae. In order to understand the origin of the disc, we have investigated the intervertebral region of chickens. Surprisingly, our comparison of mouse and chicken discs revealed that chicken discs lack nuclei pulposi. In addition, the notochord, which in mice forms nuclei pulposi, was found to persist as a rod-like structure and express Shh throughout chicken embryogenesis. Our fate mapping data indicates that cells originating from the rostral half of each somite are responsible for forming the avian disc while cells in the caudal region of each somite form vertebrae. A histological analysis of mammalian and non-mammalian organisms suggests that nuclei pulposi are only present in mammals. PMID:22354863

  6. Hall magneto-hydrodynamics in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, W.; Lesur, G.; Ferreira, J.

    2016-12-01

    Protoplanetary discs exhibit large-scale, organised structures. Because they are dense and cold, they should be weakly ionized, and hence concerned by non-ideal plasma effects, such as the Hall effect. We perform numerical simulations of non-stratified Keplerian discs, in the non-ideal magnetohydrodynamic framework. We show that the Hall effect causes self-organisation through three distinct stages. A weak Hall effect enhances turbulent transport. At intermediate strength, it produces magnetized vortices. A strong Hall effect generates axisymmetric zonal flows. These structures may trap dust particles, and thus influence planetary formation. The transport of angular momentum is quenched in the organised state, impugning the relevance of magneto-rotational turbulence as a driving mechanism of accretion in Hall dominated regions.

  7. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  8. Grand Challenges in Protoplanetary Disc Modelling

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Ilee, John D.; Forgan, Duncan H.; Facchini, Stefano; Price, Daniel J.; Boneberg, Dominika M.; Booth, Richard A.; Clarke, Cathie J.; Gonzalez, Jean-François; Hutchison, Mark A.; Kamp, Inga; Laibe, Guillaume; Lyra, Wladimir; Meru, Farzana; Mohanty, Subhanjoy; Panić, Olja; Rice, Ken; Suzuki, Takeru; Teague, Richard; Walsh, Catherine; Woitke, Peter; Community authors

    2016-10-01

    The Protoplanetary Discussions conference-held in Edinburgh, UK, from 2016 March 7th-11th-included several open sessions led by participants. This paper reports on the discussions collectively concerned with the multi-physics modelling of protoplanetary discs, including the self-consistent calculation of gas and dust dynamics, radiative transfer, and chemistry. After a short introduction to each of these disciplines in isolation, we identify a series of burning questions and grand challenges associated with their continuing development and integration. We then discuss potential pathways towards solving these challenges, grouped by strategical, technical, and collaborative developments. This paper is not intended to be a review, but rather to motivate and direct future research and collaboration across typically distinct fields based on community-driven input, to encourage further progress in our understanding of circumstellar and protoplanetary discs.

  9. Cervical disc arthroplasty: Pros and cons

    PubMed Central

    Moatz, Bradley; Tortolani, P. Justin

    2012-01-01

    Background: Cervical disc arthroplasty has emerged as a promising potential alternative to anterior cervical discectomy and fusion (ACDF) in appropriately selected patients. Despite a history of excellent outcomes after ACDF, the question as to whether a fusion leads to adjacent segment degeneration remains unanswered. Numerous US investigational device exemption trials comparing cervical arthroplasty to fusion have been conducted to answer this question. Methods: This study reviews the current research regarding cervical athroplasty, and emphasizes both the pros and cons of arthroplasty as compared with ACDF. Results: Early clinical outcomes show that cervical arthroplasty is as effective as the standard ACDF. However, this new technology is also associated with an expanding list of novel complications. Conclusion: Although there is no definitive evidence that cervical disc replacement reduces the incidence of adjacent segment degeneration, it does show other advantages; for example, faster return to work, and reduced need for postoperative bracing. PMID:22905327

  10. Thalamic Pain Misdiagnosed as Cervical Disc Herniation.

    PubMed

    Lim, Tae Ha; Choi, Soo Il; Yoo, Jee In; Choi, Young Soon; Lim, Young Su; Sang, Bo Hyun; Bang, Yun Sic; Kim, Young Uk

    2016-04-01

    Thalamic pain is a primary cause of central post-stroke pain (CPSP). Clinical symptoms vary depending on the location of the infarction and frequently accompany several pain symptoms. Therefore, correct diagnosis and proper examination are not easy. We report a case of CPSP due to a left acute thalamic infarction with central disc protrusion at C5-6. A 45-year-old-male patient experiencing a tingling sensation in his right arm was referred to our pain clinic under the diagnosis of cervical disc herniation. This patient also complained of right cramp-like abdominal pain. After further evaluations, he was diagnosed with an acute thalamic infarction. Therefore detailed history taking should be performed and examiners should always be aware of other symptoms that could suggest a more dangerous disease.

  11. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  12. Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect

    PubMed Central

    Garway-Heath, D.; Ruben, S.; Viswanathan, A.; Hitchings, R.

    1998-01-01

    AIMS—The vertical cup/disc ratio (CDR) has long been used in the assessment of the glaucoma suspect, though the wide range of CDR values in the normal population limits its use. Cup size is related physiologically to disc size and pathologically to glaucomatous damage. Disc size can be measured at the slit lamp as the vertical disc diameter (DD). The ability of the CDR, in relation to DD, to identify glaucomatous optic discs was investigated.
METHODS—88 normal, 53 early glaucoma, and 59 ocular hypertensive subjects underwent stereoscopic optic disc photography and clinical biometry. Photographs were analysed in a masked fashion by computer assisted planimetry. The relation between vertical cup diameter and DD was explored by linear regression, and expressed in terms of CDR. The upper limit of normal was defined by the 95% prediction intervals of this regression (method 1) and by the upper 97.5 percentile for CDR (method 2). The sensitivity and specificity of CDR to identify an optic disc as glaucomatous was tested with these disc size dependent and disc size independent cut offs in small, medium, and large discs.
RESULTS—The CDR was related to DD by the equation CDR = (−1.31 + (1.194 × DD))/DD. The sensitivity in small, medium, and large discs was 80%, 60%, and 38% respectively for method 1 and 33%, 67%, and 63% respectively for method 2. Specificity was 98.9% (method 1) and 97.7% (method 2).
CONCLUSIONS—The CDR, relative to disc size, is useful clinically, especially to assist in identifying small glaucomatous discs.

 Keywords: cup/disc ratio; glaucoma; imaging PMID:9924296

  13. The Astral Curved Disc of Chevroches (France)

    NASA Astrophysics Data System (ADS)

    Devevey, F. Rousseau, A.

    2009-08-01

    The excavation of the unexplored secondary agglomeration in Chevroches (Nièvre), from 2001 to 2002, directed by F. Devevey (INRAP), has led to the discovery of an astrological bronze curved disc of a type unknown in the ancient world; it is inscribed with three lines in Greek transcribing Egyptian an Roman months, and the twelve signs of the zodiac. This article presents the first observations.

  14. Development of fluorescent multilayer disc structure

    NASA Astrophysics Data System (ADS)

    Beliak, Ievgen; Butenko, Larisa

    2011-09-01

    The fluorescent multilayer disc (FMD) consists of a substrate and the sandwich-structure of information and intermediate layers. While all the structure of the disc is transparent and homogeneous the parasitic signal will be caused mostly by photoluminescence (PL) and absorption of pits areas where laser light is unfocused. At large number of layers (10 or more) the noise level will get significant value, so it was suggested to derive readout signal as a variable one. Also it was proposed to record information only by the lands, to decrease the absorbance level and thus uncontrolled changing of the noise level. Furthermore in the FMD information layer there are inner and outside peripheral areas which hold a stable level of parasitic signal during readout from the edges of the disc. While the PL readout signal is spatially isotropic the optical head of the FMD drive receives just a part of the probing beam energy. PL quantum yield, absorption factor, receiver systems exposure loss coefficients are other reasons of the low PL signal. Thus the problem of the low SNR in this case is a major one and the only way of its solving is synthesis of the dye with a high PL quantum yield. The PL relaxation time on the other hand is a main feature of the data reading rate and therefore selection of the appropriate recording material will allow to bring this parameter in accordance to parameters of modern optical discs. To achieve this goal the composite organic pyrazoline dyes where synthesized and investigated as effective medium with a PL quantum yield up to 60-70%, relaxation time less than 100 ns, PL wide spectrum and opportunity of two-photon absorption. These parameters were further improved by a method based on the performance of organic dye molecules in the zeolite matrix.

  15. Unified User Interface to Support Effective and Intuitive Data Discovery, Dissemination, and Analysis at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Hegde, M.; Bryant, K.; Johnson, J. E.; Ritrivi, A.; Shen, S.; Volmer, B.; Pham, L. B.

    2015-01-01

    Goddard Earth Sciences Data and Information Services Center (GES DISC) has been providing access to scientific data sets since 1990s. Beginning as one of the first Earth Observing System Data and Information System (EOSDIS) archive centers, GES DISC has evolved to offer a wide range of science-enabling services. With a growing understanding of needs and goals of its science users, GES DISC continues to improve and expand on its broad set of data discovery and access tools, sub-setting services, and visualization tools. Nonetheless, the multitude of the available tools, a partial overlap of functionality, and independent and uncoupled interfaces employed by these tools often leave the end users confused as of what tools or services are the most appropriate for a task at hand. As a result, some the services remain underutilized or largely unknown to the users, significantly reducing the availability of the data and leading to a great loss of scientific productivity. In order to improve the accessibility of GES DISC tools and services, we have designed and implemented UUI, the Unified User Interface. UUI seeks to provide a simple, unified, and intuitive one-stop shop experience for the key services available at GES DISC, including sub-setting (Simple Subset Wizard), granule file search (Mirador), plotting (Giovanni), and other services. In this poster, we will discuss the main lessons, obstacles, and insights encountered while designing the UUI experience. We will also present the architecture and technology behind UUI, including NodeJS, Angular, and Mongo DB, as well as speculate on the future of the tool at GES DISC as well as in a broader context of the Space Science Informatics.

  16. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  17. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  18. Lumbar Disc Herniation Presented with Contralateral Symptoms

    PubMed Central

    Kim, Pius; Ju, Chang Il; Kim, Hyeun Sung; Kim, Seok Won

    2017-01-01

    Objective This study aimed to unravel the putative mechanism underlying the neurologic deficits contralateral to the side with lumbar disc herniation (LDH) and to elucidate the treatment for this condition. Methods From January 2009 to June 2015, 8 patients with LDH with predominantly contralateral neurologic deficits underwent surgical treatment on the side with LDH with or without decompressing the symptomatic side. A retrospective review of charts and radiological records of these 8 patients was performed. The putative mechanisms underlying the associated contralateral neurological deficits, magnetic resonance imaging (MRI), electromyography (EMG), and the adequate surgical approach are discussed here. Results MRI revealed a similar laterally skewed paramedian disc herniation, with the apex deviated from the symptomatic side rather than directly compressing the nerve root; this condition may generate a contralateral traction force. EMG revealed radiculopathies in both sides of 6 patients and in the herniated side of 2 patients. Based on EMG findings and the existence of suspicious lateral recess stenosis of the symptomatic side, 6 patients underwent bilateral decompression of nerve roots and 2 were subjected to a microscopic discectomy to treat the asymptomatic disc herniation. No specific conditions such as venous congestion, nerve root anomaly or epidural lipomatosis were observed, which may be considered the putative pathomechanism causing the contralateral neurological deficits. The symptoms resolved significantly after surgery. Conclusion The traction force generated on the contralateral side and lateral recess stenosis, rather than direct compression, may cause the contralateral neurologic deficits observed in LDH. PMID:28264243

  19. Engineering alginate for intervertebral disc repair.

    PubMed

    Bron, Johannes L; Vonk, Lucienne A; Smit, Theodoor H; Koenderink, Gijsje H

    2011-10-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find preparation conditions where the viscoelastic behaviour mimics that of the NP. In addition, we measured the effect of variations in scaffold stiffness on the expression of extracellular matrix molecules specific to the NP (proteoglycans and collagen) by native NP cells. We prepared sample discs of different concentrations of alginate (1%-6%) by two different methods, diffusion and in situ gelation. The stiffness increased with increasing alginate concentration, while the loss tangent (dissipative behaviour) remained constant. The diffusion samples were ten-fold stiffer than samples prepared by in situ gelation. Sample discs prepared from 2% alginate by diffusion closely matched the stiffness and loss tangent of the NP. The stiffness of all samples declined upon prolonged incubation in medium, especially for samples prepared by diffusion. The biosynthetic phenotype of native cells isolated from NPs was preserved in alginate matrices up to 4 weeks of culturing. Gene expression levels of extracellular matrix components were insensitive to alginate concentration and corresponding matrix stiffness, likely due to the poor adhesiveness of the cells to alginate. In conclusion, alginate can mimic the viscoelastic properties of the NP and preserve the biosynthetic phenotype of NP cells but certain limitations like long-term stability still have to be addressed.

  20. Testing hydrodynamics schemes in galaxy disc simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  1. Spinning disc atomisation process: Modelling and computations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sisoev, Grigory; Shikhmurzaev, Yulii

    2016-11-01

    The atomisation of liquids using a spinning disc (SDA), where the centrifugal force is used to generate a continuous flow, with the liquid eventually disintegrating into drops which, on solidification, become particles, is a key element in many technologies. Examples of such technologies range from powder manufacturing in metallurgy to various biomedical applications. In order to be able to control the SDA process, it is necessary to understand it as a whole, from the feeding of the liquid and the wave pattern developing on the disc to the disintegration of the liquid film into filaments and these into drops. The SDA process has been the subject of a number of experimental studies and some elements of it, notably the film on a spinning disc and the dynamics of the jets streaming out from it, have been investigated theoretically. However, to date there have been no studies of the process as a whole, including, most importantly, the transition zone where the film that has already developed a certain wave pattern disintegrates into jets that spiral out. The present work reports some results of an ongoing project aimed at producing a definitive map of regimes occurring in the SDA process and their outcome.

  2. Arrhythmogenic cardiomyopathy: a disease of intercalated discs.

    PubMed

    Calore, Martina; Lorenzon, Alessandra; De Bortoli, Marzia; Poloni, Giulia; Rampazzo, Alessandra

    2015-06-01

    Arrhythmogenic cardiomyopathy (ACM) is an acquired progressive disease having an age-related penetrance and showing clinical manifestations usually during adolescence and young adulthood. It is characterized clinically by a high incidence of severe ventricular tachyarrhythmias and sudden cardiac death and pathologically by degeneration of ventricular cardiomyocytes with replacement by fibro-fatty tissue. Whereas, in the past, the disease was considered to involve only the right ventricle, more recent clinical studies have established that the left ventricle is frequently involved. ACM is an inherited disease in up to 50% of cases, with predominantly an autosomal dominant pattern of transmission, although recessive inheritance has also been described. Since most of the pathogenic mutations have been identified in genes encoding desmosomal proteins, ACM is currently defined as a disease of desmosomes. However, on the basis of the most recent description of the intercalated disc organization and of the identification of a novel ACM gene encoding for an area composita protein, ACM can be considered as a disease of the intercalated disc, rather than only as a desmosomal disease. Despite increasing knowledge of the genetic basis of ACM, we are just beginning to understand early molecular events leading to cardiomyocyte degeneration, fibrosis and fibro-fatty substitution. This review summarizes recent advances in our comprehension of the link between the molecular genetics and pathogenesis of ACM and of the novel role of cardiac intercalated discs.

  3. Risk Factors for Recurrent Lumbar Disc Herniation

    PubMed Central

    Huang, Weimin; Han, Zhiwei; Liu, Jiang; Yu, Lili; Yu, Xiuchun

    2016-01-01

    Abstract Recurrent lumbar disc herniation (rLDH) is a common complication following primary discectomy. This systematic review aimed to investigate the current evidence on risk factors for rLDH. Cohort or case-control studies addressing risk factors for rLDH were identified by search in Pubmed (Medline), Embase, Web of Science, and Cochrane library from inception to June 2015. Relevant results were pooled to give overall estimates if possible. Heterogeneity among studies was examined and publication bias was also assessed. A total of 17 studies were included in this systematic review. Risk factors that had significant relation with rLDH were smoking (OR 1.99, 95% CI 1.53–2.58), disc protrusion (OR 1.79, 95% CI 1.15–2.79), and diabetes (OR 1.19, 95% CI 1.06–1.32). Gender, BMI, occupational work, level, and side of herniation did not correlate with rLDH significantly. Based on current evidence, smoking, disc protrusion, and diabetes were predictors for rLDH. Patients with these risk factors should be paid more attention for prevention of recurrence after primary surgery. More evidence provided by high-quality observational studies is still needed to further investigate risk factors for rLDH. PMID:26765413

  4. Method and system for assigning a confidence metric for automated determination of optic disc location

    DOEpatents

    Karnowski, Thomas P [Knoxville, TN; Tobin, Jr., Kenneth W.; Muthusamy Govindasamy, Vijaya Priya [Knoxville, TN; Chaum, Edward [Memphis, TN

    2012-07-10

    A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.

  5. Be discs in binary systems - I. Coplanar orbits

    NASA Astrophysics Data System (ADS)

    Panoglou, Despina; Carciofi, Alex C.; Vieira, Rodrigo G.; Cyr, Isabelle H.; Jones, Carol E.; Okazaki, Atsuo T.; Rivinius, Thomas

    2016-09-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar binaries. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two limiting cases with respect to the effects of eccentricity: in circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc structure appears smaller in size, more elongated and more massive for small viscosity parameter, small orbital separation and/or high mass ratio. In highly eccentric orbits, the effects are more complex, with the disc structure strongly dependent on the orbital phase. We also studied the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.

  6. Solute transport in intervertebral disc: experiments and finite element modeling.

    PubMed

    Das, D B; Welling, A; Urban, J P G; Boubriak, O A

    2009-04-01

    Loss of nutrient supply to the human intervertebral disc (IVD) cells is thought to be a major cause of disc degeneration in humans. To address this issue, transport of molecules of different size have been analyzed by a combination of experimental and modeling studies. Solute transport has been compared for steady-state and transient diffusion of several different solutes with molecular masses in the range 3-70 kDa, injected into parts of the disc where degeneration is thought most likely to occur first and into the blood supply to the disc. Diffusion coefficients of fluorescently tagged dextran molecules of different molecular weights have been measured in vitro using the concentration gradient technique in thin specimens of disc outer annulus and nucleus pulposus. Diffusion coefficients were found to decrease with molecular weight following a nonlinear relationship. Diffusion coefficients changed more rapidly for solutes with molecular masses less than 10 kDa. Although unrealistic or painful, solutes injected directly into the disc achieve the largest disc coverage with concentrations that would be high enough to be of practical use. Although more practical, solutes injected into the blood supply do not penetrate to the central regions of the disc and their concentrations dissipate more rapidly. Injection into the disc would be the best method to get drugs or growth factors to regions of degeneration in IVDs quickly; else concentrations of solute must be kept at a high value for several hours in the blood supply to the discs.

  7. BP Piscium: its flaring disc imaged with SPHERE/ZIMPOL★

    NASA Astrophysics Data System (ADS)

    de Boer, J.; Girard, J. H.; Canovas, H.; Min, M.; Sitko, M.; Ginski, C.; Jeffers, S. V.; Mawet, D.; Milli, J.; Rodenhuis, M.; Snik, F.; Keller, C. U.

    2017-03-01

    Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d ≈ 80 pc, or a post-main sequence G giant at d ≈ 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson-Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with MCMAX radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.

  8. Automatic sets and Delone sets

    NASA Astrophysics Data System (ADS)

    Barbé, A.; von Haeseler, F.

    2004-04-01

    Automatic sets D\\subset{\\bb Z}^m are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D\\subset{\\bb Z}^m to be a Delone set in {\\bb R}^m . The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples.

  9. Clinically-Relevant Cell Sources for TMJ Disc Engineering

    PubMed Central

    Johns, D.E.; Wong, M. E.; Athanasiou, K.A.

    2010-01-01

    Tissue-engineering of the temporomandibular joint (TMJ) disc aims to provide patients with TMJ disorders an option to replace diseased tissue with autologous, functional tissue. This study examined clinically-relevant cell sources by comparing costal chondrocytes, dermal fibroblasts, a mixture of the two, and TMJ disc cells in a scaffoldless tissue-engineering approach. It was hypothesized that all constructs would produce matrix relevant to the TMJ disc, but the mixture constructs were expected to appear most like the TMJ disc constructs. Costal chondrocyte and mixture constructs were morphologically and biochemically superior to the TMJ disc and dermal fibroblast constructs, and their compressive properties were not significantly different. Costal chondrocyte constructs produced almost 40 times more collagen and 800 times more glycosaminoglycans than TMJ constructs. This study demonstrates the ability of costal chondrocytes to produce extracellular matrix that may function in a TMJ disc replacement. PMID:18502963

  10. Accretion disc viscosity: a limit on the anisotropy

    NASA Astrophysics Data System (ADS)

    Nixon, Chris

    2015-07-01

    Observations of warped discs can give insight into the nature of angular momentum transport in accretion discs. Only a few objects are known to show strong periodicity on long time-scales, but when such periodicity is present it is often attributed to precession of the accretion disc. The X-ray binary Hercules X-1/HZ Herculis (Her X-1) is one of the best examples of such periodicity and has been linked to disc precession since it was first observed. By using the current best-fitting models to Her X-1, which invoke precession driven by radiation warping, I place a constraint on the effective viscosities that act in a warped disc. These effective viscosities almost certainly arise due to turbulence induced by the magnetorotational instability. The constraints derived here are in agreement with analytical and numerical investigations into the nature of magnetohydrodynamic disc turbulence, but at odds with some recent global simulations.

  11. Turbulent diffusion of large solids in a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Carballido, Augusto; Bai, Xue-Ning; Cuzzi, Jeffrey N.

    2011-07-01

    We study the turbulent diffusion of solids in a protoplanetary disc, in order to discriminate between two existing analytical models of the turbulent diffusion process. These two models predict the same radial turbulent diffusion coefficient Dp, x for small particles (τs≪ 1), but differ in the value of Dp, x for large particles (τs≫ 1, where τs is the dimensionless particle stopping time, closely related to particle radius). The model given by Youdin & Lithwick (YL) takes into account orbital oscillations of the solids, while the other model given by Cuzzi, Dobrovolskis & Champney (CDC) does not. The CDC model predicts ? for τs≫ 1, but the YL model gives ?. To investigate, we perform 3D, magnetohydrodynamic (MHD) numerical simulations. Turbulence in the disc is generated by the magnetorotational instability. The ATHENA code is used to solve the equations of ideal MHD in the shearing-box approximation, which allows us to model a local region of the disc with the relevant orbital dynamics. Solids are represented by Lagrangian particles that interact with the gas through drag, and are also subject to orbital forces. The aerodynamic coupling of particles to the gas is parametrized by τs. In one set of simulations, particle displacements along the radial direction are measured in a shearing box without vertical stratification of the gas density. In another simulation, the vertical component of stellar gravity is included, with a Gaussian gas density vertical profile, but the particle motion is restricted to fixed planes of constant height z. In both cases, the radial diffusion coefficient as a function of stopping time τs is in very good agreement with the YL model. To study particle vertical diffusion, we use the unstratified shearing box, in which we allow the effects of vertical gravity and turbulence on the particles to balance out, resulting in particle layers whose scaleheight varies approximately as ?. Based on this result and YL, we calculate a

  12. Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows

    NASA Astrophysics Data System (ADS)

    Kanjiyani, Shezan

    is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.

  13. New Brown Dwarf Discs in Upper Scorpius Observed with WISE

    NASA Technical Reports Server (NTRS)

    Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.; Marsh, K. A.; Padgett, D.; Ressler, M. E.

    2013-01-01

    We present a census of the disc population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour magnitude and colour colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 microns and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars.We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5 10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.

  14. Herschel DEBRIS survey of debris discs around A stars

    NASA Astrophysics Data System (ADS)

    Thureau, N.

    2014-11-01

    The Herschel DEBRIS survey (Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) brings a unique perspective to the study of debris discs around main-sequence A-type stars. We have observed a sample of 89 A-stars with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel space telescope at 100 and 160 μm. A statistical analysis of the data shows a lower debris disc rate than has previously been found. The drop is due in part to the fact that some excess sources were resolved as background objects by the superior angular resolution (a factor of 2.5) of PACS-100 relative to that of Spitzer (MIPS-70). We found a 3-σ detection rate of 23 myblue which is similar to the the detection rate around main-sequence F, G and K stars. Most of the debris discs were detected around the youngest and hottest stars in our sample. The incidence of discs in single and multiple systems was similar. The debris discs in multiple systems ware found either in tight binary systems (<1 AU) or wide ones (>100 AU). Debris discs in both tight and wide binary systems have physical properties that are statistically similar to those of discs around single stars. We did not detect any debris discs in binary systems with intermediate separation, in which the orbit and the debris disc would be on the same scale. One possible explanation is that discs in intermediate systems have evolved much faster owing to the disc-companion interactions and they are now undetectable.

  15. Glaucomatous-Type Optic Discs in High Myopia

    PubMed Central

    Nagaoka, Natsuko; Jonas, Jost B.; Morohoshi, Kei; Moriyama, Muka; Shimada, Noriaki; Yoshida, Takeshi; Ohno-Matsui, Kyoko

    2015-01-01

    Purpose To assess the prevalence of glaucoma in patients with high myopia defined as myopic refractive error of >-8 diopters or axial length ≥26.5 mm. Methods The hospital-based observational study included 172 patients (336 eyes) with a mean age of 61.9±12.3 years and mean axial length of 30.1±2.3 mm (range: 24.7–39.1mm). Glaucomatous-type optic discs were defined by glaucomatous optic disc appearance. Glaucoma was defined by glaucomatous optic disc appearance and glaucomatous Goldmann visual field defects not corresponding with myopic macular changes. Results Larger disc area (mean: 3.18±1.94 mm2) was associated with longer axial length (P<0.001; standardized correlation coefficient: 0.45). Glaucoma was detected in 94 (28%; 95% Confidence intervals: 23%, 33%) eyes. In multivariate analysis, glaucoma prevalence was 3.2 times higher (P<0.001) in megalodiscs (>3.79 mm2) than in normal-sized discs or small discs (<1.51 mm2) after adjusting for older age. Axial length was not significantly (P = 0.38) associated with glaucoma prevalence in that model. Glaucoma prevalence increased by a factor of 1.39 for each increase in optic disc area by one mm2. Again, axial length was not significantly (P = 0.38) associated with glaucoma prevalence when added to this multivariate model. Conclusion Within highly myopic individuals, glaucoma prevalence increased with larger optic disc size beyond a disc area of 3.8 mm2. Highly myopic megalodiscs as compared to normal sized discs or small discs had a 3.2 times higher risk for glaucomatous optic nerve neuropathy. The increased glaucoma prevalence in axial high myopia was primarily associated with axial myopia associated disc enlargement and not with axial elongation itself. PMID:26425846

  16. Audiovisual Bounce-Inducing Effect: Attention Alone Does Not Explain Why the Discs Are Bouncing

    ERIC Educational Resources Information Center

    Grassi, Massimo; Casco, Clara

    2009-01-01

    Two discs moving from opposite points in space, overlapping and stopping at the other disc's starting point, can be seen as either bouncing or streaming through each other. With silent displays, observers report the discs as streaming, whereas if a sound is played when the discs touch each other, observers report the discs as bouncing. The origin…

  17. Text Sets.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of approximately 30 titles grouped in text sets. Defines a text set as five to ten books on a particular topic or theme. Discusses books on the following topics: living creatures; pirates; physical appearance; natural disasters; and the Irish potato famine. (SG)

  18. Global multifluid simulations of the magnetorotational instability in radially stratified protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Rodgers-Lee, D.; Ray, T. P.; Downes, T. P.

    2016-11-01

    The redistribution of angular momentum is a long standing problem in our understanding of protoplanetary disc (PPD) evolution. The magnetorotational instability (MRI) is considered a likely mechanism. We present the results of a study involving multifluid global simulations including Ohmic dissipation, ambipolar diffusion and the Hall effect in a dynamic, self-consistent way. We focus on the turbulence resulting from the non-linear development of the MRI in radially stratified PPDs and compare with ideal magnetohydrodynamics simulations. In the multifluid simulations, the disc is initially set up to transition from a weak Hall-dominated regime, where the Hall effect is the dominant non-ideal effect but approximately the same as or weaker than the inductive term, to a strong Hall-dominated regime, where the Hall effect dominates the inductive term. As the simulations progress, a substantial portion of the disc develops into a weak Hall-dominated disc. We find a transition from turbulent to laminar flow in the inner regions of the disc, but without any corresponding overall density feature. We introduce a dimensionless parameter, αRM, to characterize accretion with αRM ≳ 0.1 corresponding to turbulent transport. We calculate the eddy turnover time, teddy, and compared this with an effective recombination time-scale, trcb, to determine whether the presence of turbulence necessitates non-equilibrium ionization calculations. We find that trcb is typically around three orders of magnitude smaller than teddy. Also, the ionization fraction does not vary appreciably. These two results suggest that these multifluid simulations should be comparable to single-fluid non-ideal simulations.

  19. Risk Factors for Postoperative Pain Intensity in Patients Undergoing Lumbar Disc Surgery: A Systematic Review

    PubMed Central

    Löbner, Margrit; Stein, Janine; Konnopka, Alexander; Meisel, Hans J.; Günther, Lutz; Meixensberger, Jürgen; Stengler, Katarina; König, Hans-Helmut; Riedel-Heller, Steffi G.

    2017-01-01

    Objectives Pain relief has been shown to be the most frequently reported goal by patients undergoing lumbar disc surgery. There is a lack of systematic research investigating the course of postsurgical pain intensity and factors associated with postsurgical pain. This systematic review focuses on pain, the most prevalent symptom of a herniated disc as the primary outcome parameter. The aims of this review were (1) to examine how pain intensity changes over time in patients undergoing surgery for a lumbar herniated disc and (2) to identify socio-demographic, medical, occupational and psychological factors associated with pain intensity. Methods Selection criteria were developed and search terms defined. The initial literature search was conducted in April 2015 and involved the following databases: Web of Science, Pubmed, PsycInfo and Pubpsych. The course of pain intensity and associated factors were analysed over the short-term (≤ 3 months after surgery), medium-term (> 3 months and < 12 months after surgery) and long-term (≥ 12 months after surgery). Results From 371 abstracts, 85 full-text articles were reviewed, of which 21 studies were included. Visual analogue scales indicated that surgery helped the majority of patients experience significantly less pain. Recovery from disc surgery mainly occurred within the short-term period and later changes of pain intensity were minor. Postsurgical back and leg pain was predominantly associated with depression and disability. Preliminary positive evidence was found for somatization and mental well-being. Conclusions Patients scheduled for lumbar disc surgery should be selected carefully and need to be treated in a multimodal setting including psychological support. PMID:28107402

  20. Apparent quasar disc sizes in the "bird's nest" paradigm

    NASA Astrophysics Data System (ADS)

    Abolmasov, P.

    2017-04-01

    Context. Quasar microlensing effects make it possible to measure the accretion disc sizes around distant supermassive black holes that are still well beyond the spatial resolution of contemporary instrumentation. The sizes measured with this technique appear inconsistent with the standard accretion disc model. Not only are the measured accretion disc sizes larger, but their dependence on wavelength is in most cases completely different from the predictions of the standard model. Aims: We suggest that these discrepancies may arise not from non-standard accretion disc structure or systematic errors, as it was proposed before, but rather from scattering and reprocession of the radiation of the disc. In particular, the matter falling from the gaseous torus and presumably feeding the accretion disc may at certain distances become ionized and produce an extended halo that is free from colour gradients. Methods: A simple analytical model is proposed assuming that a geometrically thick translucent inflow acts as a scattering mirror changing the apparent spatial properties of the disc. This inflow may be also identified with the broad line region or its inner parts. Results: Such a model is able to explain the basic properties of the apparent disc sizes, primarily their large values and their shallow dependence on wavelength. The only condition required is to scatter a significant portion of the luminosity of the disc. This can easily be fulfilled if the scattering inflow has a large geometrical thickness and clumpy structure.

  1. Spiral-driven accretion in protoplanetary discs . III. Tridimensional simulations

    NASA Astrophysics Data System (ADS)

    Hennebelle, Patrick; Lesur, Geoffroy; Fromang, Sébastien

    2017-03-01

    Context. Understanding how accretion proceeds in proto-planetary discs, and more generally, understanding their dynamics, is a crucial questions that needs to be answered to explain the conditions in which planets form. Aims: The role that accretion of gas from the surrounding molecular cloud onto the disc may have on its structure needs to be quantified. Methods: We performed tridimensional simulations using the Cartesian AMR code RAMSES of an accretion disc that is subject to infalling material. Results: For the aspect ratio of H/R ≃ 0.15 and disc mass Md ≃ 10-2M⊙ used in our study, we find that for typical accretion rates of the order of a few 10-7M⊙ yr-1, values of the α parameter as high as a few 10-3 are inferred. The mass that is accreted in the inner part of the disc is typically at least 50% of the total mass that has been accreted onto the disc. Conclusions: Our results suggest that external accretion of gas at moderate values onto circumstellar discs may trigger prominent spiral arms that are reminiscent of recent observations made with various instruments, and may lead to significant transport through the disc. If confirmed from observational studies, such accretion may therefore influence disc evolution.

  2. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  3. The effect of radiative feedback on disc fragmentation

    NASA Astrophysics Data System (ADS)

    Mercer, Anthony; Stamatellos, Dimitris

    2017-02-01

    Protostellar discs may become massive enough to fragment producing secondary low-mass objects: planets, brown dwarfs and low-mass stars. We study the effect of radiative feedback from such newly formed secondary objects using radiative hydrodynamic simulations. We compare the results of simulations without any radiative feedback from secondary objects with those where two types of radiative feedback are considered: (i) continuous and (ii) episodic. We find that (i) continuous radiative feedback stabilizes the disc and suppresses further fragmentation, reducing the number of secondary objects formed; (ii) episodic feedback from secondary objects heats and stabilizes the disc when the outburst occurs, but shortly after the outburst stops, the disc becomes unstable and fragments again. However, fewer secondary objects are formed compared to the case without radiative feedback. We also find that the mass growth of secondary objects is mildly suppressed due to the effect of their radiative feedback. However, their mass growth also depends on where they form in the disc and on their subsequent interactions, such that their final masses are not drastically different from the case without radiative feedback. We find that the masses of secondary objects formed by disc fragmentation are from a few MJ to a few 0.1 M⊙. Planets formed by fragmentation tend to be ejected from the disc. We conclude that planetary-mass objects on wide orbits (wide-orbit planets) are unlikely to form by disc fragmentation. Nevertheless, disc fragmentation may be a significant source of free-floating planets and brown dwarfs.

  4. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  5. Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics.

    PubMed

    Reimann, Lena; Wiese, Heike; Leber, Yvonne; Schwäble, Anja N; Fricke, Anna L; Rohland, Anne; Knapp, Bettina; Peikert, Christian D; Drepper, Friedel; van der Ven, Peter F M; Radziwill, Gerald; Fürst, Dieter O; Warscheid, Bettina

    2017-03-01

    The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions

  6. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  7. Disc and condylar head position in the temporomandibular joint with and without disc displacement.

    PubMed

    Badel, Tomislav; Pavicin, Ivana Savić; Jakovac, Marko; Kern, Josipa; Zadravec, Dijana

    2013-09-01

    The purpose of this study was to evaluate the difference between disc and condyle position between temporomandibular joints (TMJs) without disc displacement (DD) in asymptomatic volunteers, and patients who have DD in contralateral joints, respectively unilateral DD. Secondly, there were two TMJ groups which consisted of measurements from patients' symptomatic DD and volunteers with asymptomatic DD. The study included 79 TMJs of 40 patients with unilateral DD. In the group of 25 asymptomatic volunteers, 20 volunteers were without DD bilaterally (40 joints), while five had DD in at least one TMJ. All subjects were examined clinically and DD was confirmed by magnetic resonance imaging. Left and right TMJs were analysed independently for each participant based on their DD status (symptomatic, asymptomatic, and without DD). All asymptomatic TMJs did not have any clinical signs of TMJ functional abnormalities. There was a significant statistical difference between disc position among TMJs without DD in asymptomatic volunteers and TMJs without DD in patients (p = 0.016). Moreover, no significant differences were found between condyle position in the same groups of joints (p = 0.706). There were no significant differences in the DD position (p = 0.918) or condyle position (p = 0.453) between the group with asymptomatic volunteers' joints and the group with symptomatic patients' joints. There was a significant difference between patient and volunteers' joints without DD: the disc was positioned more anteriorly in patients' joints without DD than in joints of asymptomatic volunteers without DD.

  8. Does condylar height decrease more in temporomandibular joint nonreducing disc displacement than reducing disc displacement?

    PubMed Central

    Hu, Ying-Kai; Yang, Chi; Cai, Xie-Yi; Xie, Qian-Yang

    2016-01-01

    Abstract The aim of the study was to compare condylar height changes of anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) in temporomandibular joint (TMJ) quantitatively, to get a better understanding of the changes in condylar height of patients with anterior disc displacement who had received no treatment, and to provide useful information for treatment protocol. This longitudinal retrospective study enrolled 206 joints in 156 patients, which were divided into ADDWR group and ADDwoR group based on magnetic resonance imaging examination. The joints were assessed quantitatively for condylar height at initial and follow-up visits. Also, both groups were further divided into 3 subgroups according to age: <15 years group, 15 to 21 years group, and 22 to 35 years group. Paired t test and independent t test were used to assess intra- and intergroup differences. The average age of the ADDwR group was 19.65 years with a mean of 9.47 months’ follow-up. The follow-up interval of the patients with ADDwoR was 7.96 months, with a mean age of 18.51 years. Condylar height in ADDwoR tended to decrease more than those in ADDwR, especially during the pubertal growth spurt and with the presence of osteoarthrosis, meaning ADDwoR could cause a severe disturbance in mandibular development. Thus, an early disc repositioning was suggested to avoid decrease in condylar height. PMID:27583909

  9. ISASS Policy Statement – Lumbar Artificial Disc

    PubMed Central

    Garcia, Rolando

    2015-01-01

    Purpose The primary goal of this Policy Statement is to educate patients, physicians, medical providers, reviewers, adjustors, case managers, insurers, and all others involved or affected by insurance coverage decisions regarding lumbar disc replacement surgery. Procedures This Policy Statement was developed by a panel of physicians selected by the Board of Directors of ISASS for their expertise and experience with lumbar TDR. The panel's recommendation was entirely based on the best evidence-based scientific research available regarding the safety and effectiveness of lumbar TDR. PMID:25785243

  10. Development of an Optical Disc Recorder

    DTIC Science & Technology

    1977-02-01

    ILIP S LABORATORIE S rotary air bearing ( Model 4B). The air bearing has been direct- ly coupled to one end of the motor shaft. A 2000-line optical...available for 4 30 rps operation. 4.4 Materials Evaluation A Model 907 He-Ne laser was received from Spectra Physics. Output was found to be 25 mW in...Modulation was provided by a Harris Model 180 acoustoptic modulator. - • Pulse duration was approximately 500 nsec; disc rotation speed was 6 rps . Figure 8

  11. Cell therapy for the degenerating intervertebral disc.

    PubMed

    Tong, Wei; Lu, Zhouyu; Qin, Ling; Mauck, Robert L; Smith, Harvey E; Smith, Lachlan J; Malhotra, Neil R; Heyworth, Martin F; Caldera, Franklin; Enomoto-Iwamoto, Motomi; Zhang, Yejia

    2017-03-01

    Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since

  12. Effectiveness of Disc 'O' Sit cushions on attention to task in second-grade students with attention difficulties.

    PubMed

    Pfeiffer, Beth; Henry, Amy; Miller, Stephanie; Witherell, Suzie

    2008-01-01

    This study investigated the effectiveness of a type of dynamic seating system, the Disc 'O' Sit cushion (Gymnic, Osoppo, Italy), for improving attention to task among second-grade students with attention difficulties. Sixty-three second-grade students participated in the study. Using a randomized controlled trial design, 31 students were assigned to a treatment group, and 32 were assigned to a control group. Treatment group participants used Disc 'O' Sit cushions throughout the school day for a 2-week period. The teachers completed the Behavior Rating Inventory of Executive Functioning (Gioia, Isquith, Guy, & Kenworthy, 1996) for each participant before and after the intervention. An analysis of variance identified a statistically significant difference in the attention to task before and after the intervention for the treatment group. The results of the study provide preliminary evidence for the use of the Disc 'O' Sit cushion as an occupational therapy intervention to improve attention in the school setting.

  13. Optical methods for diagnostics and feedback control in laser-induced regeneration of spine disc and joint cartilages

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir

    2011-03-01

    In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.

  14. Through thick and thin: Structure of the Galactic thick disc from extragalactic surveys

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Hill, V.; Irwin, M.; Gilmore, G.; Wyse, R. F. G.; Tolstoy, E.; de Laverny, P.; Recio-Blanco, A.; Battaglia, G.; Starkenburg, E.

    2013-07-01

    Context. We aim to understand the accretion history of the Milky Way by exploring the vertical and radial properties of the Galactic thick disc. Aims: We study the chemical and kinematic properties of roughly a thousand spectra of faint magnitude foreground Galactic stars observed serendipitously during extra-galactic surveys in four lines-of-sight: three in the southern Galactic hemisphere (surveys of the Carina, Fornax and Sculptor dwarf spheroidal galaxies) and one in the northern Galactic hemisphere (a survey of the Sextans dwarf spheroidal galaxy). The foreground stars span distances up to ~3 kpc from the Galactic plane and Galactocentric radii up to 11 kpc. Methods: The stellar atmospheric parameters (effective temperature, surface gravity, metallicity) are obtained by an automated parameterisation pipeline and the distances of the stars are then derived by a projection of the atmospheric parameters on a set of theoretical isochrones using a Bayesian approach. The metallicity gradients are estimated for each line-of-sight and compared with predictions from the Besançon model of the Galaxy, in order to test the chemical structure of the thick disc. Finally, we use the radial velocities in each line-of-sight to derive a proxy for either the azimuthal or the vertical component of the orbital velocity of the stars. Results: Only three lines-of-sight have a sufficient number of foreground stars for a robust analysis. Towards Sextans in the Northern Galactic hemisphere and Sculptor in the South, we measure a consistent decrease in mean metallicity with height from the Galactic plane, suggesting a chemically symmetric thick disc. This decrease can either be due to an intrinsic thick disc metallicity gradient, or simply due to a change in the thin disc/thick disc population ratio and no intrinsic metallicity gradients for the thick disc. We favour the latter explanation. In contrast, we find evidence of an unpredicted metal-poor population in the direction of Carina

  15. GES DISC Datalist Enables Easy Data Selection For Natural Phenomena Studies

    NASA Technical Reports Server (NTRS)

    Li, Angela; Shie, Chung-Lin; Hegde, Mahabaleshwa; Petrenko, Maksym; Teng, William; Bryant, Keith; Liu, Zhong; Hearty, Thomas; Shen, Suhung; Seiler, Edward; Kempler, Steven

    2017-01-01

    In order to investigate and assess natural hazards such as tropical storms, winter storms, volcanic eruptions, floods, and drought in a timely manner, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been developing an efficient data search and access service. Called "Datalist," this service enables users to acquire their data of interest "all at once," with minimum effort. A Datalist is a virtual collection of predefined or user-defined data variables from one or more archived data sets. Datalists are more than just data. Datalists effectively provide users with a sophisticated integrated data and services package, including metadata, citation, documentation, visualization, and data-specific services (e.g., subset and OPeNDAP), all available from one-stop shopping. The predefined Datalists, created by the experienced GES DISC science support team, should save a significant amount of time that users would otherwise have to spend. The Datalist service is an extension of the new GES DISC website, which is completely data-driven. A Datalist, also known as "data bundle," is treated just as any other data set. Being a virtual collection, a Datalist requires no extra storage space.

  16. UUI: Unified User Interface to Support Effective and Intuitive Data Discovery, Dissemination, and Analysis at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Petrenko, M.; Bryant, K.; Johnson, J. E.; Ritrivi, A. J.; Shen, S.; Vollmer, B.; Pham, L.

    2015-12-01

    Goddard Earth Sciences Data and Information Services Center (GES DISC) has been providing access to scientific data sets since 1990s. Beginning as one of the first Earth Observing System Data and Information System (EOSDIS) archive centers, GES DISC has evolved to offer a wide range of science-enabling services. With a growing understanding of needs and goals of its science users, GES DISC continues to improve and expand on its broad set of data discovery and access tools, subsetting services, and visualization tools. Nonetheless, the multitude of the available tools, a partial overlap of functionality, and independent and uncoupled interfaces employed by these tools often leave the end users confused as of what tools or services are the most appropriate for a task at hand. As a result, some the services remain underutilized or largely unknown to the users, significantly reducing the availability of the data and leading to a great loss of scientific productivity. In order to improve the accessibility of GES DISC tools and services, we have designed and implemented UUI, the Unified User Interface. UUI seeks to provide a simple, unified, and intuitive one-stop shop experience for the key services available at GES DISC, including subsetting (Simple Subset Wizard), granule file search (Mirador), plotting (Giovanni), and other services. In this poster, we will discuss the main lessons, obstacles, and insights encountered while designing the UUI experience. We will also present the architecture and technology behind UUI, including NodeJS, Angular, and Mongo DB, as well as speculate on the future of the tool at GES DISC as well as in a broader context of the Space Science Informatics.

  17. The jet-disc connection in AGN

    NASA Astrophysics Data System (ADS)

    Sbarrato, T.; Padovani, P.; Ghisellini, G.

    2014-11-01

    We present our latest results on the connection between accretion rate and relativistic jet power in active galactic nuclei (AGN), by using a large sample which includes mostly blazars, but contains also some radio galaxies. The jet power can be traced by γ-ray luminosity in the case of blazars, and radio luminosity for both classes. The accretion-disc luminosity is instead traced by the broad emission lines. Among blazars, we find a correlation between broad line emission and the γ-ray or radio luminosities, suggesting a direct tight connection between jet power and accretion rate. We confirm that the observational differences between blazar subclasses reflect differences in the accretion regime, but with blazars only we cannot properly access the low-accretion regime. By introducing radio galaxies, we succeed in observing the fingerprint of the transition between radiatively efficient and inefficient accretion discs in the jetted AGN family. The transition occurs at the standard critical value Ld/LEdd ˜ 10-2 and it appears smooth. Below this value, the ionizing luminosity emitted by the accretion structure drops significantly.

  18. Bulk Comptonization by turbulence in accretion discs

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  19. Genetic Factors in Intervertebral Disc Degeneration

    PubMed Central

    Feng, Yi; Egan, Brian; Wang, Jinxi

    2016-01-01

    Low back pain (LBP) is a major cause of disability and imposes huge economic burdens on human society worldwide. Among many factors responsible for LBP, intervertebral disc degeneration (IDD) is the most common disorder and is a target for intervention. The etiology of IDD is complex and its mechanism is still not completely understood. Many factors such as aging, spine deformities and diseases, spine injuries, and genetic factors are involved in the pathogenesis of IDD. In this review, we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans. A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc (IVD), which may compromise the disc’s mechanical properties and metabolic activities. These genetic and proteomic studies have begun to shed light on the molecular basis of IDD, suggesting that genetic factors are important contributors to the onset and progression of IDD. By continuing to improve our understanding of the molecular mechanisms of IDD, specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. PMID:27617275

  20. The cellular memory disc of reprogrammed cells.

    PubMed

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  1. Risk Factors for Recurrent Lumbar Disc Herniations

    PubMed Central

    2014-01-01

    The most common complication after lumbar discectomy is reherniation. As the first step in reducing the rate of recurrence, many studies have been conducted to find out the factors that may increase the reherniation risk. Some reported factors are age, sex, the type of lumbar disc herniation, the amount of fragments removed, smoking, alcohol consumption and the length of restricted activities. In this review, the factors studied thus far are summarized, excepting factors which cannot be chosen or changed, such as age or sex. Apart from the factors shown here, many other risk factors such as diabetes, family history, history of external injury, duration of illness and body mass index are considered. Few are agreed upon by all. The reason for the diverse opinions may be that many clinical and biomechanical variables are involved in the prognosis following operation. For the investigation of risk factors in recurrent lumbar disc herniation, large-scale multicenter prospective studies will be required in the future. PMID:24761206

  2. Operative Management of Lumbar Degenerative Disc Disease

    PubMed Central

    Lee, Yu Chao; Osti, Orso Lorenzo

    2016-01-01

    Lumbar degenerative disc disease is extremely common. Current evidence supports surgery in carefully selected patients who have failed non-operative treatment and do not exhibit any substantial psychosocial overlay. Fusion surgery employing the correct grafting and stabilization techniques has long-term results demonstrating successful clinical outcomes. However, the best approach for fusion remains debatable. There is some evidence supporting the more complex, technically demanding and higher risk interbody fusion techniques for the younger, active patients or patients with a higher risk of non-union. Lumbar disc arthroplasty and hybrid techniques are still relatively novel procedures despite promising short-term and mid-term outcomes. Long-term studies demonstrating superiority over fusion are required before these techniques may be recommended to replace fusion as the gold standard. Novel stem cell approaches combined with tissue engineering therapies continue to be developed in expectation of improving clinical outcomes. Results with appropriate follow-up are not yet available to indicate if such techniques are safe, cost-effective and reliable in the long-term. PMID:27559465

  3. UUI: Reusable Spatial Data Services in Unified User Interface at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Hegde, Mahabaleshwa; Bryant, Keith; Pham, Long B.

    2016-01-01

    Unified User Interface (UUI) is a next-generation operational data access tool that has been developed at Goddard Earth Sciences Data and Information Services Center(GES DISC) to provide a simple, unified, and intuitive one-stop shop experience for the key data services available at GES DISC, including subsetting (Simple Subset Wizard -SSW), granule file search (Mirador), plotting (Giovanni), and other legacy spatial data services. UUI has been built based on a flexible infrastructure of reusable web services self-contained building blocks that can easily be plugged into spatial applications, including third-party clients or services, to easily enable new functionality as new datasets and services become available. In this presentation, we will discuss our experience in designing UUI services based on open industry standards. We will also explain how the resulting framework can be used for a rapid development, deployment, and integration of spatial data services, facilitating efficient access and dissemination of spatial data sets.

  4. The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Huang; Fei, Sun; Liang, Meng

    2016-08-01

    At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.

  5. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    PubMed Central

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  6. On the formation of planetary systems in photoevaporating transition discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline

    2017-01-01

    In protoplanetary discs, planetary cores must be at least 0.1 M⊕ at 1 au for migration to be significant; this mass rises to 1 M⊕ at 5 au. Planet formation models indicate that these cores form on million year time-scales. We report here a study of the evolution of 0.1 and 1 M⊕ cores, migrating from about 2 and 5 au, respectively, in million year old photoevaporating discs. In such a disc, a gap opens up at around 2 au after a few million years. The inner region subsequently accrete on to the star on a smaller time-scale. We find that, typically, the smallest cores form systems of non-resonant planets beyond 0.5 au with masses up to about 1.5 M⊕. In low-mass discs, the same cores may evolve in situ. More massive cores form systems of a few Earth-mass planets. They migrate within the inner edge of the disc gap only in the most massive discs. Delivery of material to the inner parts of the disc ceases with opening of the gap. Interestingly, when the heavy cores do not migrate significantly, the type of systems that are produced resembles our Solar system. This study suggests that low-mm flux transition discs may not form systems of planets on short orbits but may instead harbour Earth-mass planets in the habitable zone.

  7. Dust dynamics in 2D gravito-turbulent discs

    NASA Astrophysics Data System (ADS)

    Shi, Ji-Ming; Zhu, Zhaohuan; Stone, James M.; Chiang, Eugene

    2016-06-01

    The dynamics of solid bodies in protoplanetary discs are subject to the properties of any underlying gas turbulence. Turbulence driven by disc self-gravity shows features distinct from those driven by the magnetorotational instability (MRI). We study the dynamics of solids in gravito-turbulent discs with two-dimensional (in the disc plane), hybrid (particle and gas) simulations. Gravito-turbulent discs can exhibit stronger gravitational stirring than MRI-active discs, resulting in greater radial diffusion and larger eccentricities and relative speeds for large particles (those with dimensionless stopping times tstopΩ > 1, where Ω is the orbital frequency). The agglomeration of large particles into planetesimals by pairwise collisions is therefore disfavoured in gravito-turbulent discs. However, the relative speeds of intermediate-size particles (tstopΩ ˜ 1) are significantly reduced as such particles are collected by gas drag and gas gravity into coherent filament-like structures with densities high enough to trigger gravitational collapse. First-generation planetesimals may form via gravitational instability of dust in marginally gravitationally unstable gas discs.

  8. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular disc prosthesis (interpositional implant). (a) Identification. An interarticular disc...

  9. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Food and Drug Administration on or before March 30, 1999, for any interarticular disc...

  10. RADIOLOGICAL ANALYSIS OF EXPERIMENTAL DISC DEGENERATION IN RABBITS

    PubMed Central

    Vialle, Emiliano; Vialle, Luiz Roberto; Arruda, André de Oliveira; Riet, Ricardo Nascimento; Krieger, Antônio Bernardo de Queiroz

    2015-01-01

    Objective: To validate radiographic evaluation of a rabbit model for disc degeneration. Methods: Lumbar intervertebral discs of New Zealand rabbits were stabbed three times with a 18G needle at a limited depth of 5mm, through lateral approach. Serial radiographic images were taken on the early pre-and postoperative periods, and after four, eight and 12 weeks of the procedure, with subsequent analysis of disc height, osteophyte formation, endplate sclerosis, and presence of disc degeneration. The statistical analysis of data was validated by the Kappa coefficient, with a confidence interval (CI) of 95%. Results: A significant reduction of disc space was found on AP X-ray images after 12 postoperative weeks, with Kappa = 0.489 for CI 95% (0.25-0.72) with p < 0.001. X-ray signs of disc degeneration also presented Kappa = 0.63 for CI 95% (0.39-0.86) with p < 0.001. The remaining assessed criteria showed positive results, but with a lower Kappa value. Conclusion: The disc degeneration model using rabbits as proposed in this study was shown to be feasible, with positive X-ray correlation between pre- and postoperative images, validating the potential to induce disc degeneration in this animal model for future studies. PMID:27022512

  11. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  12. Goddard Earth Science Data and Information Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  13. Analytical Investigation on Squeal Phenomena Generated in Bicycle Disc Brakes

    NASA Astrophysics Data System (ADS)

    Nakae, Takashi; Sueoka, Atsuo; Ryu, Takahiro

    The squeal phenomenon is often generated in bicycle disc brakes. This paper deals analytically with the generation mechanism and the criterion of whether or not the squeal occurs. According to the experimental studies, it has been made clear that the squeal is mainly in-plane vibration in the direction of disc surface with the frequency about 1kHz caused by frictional characteristics with negative slope with respect to the relative velocity. An analytical model of the bicycle disc brake system has been devised to confirm the experimental results, in which a coupled in-plane and out-of-plane vibrating system is composed of the disc, hub, caliper and spokes. The resulting frequency of squeal and the unstable vibration modes of the disc and spokes from the analytical model agreed well with the experimental results.

  14. [L1-2 lumbar disc herniation: a case report].

    PubMed

    Monobe, T; Fujita, T; Nakaue, Y; Nishi, N

    1996-03-01

    A 49-year-old female presented a two-year history of pain in the right thigh and lower back. Neurological examination on admission demonstrated weakness of the right iliopsoas and quadriceps, hypesthesia on the right L1-2 dermatome. Radiological examination including myelography, CT myelography and discography disclosed an L1-2 herniated disc. Sagittal MRI also revealed an L1-2, an L4-5 and L5-S1 protruded disc. A posterior microdiscectomy (Love's method) was performed for the L1-2 disc. A controlateral protruded disc which compressed the L-2 nerve root was identified and partially removed. The postoperative myelography showed residual disc. The patient was free from pain and regained normal sensorimotor function. Love's posterior microdiscectomy has a disadvantage in that the operative field is limited. Careful surgical procedure was needed to avoid injury to nerve roots and the cauda equina in a tight L1-2 lumbar canal.

  15. Spirals, gaps, cavities, gapities: What do planets do in discs?

    NASA Astrophysics Data System (ADS)

    Crida, A.

    2016-12-01

    In this presentation, part of the "Observations of discs" workshop, I address the theoretical point of view of planet-disc interactions. In section 2, I will review the physics of spirals, and explain why the inner and the outer wake created by a planet in a gaseous keplerian disc look very different, but their shape is independant of the mass of the planet and almost only depends on the aspect ratio of the disc. In the third section, I discuss the axisymmetric features (gaps and cavities), and how they differ in the gas or the dust component. However, to start with, some clarification of the nomenclature seems to be required, as observers and theorists may have a different idea of what a gap is. The definition of a "gapity" may help to clarify the situation of pre-transitional discs.

  16. Lumbar intervertebral disc degeneration and related factors in Korean firefighters

    PubMed Central

    Jang, Tae-Won; Ahn, Yeon-Soon; Byun, Junsu; Lee, Jong-In; Kim, Kun-Hyung; Kim, Youngki; Song, Han-Soo; Lee, Chul-Gab; Kwon, Young-Jun; Yoon, Jin-Ha; Jeong, Kyoungsook

    2016-01-01

    Objectives The job of firefighting can cause lumbar burden and low back pain. This study aimed to identify the association between age and lumbar intervertebral disc degeneration and whether the association differs between field and administrative (non-field) firefighters. Methods Subjects were selected using a stratified random sampling method. Firefighters were stratified by geographic area, gender, age and type of job. First, 25 fire stations were randomly sampled considering regional distribution. Then firefighters were stratified by gender, age and their job and randomly selected among the strata. A questionnaire survey and MRI scans were performed, and then four radiologists used Pfirrmann classification methods to determine the grade of lumbar intervertebral disc degeneration. Results Pfirrmann grade increased with lumbar intervertebral disc level. Analysis of covariance showed that age was significantly associated with lumbar intervertebral disc degeneration (p<0.05). The value of β (parameter estimate) was positive at all lumbar intervertebral disc levels and was higher in the field group than in the administrative group at each level. In logistic regression analysis, type of job was statistically significant only with regard to the L4–5 intervertebral disc (OR 3.498, 95% CI 1.241 to 9.860). Conclusions Lumbar intervertebral disc degeneration is associated with age, and field work such as firefighting, emergency and rescue may accelerate degeneration in the L4–5 intervertebral disc. The effects of field work on lumbar intervertebral disc degeneration were not clear in discs other than at the level L4–5. PMID:27354080

  17. Molecular Mechanisms of Biological Aging in Intervertebral Discs

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Patil, Prashanti R.; Risbud, Makarand V.; Kletsas, Dimitris; Iatridis, James C.; Hoyland, Judith A.; Le Maitre, Christine L.; Sowa, Gwendolyn A.; Kang, James D.

    2016-01-01

    Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. PMID:26890203

  18. The structure of protoplanetary discs around evolving young stars

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro

    2015-03-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org

  19. Gas Modelling in the Disc of HD 163296

    NASA Technical Reports Server (NTRS)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; Martin-Zaidi, C.; Kamp, I.; Pinte, C.; Sandell, G.; Vacca, W. D.; Menard, F.; Mendigutia, I.; Duchene, G.; Dent, W. R. F.; Aresu, G.; Meijerink, R.; Spaans, M.

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  20. Changes in disc status in the reducing and nonreducing anterior disc displacement of temporomandibular joint: a longitudinal retrospective study.

    PubMed

    Hu, Ying Kai; Yang, Chi; Xie, Qian Yang

    2016-09-27

    Treatment procedures for anterior disc displacement (ADD) of temporomandibular joint (TMJ) are far from reaching a consensus. The aim of the study was to evaluate disc status changes of anterior disc displacement with reduction (ADDWR) and without reduction (ADDWoR) comparatively, to get a better understanding of the disease progress without intervention. This longitudinal retrospective study included 217 joints in 165 patients, which were divided into ADDWR group and ADDWoR group based on magnetic resonance imaging (MRI) examination. The joints were assessed quantitatively for disc length and displacement distance at initial and follow-up visits. Disc morphology, which was classified in 5 types, was also evaluated. Paired t-test and Wilcoxon signed rank test were used to assess intra-group differences and independent t-test for inter-group differences. Moreover, analysis of covariance was applied to analyze influential factors for changes in disc length and displacement distance. According to our results, discs tended to become shorter, move further forward and distort more seriously in ADDWoR group than in ADDWR group after follow-up. Moreover, discs were prone to become shorter and more anteriorly displaced in teenagers, type I and III morphologies, advanced Wilkes stages, or those with joint effusion. Follow-up period seemed to be not critical.

  1. Changes in disc status in the reducing and nonreducing anterior disc displacement of temporomandibular joint: a longitudinal retrospective study

    PubMed Central

    Hu, Ying Kai; Yang, Chi; Xie, Qian Yang

    2016-01-01

    Treatment procedures for anterior disc displacement (ADD) of temporomandibular joint (TMJ) are far from reaching a consensus. The aim of the study was to evaluate disc status changes of anterior disc displacement with reduction (ADDWR) and without reduction (ADDWoR) comparatively, to get a better understanding of the disease progress without intervention. This longitudinal retrospective study included 217 joints in 165 patients, which were divided into ADDWR group and ADDWoR group based on magnetic resonance imaging (MRI) examination. The joints were assessed quantitatively for disc length and displacement distance at initial and follow-up visits. Disc morphology, which was classified in 5 types, was also evaluated. Paired t-test and Wilcoxon signed rank test were used to assess intra-group differences and independent t-test for inter-group differences. Moreover, analysis of covariance was applied to analyze influential factors for changes in disc length and displacement distance. According to our results, discs tended to become shorter, move further forward and distort more seriously in ADDWoR group than in ADDWR group after follow-up. Moreover, discs were prone to become shorter and more anteriorly displaced in teenagers, type I and III morphologies, advanced Wilkes stages, or those with joint effusion. Follow-up period seemed to be not critical. PMID:27671371

  2. Magnetised accretion discs in Kerr spacetimes

    NASA Astrophysics Data System (ADS)

    Ranea-Sandoval, Ignacio F.; García, Federico

    2015-01-01

    Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1-5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims: We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods: We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results: We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black

  3. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: average course, variability, and influence of refraction, optic disc size and optic disc position.

    PubMed

    Jansonius, Nomdo M; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-12-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the existing model, (ii) expand the model to the entire retina and (iii) determine the influence of refraction, optic disc size and optic disc position on the trajectories. A new set of fundus photographs was collected comprising 28 eyes of 28 subjects. From these 28 photographs, 625 trajectories were extracted. Trajectories in the temporal region of the retina were compared to the existing model. In this region, 347 of 399 trajectories (87%) were within the 95% central range of the existing model. The model was extended to the nasal region. With this extension, the model can now be applied to the entire retina that corresponds to the visual field as tested with standard automated perimetry (up to approximately 30° eccentricity). There was an asymmetry between the superior and inferior hemifields and a considerable location-specific inter-subject variability. In the nasal region, we found two "singularities", located roughly at the one and five o'clock positions for the right optic disc. Here, trajectories from relatively widespread areas of the retina converge. Associations between individual deviations from the model and refraction, optic disc size and optic disc position were studied with multiple linear regression. Refraction (P = 0.021) and possibly optic disc inclination (P = 0.09) influenced the trajectories in the superior-temporal region.

  4. Truncated disc surface brightness profiles produced by flares

    NASA Astrophysics Data System (ADS)

    Borlaff, Alejandro; Eliche-Moral, M. Carmen; Beckman, John; Font, Joan

    2017-03-01

    Previous studies have discarded that flares in galactic discs may explain the truncation that are frequently observed in highly-inclined galaxies (Kregel et al. 2002). However, no study has systematically analysed this hypothesis using realistic models for the disc, the flare and the bulge. We derive edge-on and face-on surface brightness profiles for a series of realistic galaxy models with flared discs that sample a wide range of structural and photometric parameters across the Hubble Sequence, accordingly to observations. The surface brightness profile for each galaxy model has been simulated for edge-on and face-on views to find out whether the flared disc produces a significant truncation in the disc in the edge-on view compared to the face-on view or not. In order to simulate realistic images of disc galaxies, we have considered the observational distribution of the photometric parameters as a function of the morphological type for three mass bins (10 < log10(M/M ⊙) < 10.7, 10.7 < log10(M/M ⊙) < 11 and log10(M/M ⊙) > 11), and four morphological type bins (S0-Sa, Sb-Sbc, Sc-Scd and Sd-Sdm). For each mass bin, we have restricted the photometric and structural parameters of each modelled galaxy to their characteristic observational ranges (μ0, disc, μeff, bulge, B/T, M abs, r eff, n bulge, h R, disc) and the flare in the disc (h z, disc/h R, disc, ∂h z, disc/∂R, see de Grijs & Peletier 1997, Graham 2001, López-Corredoira et al. 2002, Yoachim & Dalcanton 2006, Bizyaev et al. 2014, Mosenkov et al. 2015). Contrary to previous claims, the simulations show that realistic flared disks can be responsible for the truncations observed in many edge-on systems, preserving the profile of the non-flared analogous model in face-on view. These breaks reproduce the properties of the weak-to-intermediate breaks observed in many real Type-II galaxies in the diagram relating the radial location of the break (R brkII) in units of the inner disk scale-length with the

  5. Preliminary study of disc hydrodynamic polishing.

    PubMed

    Li, Yan; Lin, Bin; Zhang, XiaoFeng; Liu, PengFei

    2016-10-01

    In this paper, a developed polishing method based on elastic emission machining and Jules Verne-a variation on fluid jet polishing-is presented. This method is named disc hydrodynamic polishing (DHDP). A computational fluid dynamics (CFD)-based model that consists of a CFD model and an erosion model is introduced to predict the surface roughness obtained by DHDP. The performance of DHDP is studied by experiments. The slurry used in the experiments comprises 95% deionized water and 5% cerium oxide particles. Fused-silica glass is chosen as the workpiece. After the experiments, an ultrasmooth surface without cracks is obtained. The simulation results principally coincide with the experimental results. The experimental results show that the actual roughness is slightly less than the prediction and smaller particles are more favorable for obtaining a better surface roughness.

  6. Methodologic evaluation of the lumbar disc syndrome.

    PubMed Central

    Robinson, J. S.

    1981-01-01

    Though the lumbar disc syndrome is a costly and ubiquitous affliction, effective evaluation of the disease process has been confounded by major unaddressed methodological short falls. Prominent difficulties include: inattention to the clinical boundaries of the syndrome, neglected co-morbid disease processes, comparison of unequal treatment groups and premature clinical data extrapolation, inadequate diagnostic validation, variability in surgical observation, and reliance upon follow-up techniques faulted by unaddressed distorting factors. Proposals for improvement include: formulation of suitable stratification subgroups emphasizing age and sign-symptom intensity and duration, techniques for improved diagnostic return from surgical exploration, suggestions toward improved quantitation of clinical testing procedures, and implantation of a quality of life scale. PMID:6454306

  7. Multilayer optical disc system using homodyne detection

    NASA Astrophysics Data System (ADS)

    Kurokawa, Takahiro; Ide, Tatsuro; Tanaka, Yukinobu; Watanabe, Koichi

    2014-09-01

    A write/read system using high-productivity multilayer optical discs was developed. The recording medium used in the system consists of planar recording layers and a separated guide layer, and is fabricated by web coating and lamination process. The recording layers in the medium are made of one-photon-absorption material, on which data can be recorded with a normal laser diode. The developed system is capable of focusing and tracking on the medium and amplifying readout signals by using phase-diversity homodyne detection. A highly layer-selective focusing method using homodyne detection was also proposed. This method obtains stable focus-error signals with clearly separated S-shaped curves even when layer spacing is quite narrow, causing large interlayer crosstalk. Writing on the medium and reading with the signal amplification effect of homodyne detection was demonstrated. In addition, the effectiveness of the method was experimentally evaluated.

  8. A Magnetic Set-Up to Help Teach Newton's Laws

    ERIC Educational Resources Information Center

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  9. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

    PubMed Central

    Yang, Minghui; Lan, Minghong; Liu, Chang; Zhang, Yang; Huang, Bo

    2017-01-01

    Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD. PMID:28392887

  10. Miniaturized Lab-on-a-Disc (miniLOAD).

    PubMed

    Glass, Nick R; Shilton, Richie J; Chan, Peggy P Y; Friend, James R; Yeo, Leslie Y

    2012-06-25

    A miniaturized centrifugal microfluidic platform for lab-on-a-chip applications is presented. Unlike its macroscopic Lab-on-a-CD counterpart, the miniature Lab-on-a-Disc (miniLOAD) device does not require moving parts to drive rotation of the disc, is inexpensive, disposable, and significantly smaller, comprising a 10-mm-diameter SU-8 disc fabricated through two-step photolithography. The disc is driven to rotate using surface acoustic wave irradiation incident upon a fluid coupling layer from a pair of offset, opposing single-phase unidirectional transducers patterned on a lithium niobate substrate. The irradiation causes azimuthally oriented acoustic streaming with sufficient intensity to rotate the disc at several thousand revolutions per minute. In this first proof-of-concept, the capability of the miniLOAD platform to drive capillary-based valving and mixing in microfluidic structures on a disc similar to much larger Lab-on-a-CD devices is shown. In addition, the ability to concentrate aqueous particle suspensions at radial positions in a channel in the disc dependent on the particles' size is demonstrated. To the best of our knowledge, the miniLOAD concept is the first centrifugal microfluidic platform small enough to be self-contained in a handheld device.

  11. Disc-based microarrays: principles and analytical applications.

    PubMed

    Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2016-07-01

    The idea of using disk drives to monitor molecular biorecognition events on regular optical discs has received considerable attention during the last decade. CDs, DVDs, Blu-ray discs and other new optical discs are universal and versatile supports with the potential for development of protein and DNA microarrays. Besides, standard disk drives incorporated in personal computers can be used as compact and affordable optical reading devices. Consequently, a CD technology, resulting from the audio-video industry, has been used to develop analytical applications in health care, environmental monitoring, food safety and quality assurance. The review presents and critically evaluates the current state of the art of disc-based microarrays with illustrative examples, including past, current and future developments. Special mention is made of the analytical developments that use either chemically activated or raw standard CDs where proteins, oligonucleotides, peptides, haptens or other biological probes are immobilized. The discs are also used to perform the assays and must maintain their readability with standard optical drives. The concept and principle of evolving disc-based microarrays and the evolution of disk drives as optical detectors are also described. The review concludes with the most relevant uses ordered chronologically to provide an overview of the progress of CD technology applications in the life sciences. Also, it provides a selection of important references to the current literature. Graphical Abstract High density disc-based microarrays.

  12. The Disc Origin of the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.

    2016-06-01

    The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry, and ages of its stars indicate. To understand the nature of its main components-those at [Fe/H] ≳ -1 dex-it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders: the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy-/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.

  13. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.

  14. A photoevaporative gap in the closest planet-forming disc

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Rosotti, Giovanni P.; Picogna, Giovanni; Testi, Leonardo

    2017-01-01

    The dispersal of the circum-stellar discs of dust and gas surrounding young low-mass stars has important implications for the formation of planetary systems. Photoevaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously on to the star. In this Letter, we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Indeed, the detected gap in the Atacama large millimeter/submillimeter array images is consistent with the expectations of X-ray photoevaporation models, thus not requiring the presence of a planet. The photoevaporation model is also consistent with a broad range of properties of the TW Hya system, e.g. accretion rate and the location of the gap at the onset of dispersal. We show that the central, unresolved 870 μm continuum source might be produced by free-free emission from the gas and/or residual dust inside the gap.

  15. Accretion of the Moon from non-canonical discs.

    PubMed

    Salmon, J; Canup, R M

    2014-09-13

    Impacts that leave the Earth-Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such 'non-canonical' impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth-Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance.

  16. On the vertical-shear instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Barker, A. J.; Latter, H. N.

    2015-06-01

    We explore the linear stability of astrophysical discs exhibiting vertical shear, which arises when there is a radial variation in the temperature or entropy. Such discs are subject to a `vertical-shear instability', which recent non-linear simulations have shown to drive hydrodynamic activity in the MRI-stable regions of protoplanetary discs. We first revisit locally isothermal discs using the quasi-global reduced model derived by Nelson et al. This analysis is then extended to global axisymmetric perturbations in a cylindrical domain. We also derive and study a reduced model describing discs with power-law radial entropy profiles (`locally polytropic discs'), which are somewhat more realistic in that they possess physical (as opposed to numerical) surfaces. The fastest growing modes have very short wavelengths and are localized at the disc surfaces (if present), where the vertical shear is maximal. An additional class of modestly growing vertically global body modes is excited, corresponding to destabilized classical inertial waves (`r modes'). We discuss the properties of both types of modes, and stress that those that grow fastest occur on the shortest available length-scales (determined either by the numerical grid or the physical viscous length). This ill-posedness makes simulations of the instability difficult to interpret. We end with some brief speculation on the non-linear saturation and resulting angular momentum transport.

  17. Convection in axially symmetric accretion discs with microscopic transport coefficients

    NASA Astrophysics Data System (ADS)

    Malanchev, K. L.; Postnov, K. A.; Shakura, N. I.

    2017-01-01

    The vertical structure of stationary thin accretion discs is calculated from the energy balance equation with heat generation due to microscopic ion viscosity η and electron heat conductivity κ, both depending on temperature. In the optically thin discs it is found that for the heat conductivity increasing with temperature, the vertical temperature gradient exceeds the adiabatic value at some height, suggesting convective instability in the upper disc layer. There is a critical Prandtl number, Pr = 4/9, above which a Keplerian disc become fully convective. The vertical density distribution of optically thin laminar accretion discs as found from the hydrostatic equilibrium equation cannot be generally described by a polytrope but in the case of constant viscosity and heat conductivity. In the optically thick discs with radiation heat transfer, the vertical disc structure is found to be convectively stable for both absorption-dominated and scattering-dominated opacities, unless a very steep dependence of the viscosity coefficient on temperature is assumed. A polytropic-like structure in this case is found for Thomson scattering-dominated opacity.

  18. The formation of galaxy discs in a hierarchical universe

    NASA Astrophysics Data System (ADS)

    Stringer, M. J.; Benson, A. J.

    2007-12-01

    The formation of galactic discs and the efficiency of star formation within them are issues central to our understanding of galaxy formation. We have developed a detailed and versatile model of disc formation which combines the strengths of previous studies of isolated discs with those of hierarchical galaxy formation models. Disc structure is inferred from the distribution of angular momentum in hot halo gas and the hierarchical build-up of dark matter, leading to theoretically generated systems where the evolution of surface density, rotation, velocity dispersion, stability and metallicity is predicted for annular regions of width 20-100pc. The model will be used to establish whether the accepted theory of large-scale structure formation in the universe is consistent with observed trends in the properties of disc galaxies. This first paper explicitly examines the importance of embedding such calculations within a merging hierarchy of dark matter haloes, finding that this leads to dramatically different formation histories compared to models in which discs grow in isolation. Different models of star formation are explored, and are found to have only a secondary influence on the properties of the resulting galaxy discs, the main governing factor being the infalling gas supply from the hot halo.

  19. Line-driven ablation of circumstellar discs – I. Optically thin decretion discs of classical Oe/Be stars

    PubMed Central

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.

    2016-01-01

    The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a

  20. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars.

    PubMed

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O

    2016-05-21

    The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a

  1. High-selectivity cytology via lab-on-a-disc western blotting of individual cells.

    PubMed

    Kim, John J; Sinkala, Elly; Herr, Amy E

    2017-02-28

    Cytology of sparingly available cell samples from both clinical and experimental settings would benefit from high-selectivity protein tools. To minimize cell handling losses in sparse samples, we design a multi-stage assay using a lab-on-a-disc that integrates cell handling and subsequent single-cell western blotting (scWestern). As the two-layer microfluidic device rotates, the induced centrifugal force directs dissociated cells to dams, which in turn localize the cells over microwells. Cells then sediment into the microwells, where the cells are lysed and subjected to scWestern. Taking into account cell losses from loading, centrifugation, and lysis-buffer exchange, our lab-on-a-disc device handles cell samples with as few as 200 cells with 75% cell settling efficiencies. Over 70% of microwells contain single cells after the centrifugation. In addition to cell settling efficiency, cell-size filtration from a mixed population of two cell lines is also realized by tuning the cell time-of-flight during centrifugation (58.4% settling efficiency with 6.4% impurity). Following the upstream cell handling, scWestern analysis detects four proteins (GFP, β-TUB, GAPDH, and STAT3) in a glioblastoma cell line. By integrating the lab-on-a-disc cell preparation and scWestern analysis, our platform measures proteins from sparse cell samples at single-cell resolution.

  2. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo

    2011-01-01

    This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

  3. Local and global dynamics of warped astrophysical discs

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.; Latter, Henrik N.

    2013-08-01

    Astrophysical discs are warped whenever a misalignment is present in the system, or when a flat disc is made unstable by external forces. The evolution of the shape and mass distribution of a warped disc is driven not only by external influences but also by an internal torque, which transports angular momentum through the disc. This torque depends on internal flows driven by the oscillating pressure gradient associated with the warp, and on physical processes operating on smaller scales, which may include instability and turbulence. We introduce a local model for the detailed study of warped discs. Starting from the shearing sheet of Goldreich and Lynden-Bell, we impose the oscillating geometry of the orbital plane by means of a coordinate transformation. This warped shearing sheet (or box) is suitable for analytical and computational treatments of fluid dynamics, magnetohydrodynamics, etc., and it can be used to compute the internal torque that drives the large-scale evolution of the disc. The simplest hydrodynamic states in the local model are horizontally uniform laminar flows that oscillate at the orbital frequency. These correspond to the non-linear solutions for warped discs found in previous work by Ogilvie, and we present an alternative derivation and generalization of that theory. In a companion paper, we show that these laminar flows are often linearly unstable, especially if the disc is nearly Keplerian and of low viscosity. The local model can be used in future work to determine the non-linear outcome of the hydrodynamic instability of warped discs, and its interaction with others such as the magnetorotational instability.

  4. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  5. Growing Hyperuniformity of Bidisperse Soft Discs on Approach to Jamming

    NASA Astrophysics Data System (ADS)

    Chieco, Anthony; Goodrich, Carl; Liu, Andrea; Durian, Douglas

    We study the development of hyperuniformity in simulated systems of bidisperse soft discs as the packing fraction ϕ is increased from below to above jamming, using the real-space spectrum of hyperuniformity disorder lengths, h (L) . For a set of randomly placed L × L measuring windows, h (L) specifies the distance from the window boundaries over which fluctuations are important; for liquid-like systems, h (L) scales like L; but for strongly hyperuniform systems, h (L) =he is constant. We use two preparation protocols, one rapidly-quenches a system by immediately minimizing particle overlap and the other allows particles to move under low temperature thermal driving. Above jamming, both systems become strongly hyperuniform as signified by h (L) -->Rsmall / 5 at large L. Below jamming, but near the transition, the behavior of h (L) at small L is just like above jamming. But for larger L, h (L) breaks away and grows in a protocol-dependent fashion. In general, thermal systems are more uniform than quenched systems, as signified by smaller hyperuniformity disorder lengths. And the development of hyperuniformity happens simultaneously with the onset of jamming.

  6. Detection of patches of coloured discs by bees.

    PubMed

    Wertlen, Anna M; Niggebrügge, Claudia; Vorobyev, Misha; Hempel de Ibarra, Natalie

    2008-07-01

    To find out how grouping of flowers into patches improves their detectability by hymenopteran pollinators, we trained honeybees and bumblebees to detect groups of three spatially separated disks and compared results with the detection limit for single disks. When the discs presented contrast to the long-wavelength-sensitive (L) receptor, grouping of disks improved the detectability. The disks were optically resolvable for the honeybee eye. The improvement of detectability was stronger for bumblebees than for honeybees. When disks did not present contrast to the L-receptor, the grouping did not improve the detectability, i.e. the detection limit was set by the size of a single disk. We conclude that in bees the neural mechanisms that improve detectability of grouped elements require input from the L-receptor. Our results indicate that grouping of flowers into sparse patches can improve their detectability by bees, even when individual flowers can be optically resolved by the eyes of bees, as long as flowers can be detected by the long-wavelength-sensitive receptor.

  7. Therapeutic outcome assessment in permanent temporomandibular joint disc displacement.

    PubMed

    Kropmans, T J; Dijkstra, P U; Stegenga, B; de Bont, L G

    1999-05-01

    In permanent temporomandibular disc displacement (TMJ-DD) outcome studies many authors claim positive effects of arthroscopic surgery, arthrocentesis and physical therapy. This literature review was undertaken to analyse whether the claimed effects are based on acceptable methodology. The recorded papers were analysed by two independent observers according to (1) method of investigation, (2) therapeutic intervention studied, (3) therapeutic outcome variables used, and (4) claimed effectiveness of the intervention. Agreement between observers was calculated. Twenty-four papers were found in which therapeutic outcome of interventions on temporomandibular disorders were studied. Six studies applied a true experimental design. Each of these six studies compared a different set of interventions. Twenty-two papers used maximal mouth opening (MMO) as an outcome variable, nine studied pain intensity on a visual analogue scale, one paper assessed the mandibular function impairment questionnaire. Kappa for overall agreement concerning the reviewing criteria was 0.82 (P < or = 0.001). No distinguishing effects on MMO, pain or function impairment were reported between arthroscopic surgery, arthrocentesis and physical therapy. Results of methodological sound outcome studies evaluating the effects of arthroscopic surgery, arthrocentesis and physical therapy are needed.

  8. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  9. A viscosity prescription for a self-gravitating accretion disc

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Pringle, J. E.

    1987-01-01

    A model for treating the transfer of angular momentum within a gaseous differentially rotating disc subject to gravitational instability is discussed in terms of an effective kinematic viscosity. It is assumed that even when matter in the disc is subject to self-gravitation, the instability does not necessarily lead directly to condensation of parts of the disc into self-gravitating bodies. Conditions under which the present model permits a similarity solution are discussed, and it is shown that the general solution tends to the similarity solution at large times.

  10. BSAC standardized disc susceptibility testing method (version 11).

    PubMed

    Howe, R A; Andrews, J M

    2012-12-01

    This article highlights key amendments incorporated into version 11 of the BSAC standardized disc susceptibility testing method, available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/) and on the BSAC web site (http://bsac.org.uk/susceptibility/guidelines-standardized-disc-susceptibility-testing-method/). The basic disc susceptibility testing method remains unchanged, but there have been a number of alterations to the interpretive criteria for certain organism/drug combinations due to continuing harmonization with the EUCAST MIC breakpoints and constant efforts to improve the reliability and clinical applicability of the guidance.

  11. Debris Discs and Connection to Exoplanets: Herschel Overview

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.

    2012-03-01

    Debris discs are an exciting science area that has been opened up by Herschel through deep far-infrared observations. Key Projects cover disc evolution from the early stages when planets form (GASPS) and onwards to discs hosted by stars even older than the Solar System (GT, DUNES, DEBRIS). New categories are being discovered, including very cold cometary belts and unusual types of dust grain, and new connections are being made for systems of low-mass stars and planets. I will review these discoveries in the context of our ideas on how planetesimal belts from and evolve.

  12. Optical coherence tomography imaging of optic disc cavernous haemangioma.

    PubMed

    Katta, Mohamed; Mehta, Hemal; Ho, Ivan; Garrick, Ray; Chong, Robert

    2016-11-01

    Optic disc cavernous haemangiomas are either found incidentally or after presentation with vitreous haemorrhage. They are characterised by a cluster of grapes appearance to the multiple vascular saccules that make up the tumour. They are more often found in the retinal periphery but rarely occur at the optic disc. Optical coherence tomography (OCT) imaging may be a useful non-invasive imaging modality to follow-up these lesions. We present the case of an asymptomatic 60-year-old lady referred from her optometrist with a lesion overlying the optic disc and the ensuing diagnosis of cavernous haemangioma using fundus fluorescein angiography and OCT.

  13. Effect of lubricants on friction in laboratory tests of a total disc replacement device.

    PubMed

    Moghadas, Parshia; Mahomed, Aziza; Hukins, David W L; Shepherd, Duncan E T

    2013-09-01

    Some designs of total disc replacement devices have articulating bearing surfaces, and these devices are tested in vitro with a lubricant of diluted calf serum. It is believed that the lubricant found in total disc replacement devices in vivo is interstitial fluid that may have properties between that in Ringer's solution and diluted calf serum. To investigate the effect of lubricants, a set of friction tests were performed on a generic model of a metal against metal ball-and-socket total disc replacement device. Two devices were tested: one with a ball radius of 10 mm and other with a ball radius of 16 mm; each device had a radial clearance of 0.015 mm. A spine simulator was used to measure frictional torque for each device in axial rotation, flexion-extension and lateral bending at frequencies of 0.25-2 Hz, under 1200 N axial load. Each device was tested with two different lubricants: a solution of new born calf serum diluted with deionised water and Ringer's solution. The results showed that the frictional torque generated between the bearing surfaces was significantly higher in Ringer's solution than in diluted calf serum. The use of Ringer's solution as a lubricant provides a stringent test condition to detect possible problems. Diluted calf serum is more likely to provide an environment closer to that in vivo. However, the precise properties of the fluid lubricating a total disc replacement device are not known; hence, tests using diluted calf serum may not necessarily give the same results as those obtained in vivo.

  14. Investigating the Andromeda stream - I. Simple analytic bulge-disc-halo model for M31

    NASA Astrophysics Data System (ADS)

    Geehan, J. J.; Fardal, M. A.; Babul, A.; Guhathakurta, P.

    2006-03-01

    This paper is the first in a series which studies interactions between M31 and its satellites, including the origin of the giant southern stream. We construct accurate yet simple analytic models for the potential of the M31 galaxy to provide an easy basis for the calculation of orbits in M31's halo. We use a Navarro, Frenk and White (NFW) dark halo, an exponential disc, a Hernquist bulge, and a central black hole point mass to describe the galaxy potential. We constrain the parameters of these functions by comparing to existing surface-brightness, velocity-dispersion, and rotation-curve measurements of M31. Our description provides a good fit to the observations, and agrees well with more sophisticated modelling of M31. While in many respects the parameter set is well constrained, there is substantial uncertainty in the outer halo potential and a near-degeneracy between the disc and halo components, producing a large, nearly two-dimensional allowed region in parameter space. We limit the allowed region using theoretical expectations for the halo concentration, baryonic content, and stellar mass-to-light ratio (M/LR), finding a smaller region where the parameters are physically plausible. Our proposed mass model for M31 has Mbulge= 3.2 × 1010Msolar, Mdisc= 7.2 × 1010Msolar, and M200= 7.1 × 1011Msolar, with uncorrected (for internal and foreground extinction) mass-to-light ratios of M/LR= 3.9 and 3.3 for the bulge and disc, respectively. We present some illustrative test-particle orbits for the progenitor of the stellar stream in our galaxy potential, highlighting the effects of the remaining uncertainty in the disc and halo masses.

  15. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  16. Simulating realistic disc galaxies with a novel sub-resolution ISM model

    NASA Astrophysics Data System (ADS)

    Murante, Giuseppe; Monaco, Pierluigi; Borgani, Stefano; Tornatore, Luca; Dolag, Klaus; Goz, David

    2015-02-01

    We present results of cosmological simulations of disc galaxies carried out with the GADGET-3 TreePM+SPH code, where star formation and stellar feedback are described using our MUlti Phase Particle Integrator model. This description is based on a simple multiphase model of the interstellar medium at unresolved scales, where mass and energy flows among the components are explicitly followed by solving a system of ordinary differential equations. Thermal energy from supernovae is injected into the local hot phase, so as to avoid that it is promptly radiated away. A kinetic feedback prescription generates the massive outflows needed to avoid the overproduction of stars. We use two sets of zoomed-in initial conditions of isolated cosmological haloes with masses (2-3) × 1012 M⊙, both available at several resolution levels. In all cases we obtain spiral galaxies with small bulge-over-total stellar mass ratios (B/T ˜ 0.2), extended stellar and gas discs, flat rotation curves and realistic values of stellar masses. Gas profiles are relatively flat, molecular gas is found to dominate at the centre of galaxies, with star formation rates following the observed Schmidt-Kennicutt relation. Stars kinematically belonging to the bulge form early, while disc stars show a clear inside-out formation pattern and mostly form after redshift z = 2. However, the baryon conversion efficiencies in our simulations differ from the relation given by Moster et al. at a 3σ level, thus indicating that our stellar discs are still too massive for the dark matter halo in which they reside. Results are found to be remarkably stable against resolution. This further demonstrates the feasibility of carrying out simulations producing a realistic population of galaxies within representative cosmological volumes, at a relatively modest resolution.

  17. Björk-Shiley strut fracture and disc escape: literature review and a method of disc retrieval.

    PubMed

    Hendel, P N

    1989-03-01

    Embolization of a prosthetic valve poppet is a rare but life-threatening event. It was reported sporadically before the introduction of the Björk-Shiley 70-degree convexoconcave prosthesis in 1980. Since that time, there have been a large number of reported mechanical failures with disc escape. The rate for the 29-mm to 33-mm mitral valves is estimated as 5.2%. In 29 of 35 patients (including the 2 presented here) in whom the site of disc lodgment could be determined, the disc was in the descending or abdominal aorta. Fifteen of these patients died. Six survivors had the disc removed at the same operation and 6 at a later operation. In 2 patients, the disc was not removed. In 2 patients in whom the disc was not removed initially, it was thought to contribute to postoperative complications. Two more cases of structural failure of the Björk-Shiley convexoconcave prosthesis are presented. A transpericardial approach to the descending aorta on bypass is described. It allows easy removal of the disc and eliminates the need for a second operation.

  18. Braking down an accreting protostar: disc-locking, disc winds, stellar winds, X-winds and Magnetospheric Ejecta

    NASA Astrophysics Data System (ADS)

    Ferreira, J.

    2013-09-01

    Classical T Tauri stars are low mass young forming stars that are surrounded by a circumstellar accretion disc from which they gain mass. Despite this accretion and their own contraction that should both lead to their spin up, these stars seem to conserve instead an almost constant rotational period as long as the disc is maintained. Several scenarios have been proposed in the literature in order to explain this puzzling "disc-locking" situation: either deposition in the disc of the stellar angular momentum by the stellar magnetosphere or its ejection through winds, providing thereby an explanation of jets from Young Stellar Objects. In this lecture, these various mechanisms will be critically detailed, from the physics of the star-disc interaction to the launching of self-confined jets (disc winds, stellar winds, X-winds, conical winds). It will be shown that no simple model can account alone for the whole bulk of observational data and that "disc locking" requires a combination of some of them.

  19. DETAIL OF DENVER DISC FILTER IN CO91107, SUCTION END. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DENVER DISC FILTER IN CO-91-107, SUCTION END. NOTE BEARING HOUSING WITH CAST LOGO, SUCTION PIPE GOING OFF TO THE RIGHT, AND FILTER DISC IN BACKGROUND. VACUUM INSIDE DISCS FURTHER DEWATERED CONCENTRATE. AS DISC SLOWLY ROTATED A BAR SCRAPED DRIED CONCENTRATE FROM OUTSIDE OF FILTER CLOTH. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  20. 75 FR 54345 - Determination of Regulatory Review Period for Purposes of Patent Extension; BRYAN CERVICAL DISC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Patent Extension; BRYAN CERVICAL DISC SYSTEM AGENCY: Food and Drug Administration, HHS. ACTION: Notice... CERVICAL DISC SYSTEM and is publishing this notice of that determination as required by law. FDA has made... device BRYAN CERVICAL DISC SYSTEM. BRYAN CERVICAL DISC SYSTEM is indicated in skeletally mature...

  1. From birth to death of protoplanetary discs: modelling their formation, evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Kunitomo, Masanobu; Takahashi, Sanemichi Z.

    2016-09-01

    The formation, evolution and dispersal processes of protoplanetary discs are investigated and the disc lifetime is estimated. The gravitational collapse of a pre-stellar core forms both a central star and a protoplanetary disc. The central star grows by accretion from the disc and irradiation by the central star heats up the disc and generates a thermal wind, which results in the disc's dispersal. Using the one-dimensional diffusion equation, we calculate the evolution of protoplanetary discs numerically. To calculate the disc evolution from formation to dispersal, we add source and sink terms that represent gas accretion from pre-stellar cores and photoevaporation, respectively. We find that the disc lifetimes of typical pre-stellar cores are around 2-4 million years (Myr). A pre-stellar core with high angular momentum forms a larger disc with a long lifetime, while a disc around an X-ray-luminous star has a short lifetime. Integrating disc lifetimes under various masses and angular velocities of pre-stellar cores and X-ray luminosities of young stellar objects, we obtain the disc fraction at a given stellar age and mean lifetime of the disc. Our model indicates that the mean lifetime of a protoplanetary disc is 3.7 Myr, which is consistent with the observational estimate from young stellar clusters. We also find that the dispersion of X-ray luminosity is needed to reproduce the observed disc fraction.

  2. Disc replacement using Pro-Disc C versus fusion: a prospective randomised and controlled radiographic and clinical study

    PubMed Central

    Ahlhelm, F.; Pitzen, T.; Steudel, W. I.; Jung, J.; Shariat, K.; Steimer, O.; Bachelier, F.; Pape, D.

    2006-01-01

    Anterior cervical discectomy and fusion (ACDF) may be considered to be the gold standard for treatment of symptomatic degenerative disc disease within the cervical spine. However, fusion of the segment may result in progressive degeneration of the adjacent segments. Therefore, dynamic stabilization procedures have been introduced. Among these, artificial disc replacement by disc prosthesis seems to be promising. However, to be so, segmental motion must be preserved. This, again, is very difficult to judge and has not yet been proven. The aim of the current study was to first analyse the segmental motion following artificial disc replacement using a disc prosthesis. A second aim was to compare both segmental motion as well as clinical result to the current gold standard (ACDF). This is a prospective controlled study. Twenty-five patients with cervical disc herniation were enrolled and assigned to either study group (receiving a disc prosthesis) or control group (receiving ACDF, using a cage with bone graft and an anterior plate.) Radiostereometric analysis was used to quantify intervertebral motion immediately as well as 3, 6, 12 and 24 weeks postoperatively. Further, clinical results were judged using visual analogue scale and neuro-examination. Cervical spine segmental motion decreased over time in the presence of disc prosthesis or ACDF. However, the loss of segmental motion is significantly higher in the ACDF group, when looked at 3, 6, 12 and 24 weeks after surgery. We observed significant pain reduction in neck and arm postoperatively, without significant difference between both groups (P > 0.05). Cervical spine disc prosthesis preserves cervical spine segmental motion within the first 6 months after surgery. The clinical results are the same when compared to the early results following ACDF. PMID:17106665

  3. Newly Released Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA) Products and Data Services at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Teng, W. L.; Kempler, S.

    2012-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is home of global precipitation product archives, in particular, the Tropical Rainfall Measuring Mission (TRMM) products. TRMM is a joint U.S.-Japan satellite mission to monitor tropical and subtropical (40 Degrees S - 40 Degrees N) precipitation and to estimate its associated latent heating. The TRMM satellite provides the first detailed and comprehensive dataset on the four dimensional distribution of rainfall and latent heating over vastly undersampled tropical and subtropical oceans and continents. The TRMM satellite was launched on November 27, 1997. TRMM data products are archived at and distributed by GES DISC. The newly released Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA) products consist of several important changes including 1) additional output fields including sensor-specific source and overpass times; 2) additional satellite input data; 3) uniformly reprocessed input data using current algorithms; 4) a new IR data set (Jan. 1998 - Feb 2000) was included; 5) use of a single, uniformly processed gauge analysis; and 6) use of a latitude-band calibration scheme for all satellites. More details will be presented. Several new parameters have been included, such as, gauge relative weighting in 3B43, HQ and IR precipitation in 3B42. Data services include online tools and information web pages. The online tools are: 1) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador is designed to be fast and easy to learn; 2) Giovanni TOVAS (http://disc.sci.gsfc.nasa.gov/precipitation/tovas); 3) Simple Subset Wizard for TMPA data subsetting and format conversion; 4) Data via OPeNDAP (http://disc.sci.gsfc.nasa.gov/services/opendap/). The OPeNDAP provides remote access to individual variables within datasets in a form usable

  4. T1ρ MRI and Discography Pressure as Novel Biomarkers for Disc Degeneration and Low Back Pain

    PubMed Central

    Borthakur, Arijitt; Maurer, Philip M.; Fenty, Matthew; Wang, Chenyang; Berger, Rachelle; Yoder, Jonathon; Balderston, Richard A.; Elliott, Dawn M.

    2012-01-01

    Study Design Prospective MRI study of LBP patients requiring discography as part of their routine clinical diagnoses and asymptomatic age-matched volunteers. Objective To determine whether T1ρ MRI and discography opening pressure are quantitative biomarkers of disc degeneration in LBP patients and in asymptomatic volunteers. Summary of Background Data Disc degenerative disease (DDD), a common cause of low back pain (LBP), is related to the patient’s prognosis and serves as a target for therapeutic interventions. However, there are few quantitative measures in the clinical setting. Discography opening pressure (OP) and T1ρ MRI are potential biomarkers of DDD related to biochemical composition the intervertebral disc (IVD). Methods The Institutional Review Board approved all experiments and informed consent was provided by each subject. Patients being treated for LBP (n=17, 68 levels, mean age 44±6 years, range 30–53) and control (CTL) subjects (n=11, 44 levels, mean age 43±17, range 22–76) underwent T1ρ and T2 MRI on a Siemens 3T Tim Trio clinical scanner. The LBP patients also received multi-level provocative discography before their MRI. Opening Pressure (OP) was recorded as the pressure when fluid first enters the nucleus of the IVD. Results T1ρ was significantly lower in the painful discs (55.3ms±3.0 ms, mean ± std. error) from control (92.0±4.9 ms, p<0.001) and non-painful discs (83.6±3.2 ms, p<0.001). Mean OP for the painful discs (11.8±1.0 psi, mean ± std. error) was significantly lower than non-painful discs (19.1±0.7 psi, p<0.001). Both T1ρ and OP correlated moderately with Pfirrmann degenerative grade. ROC area under the curve was 0.91 for T1ρ MRI and 0.84 for OP for predicting painful discs. Conclusions T1ρ and OP are quantitative measures of degeneration that are consistent across both control subjects and LBP patients. A significant and strong correlation exists between T1ρ values and in vivo OP measurements obtained by

  5. Ebbinghaus illusions with disc figures: effects of contextual size, separation, and lightness.

    PubMed

    Jaeger, Ted; Klahs, Kyle; Newton, David

    2014-06-01

    The Ebbinghaus illusion was produced using figures with four small or large contextual discs located either near or far from the central disc. For similar figures, the discs were either all black or all white; for dissimilar figures, black and white contextual and central discs were used in opposition. 48 observers, in equal numbers, were assigned to one of the four crossings of size and separation of the contextual discs and, using the converging method of limits, illusion magnitude scores for each Ebbinghaus configuration were obtained. The central disc appeared larger when bounded by small contextual discs and smaller when the contextual discs were more distant. Contrary to size contrast theory, uniformly colored discs did not generate greater illusions; instead, white central discs appeared larger than black ones regardless of contextual color. Collectively, the results indicated that contour interactions play a prominent role in producing the Ebbinghaus illusion.

  6. NASA GES DISC Level 2 Aerosol Analysis and Visualization Services

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Petrenko, Maksym; Ichoku, Charles; Yang, Wenli; Johnson, James; Zhao, Peisheng; Kempler, Steve

    2015-01-01

    Overview of NASA GES DISC Level 2 aerosol analysis and visualization services: DQViz (Data Quality Visualization)MAPSS (Multi-sensor Aerosol Products Sampling System), and MAPSS_Explorer (Multi-sensor Aerosol Products Sampling System Explorer).

  7. Magnetic connection and current distribution in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng-Xuan; Wang, Ding-Xiong; Gan, Zhao-Ming

    2009-10-01

    We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford-Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.

  8. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Zwart, S. Portegies

    2017-03-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classical picture of star formation in GCs, which approximates them as a single generation of stars. Bastian et al. recently suggested an evolutionary scenario in which a second, chemically distinct, population is formed by the accretion of chemically enriched material onto the protoplanetary disc of low-mass stars in the initial GC population. Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can accrete sufficient enriched material to account for the observed abundances in `second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  9. Structural Raman enhancement in graphite nano-discs

    NASA Astrophysics Data System (ADS)

    Cardenas, J. F.; Chakarov, D.; Kasemo, B.

    2016-04-01

    Raman scattering in disc-shaped graphite nanostructures, etched out of bulk HOPG, are investigated using an excitation wavelength of 532 nm at different laser power. The G-band is fitted using two Lorentzian functions, GL and GH. The difference of Raman shift between the two Lorentzian functions increase with laser power as a consequence of selective absorption and heating of the discs. Further, the G-band from the nanostructured HOPG reveal a Raman enhancement (RE) of ~2.2 and ~1.5 for the components associated with the discs (GL) and the supporting substrate (GH), respectively. The quantitative agreement between the experimental results and performed finite difference time domain calculations make possible to conclude that electromagnetic energy penetrates considerably into the discs from the circular periphery probably due to multiple scattering. In addition, the dependence of RE of the GL component on the laser power is attributed to a temperature dependent electron-phonon coupling.

  10. Crova's Disc: A Way to Make Sound Waves "Visible."

    ERIC Educational Resources Information Center

    Hastings, R. B.

    1981-01-01

    Explained are the differences between and offered are examples of longitudinal and transverse sound waves. Described is the construction of the Crova's Disc, a device used in the teaching of the propagation and properties of sound waves. (DS)

  11. Disc resonator gyroscope fabrication process requiring no bonding alignment

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor)

    2010-01-01

    A method of fabricating a resonant vibratory sensor, such as a disc resonator gyro. A silicon baseplate wafer for a disc resonator gyro is provided with one or more locating marks. The disc resonator gyro is fabricated by bonding a blank resonator wafer, such as an SOI wafer, to the fabricated baseplate, and fabricating the resonator structure according to a pattern based at least in part upon the location of the at least one locating mark of the fabricated baseplate. MEMS-based processing is used for the fabrication processing. In some embodiments, the locating mark is visualized using optical and/or infrared viewing methods. A disc resonator gyroscope manufactured according to these methods is described.

  12. 35. Perimeter acquisition radar building room #325, showing hard disc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Perimeter acquisition radar building room #325, showing hard disc drive - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. Alignment in star-debris disc systems seen by Herschel

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Kennedy, G. M.; Thureau, N.; Eiroa, C.; Marshall, J. P.; Maldonado, J.; Matthews, B. C.; Olofsson, G.; Barlow, M. J.; Moro-Martín, A.; Sibthorpe, B.; Absil, O.; Ardila, D. R.; Booth, M.; Broekhoven-Fiene, H.; Brown, D. J. A.; Cameron, A. Collier; del Burgo, C.; Di Francesco, J.; Eislöffel, J.; Duchêne, G.; Ertel, S.; Holland, W. S.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Lestrade, J.-F.; Vican, L.; Wilner, D. J.; Wolf, S.; Wyatt, M. C.

    2014-02-01

    Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A-M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.

  14. Prevalence of disc cupping in non-glaucomatous eyes.

    PubMed

    Chiappe, José Pablo; Nahum, Pablo; Casiraghi, Javier F; Iribarren, Rafael

    2015-01-01

    This study assessed optic disc size and cupping, using a commercially available ophthalmoscope, in order to show norms of these values for clinical practice. Subjects were office-workers referred from their respective workplaces for a routine medical examination, which included eye examination. The optic disc size was classified as small, medium or large, for having a diameter < 1.0, 1.0-1.5, or > 1.5 times (respectively) the diameter of the ophthalmoscope's selected light spot on the posterior pole. The cupping was classified as the ratio of the vertical cupping diameter and the vertical disc diameter on a relative decimal scale from 0.0 to 1.0.This study included 184 subjects with a mean age of 40.5 ± 9.5 years; 149 (81%) were males. Their mean ocular pressure was 12.4 ± 1.5 mmHg (range 10-17 mmHg). There was a high correlation between optic disc sizes and cupping in the right and left eyes (Pearson Correlation r = 0.866, p < 0.001); therefore, for simplicity only the data for right eyes are presented. According to our definition, the optic discs in these eyes comprised 27 (14.7%) small, 141 (76.6%) medium and 16 (8.7%) large. The small optic discs were rarely cupped, and the large optic discs were always cupped. Optic disc cupping greater than 0.7 was rarely found and should be suspect of glaucoma. Clinical doctors should be aware of this and refer those subjects with abnormal cupping to the specialist.

  15. Observational signatures of linear warps in circumbinary discs

    NASA Astrophysics Data System (ADS)

    Juhász, Attila; Facchini, Stefano

    2017-01-01

    In recent years an increasing number of observational studies have hinted at the presence of warps in protoplanetary discs, however a general comprehensive description of observational diagnostics of warped discs was missing. We performed a series of 3D SPH hydrodynamic simulations and combined them with 3D radiative transfer calculations to study the observability of warps in circumbinary discs, whose plane is misaligned with respect to the orbital plane of the central binary. Our numerical hydrodynamic simulations confirm previous analytical results on the dependence of the warp structure on the viscosity and the initial misalignment between the binary and the disc. To study the observational signatures of warps we calculate images in the continuum at near-infrared and sub-millimetre wavelengths and in the pure rotational transition of CO in the sub-millimetre. Warped circumbinary discs show surface brightness asymmetry in near-infrared scattered light images as well as in optically thick gas lines at sub-millimetre wavelengths. The asymmetry is caused by self-shadowing of the disc by the inner warped regions, thus the strength of the asymmetry depends on the strength of the warp. The projected velocity field, derived from line observations, shows characteristic deviations, twists and a change in the slope of the rotation curve, from that of an unperturbed disc. In extreme cases even the direction of rotation appears to change in the disc inwards of a characteristic radius. The strength of the kinematical signatures of warps decreases with increasing inclination. The strength of all warp signatures decreases with decreasing viscosity.

  16. In vitro and in silico investigations of disc nucleus replacement.

    PubMed

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-08-07

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4-L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential.

  17. Black hole accretion discs and screened scalar hair

    NASA Astrophysics Data System (ADS)

    Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  18. Drag Enhancement of Microbial Slime Films on Rotating Discs.

    DTIC Science & Technology

    1981-03-27

    and with their assistance and advice. The first was Chlorella pyrinoidosa, a unicellular green alga which was grown in Burke’s medium (10). The...lower salinity. Previous attempts to culture slime films on the titanium discs were unsuccessful for two reasons: (1) The films of Chlorella (green alga...measured values. For this reason, further studies of titanium discs in diatom cultures were discontinued. 2. The green unicellular alga ( Chlorella

  19. Optical Coherence Tomography Angiography of the Optic Disc; an Overview

    PubMed Central

    Akil, Handan; Falavarjani, Khalil Ghasemi; Sadda, Srinivas R.; Sadun, Alfredo A.

    2017-01-01

    Different diseases of the optic disc may be caused by or lead to abnormal vasculature at the optic nerve head. Optical coherence tomography angiography (OCTA) is a novel technology that provides high resolution mapping of the retinal and optic disc vessels. Recent studies have shown the ability of OCTA to visualize vascular abnormalities in different optic neuropathies. In addition, quantified OCTA measurements were found promising for differentiating optic neuropathies from healthy eyes. PMID:28299012

  20. The frequency of binary star interlopers amongst transitional discs

    NASA Astrophysics Data System (ADS)

    Ruíz-Rodríguez, D.; Ireland, M.; Cieza, L.; Kraus, A.

    2016-12-01

    Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as transitional discs (TD). These objects are thought to be an evolutionary stage between an optically thick disc and optically thin disc. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these discs, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. For our detection limits, we implement a new method of completeness correction using a combination of randomly sampled binary orbits and Bayesian inference. The selected sample of 24 TDs belongs to the nearby and young star-forming regions: Ophiuchus (˜130 pc), Taurus-Auriga (˜140 pc) and IC348 (˜220 pc). These regions are suitable to resolve faint stellar companions with moderate to high confidence levels at distances as low as 2 au from the central star. With a total of 31 objects, including 11 known TDs and circumbinary discs from the literature, we have found that a fraction of 0.38 ± 0.09 of the SEDs of these objects are likely due to the tidal interaction between a close binary and its disc, while the remaining SEDs are likely the result of other internal processes such as photoevaporation, grain growth, planet-disc interactions. In addition, we detected four companions orbiting outside the area of the truncation radii and propose that the IR excesses of these systems are due to a disc orbiting a secondary companion.

  1. The DISC1 promoter: characterization and regulation by FOXP2.

    PubMed

    Walker, Rosie M; Hill, Alison E; Newman, Alice C; Hamilton, Gillian; Torrance, Helen S; Anderson, Susan M; Ogawa, Fumiaki; Derizioti, Pelagia; Nicod, Jérôme; Vernes, Sonja C; Fisher, Simon E; Thomson, Pippa A; Porteous, David J; Evans, Kathryn L

    2012-07-01

    Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterization of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300 to -177 bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, while a region -982 to -301 bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by forkhead-box P2 (FOXP2), a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia. Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.

  2. In vitro and in silico investigations of disc nucleus replacement

    PubMed Central

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-01-01

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630

  3. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  4. Extreme debris discs around nearby stars with Herschel

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Eiroa, C.

    2011-10-01

    The excellent sensitivity and high resolution of PACS on the Herschel Space Observatory has opened up the possibility of detecting direct analogues to the Solar System's Edgeworth-Kuiper belt around nearby stars. We present an overview of the results from the Herschel/ DUNES Open Time Key Program, highlighting the extreme diversity of observed debris discs, covering both newly discovered and newly resolved systems that are amongst the largest, faintest and coldest discs yet known around Sun-like stars.

  5. Concomitance of fibromyalgia syndrome and cervical disc herniation

    PubMed Central

    Güler, Mustafa; Aydın, Teoman; Akgöl, Erdal; Taşpınar, Özgür

    2015-01-01

    [Purpose] Fibromyalgia syndrome (FMS) and cervical disc herniation (CDH) are a common diseases commonly encountered in physical therapy clinics. There are also patients who have both of these diseases. In this study we aim to investigated whether FMS is a risk factor for cervical disc herniation and the frequency of their coincident occurrence. [Subjects and Methods] Thirty-five patients having a primary FMS diagnosis according to the American Rheumatism Association criteria are taken into consideration and a control group were the subjects of this study. The two groups were compared with respect to cervical disc hernia using cervical region MRI. [Results] The distribution of disc hernia of 6 fibromyalgia patients who had cervical discopathy was: 16.6% C2–3, 16.6% C5–6, 16.6% C6–7, 33.3% C4–5, C5–6 (two levels in two patients) and 16.6% C4–5, C5–6, C7–1 (three levels in one patient) . The herniation directions were given as: central in 5 levels, right paramedian in 1 level, and left paramedian disc hernia in 1 level. There were 4 cervical disk hernia in the control group. The herniation direction were central in two, right paramedian in one, and left paramedian in one patient. [Conclusion] In this study, the existence of cervical disc herniation in fibromyalgia patients was found to be not different from the normal population. PMID:25931731

  6. Histological Identification of Propionibacterium acnes in Nonpyogenic Degenerated Intervertebral Discs

    PubMed Central

    Yuan, Ye; Zhou, Zezhu; Jiao, Yucheng; Zheng, Yuehuan; Lin, Yazhou; Xiao, Jiaqi

    2017-01-01

    Purpose. Low-virulence anaerobic bacteria, especially the Propionibacterium acnes (P. acnes), have been thought to be a new pathogeny for a series of disc diseases. However, until now, there has been no histological evidence to confirm this link. The purpose of this study was to confirm the presence of P. acnes in nonpyogenic intervertebral discs via histological observation. Method. Degenerated intervertebral discs were harvested from 76 patients with low back pain and/or sciatica but without any symptoms of discitis or spondylodiscitis. The samples were cultured under anaerobic conditions and then examined using 16S rDNA PCR to screen for P. acnes. Samples found to be positive for P. acnes were stained with hematoxylin-eosin (HE) and modified Brown-Brenn staining and observed under a microscope. Results. Here, 16 intervertebral discs were found to be positive for P. acnes via 16S rDNA PCR and the prevalence was 21.05% (16/76). Among them, 7 samples had visible microbes stained with HE and modified Brown-Brenn staining. Morphological examination showed the bacteria to be Gram-positive and rod-shaped, so they were considered P. acnes. Conclusion. P. acnes is capable of colonizing some degenerated intervertebral discs without causing discitis, and its presence could be further confirmed by histological evidence. Targeting these bacteria may be a promising therapy method for some disc diseases.

  7. Pyrite discs in coal: evidence for fossilized bacterial colonies

    USGS Publications Warehouse

    Southam, G.; Donald, R.; Rostad, A.; Brock, C.

    2001-01-01

    Discs of pyrite from 1 to 3 mm in diameter and ∼100 μm thick were observed within fracture planes in coal from the Black Mesa coal deposit in northeastern Arizona. The pyrite discs were composed of aggregates of crystals, which suggested that sulfide mineral diagenesis had initiated at multiple nucleation sites and occurred prior to the compaction forces occurring during coal formation. Stable sulfur isotope analysis of the discs (δ34S = −31.7‰) supports a bacterial origin resulting from dissimilatory sulfate reduction. Fossilized bacteria on the disc surfaces (average = 27/100 μm2) appeared as halos when viewed using reflected light microscopy, but were lenticular by scanning electron microscopy, each microfossil being 2–3 μm in length. A fossilized bacterial colony (pyrite disc), 1 mm in diameter, would contain ∼2.1 × 107 microfossils. These microfossils were not observed on hydrothermal pyrite. Coating and in-filling of sulfate-reducing bacteria with iron disulfide during in vitro sulfide mineral diagenesis provide mechanisms to explain the preservation of the three-dimensional lenticular microfossils observed on the pyrite discs.

  8. Momentum theory of Joukowsky actuator discs with swirl

    NASA Astrophysics Data System (ADS)

    van Kuik, Gijs A. M.

    2016-09-01

    Actuator disc theory is the basis for most rotor design methods, be it with many extensions and engineering rules added to make it a well-established method. However, the off-design condition of a very low rotational speed Ω of the disc is still a topic for scientific discussions. Several authors have presented solutions of the associated momentum theory for actuator discs with a constant circulation, the so-called Joukowsky discs, showing the efficiency Cp → ∞ for Ω → 0. The momentum balance is very sensitive to the choice of the vortex core radius δ as the pressure and velocity gradients become infinite for δ → 0. Viscous vortex cores do not show this singular behaviour so an inviscid core model is sought which removes the momentum balance sensitivity to singular flow. A vortex core with a constant δ does so. Applying this results in Cp → 0 for Ω → 0, instead of Cp → ∞. The Joukowsky actuator disc theory is confirmed by a very good match with the numerically obtained results. It gives higher Cp values than corresponding solutions for discs with a Goldstein-based wake circulation published in literature.

  9. Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint.

    PubMed

    Du, Hong-Gen; Liao, Sheng-Hui; Jiang, Zhong; Huang, Huan-Ming; Ning, Xi-Tao; Jiang, Neng-Yi; Pei, Jian-Wei; Huang, Qin; Wei, Hui

    2016-05-01

    This study investigates the effect of a new Chinese massage technique named "press-extension" on degenerative lumbar with disc herniation and facet joint dislocation, and provides a biomechanical explanation of this massage technique. Self-developed biomechanical software was used to establish a normal L1-S1 lumbar 3D FE model, which integrated the spine CT and MRI data-based anatomical structure. Then graphic technique is utilized to build a degenerative lumbar FE model with disc herniation and facet joint dislocation. According to the actual press-extension experiments, mechanic parameters are collected to set boundary condition for FE analysis. The result demonstrated that press-extension techniques bring the annuli fibrosi obvious induction effect, making the central nucleus pulposus forward close, increasing the pressure in front part. Study concludes that finite element modelling for lumbar spine is suitable for the analysis of press-extension technique impact on lumbar intervertebral disc biomechanics, to provide the basis for the disease mechanism of intervertebral disc herniation using press-extension technique.

  10. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc

    PubMed Central

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc

    2015-01-01

    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc’s rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film’s vibration during the disc’s rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62°C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms. PMID:26422249

  11. Unsteady flow over disc turbine blades

    NASA Astrophysics Data System (ADS)

    Popiolek, Z.; Whitelaw, J. H.; Yianneskis, M.

    Measurements are presented of the mean and turbulence structure of the trailing vortices produced over disc turbine blades in stirred vessels. The results were obtained by ensemble-averaging the velocities measured by laser-Doppler anemometry over intervals of one degree of revolution and are compared with results obtained by ensemble-averaging over the whole 360 deg cycle. A vortical pattern was permanently present up to 20 degrees behind each blade, and was subjected to an erratic motion due to the formation of a whirlpool type of vortex in the free surface of the water. The velocities in the vortices were of the order of 0.25 of the blade tip velocity, V(tip). The measured kinetic energy of turbulence reached maxima of 0.19 V(tip)squared and the fluctuating quantities measured indicated that strong anisotropy prevails in the impeller stream. Comparison of turbulence results with those obtained by sampling over the whole 360 degrees of revolution shows that the former can be overestimated by as much as four times.

  12. Magnetic flux stabilizing thin accretion discs

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2016-10-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disc for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a 10 M⊙ black hole the minimal magnetic flux is 10^{24}(dot{M}/dot{M}_Edd)^{20/21} G cm2. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star - estimated to be in the range 1022-1024 G cm2. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large-scale poloidal field of uniform polarity.

  13. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  14. Pathogenesis of optic disc edema in raised intracranial pressure.

    PubMed

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  15. PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE

    PubMed Central

    Hayreh, Sohan Singh

    2015-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  16. Disc-protoplanet interaction. Influence of circumprimary radiative discs on self-gravitating protoplanetary bodies in binary star systems

    NASA Astrophysics Data System (ADS)

    Gyergyovits, M.; Eggl, S.; Pilat-Lohinger, E.; Theis, Ch.

    2014-06-01

    Context. More than 60 planets have been discovered so far in systems that harbour two stars, some of which have binary semi-major axes as small as 20 au. It is well known that the formation of planets in such systems is strongly influenced by the stellar components, since the protoplanetary disc and the particles within are exposed to the gravitational influence of the binary. However, the question on how self-gravitating protoplanetary bodies affect the evolution of a radiative, circumprimary disc is still open. Aims: We present our 2D hydrodynamical GPU-CPU code and study the interaction of several thousands of self-gravitating particles with a viscous and radiative circumprimary disc within a binary star system. To our knowledge this program is the only one at the moment that is capable to handle this many particles and to calculate their influence on each other and on the disc. Methods: We performed hydrodynamical simulations of a circumstellar disc assuming the binary system to be coplanar. Our grid-based staggered mesh code relies on ideas from ZEUS-2D, where we implemented the FARGO algorithm and an additional energy equation for the radiative cooling according to opacity tables. To treat particle motion we used a parallelised version of the precise Bulirsch - Stoer algorithm. Four models in total where computed taking into account (i) only N-body interaction; (ii) N-body and disc interaction; (iii) the influence of computational parameters (especially smoothing) on N-body interaction; and (iv) the influence of a quiet low-eccentricity disc while running model (ii). The impact velocities were measured at two different time intervals and were compared. Results: We show that the combination of disc- and N-body self-gravity can have a significant influence on the orbit evolution of roughly Moon sized protoplanets. Conclusions: Not only gas drag can alter the orbit of particles, but the gravitational influence of the disc can accomplish this as well. The results

  17. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    PubMed Central

    2010-01-01

    process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594

  18. Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration

    PubMed Central

    Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn

    2013-01-01

    Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these

  19. Deuk Laser Disc Repair® is a safe and effective treatment for symptomatic cervical disc disease

    PubMed Central

    Deukmedjian, Ara J.; Jason Cutright, S. T.; Augusto Cianciabella, PA-C; Deukmedjian, Arias

    2013-01-01

    Background: Deuk Laser Disc Repair® is a new full-endoscopic surgical procedure to repair symptomatic cervical disc disease. Methods: A prospective cohort of 66 consecutive patients underwent cervical Deuk Laser Disc Repair® for one (n = 21) or two adjacent (n = 45) symptomatic levels of cervical disc disease and were evaluated postoperatively for resolution of headache, neck pain, arm pain, and radicular symptoms. All patients were candidates for anterior cervical discectomy and fusion (ACDF) or arthroplasty. The Mann–Whitney Wilcoxon test was used to calculate P values. Results: All patients (n = 66) had significant improvement in preoperative symptoms with an average symptom resolution of 94.6%. Fifty percent (n = 33) had 100% resolution of all preoperative cervicogenic symptoms. Only 4.5% (n = 3) had less than 80% resolution of preoperative symptoms. Visual analog scale (VAS) significantly improved from 8.7 preoperatively to 0.5 postoperatively (P < 0.001) for the cohort. Average operative and recovery times were 57 and 52 minutes, respectively. There were no perioperative complications. Recurrent disc herniation occurred in one patient (1.5%). Average postoperative follow-up was 94 days and no significant intergroup difference in outcomes was observed (P = 0.111) in patients with <90 days (n = 52) or >90 days (n = 14, mean 319 days) follow-up. No significant difference in outcomes was observed (P = 0.774) for patients undergoing one or two level Deuk Laser Disc Repair®. Patients diagnosed with postoperative cervical facet syndrome did significantly worse (P < 0.001). Conclusion: Deuk Laser Disc Repair® is a safe and effective alternative to ACDF or arthroplasty for the treatment of one or two adjacent symptomatic cervical disc herniations with an overall success rate of 94.6%. PMID:23776754

  20. Analysis of Water and Energy Budgets and Trends Using the NLDAS Monthly Data Sets

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Rui, Hualan; Mocko, David M.; Teng, William L.; Lei, Guang-Dih

    2012-01-01

    The North American Land Data Assimilation System (NLDAS) is a collaborative project between NASA GSFC, NOAA, Princeton University, and the University of Washington. NLDAS has created surface meteorological forcing data sets using the best-available observations and reanalyses. The forcing data sets are used to drive four separate land-surface models (LSMs), Mosaic, Noah, VIC, and SAC, to produce data sets of soil moisture, snow, runoff, and surface fluxes. NLDAS hourly data, accessible from the NASA GES DISC Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings, are widely used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies of extreme events. More information is available at http://ldas.gsfc.nasa.gov/. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data sets have been recently released by NASA GES DISC.

  1. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  2. Evidence of bar-induced secular evolution in the inner regions of stellar discs in galaxies: what shapes disc galaxies?

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Gadotti, Dimitri A.; Athanassoula, E.; Bosma, Albert; Sheth, Kartik; Lee, Myung Gyoon

    2016-11-01

    We present evidence of bar-induced secular evolution in galactic discs using 3.6 μm images of nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We find that among massive galaxies (M*/M⊙ > 1010), longer bars tend to reside in inner discs having a flatter radial profile. Such galaxies show a light deficit in the disc surrounding the bar, within the bar radius and often show a Θ-shaped morphology. We quantify this deficit and find that among all galaxies explored in this study (with 109 < M*/M⊙ < 1011), galaxies with a stronger bar (i.e. longer and/or with a higher Bar/T) show a more pronounced deficit. We also examine simulation snapshots to confirm and extend results by Athanassoula and Misiriotis, showing that as bars evolve they become longer, while the light deficit in the disc becomes more pronounced. Theoretical studies have predicted that, as a barred galaxy evolves, the bar captures disc stars in its immediate neighbourhood so as to make the bar longer, stronger and thinner. Hence, we claim that the light deficit in the inner disc is produced by bars, which thus take part in shaping the mass distribution of their host galaxies.

  3. Characterizing thermal sweeping: a rapid disc dispersal mechanism

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Hudoba de Badyn, Mathias; Clarke, Cathie J.; Robins, Luke

    2013-12-01

    We consider the properties of protoplanetary discs that are undergoing inside-out clearing by photoevaporation. In particular, we aim to characterize the conditions under which a protoplanetary disc may undergo `thermal sweeping', a rapid (≲104 years) disc destruction mechanism proposed to occur when a clearing disc reaches sufficiently low surface density at its inner edge and where the disc is unstable to runaway penetration by the X-rays. We use a large suite of 1D radiation-hydrodynamic simulations to probe the observable parameter space, which is unfeasible in higher dimensions. These models allow us to determine the surface density at which thermal sweeping will take over the disc's evolution and to evaluate this critical surface density as a function of X-ray luminosity, stellar mass and inner hole radius. We find that this critical surface density scales linearly with X-ray luminosity, increases with inner hole radius and decreases with stellar mass, and we develop an analytic model that reproduces these results. This surface density criterion is then used to determine the evolutionary state of protoplanetary discs at the point that they become unstable to destruction by thermal sweeping. We find that transition discs created by photoevaporation will undergo thermal sweeping when their inner holes reach 20-40 au, implying that transition discs with large holes and no accretion (which were previously a predicted outcome of the later stages of all flavours of the photoevaporation model) will not form. Thermal sweeping thus avoids the production of large numbers of large, non-accreting holes (which are not observed) and implies that the majority of holes created by photoevaporation should still be accreting. We emphasize that the surface density criteria that we have developed apply to all situations where the disc develops an inner hole that is optically thin to X-rays. It thus applies not only to the case of holes originally created by photoevaporation but

  4. Cervical Deuk Laser Disc Repair®: A novel, full-endoscopic surgical technique for the treatment of symptomatic cervical disc disease

    PubMed Central

    Deukmedjian, Ara J.; Cianciabella, Augusto; Cutright, Jason; Deukmedjian, Arias

    2012-01-01

    Background: Cervical Deuk Laser Disc Repair® is a novel full-endoscopic, anterior cervical, trans-discal, motion preserving, laser assisted, nonfusion, outpatient surgical procedure to safely treat symptomatic cervical disc diseases including herniation, spondylosis, stenosis, and annular tears. Here we describe a new endoscopic approach to cervical disc disease that allows direct visualization of the posterior longitudinal ligament, posterior vertebral endplates, annulus, neuroforamina, and herniated disc fragments. All patients treated with Deuk Laser Disc Repair were also candidates for anterior cervical discectomy and fusion (ACDF). Methods: A total of 142 consecutive adult patients with symptomatic cervical disc disease underwent Deuk Laser Disc Repair during a 4-year period. This novel procedure incorporates a full-endoscopic selective partial decompressive discectomy, foraminoplasty, and posterior annular debridement. Postoperative complications and average volume of herniated disc fragments removed are reported. Results: All patients were successfully treated with cervical Deuk Laser Disc Repair. There were no postoperative complications. Average volume of herniated disc material removed was 0.09 ml. Conclusions: Potential benefits of Deuk Laser Disc Repair for symptomatic cervical disc disease include lower cost, smaller incision, nonfusion, preservation of segmental motion, outpatient, faster recovery, less postoperative analgesic use, fewer complications, no hardware failure, no pseudoarthrosis, no postoperative dysphagia, and no increased risk of adjacent segment disease as seen with fusion. PMID:23230523

  5. ARGALI: an automatic cup-to-disc ratio measurement system for glaucoma detection and AnaLysIs framework

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wong, D. W. K.; Lim, J. H.; Li, H.; Tan, N. M.; Wong, T. Y.

    2009-02-01

    Glaucoma is an irreversible ocular disease leading to permanent blindness. However, early detection can be effective in slowing or halting the progression of the disease. Physiologically, glaucoma progression is quantified by increased excavation of the optic cup. This progression can be quantified in retinal fundus images via the optic cup to disc ratio (CDR), since in increased glaucomatous neuropathy, the relative size of the optic cup to the optic disc is increased. The ARGALI framework constitutes of various segmentation approaches employing level set, color intensity thresholds and ellipse fitting for the extraction of the optic cup and disc from retinal images as preliminary steps. Following this, different combinations of the obtained results are then utilized to calculate the corresponding CDR values. The individual results are subsequently fused using a neural network. The learning function of the neural network is trained with a set of 100 retinal images For testing, a separate set 40 images is then used to compare the obtained CDR against a clinically graded CDR, and it is shown that the neural network-based result performs better than the individual components, with 96% of the results within intra-observer variability. The results indicate good promise for the further development of ARGALI as a tool for the early detection of glaucoma.

  6. Nonlinear transient and chaotic interactions in disc brake squeal

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-04-01

    In automotive disc-brake squeal, most numerical studies have been focussed on the prediction of unstable vibration modes in the frequency domain using the complex eigenvalue analysis. However, the magnitude of the positive real part of a complex eigenvalue is an unreliable indicator of squeal occurrence. Although nonlinearities have been shown to play a significant role in brake squeal, transient nonlinear time domain analyses have rarely been applied owing to high computational costs. Here the complex eigenvalue analysis, the direct steady-state analysis and the transient nonlinear time domain analysis are applied to an isotropic pad-on-disc finite element model representing a simple model of a brake system. While in this investigation, in-plane pad-mode instabilities are not detected by the complex eigenvalue analysis, the dissipated energy obtained by the direct steady-state analysis of the model subjected to harmonic contact pressure excitation is negative at frequencies of pad modes, indicating a potential for instabilities. Transient nonlinear time domain analysis of the pad and disc dynamics reveal that in-plane pad vibrations excite a dominant out-of-plane disc mode. For intermittently chaotic pad motion, the disc dynamics is quasi-periodic; and for chaotic motion of the pad, a toroidal attractor is found for the disc's out-of-plane motion. Nonlinear interactions between the pad and the disc highlight that different parts in a brake system display different dynamic behaviour and need to be analysed separately. The type II intermittency route to chaos could be the cause for the experimentally observed instantaneous mode squeal.

  7. Accretion of the Moon from non-canonical discs

    PubMed Central

    Salmon, J.; Canup, R. M

    2014-01-01

    Impacts that leave the Earth–Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such ‘non-canonical’ impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth–Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7R⊕, which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance. PMID:25114307

  8. Giant disc galaxies: where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, H. M.; Zaritsky, D.; Sorce, J. G.; Pomarède, D.

    2015-04-01

    We identify some of the most H I-massive and fastest rotating disc galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disc galaxies. By combining data from the Cosmic Flows project, which has consistently reanalysed archival galaxy H I profiles, and 3.6 μm photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher (BTF) relationship to explore whether these massive galaxies are distinct. We discuss several results, but the most striking is the systematic offset of the H I-massive sample above the BTF. These galaxies have both more gas and more stars in their discs than the typical disc galaxy of similar rotational velocity. The `condensed' baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disc, is twice as high in the H I-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disc. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the H I-massive sample and the typical disc galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive H I detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  9. Preclinical and clinical experience with a viscoelastic total disc replacement

    PubMed Central

    Rischke, Burkhard; Ross, Raymond S.; Jollenbeck, Boris A.; Zimmers, Kari B.; Defibaugh, Neal D.

    2011-01-01

    Background The purpose of this study is to describe the mechanical durability and the clinical and radiographic outcomes of a viscoelastic total disc replacement (VTDR). The human intervertebral disc is a complex, viscoelastic structure, permitting and constraining motion in 3 axes, thus providing stability. The ideal disc replacement should be viscoelastic and deformable in all directions, and it should restore disc height and angle. Methods Mechanical testing was conducted to validate the durability of the VTDR, and a clinical study was conducted to evaluate safety and performance. Fifty patients with single-level, symptomatic lumbar degenerative disc disease at L4-5 or L5-S1 were enrolled in a clinical trial at 3 European sites. Patients were assessed clinically and radiographically for 2 years by the Oswestry Disability Index (ODI), a visual analog scale (VAS), and independent radiographic analyses. Results The VTDR showed a fatigue life in excess of 50 million cycles (50-year equivalent) and a physiologically appropriate level of stiffness, motion, geometry, and viscoelasticity. We enrolled 28 men and 22 women in the clinical study, with a mean age of 40 years. Independent quantitative radiographic assessment indicated that the VTDR restored and maintained disc height and lordosis while providing physiologic motion. Mean ODI scores decreased from 48% preoperatively to 23% at 2 years’ follow-up. Mean VAS low-back pain scores decreased from 7.1 cm to 2.9 cm. Median scores indicated that half of the patient population had ODI scores below 10% and VAS low-back pain scores below 0.95 cm at 2 years. Conclusions The VTDR has excellent durability and performs clinically and radiographically as intended for the treatment of symptomatic lumbar degenerative disc disease. Clinical Relevance The VTDR is intended to restore healthy anatomic properties and stability characteristics to the spinal segment. This study is the first to evaluate a VTDR in a 50-patient

  10. Clinical evaluation of disc battery ingestion in children.

    PubMed

    Mirshemirani, AliReza; Khaleghnejad-Tabari, Ahmad; Kouranloo, Jaefar; Sadeghian, Naser; Rouzrokh, Mohsen; Roshanzamir, Fatolah; Razavi, Sajad; Sayary, Ali Akbar; Imanzadeh, Farid

    2012-04-01

    BACKGROUND The purpose of this study was to evaluate the characteristics, management, and outcomes of disc battery ingestion in children. METHODS We reviewed the medical records of children admitted to Mofid Children's Hospital due to disc battery ingestion from January 2006 to January 2010. Clear history, clinical symptoms and results of imaging studies revealed diagnosis of disc battery ingestion in suspected patients. The clinical data reviewed included age, gender, clinical manifestation, radiologic findings, location of disc battery, duration of ingestion, endoscopic results and surgical treatment. RESULTS We found 22 cases (11 males and 11 females) of disc battery ingestion with a mean age of 4.3 years (range: 9 months to 12 years). Common symptoms were vomiting, cough, dysphagia, and dyspnea. The mean duration of ingestion was 2.7 days (4 hours to 1.5 months). A total of 19 patients had histories of disc battery ingestion, but three cases referred with the above symptoms, and the batteries were accidentally found by x-ray. Only three cases had batteries impacted in the esophagus. Twelve batteries were removed endoscopically, 6 batteries spontaneously passed through the gastrointestinal (GI) tract within 5 to 7 days, and 4 patients underwent surgery due to complications: 3 due to tracheo-esophageal fistula (TEF) and 1 due to intestinal perforation. There was no mortality in our study. CONCLUSION Most cases of disc battery ingestion run uneventful courses, but some may be complicated. If the battery lodges in the esophagus, emergency endoscopic management is necessary. However, once in the stomach, it will usually pass through the GI tract.

  11. Artificial Discs for Lumbar and Cervical Degenerative Disc Disease –Update

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the safety and efficacy of artificial disc replacement (ADR) technology for degenerative disc disease (DDD). Clinical Need Degenerative disc disease is the term used to describe the deterioration of 1 or more intervertebral discs of the spine. The prevalence of DDD is roughly described in proportion to age such that 40% of people aged 40 years have DDD, increasing to 80% among those aged 80 years or older. Low back pain is a common symptom of lumbar DDD; neck and arm pain are common symptoms of cervical DDD. Nonsurgical treatments can be used to relieve pain and minimize disability associated with DDD. However, it is estimated that about 10% to 20% of people with lumbar DDD and up to 30% with cervical DDD will be unresponsive to nonsurgical treatments. In these cases, surgical treatment is considered. Spinal fusion (arthrodesis) is the process of fusing or joining 2 bones and is considered the surgical gold standard for DDD. Artificial disc replacement is the replacement of the degenerated intervertebral disc with an artificial disc in people with DDD of the lumbar or cervical spine that has been unresponsive to nonsurgical treatments for at least 6 months. Unlike spinal fusion, ADR preserves movement of the spine, which is thought to reduce or prevent the development of adjacent segment degeneration. Additionally, a bone graft is not required for ADR, and this alleviates complications, including bone graft donor site pain and pseudoarthrosis. It is estimated that about 5% of patients who require surgery for DDD will be candidates for ADR. Review Strategy The Medical Advisory Secretariat conducted a computerized search of the literature published between 2003 and September 2005 to answer the following questions: What is the effectiveness of ADR in people with DDD of the lumbar or cervical regions of the spine compared with spinal fusion surgery? Does an artificial disc reduce the incidence of adjacent segment degeneration (ASD

  12. Sparse aperture masking interferometry survey of transitional discs. Search for substellar-mass companions and asymmetries in their parent discs

    NASA Astrophysics Data System (ADS)

    Willson, M.; Kraus, S.; Kluska, J.; Monnier, J. D.; Ireland, M.; Aarnio, A.; Sitko, M. L.; Calvet, N.; Espaillat, C.; Wilner, D. J.

    2016-10-01

    Context. Transitional discs are a class of circumstellar discs around young stars with extensive clearing of dusty material within their inner regions on 10s of au scales. One of the primary candidates for this kind of clearing is the formation of planet(s) within the disc that then accrete or clear their immediate area as they migrate through the disc. Aims: The goal of this survey was to search for asymmetries in the brightness distribution around a selection of transitional disc targets. We then aimed to determine whether these asymmetries trace dynamically-induced structures in the disc or the gap-opening planets themselves. Methods: Our sample included eight transitional discs. Using the Keck/NIRC2 instrument we utilised the Sparse Aperture Masking (SAM) interferometry technique to search for asymmetries indicative of ongoing planet formation. We searched for close-in companions using both model fitting and interferometric image reconstruction techniques. Using simulated data, we derived diagnostics that helped us to distinguish between point sources and extended asymmetric disc emission. In addition, we investigated the degeneracy between the contrast and separation that appear for marginally resolved companions. Results: We found FP Tau to contain a previously unseen disc wall, and DM Tau, LkHα330, and TW Hya to contain an asymmetric signal indicative of point source-like emission. We placed upper limits on the contrast of a companion in RXJ 1842.9-3532 and V2246 Oph. We ruled the asymmetry signal in RXJ 1615.3-3255 and V2062 Oph to be false positives. In the cases where our data indicated a potential companion we computed estimates for the value of McṀc and found values in the range of . Conclusions: We found significant asymmetries in four targets. Of these, three were consistent with companions. We resolved a previously unseen gap in the disc of FP Tau extending inwards from approximately 10 au. Based on observations made with the Keck observatory

  13. Menopause causes vertebral endplate degeneration and decrease in nutrient diffusion to the intervertebral discs.

    PubMed

    Wang, Yi-Xiang J; Griffith, James F

    2011-07-01

    The vasculature in the outer annulus supplies only the periphery of the disc so that nutrition to the bulk of the disc, including all the inner annulus and nucleus pulposus, is derived from the vertebral epiphyseal end arteries where nutrients diffuse across the cartilaginous endplate to reach the disc. In this regard the vertebral endplate plays an important role in disc nutrition. Compromise of diffusion of nutrients to the disc cells may play a large part in the progression or even initiation of disc degeneration. Increasing evidence suggests that estrogen deficiency also influence the severity of disc degeneration in post-menopausal females. Structural disorganization of the vertebral endplate occurs with disc degeneration, with the most common endplate changes observed clinically being Schmorl's node. Schmorl's node is more commonly seen in post-menopausal women than younger women. Osteosclerosis, osteonecrosis and fibrosis associated with Schmorl's nodes can impede nutrient diffusion into the disc as well as removal of metabolites from the disc. We hypothesize that menopause negatively affects vertebral endplate quality and induces endplate degeneration. This endplate degeneration decreases nutrients diffusion from vertebral body into discs, and also impedes removal of metabolites, leads to further disc degeneration. To confirm our hypothesis, a cross-sectional post-contrast MRI study can be performed in pre-menopausal and post-menopausal women. If the hypothesis is confirmed, then low dose hormone replacement treatment may retard disc degeneration in post menopausal women and thereby limit the consequences associated with disc degeneration such as low back pain.

  14. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.

  15. Chandra observation of the edge-on spiral NGC 5775: probing the hot galactic disc/halo connection

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Li, Zhiyuan; Wang, Q. Daniel; Irwin, Judith A.; Rossa, Joern

    2008-10-01

    We study the edge-on galaxy NGC 5775, utilizing a 58.2 ks Chandra ACIS-S observation together with complementary Hubble Space Telescope (HST) ACS, Spitzer IRAC and other multi-wavelength data sets. This edge-on galaxy, with its disc-wide active star formation, is particularly well suited for studying the disc/halo interaction on subgalactic scales. We detect 27 discrete X-ray sources within the D25 region of the galaxy, including an ultra-luminous source with a 0.3-7 keV luminosity of ~7 × 1040ergs-1. The source-removed diffuse X-ray emission shows several prominent extraplanar features, including a ~10kpc diameter `shell-like' feature and a `blob' reaching a projected distance of ~25kpc from the galactic disc. The bulk of the X-ray emission in the halo has a scale height of ~1.5 kpc and can be characterized by a two-temperature optically thin thermal plasma with temperatures of ~0.2 and 0.6keV and a total 0.3-2 keV luminosity of ~3.5 × 1039ergs-1. The high-resolution, multi-wavelength data reveal the presence of several extraplanar features around the disc, which appear to be associated with the in-disc star formation. We suggest that hot gas produced with different levels of mass loading can have different temperatures, which may explain the characteristic temperatures of hot gas in the halo. We have obtained a subgalactic scale X-ray-intensity-star-formation relation, which is consistent with the integrated version in other star-forming galaxies.

  16. Galaxy And Mass Assembly (GAMA): M_star - R_e relations of z = 0 bulges, discs and spheroids

    NASA Astrophysics Data System (ADS)

    Lange, Rebecca; Moffett, Amanda J.; Driver, Simon P.; Robotham, Aaron S. G.; Lagos, Claudia del P.; Kelvin, Lee S.; Conselice, Christopher; Margalef-Bentabol, Berta; Alpaslan, Mehmet; Baldry, Ivan; Bland-Hawthorn, Joss; Bremer, Malcolm; Brough, Sarah; Cluver, Michelle; Colless, Matthew; Davies, Luke J. M.; Häußler, Boris; Holwerda, Benne W.; Hopkins, Andrew M.; Kafle, Prajwal R.; Kennedy, Rebecca; Liske, Jochen; Phillipps, Steven; Popescu, Cristina C.; Taylor, Edward N.; Tuffs, Richard; van Kampen, Eelco; Wright, Angus H.

    2016-10-01

    We perform automated bulge + disc decomposition on a sample of ˜7500 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range of 0.002 < z < 0.06 using Structural Investigation of Galaxies via Model Analysis, a wrapper around GALFIT3. To achieve robust profile measurements, we use a novel approach of repeatedly fitting the galaxies, varying the input parameters to sample a large fraction of the input parameter space. Using this method, we reduce the catastrophic failure rate significantly and verify the confidence in the fit independently of χ2. Additionally, using the median of the final fitting values and the 16th and 84th percentile produces more realistic error estimates than those provided by GALFIT, which are known to be underestimated. We use the results of our decompositions to analyse the stellar mass - half-light radius relations of bulges, discs and spheroids. We further investigate the association of components with a parent disc or elliptical relation to provide definite z = 0 disc and spheroid M_star - R_e relations. We conclude by comparing our local disc and spheroid M_star - R_e to simulated data from EAGLE and high-redshift data from Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Ultra Deep Survey. We show the potential of using the M_star - R_e relation to study galaxy evolution in both cases but caution that for a fair comparison, all data sets need to be processed and analysed in the same manner.

  17. Electromagnetic versus Lense-Thirring alignment of black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Polko, Peter; McKinney, Jonathan C.

    2017-01-01

    Accretion discs and black holes (BHs) have angular momenta that are generally misaligned, which can lead to warped discs and bends in any jets produced. We examine whether a disc that is misaligned at large radii can be aligned more efficiently by the torque of a Blandford-Znajek (BZ) jet than by Lense-Thirring (LT) precession. To obtain a strong result, we will assume that these torques maximally align the disc, rather than cause precession, or disc tearing. We consider several disc states that include radiatively inefficient thick discs, radiatively efficient thin discs, and super-Eddington accretion discs. The magnetic field strength of the BZ jet is chosen as either from standard equipartition arguments or from magnetically arrested disc (MAD) simulations. We show that standard thin accretion discs can reach spin-disc alignment out to large radii long before LT would play a role, due to the slow infall time that gives even a weak BZ jet time to align the disc. We show that geometrically thick radiatively inefficient discs and super-Eddington discs in the MAD state reach spin-disc alignment near the BH when density profiles are shallow as in magnetohydrodynamical simulations, while the BZ jet aligns discs with steep density profiles (as in advection-dominated accretion flows) out to larger radii. Our results imply that the BZ jet torque should affect the cosmological evolution of BH spin magnitude and direction, spin measurements in active galactic nuclei and X-ray binaries, and the interpretations for Event Horizon Telescope observations of discs or jets in strong-field gravity regimes.

  18. The Singular Set of Solutions to Non-Differentiable Elliptic Systems

    NASA Astrophysics Data System (ADS)

    Mingione, Giuseppe

    We estimate the Hausdorff dimension of the singular set of solutions to elliptic systems of the type DISC="MATH"> If the vector fields a and b are Hölder continuous with respect to the variable x with exponent α, then the Hausdorff dimension of the singular set of any weak solution is at most n-2α.

  19. Face-on accretion onto a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2016-10-01

    Context. Stars are generally born in clustered stellar environments, which can affect their subsequent evolution. An example of this environmental influence can be found in globular clusters (GCs) harbouring multiple stellar populations. An evolutionary scenario in which a second (and possibly higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population has been suggested to explain the multiple stellar populations. The idea, dubbed early disc accretion, is that the low-mass, pre-main-sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster core. The same process could also occur, to a lesser extent, in embedded stellar systems that are less dense. Aims: Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star of 0.4 M⊙ surrounded by a protoplanetary disc can accrete a sufficient amount of enriched material to account for the observed abundances in so-called second generation GC stars. In particular, we focus on the gas-loading rate onto the disc and star, as well as on the lifetime and stability of the disc. Methods: We perform simulations at multiple resolutions with two different smoothed particle hydrodynamics codes and compare the results. Each code uses a different implementation of the artificial viscosity. Results: We find that the gas-loading rate is about a factor of two smaller than the rate based on geometric arguments, because the effective cross-section of the disc is smaller than its surface area. Furthermore, the loading rate is consistent for both codes, irrespective of resolution. Although the disc gains mass in the high-resolution runs, it loses angular momentum on a timescale of 104 yr. Two effects determine the loss of (specific) angular momentum in our simulations: (1) continuous ram pressure stripping and (2

  20. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2.10E-6 Msun) are made as well as for the planet (1.53E-5 Msun (0.016 Mjupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at ~14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to define the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT

  1. Quasi-Periodic Flares From Star-Accretion Disc Collisions

    NASA Astrophysics Data System (ADS)

    Dai, Lixin; von Fuerst, S.; Blandford, R.

    2008-03-01

    We propose a theory relating the observed quasi-periodoic IR/X-ray signals at the Galactic center and from other massive black holes to collisions between the accretion disc and stars orbiting around the black hole. When an orbiting star passes through the black hole's accretion disc, part of the star's orbital energy is lost in the collision and transformed to radiation as a flare. As the star continues to orbit around the black hole, it hits the disc and produces these energetic flares repeatedly. Due the to precession of the stellar orbit and the bending of light near black hole, these signals will not be periodic but quasi-periodic. The features of the signals, such as the patten of time divisions between consecutive signals and their intensity profiles, can be affected by the mass and spin of the black hole, the disc structure, and the orbital elements of the stellar orbit. We present simulated stellar orbits, disc images, and lightcurves. By comparing different stellar orbits around a Schwarzschild or a Kerr metric black hole and the corresponding lightcurves, we examine how the paramters of the star and black hole result in different features of the signals. Furthermore, we study how the observed quasi-periodic signals can be used to probe the black hole.

  2. Temporomandibular joint sounds and disc dislocations incidence after orotracheal intubation.

    PubMed

    Rodrigues, Estela T; Suazo, Iván C; Guimarães, Antonio S

    2009-01-01

    The aim of this study was to analyze the temporomandibular joint (TMJ) disc displacement and articular sounds incidence after orotracheal intubation. A prospective cohort study was conducted in the Hospital Universitário do Oeste do Paraná (HUOP), in Cascavel, Brazil. 100 patients (aged 14-74 years, mean 44 years), 34 male and 66 female, in need of surgical procedure with orotracheal intubation were evaluated. The anterior disc displacement with reduction incidence and the nonclassifiable sounds incidence by the Research Diagnostic Criteria Axis I was evaluated in all patients after orotracheal intubation. The patients was evaluated one day before and until two days after the procedure. Eight percent present with anterior disc displacement with reduction and 10% presented nonclassifiable sounds after the orotracheal intubation. There was no correlation of any kind regarding gender related influence in the incidence of disc dislocations (P = 0.2591) and TMJ sounds (P = 0.487). Although anterior disc dislocations and TMJ sounds after anesthetic with orotracheal intubation presented a low incidence (8%-10%), it is recommended that the evaluation of TMJ signs and symptoms be done before the anesthetic procedure to take care with susceptible patients manipulation.

  3. Transforaminal Approach in Thoracal Disc Pathologies: Transforaminal Microdiscectomy Technique

    PubMed Central

    Dalbayrak, Sedat; Öztürk, Kadir; Yılmaz, Mesut; Gökdağ, Mahmut; Ayten, Murat

    2014-01-01

    Objective. Many surgical approaches have been defined and implemented in the last few decades for thoracic disc herniations. The endoscopic foraminal approach in foraminal, lateral, and far lateral disc hernias is a contemporary minimal invasive approach. This study was performed to show that the approach is possible using the microscope without an endoscope, and even the intervention on the discs within the spinal canal is possible by having access through the foramen. Methods. Forty-two cases with disc hernias in the medial of the pedicle were included in this study; surgeries were performed with transforaminal approach and microsurgically. Extraforaminal disc hernias were not included in the study. Access was made through the Kambin triangle, foramen was enlarged, and spinal canal was entered. Results. The procedure took 65 minutes in the average, and the mean bleeding amount was about 100cc. They were mobilized within the same day postoperatively. No complications were seen. Follow-up periods range between 5 and 84 months, and the mean follow-up period is 30.2 months. Conclusion. Transforaminal microdiscectomy is a method that can be performed in any clinic with standard spinal surgery equipment. It does not require additional equipment or high costs. PMID:24839557

  4. The universal rotation curve of dwarf disc galaxies

    NASA Astrophysics Data System (ADS)

    Karukes, E. V.; Salucci, P.

    2017-03-01

    We use the concept of the spiral rotation curves universality to investigate the luminous and dark matter properties of the dwarf disc galaxies in the local volume (size ∼11 Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities (∼2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower mass version of the universal rotation curve of spiral galaxies found in Persic et al. We mass model the double normalized universal rotation curve V(R/Ropt)/Vopt of dwarf disc galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disc scalelengths. Similar to galaxies of different Hubble types and luminosities, the core radius r0 and the central density ρ0 of the dark matter halo of these objects are related by ρ0r0 ∼ 100 M⊙ pc-2. The structural properties of the dark and luminous matter emerge very well correlated. In addition, to describe these relations, we need to introduce a new parameter, measuring the compactness of light distribution of a (dwarf) disc galaxy. These structural properties also indicate that there is no evidence of abrupt decline at the faint end of the baryonic to halo mass relation. Finally, we find that the distributions of the stellar disc and its dark matter halo are closely related.

  5. Tensile properties of the porcine temporomandibular joint disc.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2003-08-01

    Despite the significant morbidity associated with the temporomandibular joint (TMJ), little is known about the pathophysiology of this complex joint. TMJ disc degeneration plays a central role in the progression of TMJ disorders, and therefore disc regeneration would be a crucial treatment modality. Unfortunately, scarce information about the structural and functional characteristics of the TMJ disc is available. The current study aims to provide a standard for the biomechanical behavior of the TMJ disc for future tissue engineering studies. The disc was loaded under uniaxial tension in two directions, mediolateral and anteroposterior, and in three locations per direction. In the mediolateral direction, the posterior band was 2.5 times stiffer, 2.4 times tougher (energy to maximum stress), and 2.2 times stronger than the anterior band, which was in turn 16 times stiffer and 5.7 times stronger than the intermediate zone. In the anteroposterior direction, the central and medial regions were 74% and 35% stiffer and 56% and 59% stronger than the lateral region, respectively, although similar to each other in strength and stiffness. There was no significant difference in toughness between regions in the anteroposterior direction. These results correlated qualitatively with collagen fiber orientation and fiber size obtained using polarized light microscopy.

  6. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, Thomas; Pols, Onno; Portegies Zwart, Simon

    2015-08-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classic picture of star formation in GCs, which approximates them as a single generation of stars. However, Bastian et al. recently suggested an evolutionary scenario in which a second (and higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population. In this early disc accretion scenario the low-mass, pre-main sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster centre.Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can indeed accrete sufficient enriched material to account for the observed abundances in 'second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and check for consistency. In particular, we focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  7. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  8. NASA GES DISC DAAC Satellite Data for GIS

    NASA Technical Reports Server (NTRS)

    Nickless, Darryl; Leptoukh, Gregory; Morahan, Michael; Pollack, Nathan; Savtchenko, Andrey; Teng, William

    2005-01-01

    NASA's Goddard Earth Science (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC) makes available a large and continually growing collection of spatially continuous global satellite observations of environmental parameters. These products include those from the MODIS (Moderate Resolution Imaging Spectroradiometer) on both Terra and Aqua platforms, and the Tropical Rainfall Measuring Mission (TRMM). These data products are well suited for use within Geographic Information Systems (GIS), as both backdrops to cartographic products as well as spatial analysis. However, data format, file size, and other issues have limited their widespread use by traditional GIS users. To address these data usability issues, the GES DISC DAAC recently updated tools and improved documentation of conversion procedures. In addition, the GES DISC DAAC has also been working with a major GIS software vendor to incorporate the ability to read the native Hierarchial Data Format (HDF), the format in which most of the NASA data is stored. The result is the enabling of GIS users to realize the benefit of GES DISC DAAC data without a substantial expenditure in resources to incorporate these data into their GIS. Several documents regarding the potential uses of GES DISC DAAC satellite data in GIS have recently been created. These show the combinations of concurrent data from different satellite products with traditional GIS vector products for given geographic areas. These map products include satellite imagery of Hurricane Isabel and the California wildfires, and can be viewed at http://daac.gsfc.nasa.gov/MODIS/GIS/.

  9. Mass transfer between debris discs during close stellar encounters

    NASA Astrophysics Data System (ADS)

    Jílková, Lucie; Hamers, Adrian S.; Hammer, Michael; Portegies Zwart, Simon

    2016-04-01

    We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distribution in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close to circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.

  10. Untangling galaxy components: full spectral bulge-disc decomposition

    NASA Astrophysics Data System (ADS)

    Tabor, Martha; Merrifield, Michael; Aragón-Salamanca, Alfonso; Cappellari, Michele; Bamford, Steven P.; Johnston, Evelyn

    2017-04-01

    To ascertain whether photometric decompositions of galaxies into bulges and discs are astrophysically meaningful, we have developed a new technique to decompose spectral data cubes into separate bulge and disc components, subject only to the constraint that they reproduce the conventional photometric decomposition. These decompositions allow us to study the kinematic and stellar population properties of the individual components and how they vary with position, in order to assess their plausibility as discrete elements, and to start to reconstruct their distinct formation histories. An initial application of this method to Calar Alto Integral Field Area integral field unit observations of three isolated S0 galaxies confirms that in regions where both bulge and disc contribute significantly to the flux, they can be physically and robustly decomposed into a rotating dispersion-dominated bulge component and a rotating low-dispersion disc component. Analysis of the resulting stellar populations shows that the bulges of these galaxies have a range of ages relative to their discs, indicating that a variety of processes are necessary to describe their evolution. This simple test case indicates the broad potential for extracting from spectral data cubes the full spectral data of a wide variety of individual galaxy components, and for using such decompositions to understand the interplay between these various structures, and hence how such systems formed.

  11. Angular Momentum in the Formation of Disc Galaxies

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Jian; Shu, Cheng-Gang

    2004-03-01

    Within the current framework of disc galaxy formation, we discuss the resulted surface-density profiles according to the theoretical angular momentum distributions (AMDs) presented by Bullock et al. [Astrophys. J. 555 (2001) 240(B01)] for the LambdaCDM cosmology in both spherical and cylindrical coordinates. It is found that the derived surface density distribution of a disc in the outer region is in general similar to an exponential disc for both the theoretical AMDs. In the central region, the results from both the theoretical AMDs are inconsistent with observations whether the disc bar-instability is taken into account or not. The cylindrical form of the theoretical AMD leads to the bar-instability more easily for a galaxy than that for spherical AMD, which could result in a more massive bulge. After comparing the model predictions with our Milky Way Galaxy, we find that the theoretical AMDs predict larger mass fractions of baryons with low angular momentum than the observed ones, which would lead to the disc sizes being smaller. Two possible processes which could solve the angular momentum problem are discussed. EHPRG Award Lecture.

  12. DISC VARIANCE OF THE HARKEN MITRAL PROSTHESIS: THE CONTRIBUTION OF ASSOCIATED AORTIC REGURGITATION

    PubMed Central

    Yarnoz, Michael D.; Hueter, David; McCormick, John R.; Black, Harrison; Berger, Robert L.

    1977-01-01

    Four cases of severe mitral regurgitation due to disc variance of the Harken disc prosthesis in the mitral position are described. The valve occluder actually escaped into the left atrium in two patients, and neither survived despite emergency valve replacement. In the other two, disc malfunction was identified by flouroscopy, the prosthesis was replaced, and both patients survived. All four patients had associated aortic regurgitation, which most likely contributed to erosion of the disc edges. It is suggested that patients with the Harken disc prosthesis undergo periodic evaluation to detect abnormal disc motion. Images PMID:15216088

  13. Plasma disc decompression for contained cervical disc herniation: a randomized, controlled trial

    PubMed Central

    Nardi, Pier Vittorio

    2009-01-01

    Prospective case series studies have shown that plasma disc decompression (PDD) using the COBLATION SpineWand device (ArthroCare Corporation, Austin, TX) is effective for decompressing the disc nucleus in symptomatic contained cervical disc herniations. This prospective, randomized controlled clinical trial was conducted to evaluate the clinical outcomes of percutaneous PDD as compared to conservative care (CC) through 1 year. Patients (n = 115) had neck/arm pain >50 on the visual analog scale (VAS) pain scale and had failed at least 30 days of failed CC. Patients were randomly assigned to receive either PDD (n = 62) or CC (n = 58). Clinical outcome was determined by VAS pain score, neck disability index (NDI) score, and SF-36 health survey, collected at 6 weeks, 3 months, 6 months, and 1 year. The PDD group had significantly lower VAS pain scores at all follow-up time points (PDD vs. CC: 6 weeks, −46.87 ± 2.71 vs. −15.26 ± 1.97; 3 months, −53.16 ± 2.74 vs. −30.45 ± 2.59; 6 months, −56.22 ± 2.63 vs. −40.26 ± 2.56; 1 year, −65.73 ± 2.24 vs. −36.45 ± 2.86; GEE, P < 0.0001). PDD patients also had significant NDI score improvement over baseline when compared to CC patients at the 6 weeks (PDD vs. CC: −9.15 ± 1.06 vs. −4.61 ± 0.53, P < 0.0001) and 1 year (PDD vs. CC: −16.70 ± 0.29 vs. −12.40 ± 1.26, P = 0.005) follow-ups. PDD patients showed statistically significant improvement over baseline in SF-36 physical component summary scores when compared to CC patients at 6 weeks and 1 year (PDD vs. CC: 8.86 + 8.04 vs. 4.24 ± 3.79, P = 0.0004; 17.64 ± 10.37 vs. 10.50 ± 10.6, P = 0.0003, respectively). In patients who had neck/arm pain due to a contained cervical disc herniation, PDD was associated with significantly better clinical outcomes than a CC regimen. At 1 year, CC patients appeared to suffer a “relapse, showing signs of decline in most measurements, whereas PDD

  14. Prominent Optic Disc Featured in Inherited Retinopathy.

    PubMed

    Todorova, M G; Bojinova, R I; Valmaggia, C; Schorderet, D F

    2017-02-01

    Background We investigated the relationship between prominent optic disc (POD) and inherited retinal dystrophy (IRD). Patients and Methods A cross-sectional consecutive study was performed in 10 children and 11 adults of 7 non-related families. We performed clinical phenotyping, including a detailed examination, fundus autofluorescence, and colour fundus and OCT imaging. Genetic testing was subsequently performed for all family members presenting retinal pathology. Results In 4 members of a 3-generation family, hyperfluorescent deposits on the surface of POD were related to a p.(L224M) heterozygous mutation in BEST1. In the second family, one member presented deposits located on the surface on hyperaemic OD and a compound p.(R141H);(A195V) mutation in BEST1. In the third family, POD was observed in father and child with early onset cone-rod dystrophy and a novel autosomal recessive p.(W31*) homozygous mutation in ABCA4. In the fourth family, POD with "mulberry-like" deposits and attenuated vessels were observed in a 7-year old girl, with a mutation in USH1A, and with early onset rod-cone dystrophy, associated with hearing loss. In the fifth family, blurry OD with tortuous vessels was observed in 4 consanguineous female carriers and a hemizygous boy with a p.(R200H) mutation in the X-linked retinoschisis RS1. In the sixth family, a mother and her son were both affected with POD and attenuated peripapillary vessels, and presented with a p.(Y836C) heterozygous mutation in TOPORS, thus confirming autosomal dominant RP. In the seventh family, in 3 family members with POD, compound p.(L541P;A1038 V);(G1961E) mutations in ABCA4 confirmed the diagnosis of Stargardt disease. Conclusions A variety of OD findings are found in a genetically heterogeneous group of IRDs. In the presence of POD, an inherited progressive photoreceptor disease should be ruled out.

  15. Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2002-04-01

    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp, as has been inferred in previous studies; so, tidal forces are unlikely to generate warps, at least in the Milky Way. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, greater than 1 mu G, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow of velocity ~ 100 km s-1 and baryon density ~ 10-25 kg/m3 is enough to generate the observed warps and this mechanism offers quite a plausible explanation. First, because this order of accretion rate is inferred from other processes observed in the Galaxy, notably its chemical evolution. The inferred rate of infall of matter, ~ 1 M_sun/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of this chemical evolution resolving key issues, notably the G-dwarf problem. Second, the required density of the intergalactic medium is within the range of values compatible with observation. By this mechanism, we can explain the warp phenomenon in terms of intergalactic accretion flows onto the disk of the galaxy.

  16. Advancing the cellular and molecular therapy for intervertebral disc disease.

    PubMed

    Sakai, Daisuke; Grad, Sibylle

    2015-04-01

    The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.

  17. [Optic disc drusen in children: Advantages of various imaging modalities].

    PubMed

    Naoum, S; Bouacha, I; Drumare, I; Marks, C; Defoort-Delemmes, S

    2016-04-01

    In children, optic disc drusen pose a diagnostic problem with papilledema when they are buried. The goal of our study is to retrospectively compare the results of examinations performed in 34 children with optic disc drusen. In children who underwent ultrasonography and autofluorescence imaging, the results were conclusive in both examinations in 44.7% of cases, and in neither of the two examinations in 27.6% of cases. Ultrasonography alone demonstrated superiority in diagnosing 27.6% of eyes, whereas autofluorescence imaging was inconclusive. Since diagnostic confusion with papilledema persisted in seven children, angiography was performed. B-mode ultrasonography constitutes a relevant examination in the diagnosis of buried optic disc drusen in children and shows superiority in our study compared to autofluorescence imaging.

  18. The magnetic Rayleigh-Taylor instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-10-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  19. Thermal Modeling of Disc Brake Rotor in Frictional Contact

    NASA Astrophysics Data System (ADS)

    Ali, Belhocine; Ghazaly, Nouby Mahdi

    2013-01-01

    Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.

  20. Thin accretion discs are stabilized by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2016-07-01

    By studying three-dimensional, radiative, global simulations of sub-Eddington, geometrically thin (H/R ≈ 0.15) black hole accretion flows we show that thin discs which are dominated by magnetic pressure are stable against thermal instability. Such discs are thicker than predicted by the standard model and show significant amount of dissipation inside the marginally stable orbit. Radiation released in this region, however, does not escape to infinity but is advected into the black hole. We find that the resulting accretion efficiency (5.5 ± 0.5 per cent for the simulated 0.8dot{M}_Edd disc) is very close to the predicted by the standard model (5.7 per cent).

  1. Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study

    SciTech Connect

    Sochman, Jan

    2000-09-15

    Purpose: Over the past 30 years there have been experimental efforts at catheter-based management of aortic valve regurgitation with the idea of extending treatment to nonsurgical candidates. A new catheter-based aortic valve design is described.Methods: The new catheter-delivered valve consists of a stent-based valve cage with locking mechanism and a prosthetic flexible tilting valve disc. The valve cage is delivered first followed by deployment and locking of the disc. In acute experiments, valve implantation was done in four dogs.Results: Valve implantation was successful in all four animals. The implanted valve functioned well for the duration of the experiments (up to 3 hr).Conclusion: The study showed the implantation feasibility and short-term function of the tested catheter-based aortic disc valve. Further experimental studies are warranted.

  2. Rolling friction and energy dissipation in a spinning disc

    PubMed Central

    Ma, Daolin; Liu, Caishan; Zhao, Zhen; Zhang, Hongjian

    2014-01-01

    This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary factor responsible for the dissipation of the energy. Furthermore, a mathematical model, in which the rolling friction is characterized by a resistance torque proportional to the square of precession rate, is also proposed. By employing the model, we perform qualitative analysis and numerical simulations. Both of them provide results that precisely agree with our experimental findings. PMID:25197246

  3. The observed peripheral growth of disc galaxies from z ~ 1

    NASA Astrophysics Data System (ADS)

    Gadotti, Dimitri A.; Sachdeva, Sonali; Saha, Kanak; Singh, Harinder P.

    2017-03-01

    Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry for a sample of 600 disc galaxies from z ~ 1 till z ~ 0. We find that disc galaxies have gained more than 50 per cent of their present stellar mass over the last 8 Gyr. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z ~ 1 to z ~ 0, the average effective (half-light) radius undergoes a marginal increase in comparison. This indicates that galaxies grow more substantially in their outskirts, and is consistent with the inside-out growth picture. The substantial increase in mass and size indicates that accretion of external material has been a dominant mode of galaxy growth, where the circumgalactic environment plays a significant role.

  4. On the origin of horseshoes in transitional discs

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Dipierro, Giovanni; Lodato, Giuseppe; Laibe, Guillaume; Price, Daniel J.

    2017-01-01

    We investigate whether the rings, lopsided features and horseshoes observed at millimetre (mm) wavelengths in transitional discs can be explained by the dynamics of gas and dust at the edge of the cavity in circumbinary discs. We use 3D dusty smoothed particle hydrodynamics calculations to show that binaries with mass ratio q ≳ 0.04 drive eccentricity in the central cavity, naturally leading to a crescent-like feature in the gas density, which is accentuated in the mm dust grain population with intensity contrasts in mm continuum emission of 10 or higher. We perform mock observations to demonstrate that these features closely match those observed by the Atacama Large Millimetre/Submillimetre Array, suggesting that the origin of rings, dust horseshoes and other non-axisymmetric structures in transition discs can be explained by the presence of massive companions.

  5. Spontaneous Intracranial Hypotension Secondary to Lumbar Disc Herniation

    PubMed Central

    Kim, Kyoung-Tae

    2010-01-01

    Spontaneous intracranial hypotension is often idiopathic. We report on a patient presenting with symptomatic intracranial hypotension and pain radiating to the right leg caused by a transdural lumbar disc herniation. Magnetic resonance (MR) imaging of the brain revealed classic signs of intracranial hypotension, and an additional spinal MR confirmed a lumbar transdural herniated disc as the cause. The patient was treated with a partial hemilaminectomy and discectomy. We were able to find the source of cerebrospinal fluid leak, and packed it with epidural glue and gelfoam. Postoperatively, the patient's headache and log radiating pain resolved and there was no neurological deficit. Thus, in this case, lumbar disc herniation may have been a cause of spontaneous intracranial hypotension. PMID:20157378

  6. Paraplegia by acute cervical disc protrusion after lumbar spine surgery.

    PubMed

    Chen, Sheng-Huan; Hui, Yu-Ling; Yu, Chong-Ming; Niu, Chi-Chien; Lui, Ping-Wing

    2005-04-01

    Non-traumatic paraplegia caused by herniation of the cervical intervertebral disc is an uncommon postoperative complication. A patient with claudication and radiculopathy was scheduled for lumbar laminectomy due to spinal stenosis. Postoperatively, numbness below T6 was found in his both legs of the patient. MRI showed a protruded intervertebral disc between C6 and C7. Despite urgent disectomy, the patient's lower extremities remained paralyzed without significant improvement for 3 months. Loss of muscle support during general anesthesia, excessive neck extension during endotracheal intubation and positioning, as well as bucking and agitation are believed as triggering factors for the protrusion of the cervical disc. We suggest that a complete history taking and physical examination be accomplished in patients scheduled for lumbar spine surgery in order to exclude coexisting cervical spine disorders. In addition, skillful endotracheal intubation and careful neck positioning are mandatory for patients receiving surgery in the prone position.

  7. Three dimensional reconstruction of conventional stereo optic disc image.

    PubMed

    Kong, H J; Kim, S K; Seo, J M; Park, K H; Chung, H; Park, K S; Kim, H C

    2004-01-01

    Stereo disc photograph was analyzed and reconstructed as 3 dimensional contour image to evaluate the status of the optic nerve head for the early detection of glaucoma and the evaluation of the efficacy of treatment. Stepwise preprocessing was introduced to detect the edge of the optic nerve head and retinal vessels and reduce noises. Paired images were registered by power cepstrum method and zero-mean normalized cross-correlation. After Gaussian blurring, median filter application and disparity pair searching, depth information in the 3 dimensionally reconstructed image was calculated by the simple triangulation formula. Calculated depth maps were smoothed through cubic B-spline interpolation and retinal vessels were visualized more clearly by adding reference image. Resulted 3 dimensional contour image showed optic cups, retinal vessels and the notching of the neural rim of the optic disc clearly and intuitively, helping physicians in understanding and interpreting the stereo disc photograph.

  8. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  9. Modal analysis of gravitational instabilities in nearly Keplerian, counter-rotating collisionless discs

    NASA Astrophysics Data System (ADS)

    Gulati, Mamta; Saini, Tarun Deep

    2017-02-01

    We present a modal analysis of instabilities of counter-rotating, self-gravitating collisionless stellar discs, using the recently introduced modified WKB formulation of spiral density waves for collisionless systems by Gulati & Saini. The discs are assumed to be axisymmetric and in coplanar orbits around a massive object at the common centre of the discs. The mass in both discs is assumed to be much smaller than the mass of the central object. For each disc, the disc particles are assumed to be in near circular orbits. The two discs are coupled to each other gravitationally. The perturbed dynamics of the discs evolves on the order of the precession time-scale of the discs, which is much longer than the Keplerian time-scale. We present results for the azimuthal wavenumber m = 1 and 2, for the full range of disc mass ratio between the prograde and retrograde discs. The eigenspectra are in general complex, therefore all eigenmodes are unstable. Eigenfunctions are radially more compact for m = 1 as compared to m = 2. Pattern speed of eigenmodes is always prograde with respect to the more massive disc. The growth rate of unstable modes increases with increasing mass fraction in the retrograde disc, and decreases with m; therefore, m = 1 instability is likely to play the dominant role in the dynamics of such systems.

  10. The Dusty Disc of NGC 247

    NASA Astrophysics Data System (ADS)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a

  11. Lumbosacral Sagittal Alignment in Association to Intervertebral Disc Diseases

    PubMed Central

    Maleki, Farid; Meybodi, Ali Tayebi; Mahdavi, Ali; Saberi, Hooshang

    2014-01-01

    Study Design A cross-sectional case-control study was designed to compare the sagittal alignment of lumbosacral regions in two groups of patients suffering from low back pain, one with intervertebral disc pathologies and one without. Purpose To evaluate the correlation between lumbosacral sagittal alignment and disc degeneration. Overview of Literature Changes in lumbar lordosis and pelvic parameters in degenerative disc lesions have been assessed in few studies. Overall, patients with discopathy were shown to have lower lumbar lordosis and more vertical sacral profiles. Methods From patients with intractable low back pain undergoing lumbosacral magnetic resonance imaging, 50 subjects with disc degeneration and 50 controls with normal scans were consecutively enrolled. A method was defined with anterior tangent-lines going through anterior bodies of L1 and S1 to measure global lumbosacral angle, incorporating both lumbar lordosis and sacral slope. Global lumbosacral angle using the proposed method and lumbar lordosis using Cobb's method were measured in both groups. Results Lumbar lordosis based on Cobb's method was lower in group with discopathy (20°-67°; mean, 40.48°±9.89°) than control group (30°-62°; mean, 44.96°±7.68°), although it was not statistically significant. The proposed global lumbosacral angle in subject group (53°-103°; mean, 76.5°±11.018°) was less than control group (52°-101°; mean, 80.18°±9.95°), with the difference being statistically significant (p=0.002). Conclusions Patients with intervertebral disc lesions seem to have more straightened lumbosacral profiles, but it has not been proven which comes first: disc degeneration or changes in sagittal alignment. Finding an answer to this dilemma demands more comprehensive long-term prospective studies. PMID:25558325

  12. Spiral arms and disc stability in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-03-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H i, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  13. Analysis of tempering stresses in bilayered porcelain discs.

    PubMed

    DeHoff, P H; Anusavice, K J

    1992-05-01

    Previous studies of opaque-porcelain/body-porcelain discs have shown that compressive stresses which develop in the porcelain surface by being tempered in air can inhibit the sizes of cracks induced within the surface. The objective of this study was to develop a theoretical model for analysis of transient and residual stresses in opaque-porcelain/body-porcelain discs which were produced under variable cooling conditions. The model incorporates the effects of stress and structural relaxation. Transient and residual stresses were calculated for bilayered porcelain discs 16 mm in diameter and 2 mm in thickness for three opaque-porcelain/body-porcelain combinations. Transient temperature distributions in the discs for simulated convective cooling were calculated by finite-element analysis. Data from microhardness indentations reported by Anusavice et al. (1989) indicate that crack lengths measured for bilayered porcelain discs subjected to slow cooling conditions, for which the model predicted residual tensile stresses, were greater than those combinations for which residual compressive stresses were calculated. Calculated values of residual compressive stress for tempered specimens were considerably higher than those for specimens that were slowly cooled and those that were cooled by free convection. In general, residual stress levels calculated by use of the analytical model were in fairly good agreement with the trends observed for crack lengths and bi-axial flexural strengths reported by Anusavice and Hojjatie (1991). The results of the present study indicate that a visco-elastic model is a viable approach for determination of transient and residual stresses in opaque-porcelain/body-porcelain discs.

  14. Do two-temperature debris discs have multiple belts?

    NASA Astrophysics Data System (ADS)

    Kennedy, G. M.; Wyatt, M. C.

    2014-11-01

    We present a study of debris discs whose spectra are well modelled by dust emission at two different temperatures. These discs are typically assumed to be a sign of multiple belts, which in only a few cases have been confirmed via high-resolution observations. We first compile a sample of two-temperature discs to derive their properties, summarized by the ratios of the warm and cool component temperatures and fractional luminosities. The ratio of warm to cool temperatures is constant in the range 2-4, and the temperature of both warm and cool components increases with stellar mass. We then explore whether this emission can arise from dust in a single narrow belt, with the range of temperatures arising from the size variation of grain temperatures. This model can produce two-temperature spectra for Sun-like stars, but is not supported where it can be tested by observed disc sizes and far-infrared/mm spectral slopes. Therefore, while some two-temperature discs arise from single belts, it is probable that most have multiple spatial components. These discs are plausibly similar to the outer Solar system's configuration of Asteroid and Edgeworth-Kuiper belts separated by giant planets. Alternatively, the inner component could arise from inward scattering of material from the outer belt, again due to intervening planets. In either case, we suggest that the ratio of warm/cool component temperatures is indicative of the scale of outer planetary systems, which typically span a factor of about 10 in radius.

  15. Anterior-to-Posterior Migration of a Lumbar Disc Sequestration: Surgical Remarks and Technical Notes about a Tailored Microsurgical Discectomy

    PubMed Central

    Frati, Alessandro; Palmieri, Mauro; Vangelista, Tommaso; Caruso, Riccardo; Salvati, Maurizio; Raco, Antonino

    2017-01-01

    Extrusion of disc material within the spinal canal complicates up to 28.6% of lumbar disc herniations. Due to the anatomical “corridors” created by the anterior midline septum and lateral membranes, relocation occurs with an anterior and anterolateral axial topography. Posterior migration is an extremely rare condition and anterior-to-posterior circumferential migration is an even rarer condition. Its radiological feature can be enigmatic and since, in more than 50% of cases, clinical onset is a hyperacute cauda equina syndrome, it may imply a difficult surgical decision in emergency settings. Surgery is the gold standard but when dealing with such huge sequestrations, standard microdiscectomy must be properly modified in order to minimize the risk of surgical trauma or traction on the nerve roots. PMID:28163949

  16. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

    NASA Astrophysics Data System (ADS)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-09-01

    The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

  17. The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro

    PubMed Central

    Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame

    2014-01-01

    Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347

  18. Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products.

    PubMed

    Tortajada-Genaro, Luis Antonio; Rodrigo, Alejandro; Hevia, Elizabeth; Mena, Salvador; Niñoles, Regina; Maquieira, Ángel

    2015-09-01

    Highly portable, cost-effective, and rapid-response devices are required for the subtyping of the most frequent food-borne bacteria; thereby the sample rejection strategies and hygienization techniques along the food chain can be tailor-designed. Here, a novel biosensor is presented for the generic detection of Salmonella and Campylobacter and the discrimination between their most prevalent serovars (Salmonella Enteritidis, Salmonella Typhimurium) and species (Campylobacter jejuni, Campylobacter coli), respectively. The method is based on DNA microarray developed on a standard digital versatile disc (DVD) as support for a hybridization assay and a DVD driver as scanner. This approach was found to be highly sensitive (detection limit down to 0.2 pg of genomic DNA), reproducible (relative standard deviation 4-19 %), and high working capacity (20 samples per disc). The inclusivity and exclusivity assays indicated that designed oligonucleotides (primers and probes) were able to discriminate targeted pathogens from other Salmonella serovars, Campylobacter species, or common food-borne pathogens potentially present in the indigenous microflora. One hundred isolates from meat samples, collected in a poultry factory, were analyzed by the DVD microarraying and fluorescent real-time PCR. An excellent correlation was observed for both generic and specific detection (relative sensitivity 93-99 % and relative specificity 93-100 %). Therefore, the developed assay has been shown to be a reliable tool to be used in routine food safety analysis, especially in settings with limited infrastructure due to the excellent efficiency-cost ratio of compact disc technology. Graphical Abstract DNA microarray performed by DVD technology for pathogen genotyping.

  19. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study

    PubMed Central

    Gugliotta, Marinella; da Costa, Bruno R; Dabis, Essam; Theiler, Robert; Jüni, Peter; Reichenbach, Stephan; Landolt, Hans; Hasler, Paul

    2016-01-01

    Objectives Evidence comparing the effectiveness of surgical and conservative treatment of symptomatic lumbar disc herniation is controversial. We sought to compare short-term and long-term effectiveness of surgical and conservative treatment in sciatica symptom severity and quality of life in patients with lumbar disc herniation in a routine clinical setting. Methods A prospective cohort study of a routine clinical practice registry consisting of 370 patients. Outcome measures were the North American Spine Society questionnaire and the 36-Item Short-Form Health Survey to assess patient-reported back pain, physical function, neurogenic symptoms and quality of life. Primary outcomes were back pain at 6 and 12 weeks. Standard open discectomy was assessed versus conservative interventions at 6, 12, 52 and 104 weeks. We filled in missing outcome variable values with multiple imputation, accounted for repeated measures within patients with mixed-effects models and adjusted baseline group differences in relevant prognostic indicators by inverse probability of treatment weighting. Results Surgical treatment patients reported less back pain at 6 weeks than those receiving conservative therapy (−0.97; 95% CI −1.89 to −0.09), were more likely to report ≥50% decrease in back pain symptoms from baseline to 6 weeks (48% vs 17%, risk difference: 0.34; 95% CI 0.16 to 0.47) and reported less physical function disability at 52 weeks (−3.7; 95% CI −7.4 to −0.1). The other assessments showed minimal between-group differences with CIs, including the null effect. Conclusions Compared with conservative therapy, surgical treatment provided faster relief from back pain symptoms in patients with lumbar disc herniation, but did not show a benefit over conservative treatment in midterm and long-term follow-up. PMID:28003290

  20. Disc Battery - An Unusual Vaginal Foreign Body in a Child

    PubMed Central

    Mahmood, Mansoor; Taqi, Esmaeel

    2016-01-01

    Disc battery ingestion and esophageal injury is well-known in children. Insertion of a disc/lithium battery into body’s natural orifices is rarely reported. We present a case of self-insertion of a lithium battery into the vagina by a 2 ½ year old female. Vaginoscopy was performed and the battery was retrieved which had corroded and caused vaginal ulceration. Post-operative outcome was favorable. Treating physicians must be aware of the hazardous effects of insertion of lithium batteries as it may cause significant damage in a short period. PMID:27672579

  1. Heterotopic ossification associated with myelopathy following cervical disc prosthesis implantation.

    PubMed

    Wenger, Markus; Markwalder, Thomas-Marc

    2016-04-01

    This case report presents a 37-year-old man with clinical signs of myelopathy almost 9 years after implantation of a Bryan disc prosthesis (Medtronic Sofamor Danek, Memphis, TN, USA) for C5/C6 soft disc herniation. As demonstrated on MRI and CT scan, spinal cord compression was caused by bony spurs due to heterotopic ossification posterior to the still moving prosthesis. The device, as well as the ectopic bone deposits, had to be removed because of myelopathy and its imminent aggravation. Conversion to anterior spondylodesis was performed.

  2. Formation of discs around super-massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  3. [Traumatic cervical disc prolapse with severe neurological impact].

    PubMed

    Knudsen, Roland; Gundtoft, Per

    2014-12-15

    A 51-year-old male drove into a ditch on his scooter. Immediately after the trauma the patient complained of neck pain and decreased ability to feel and move his extremities. An initial trauma computed tomography (CT) of the columna showed normal conditions. Because the patient had neurological deficiencies, magnetic resonance imaging of the columna was performed 12 days later, and a disc prolapse at the C3/C4 level with spinal cord compression was visible. Despite decompression the patient did not recover. Traumatic cervical disc prolapse is a rare and positionally dangerous condition, which can be present despite a CT showing normal conditions.

  4. Infections of cervical disc space after dental extractions

    PubMed Central

    Feigenbaum, J. A.; Stern, W. E.

    1974-01-01

    Two patients with infections of the cervical intervertebral disc space after dental procedures carried out by the same oral surgeon exhibited similar clinical courses and radiographic appearances. Both had bacteriological confirmation of infection by needle aspiration and were treated with appropriate antibiotics and bracing of the neck. The presumed aetiology and the possible pathogenesis are described. Evidence suggests that the two infections were the result of needle injection of a contaminated solution, the organisms of which haematogenously lodged in the intervertebral discs in the cervical region. Lymph drainage from the gums and teeth is suggested as a possible route of inoculation. Images PMID:4449000

  5. Disc Battery - An Unusual Vaginal Foreign Body in a Child.

    PubMed

    Khan, Yousuf Aziz; Mahmood, Mansoor; Taqi, Esmaeel

    2016-01-01

    Disc battery ingestion and esophageal injury is well-known in children. Insertion of a disc/lithium battery into body's natural orifices is rarely reported. We present a case of self-insertion of a lithium battery into the vagina by a 2 ½ year old female. Vaginoscopy was performed and the battery was retrieved which had corroded and caused vaginal ulceration. Post-operative outcome was favorable. Treating physicians must be aware of the hazardous effects of insertion of lithium batteries as it may cause significant damage in a short period.

  6. 37 CFR 1.52 - Language, paper, writing, margins, compact disc specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by a typewriter or machine printer in permanent dark ink or its equivalent; and (v) Presented in a... accompanied by a statement that the replacement compact disc contains no new matter. The compact disc and...

  7. 37 CFR 1.52 - Language, paper, writing, margins, compact disc specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permanent dark ink or its equivalent; and (v) Presented in a form having sufficient clarity and contrast... statement that the replacement compact disc contains no new matter. The compact disc and copy must...

  8. Twenty-Layer Optical Disc Fabricated by Web Coating and Lamination

    NASA Astrophysics Data System (ADS)

    Mikami, Tatsuo; Mochizuki, Hidehiro; Sasaki, Toshio; Kitahara, Toshiyuki; Tsuyama, Hiroaki; Inoue, Kenichirou; Ito, Masaharu

    2013-09-01

    We developed a new fabrication method for multilayer optical discs for the high-throughput production of such discs. We used web coating and lamination to prepare a stacked unit. The stacked unit was a layered structure consisting of a recording layer, a UV resin layer, a recording layer, and a pressure-sensitive adhesive layer. We obtained a 20-layer disc simply by laminating the stacked units 10 times. The transmittance of the 20 recording layers was 87% owing to the high transparency of the two-photon recording material. A scanning electron microscopy (SEM) image of the disc showed a clear multilayer structure. The recording layers of the disc were recorded using a pulse laser without interlayer cross write. The thickness variation of the transparent part of the disc was within +/-2 µm, and the tilt angles of the disc satisfied the Blu-ray disc (BD) specifications.

  9. Constraining the properties of transitional discs in Chamaeleon I with Herschel

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Bouy, H.; Merín, B.; Duchêne, G.; Rebollido, I.; Espaillat, C.; Pinte, C.

    2016-05-01

    Transitional discs are protoplanetary discs with opacity gaps/cavities in their dust distribution, a feature that may be linked to planet formation. We perform Bayesian modelling of the three transitional discs SZ Cha, CS Cha, and T25 including photometry from the Herschel Space Observatory to quantify the improvements added by these new data. We find disc dust masses between 2 × 10-5 and 4 × 10-4 M⊙ and gap radii in the range of 7-18 au, with uncertainties of ˜ one order of magnitude and ˜4 au, respectively. Our results show that adding Herschel data can significantly improve these estimates with respect to mid-infrared data alone, which have roughly twice as large uncertainties on both disc mass and gap radius. We also find weak evidence for different density profiles with respect to full discs. These results open exciting new possibilities to study the distribution of disc masses for large samples of discs.

  10. First report of perforation of ligamentum flavum by sequestrated lumbar intervertebral disc

    PubMed Central

    Ozdemir, Bulent; Kanat, Ayhan; Batcik, Osman Ersegun; Erturk, Cihangir; Celiker, Fatma Beyazal; Guvercin, Ali Riza; Yazar, Ugur

    2017-01-01

    Disc fragments are well known to migrate to superior, inferior, or lateral sites in the anterior epidural space, posterior epidural migrated lumbar disc fragments is an extremely rare disorder, 61 cases have been reported to date. However, there were no cases with perforated ligamentum flavum (LF). We report a different case with perforation of ligamentum ligamentum by disc fragment. To the best of our knowledge, this is the first report of perforation LF by a posterior epidural migrated sequester disc. PMID:28250640

  11. DETAIL OF FILTER DISCS ON DENVER FILTER IN CO91107. AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF FILTER DISCS ON DENVER FILTER IN CO-91-107. AS DISCS SLOWLY ROTATE, VACUUM INSIDE DISCS ATTRACT SLURRY IN THE SUMP AND DEWATERS CONCENTRATE AS DISCS MOVE THROUGH AIR. FURTHER ROTATION PASSES A BAR TO SCRAPE OFF DRIED METAL CONCENTRATE, ASSISTED BY BLASTS OF COMPRESSED AIR. METAL CONCENTRATE READY FOR SHIPMENT TO SMELTER FALLS INTO BIN BELOW. EIMCO FILTERS OPERATE SIMILARLY. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  12. Runaway accretion of metals from compact discs of debris on to white dwarfs

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2011-09-01

    It was recently proposed that metal-rich white dwarfs (WDs) accrete their metals from compact discs of debris found to exist around more than a dozen of them. At the same time, elemental abundances measured in atmospheres of some WDs imply vigorous metal accretion at rates up to 1011 g s-1, far in excess of what can be supplied solely by Poynting-Robertson drag acting on such discs of debris. To explain this observation we propose a model, in which rapid transport of metals from the disc on to the WD naturally results from interaction between this particulate disc and a spatially coexisting disc of metallic gas. The latter is fed by evaporation of debris particles at the sublimation radius located at several tens of WD radii. Because of pressure support the gaseous disc orbits the WD slower than the particulate disc. Resultant azimuthal drift between them at speed ≲1 m s-1 causes aerodynamic drag on the disc of solids and drives inward migration of its constituent particles. Upon reaching the sublimation radius, particles evaporate, enhancing the density of the metallic gaseous disc and leading to positive feedback. Under favourable circumstances (low viscosity in the disc of metallic gas and efficient aerodynamic coupling between the discs) a system evolves in a runaway fashion, destroying the discs of debris on time-scale of ˜105 yr, and giving rise to high metal accretion rates up to ? g s-1, in agreement with observations.

  13. 78 FR 55292 - Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... COMMISSION Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Notice of... ] Commission has received a complaint entitled Certain Optical Disc Drives, Components Thereof, and Products..., and the sale within the United States after importation of certain optical disc drives,...

  14. 78 FR 64009 - Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Certain Optical Disc Drives, Components Thereof, and Products Containing the Same; Institution of... certain optical disc drives, components thereof, and products containing the same by reason of... sale within the United States after importation of certain optical disc drives, components thereof,...

  15. 26 CFR 1.995-1 - Taxation of DISC income to shareholders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Taxation of DISC income to shareholders. 1.995...) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales Corporations § 1.995-1 Taxation of DISC... to taxation on the earnings and profits of the DISC in accordance with the provisions of chapter 1...

  16. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin

    PubMed Central

    Park, Young-Un; Jeong, Jaehoon; Lee, Haeryun; Mun, Ji Young; Kim, Joung-Hun; Lee, Jong Seo; Nguyen, Minh Dang; Han, Sung Sik; Suh, Pann-Ghill; Park, Sang Ki

    2010-01-01

    Disrupted-in-schizophrenia 1 (DISC1) has emerged as a schizophrenia-susceptibility gene affecting various neuronal functions. In this study, we characterized Mitofilin, a mitochondrial inner membrane protein, as a mediator of the mitochondrial function of DISC1. A fraction of DISC1 was localized to the inside of mitochondria and directly interacts with Mitofilin. A reduction in DISC1 function induced mitochondrial dysfunction, evidenced by decreased mitochondrial NADH dehydrogenase activities, reduced cellular ATP contents, and perturbed mitochondrial Ca2+ dynamics. In addition, deficiencies in DISC1 and Mitofilin induced a reduction in mitochondrial monoamine oxidase-A activity. The mitochondrial dysfunctions evoked by the deficiency of DISC1 were partially phenocopied by an overexpression of truncated DISC1 that is associated with schizophrenia in human. DISC1 deficiencies induced the ubiquitination of Mitofilin, suggesting that DISC1 is critical for the stability of Mitofilin. Finally, the mitochondrial dysfunction induced by DISC1 deficiency was partially reversed by coexpression of Mitofilin, confirming a functional link between DISC1 and Mitofilin for the normal mitochondrial function. According to these results, we propose that DISC1 plays essential roles for mitochondrial function in collaboration with a mitochondrial interacting partner, Mitofilin. PMID:20880836

  17. 26 CFR 1.994-1 - Inter-company pricing rules for DISC's.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Inter-company pricing rules for DISC's. 1.994-1...-company pricing rules for DISC's. (a) In general—(1) Scope. In the case of a transaction described in... expenses. (ii) The cost of containers leased from a shipping company to which the DISC also pays...

  18. 26 CFR 1.994-1 - Inter-company pricing rules for DISC's.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 10 2012-04-01 2012-04-01 false Inter-company pricing rules for DISC's. 1.994-1...-company pricing rules for DISC's. (a) In general—(1) Scope. In the case of a transaction described in... expenses. (ii) The cost of containers leased from a shipping company to which the DISC also pays...

  19. Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE

    NASA Astrophysics Data System (ADS)

    Guérou, A.; Emsellem, E.; Krajnović, D.; McDermid, R. M.; Contini, T.; Weilbacher, P. M.

    2016-07-01

    We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ~4 Re, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps. In particular, we confirm that NGC 3115 has a thin fast-rotating stellar disc embedded in a fast-rotating spheroid, and that these two structures show clear differences in their stellar age and metallicity properties. We emphasise an observed correlation between the radial stellar velocity, V, and the Gauss-Hermite moment, h3, which creates a butterfly shape in the central 15'' of the h3 map. We further detect the previously reported weak spiral- and ring-like structures, and find evidence that these features can be associated with regions of younger mean stellar ages. We provide tentative evidence for the presence of a bar, although the V-h3 correlation can be reproduced by a simple axisymmetric dynamical model. Finally, we present a reconstruction of the two-dimensional star formation history of NGC 3115 and find that most of its current stellar mass was formed at early epochs (>12 Gyr ago), while star formation continued in the outer (kpc-scale) stellar disc until recently. Since z ~2 and within ~4 Re, we suggest that NGC 3115 has been mainly shaped by secular processes. The images of the derived parameters in FITS format and the reduced datacube are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  20. The coronal structure of Speedy Mic - II. Prominence masses and off-disc emission

    NASA Astrophysics Data System (ADS)

    Dunstone, N. J.; Collier Cameron, A.; Barnes, J. R.; Jardine, M.

    2006-12-01

    Observations of stellar prominences on young rapidly rotating stars provide unique probes of their magnetic fields out to many stellar radii. We compare two independently obtained data sets of the K3 dwarf Speedy Mic (BO Mic, HD 197890) using the Anglo-Australian Telescope (AAT) and the European Southern Observatory (ESO) Very Large Telescope (VLT). Taken more than a fortnight apart, they provide the first insight into the evolution of the prominence system on such a young rapidly rotating star. The largest prominences observed transiting the stellar disc are found at very similar rotational phases between the epochs. This suggests that the magnetic structures supporting the prominences retain their identity on a two to three week time-scale. By taking advantage of the high signal-to-noise ratio and large wavelength range of the VLT observations, we identify prominences as transient absorption features in all lines of the hydrogen Balmer series down to H10. We use the ratios of the prominence equivalent widths (EWs) in these lines to determine their column densities in the first excited state of hydrogen. We determine the optical depths, finding prominences to be rather optically thick (τ ~ 20) in the Hα line. The total hydrogen column density and thus the prominence masses are determined via observations of the CaII H&K lines. We find typical masses for four of the largest prominences to be in the range 0.5-2.3 × 1014 kg, slightly larger than giant solar prominence masses. Rotationally modulated emission is seen outside of the Hα line. These loops of emission are shown to be caused by prominences seen off the stellar disc. We find that all of the large emission loops can be associated with prominences we see transiting the stellar disc. This, combined with the fact that many prominences appear to eclipse the off-disc emission of others, strongly suggests that the prominence system is highly flattened and likely confined to low stellar latitudes. Based on

  1. Magnetorotationally driven wind cycles in local disc models

    NASA Astrophysics Data System (ADS)

    Riols, A.; Ogilvie, G. I.; Latter, H.; Ross, J. P.

    2016-12-01

    Jets, from the protostellar to the AGN context, have been extensively studied but their connection to the turbulent dynamics of the underlying accretion disc is poorly understood. Following a similar approach to Lesur, Fereira & Ogilvie, we examine the role of the magnetorotational instability (MRI) in the production and acceleration of outflows from discs. Via a suite of 1D shearing-box simulations of stratified discs, we show that magnetocentrifugal winds exhibit cyclic activity with a period of 10-20 Ω-1, a few times the orbital period. The cycle seems to be more vigorous for strong vertical field; it is robust to the variation of relevant parameters and independent of numerical details. The convergence of these solutions (in particular the mass-loss rate) with vertical box size is also studied. By considering a sequence of magnetohydrostatic equilibria and their stability, the periodic activity may be understood as the succession of the following phases: (a) a dominant MRI channel mode, (b) strong magnetic field generation, (c) consequent wind launching, and ultimately (d) vertical expulsion of the excess magnetic field by the expanding and accelerating gas associated with the wind. We discuss potential connections between this behaviour and observed time-variability in disc-jet systems.

  2. Synovial fluid dynamics with small disc perforation in temporomandibular joint.

    PubMed

    Xu, Y; Zhan, J; Zheng, Y; Han, Y; Zhang, Z; Xi, Y; Zhu, P

    2012-10-01

    The articular disc plays an important role as a stress absorber in joint movement, resulting in stress reduction and redistribution in the temporomandibular joint (TMJ). The flow of synovial fluid in the TMJ may follow a regular pattern during movement of the jaw. We hypothesised that the regular pattern is disrupted when the TMJ disc is perforated. By computed tomography arthrography, we studied the upper TMJ compartment in patients with small disc perforation during jaw opening-closing at positions from 0 to 3 cm. Finite element fluid dynamic modelling was accomplished to analyse the pattern of fluid flow and pressure distribution during the movements. The results showed that the fluid flow in the upper compartment generally formed an anticlockwise circulation but with local vortexes with the jaw opening up to 2 cm. However, when the jaw opening-closing reached 3 cm, an abnormal flow field and the fluid pressure change associated with the perforation may increase the risk of perforation expansion or rupture and is unfavourable for self-repair of the perforated disc.

  3. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620...

  4. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620...

  5. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620...

  6. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620...

  7. Large Scale Medical Databases On Digital Optical Discs

    NASA Astrophysics Data System (ADS)

    Rann, Leonard S.

    1985-04-01

    Since 1974, Micromedex Inc., has authored and published three widely used medical databases on microfiche. An integrated medical database system has been designed to run on an IBM-PC compatible computer utilizing digital optical discs as the primary mass storage medium.

  8. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  9. Moebius syndrome associated with pituitary dwarfism and hypoplastic optic disc.

    PubMed

    Hashimoto, N; Sakakihara, Y; Miki, Y; Kagawa, J; Egi, S; Kamoshita, S

    1993-04-01

    A 17 year old male patient with Moebius syndrome with pituitary dwarfism and unilateral hypoplastic optic disc is presented. Although there have been several reports of an association of Moebius syndrome and pituitary dysfunction, growth hormone deficiency has not been reported previously. These associations may give some insight into the pathogenesis of Moebius syndrome.

  10. Giant cyclones in gaseous discs of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Polyachenko, E.; Zasov, A. V.; Sil'chenko, O. K.; Afanas'ev, V. L.; Dodonov, S. N.; Moiseev, A. V.

    1999-12-01

    We report the detection of giant cyclonic vortices in the gaseous disc of the spiral galaxy NGC 3631 in the reference frame rotating with the spiral pattern. A presence of such structures was predicted by the authors for galaxies, where the radial gradient of the perturbed velocity exceeds that of the rotational velocity. This situation really takes place in NGC 3631.

  11. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  12. 'Bradbury Science Museum Collections Inventory Photos Disc #4

    SciTech Connect

    Strohmeyer, Wendy J.

    2015-11-16

    The photos on Bradbury Science Museum Collections Inventory Photos Disc #4 is another in an ongoing effort to catalog all artifacts held by the Museum. Photos will be used as part of the condition report for the artifact, and will become part of the collection record in the collections database for that artifact. The collections database will be publically searchable on the Museum website.

  13. Photoreceptor disc shedding in the living human eye

    PubMed Central

    Kocaoglu, Omer P.; Liu, Zhuolin; Zhang, Furu; Kurokawa, Kazuhiro; Jonnal, Ravi S.; Miller, Donald T.

    2016-01-01

    Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina. PMID:27895995

  14. Bradbury Science Museum Collections Inventory Photos Disc #5

    SciTech Connect

    Strohmeyer, Wendy J.

    2016-05-25

    The photos on Bradbury Science Museum Collections Inventory Photos Disc #5 is another in an ongoing effort to catalog all artifacts held by the Museum. Photos will be used as part of the condition report for the artifact, and will become part of the collection record in the collections database for that artifact. The collections database will be publically searchable on the Museum website.

  15. Traumatic Migration of the Bryan Cervical Disc Arthroplasty.

    PubMed

    Wagner, Scott C; Kang, Daniel G; Helgeson, Melvin D

    2016-02-01

    Study Design Case study. Objective To describe a case of dislodgment and migration of the Bryan Cervical Disc (Medtronic Sofamor Danek, Memphis, Tennessee, United States) arthroplasty more than 6 months after implantation secondary to low-energy trauma. Methods The inpatient, outpatient, and radiographic medical records of a patient with traumatic migration of the Bryan Cervical Disc arthroplasty were reviewed. The authors have no relevant disclosures to report. Results A 36-year-old man with chronic left upper extremity radiculopathy underwent uncomplicated Bryan Cervical Disc arthroplasty at C5-C6, with complete resolution of his symptoms. Approximately 6 months after his index procedure, he sustained low-energy trauma to the posterior cervical spine, after being struck by a book falling from a shelf. The injury forced his neck into flexion, and though he did not have recurrence of his radiculopathy symptoms, radiographs demonstrated anterior migration of the arthroplasty device. He underwent revision to anterior cervical diskectomy and fusion. Conclusions Although extremely rare, it is imperative that surgeons consider the potential for failure of osseous integration in patients undergoing cervical disk arthroplasty, even beyond 3 to 6 months postoperatively. This concern is especially relevant to press-fit or milled devices like the Bryan Cervical Disc arthroplasty, which lack direct fixation into adjacent vertebral bodies. We are considering modification of our postoperative protocol to improve protection of the device after implantation, even beyond 3 months postoperatively.

  16. Numerical Modeling of Tidal Effects in Polytropic Accretion Discs

    NASA Technical Reports Server (NTRS)

    Godon, P.

    1996-01-01

    A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion discs, under the assumption of a polytropic equation of state and a standard alpha viscosity prescription.

  17. Imaging Methods in the Diagnosis of Optic Disc Drusen

    PubMed Central

    Tuğcu, Betül; Özdemir, Hakan

    2016-01-01

    Optic disc drusen (ODD) are benign congenital anomalies of the optic nerve characterized by calcified hyaline bodies. While superficial drusen can be diagnosed easily during fundus examination, detecting buried drusen requires the use of additional imaging methods such as B-scan ultrasonography (USG), fundus fluorescein angiography (FFA), computed tomography (CT) and fundus autofluorescence (FAF). ODD can be detected by USG with the presentation of highly reflective round structures. ODD appear as hyperautofluorescent areas on FAF and bright spots on CT scans. FFA can be helpful in differentiating ODD from true optic disc edema. Optic disc edema shows early hyperfluorescence due to diffuse leakage whereas ODD presents as well-defined hyperfluorescence in the late phase. In recent years, it has been reported that optical coherence tomography (OCT) examination has allowed more detailed evaluation of ODD and yielded useful findings for the differentiation of optic disc edema from ODD. In this review, the role of OCT in the diagnosis of ODD is discussed. PMID:28058166

  18. On the fragmentation boundary in magnetized self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Price, Daniel J.; Bonnell, Ian

    2017-04-01

    We investigate the role of magnetic fields in the fragmentation of self-gravitating discs using 3D global ideal magnetohydrodynamic simulations performed with the PHANTOM smoothed particle hydrodynamics code. For initially toroidal fields, we find two regimes. In the first, where the cooling time is greater than five times the dynamical time, magnetic fields reduce spiral density wave amplitudes, which in turn suppresses fragmentation. This is the case even if the magnetic pressure is only a 10th of the thermal pressure. The second regime occurs when the cooling time is sufficiently short that magnetic fields cannot halt fragmentation. We find that magnetized discs produce more massive fragments, due to both the additional pressure exerted by the magnetic field and the additional angular momentum transport induced by Maxwell stresses. The fragments are confined to a narrower range of initial semimajor axes than those in unmagnetized discs. The orbital eccentricity and inclination distributions of unmagnetized and magnetized disc fragments are similar. Our results suggest that the fragmentation boundary could be at cooling times a factor of 2 lower than predicted by purely hydrodynamical models.

  19. Gas and stellar spiral structures in tidally perturbed disc galaxies

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.

    2016-06-01

    Tidal interactions between disc galaxies and low-mass companions are an established method for generating galactic spiral features. In this work, we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order of 1 × 109 M⊙, equivalent to only 4 per cent of the stellar disc mass, or 0.5 per cent of the total galactic mass of a Milky Way analogue.

  20. DISC BRAKE SYSTEM (CENTER), INCLUDING BELT DRIVE TO SECONDARY GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISC BRAKE SYSTEM (CENTER), INCLUDING BELT DRIVE TO SECONDARY GENERAL MOTORS ENGINE (LEFT)AND FERREL REDUCTION GEAR CONNECTION TO ALLIS-CHALMERS DIESEL ENGINE (RIGHT), LOOKING NORTH. NOTE TORQUE CONVERTER (TOP) AND THROTTLE (BELOW) LINES CONNECTING TO PRIMARY ENGINE. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  1. Circadian disc shedding in Xenopus retina in vitro

    SciTech Connect

    Flannery, J.G.; Fisher, S.K.

    1984-02-01

    To further examine the endogenous rhythm of disc shedding and phagocytosis observed in several species, adult Xenopus were entrained to a 12 hr light/12 hr dark cycle and then placed in constant darkness. At various times during a 3-day period of constant darkness, eyes were explanted and placed into culture medium, then processed for light and electron microscopy. A clear rhythmicity of disc shedding was observed, with pronounced peaks at the times light onset occurred in the original entrainment cycle. Modification of the HCO/sub 3/- ion concentration in the medium was found to raise the amplitude of the peak of endogenous disc shedding. Explants maintained in culture medium containing deuterium oxide (a compound known to perturb circadian oscillators) were found to shed with a longer interval between peaks. The addition of the protein synthesis inhibitor, anisomycin, to this preparation suppressed the shedding rhythm. The action of anisomycin was investigated by autoradiographic examination of the pattern of /sup 3/H-leucine uptake and protein synthesis by the explant. The findings suggest the presence of a circadian oscillator for rhythmic disc shedding within the amphibian eye.

  2. Photochemical-dynamical models of externally FUV irradiated protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Boubert, Douglas; Facchini, Stefano; Bisbas, Thomas G.; Clarke, Cathie J.

    2016-12-01

    There is growing theoretical and observational evidence that protoplanetary disc evolution may be significantly affected by the canonical levels of far-ultraviolet (FUV) radiation found in a star-forming environment, leading to substantial stripping of material from the disc outer edge even in the absence of nearby massive stars. In this paper, we perform the first full radiation hydrodynamic simulations of the flow from the outer rim of protoplanetary discs externally irradiated by such intermediate strength FUV fields, including direct modelling of the photon-dominated region which is required to accurately compute the thermal properties. We find excellent agreement between our models and the semi-analytic models of Facchini et al. (2016) for the profile of the flow itself, as well as the mass-loss rate and location of their `critical radius'. This both validates their results (which differed significantly from prior semi-analytic estimates) and our new numerical method, the latter of which can now be applied to elements of the problem that the semi-analytic approaches are incapable of modelling. We also obtain the composition of the flow, but given the simple geometry of our models we can only hint at some diagnostics for future observations of externally irradiated discs at this stage. We also discuss the potential for these models as benchmarks for future photochemical-dynamical codes.

  3. Vertebral degenerative disc disease severity evaluation using random forest classification

    NASA Astrophysics Data System (ADS)

    Munoz, Hector E.; Yao, Jianhua; Burns, Joseph E.; Pham, Yasuyuki; Stieger, James; Summers, Ronald M.

    2014-03-01

    Degenerative disc disease (DDD) develops in the spine as vertebral discs degenerate and osseous excrescences or outgrowths naturally form to restabilize unstable segments of the spine. These osseous excrescences, or osteophytes, may progress or stabilize in size as the spine reaches a new equilibrium point. We have previously created a CAD system that detects DDD. This paper presents a new system to determine the severity of DDD of individual vertebral levels. This will be useful to monitor the progress of developing DDD, as rapid growth may indicate that there is a greater stabilization problem that should be addressed. The existing DDD CAD system extracts the spine from CT images and segments the cortical shell of individual levels with a dual-surface model. The cortical shell is unwrapped, and is analyzed to detect the hyperdense regions of DDD. Three radiologists scored the severity of DDD of each disc space of 46 CT scans. Radiologists' scores and features generated from CAD detections were used to train a random forest classifier. The classifier then assessed the severity of DDD at each vertebral disc level. The agreement between the computer severity score and the average radiologist's score had a quadratic weighted Cohen's kappa of 0.64.

  4. Optical Disc Systems in Libraries: Problems and Issues.

    ERIC Educational Resources Information Center

    Harter, Stephen P.; Jackson, Susan M.

    1988-01-01

    Discusses optical disc (CD-ROM and videodisc) reference sources in terms of: (1) databases; (2) system characteristics; (3) end-user searching; (4) education and training requirements; (5) staffing; (6) costs; and (7) funding. Areas for further research are identified and new roles suggested for the librarian in the electronic age. (34 references)…

  5. Why stellar feedback promotes disc formation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Übler, Hannah; Naab, Thorsten; Oser, Ludwig; Aumer, Michael; Sales, Laura V.; White, Simon D. M.

    2014-09-01

    We study how feedback influences baryon infall on to galaxies using cosmological, zoom-in simulations of haloes with present mass Mvir = 6.9 × 1011 to 1.7 × 1012 M⊙. Starting at z = 4 from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because 50 per cent of the stars form in situ from recycled disc gas with angular momentum only weakly related to that of the z = 0 dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because 25-30 per cent of the total accreted gas is ejected entirely before z ˜ 1, removing primarily low angular momentum material which enriches the nearby intergalactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.

  6. The Milky Way Disc In Its Extragalactic Context

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey; Licquia, Timothy; Fielder, Catherine; Zentner, Andrew; Bershady, Matt

    2016-09-01

    We have produced updated estimates of the scale length of the Milky Way stellar disc by applying hierarchical Bayesian (HB) meta-analysis techniques to the extant literature. Our results combine 29 different photometric measurements based on a wide range of observational datasets, Milky Way models and assumptions, and methodologiesK the HB technique is robust to systematic errors that affect only a subset of measurements. In this talk, I will discuss the implications of these improved disc scale length estimates, including separate analyses of optical and infrared measurements (which prove to be consistent with each other). A key finding is that the Milky Way's disc scale length is roughly half as large as would be expected from its luminosity (or total stellar mass) and rotation velocity, lying further from the luminosity-velocity-radius relation than roughly 90% of spirals. Tests with simulations suggest that this result could be connected to the known discrepancies between the properties of the Milky Way's satellite population and predictions from LCDM models. Broader exploration of the links between disc properties and satellite populations in extragalactic samples may be a productive avenue for future work.

  7. Characterization of metals melting discs Skylab experiment M551

    NASA Technical Reports Server (NTRS)

    Monroe, R. E.

    1974-01-01

    Characterizations of flight and ground based samples from the metals melting experiment are detailed. The characteristics were determined by nondestructive investigation, visual observation, metallographic examination, and post-test measurements. Comparisons of the flight and ground based discs showed that an electron beam heat source can be used in zero gravity for cutting, welding, or melting.

  8. Development of hapten-linked microimmunoassays on polycarbonate discs.

    PubMed

    Tamarit-López, Jesús; Morais, Sergi; Bañuls, María-José; Puchades, Rosa; Maquieira, Angel

    2010-03-01

    An amino-modified polycarbonate surface of compact discs is used to link haptens covalently and directly as an alternative to the classic protein-hapten conjugate adsorption coating strategy employed in immunoassays. The modified surface maintains its physical and optical properties, and a standard disk drive can then read the assay results. Advantages are evaluated, such as the use of a broader spectrum of coupling media including organic solvents that are inappropriate for proteins but necessary for some water-insoluble haptens and the bypassing of the synthesis and purification for protein conjugates. As proof of concept, competitive microimmunoassays were developed for chlorpyrifos, atrazine, and 2-(2,4,5-trichlorophenoxy)propionic acid (2,4,5-TP), in microarray format, obtaining detection limits of 37.2, 8.1, and 76 ng/L, respectively. The sensitivity was 1 order of magnitude better than that obtained for all the studied systems using hapten-protein conjugates adsorbed on polystyrene enzyme-linked immunosorbent assay (ELISA) plates and polycarbonate surfaces. Further, the influence of hapten structure and presentation on molecular recognition pattern is discussed. To our knowledge, this is the first time that microarray and compact disc technologies converge with this particular hapten immobilization mode. The great potential of the approach is demonstrated through the high-throughput capability of the disc in a range of analytical applications, as well as the inherent advantages of compact disc reading technology.

  9. Traumatic Migration of the Bryan Cervical Disc Arthroplasty

    PubMed Central

    Wagner, Scott C.; Kang, Daniel G.; Helgeson, Melvin D.

    2015-01-01

    Study Design Case study. Objective To describe a case of dislodgment and migration of the Bryan Cervical Disc (Medtronic Sofamor Danek, Memphis, Tennessee, United States) arthroplasty more than 6 months after implantation secondary to low-energy trauma. Methods The inpatient, outpatient, and radiographic medical records of a patient with traumatic migration of the Bryan Cervical Disc arthroplasty were reviewed. The authors have no relevant disclosures to report. Results A 36-year-old man with chronic left upper extremity radiculopathy underwent uncomplicated Bryan Cervical Disc arthroplasty at C5–C6, with complete resolution of his symptoms. Approximately 6 months after his index procedure, he sustained low-energy trauma to the posterior cervical spine, after being struck by a book falling from a shelf. The injury forced his neck into flexion, and though he did not have recurrence of his radiculopathy symptoms, radiographs demonstrated anterior migration of the arthroplasty device. He underwent revision to anterior cervical diskectomy and fusion. Conclusions Although extremely rare, it is imperative that surgeons consider the potential for failure of osseous integration in patients undergoing cervical disk arthroplasty, even beyond 3 to 6 months postoperatively. This concern is especially relevant to press-fit or milled devices like the Bryan Cervical Disc arthroplasty, which lack direct fixation into adjacent vertebral bodies. We are considering modification of our postoperative protocol to improve protection of the device after implantation, even beyond 3 months postoperatively. PMID:26835211

  10. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to determine the antimicrobial agent of choice in the treatment of bacterial diseases....

  11. Density, Velocity and Ionization Structure in Accretion-disc Winds

    NASA Astrophysics Data System (ADS)

    Long, Knox

    We propose to exploit the unique capabilities of it FUSE to monitor variations in the wind-formed spectral lines of 3 luminous, low-inclination, cataclysmic variables (CVs). Our principal goal is to improve our understanding of the dynamics of accretion-disc winds. We have previously used HST to investigate substantial and rapid (sim hours to minutes) variability in our target stars, BZ Cam, RW Sex and V603 Aql, and have demonstrated that their disc-outflows are highly structured. We aim here to follow up our discoveries by securing FUSE time-series data. These observations will allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we will track the changing physical conditions in the outflow. A new sophisticated Monte Carlo code will be used to calculate the ionization structure of and radiative transfer through CV winds. This will allow us to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time. Our FUSE observations will provide a legacy that will be fundamental to the development of dynamical models of accretion-disc-driven winds, permitting critical tests of recent hydrodynamic simulations of unstable, line-driven disc winds.

  12. Notch Inhibits Yorkie Activity in Drosophila Wing Discs

    PubMed Central

    Djiane, Alexandre; Zaessinger, Sophie; Babaoğlan, A. Burcu; Bray, Sarah J.

    2014-01-01

    During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki), the Salvador/Warts/Hippo (SWH) pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd) is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg). We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs. PMID:25157415

  13. Disc Golf Play: Using Recreation to Improve Disruptive Classroom Behaviors

    ERIC Educational Resources Information Center

    Powell, Michael Lee; Newgent, Rebecca A.

    2008-01-01

    This study examined the use of disc golf as a creative, recreational play intervention for improving classroom behaviors in disruptive children. Twenty-two elementary students were randomly selected for either a treatment or control group and rated at pre- and post- by their teachers on the use of nine positive classroom behaviors (e.g., sharing,…

  14. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs.

    PubMed

    Piao, Chunguang; Kim, Jin Oh

    2017-02-01

    This paper considers the influence of the different thickness of the piezoelectric discs used in assembly of an ultrasonic sandwich transducer. The transducer consists of two piezoelectric discs with different thickness between 0 and 2.0mm and with same diameter 28mm. Its vibration characteristics of the radial and axial motions were investigated theoretically and experimentally in axisymmetric vibration modes. Theoretically, the differential equations of piezoelectric motions were solved to produce characteristic equations that provided natural frequencies and mode shapes. The range of the fundamental frequency of radial in-plane mode is 80-360kHz and that of the axial out-of-plane mode is 600-1200kHz. Experimentally, the natural frequencies and the radial in-plane motion were measured using an impedance analyzer and an in-plane laser interferometer, respectively. The results of the theoretical analysis were compared with those of a finite-element analysis and experiments, and the theoretical analysis was verified on the basis of this comparison. It was concluded that the natural frequencies of the radial modes of the transducer were not affected by the stack and thickness of piezoelectric discs; however, those of the thickness modes were affected by the stack and thickness of the piezoelectric discs.

  15. 17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  16. On the survival of zombie vortices in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lesur, Geoffroy R. J.; Latter, Henrik

    2016-11-01

    Recently it has been proposed that the zombie vortex instability (ZVI) could precipitate hydrodynamical activity and angular momentum transport in unmagnetized regions of protoplanetary discs, also known as `dead zones'. In this Letter we scrutinize, with high-resolution 3D spectral simulations, the onset and survival of this instability in the presence of viscous and thermal physics. First, we find that the ZVI is strongly dependent on the nature of the viscous operator. Although the ZVI is easily obtained with hyperdiffusion, it is difficult to sustain with physical (second order) diffusion operators up to Reynolds numbers as high as 107. This sensitivity is probably due to the ZVI's reliance on critical layers, whose characteristic length-scale, structure, and dynamics are controlled by viscous diffusion. Second, we observe that the ZVI is sensitive to radiative processes, and indeed only operates when the Peclet number is greater than a critical value ˜104, or when the cooling time is longer than ˜10Ω-1. As a consequence, the ZVI struggles to appear at R ≳ 0.3 au in standard 0.01 M⊙ T Tauri disc models, though younger more massive discs provide a more hospitable environment. Together these results question the prevalence of the ZVI in protoplanetary discs.

  17. [Lumbar disc protrusion in childhood. Description of a case].

    PubMed

    Lins, E; Basedow, H

    1976-02-01

    This is a case of lumbar disc protrusion in a 14 year old girl, with typical symptomatology. Special attention should be called to the rarity of this case. The clinical and myelographic diagnosis showed a lumbar herniation L 4/L5. Treatment was performed by lumbar hemilaminectomie. The post operative controll showed remission of the clinical findings.

  18. 26 CFR 1.992-1 - Requirements of a DISC.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section, (6) (7) Maintains separate books and records, and (8) Is not an ineligible... acquisition is deemed to have been for bona fide purposes if, for example, it is made in the usual course of... a DISC which arise in the normal course of its trade or business (such as in consideration...

  19. Modeling the Compact Disc Read System in Lab

    ERIC Educational Resources Information Center

    Hinaus, Brad; Veum, Mick

    2009-01-01

    One of the great, engaging aspects of physics is its application to everyday technology. The compact disc player is an example of one such technology that applies fundamental principles from optics in order to efficiently store and quickly retrieve information. We have created a lab in which students use simple optical components to assemble a…

  20. DVD technology-based molecular diagnosis platform: quantitative pregnancy test on a disc.

    PubMed

    Li, Xiaochun; Weng, Samuel; Ge, Bixia; Yao, Zhihui; Yu, Hua-Zhong

    2014-05-21

    A diagnosis platform based entirely on DVD technology was developed for on-site quantitation of molecular analytes of interest, e.g., human chorionic gonadotropin (hCG) in urine samples ("quantitative pregnancy test on a disc"). An hCG-specific monoclonal antibody-binding assay prepared on a regular DVD-R was labeled with nanogold-streptavidin conjugates for signal enhancement with a customized silver-staining protocol. An unmodified, conventional computer optical drive was used for assay reading, and free disc-quality analysis software for data processing. The performance (sensitivity and selectivity) of this DVD assay is comparable to that of well-established colorimetric methods (determination of optical darkness ratios) and standard enzyme-linked immunosorbent assays (ELISA). As validated by examining its linear correlation with the ELISA results on the same set of samples, the DVD assay promises to be a low-cost, multiplex, point-of-care (POC) diagnostic tool for physicians and even for individuals at home, producing prompt results.

  1. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    SciTech Connect

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; Jo, Na Hyun

    2016-01-05

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the clean separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this article, we provide examples of the growth of isotopically substituted TbCd6 and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related Bi2Rh3S2 and Bi2Rh3.5S2 phases and (ii) and PrZn11 and PrZn17.

  2. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    DOE PAGES

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; ...

    2016-01-05

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the cleanmore » separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this article, we provide examples of the growth of isotopically substituted TbCd6 and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related Bi2Rh3S2 and Bi2Rh3.5S2 phases and (ii) and PrZn11 and PrZn17.« less

  3. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  4. Dynamics and mechanical stability of the developing dorsoventral organizer of the wing imaginal disc.

    PubMed

    Canela-Xandri, Oriol; Sagués, Francesc; Casademunt, Jaume; Buceta, Javier

    2011-09-01

    Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called organizer, controls this process. In this paper we study the dynamics and stability of the dorsal-ventral organizer of the wing imaginal disc of Drosophila as cell proliferation advances. Our approach is based on a vertex model to perform in silico experiments that are fully dynamical and take into account the available experimental data such as: cell packing properties, orientation of the cellular divisions, response upon membrane ablation, and robustness to mechanical perturbations induced by fast growing clones. Our results shed light on the complex interplay between the cytoskeleton mechanics, the cell cycle, the cell growth, and the cellular interactions in order to shape the dorsal-ventral organizer as a robust source of positional information and a lineage controller. Specifically, we elucidate the necessary and sufficient ingredients that enforce its functionality: distinctive mechanical properties, including increased tension, longer cell cycle duration, and a cleavage criterion that satisfies the Hertwig rule. Our results provide novel insights into the developmental mechanisms that drive the dynamics of the DV organizer and set a definition of the so-called Notch fence model in quantitative terms.

  5. Dust production in debris discs: constraints on the smallest grains

    NASA Astrophysics Data System (ADS)

    Thebault, P.

    2016-03-01

    Context. The surface energy constraint puts a limit on the smallest fragment ssurf that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as being having the potential to prevent the production of small dust grains in debris discs and to cut off their size distribution at sizes larger than the blow-out size. Aims: We numerically investigate the importance of this effect to find out under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for μm-sized dust grains, in terms of the sizes of their collisional progenitors. Methods: For the first time, we implement the surface energy constraint into a collisional evolution code. We consider a typical debris disc extending from 50 to 100 au and two different stellar types: sun-like and A star. We also consider two levels of stirring in the disc: dynamically "hot" (⟨e⟩ = 0.075) and "cold" (⟨e⟩ = 0.01). In all cases, we derive ssurf maps as a function of target and projectile sizes, st and sp, and compare them to equivalent maps for the dust-production rate. We then compute disc-integrated profiles of the PSD and estimate the imprint of the surface energy constraint. Results: We find that the (sp,st) regions of high ssurf values do not coincide with those of high dust production rates. As a consequence, the surface energy constraint generally has a weak effect on the system's PSD. The maximum ssurf-induced depletion of μm-sized grains is ~30% and is obtained for a sun-like star and a dynamically "hot" case. For the e = 0.01 cases, the surface energy effect is negligible compared to the massive small grain depletion that is induced by another mechanism: the "natural" imbalance between dust production and destruction rates in low-stirring discs.

  6. Radiative transfer modelling of parsec-scale dusty warped discs

    NASA Astrophysics Data System (ADS)

    Jud, H.; Schartmann, M.; Mould, J.; Burtscher, L.; Tristram, K. R. W.

    2017-02-01

    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations, we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching a warped maser disc in orientation and size. Our model is for the first time able to present a physical explanation for the observed dust morphology as coming from the active galactic nuclei heated dust. As opposed to available torus models, a warped disc morphology produces a variety of silicate feature shapes for grazing lines of sight, close to an edge-on view. This could be an attractive alternative to a claimed change of the dust composition for the case of the nearby Seyfert 2 galaxy NGC 1068, which harbours a warped maser disc as well.

  7. Simulations of magnetic fields in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Springel, Volker

    2013-06-01

    Magnetic fields are known to be dynamically important in the interstellar medium of our own Galaxy, and they are ubiquitously observed in diffuse gas in the haloes of galaxies and galaxy clusters. Yet, magnetic fields have typically been neglected in studies of the formation of galaxies, leaving their global influence on galaxy formation largely unclear. Here we extend our magnetohydrodynamics (MHD) implementation in the moving-mesh code AREPO to cosmological problems which include radiative cooling and the formation of stars. In particular, we replace our previously employed divergence cleaning approach with a Powell eight-wave scheme, which turns out to be significantly more stable, even in very dynamic environments. We verify the improved accuracy through simulations of the magneto-rotational instability in accretion discs, which reproduce the correct linear growth rate of the instability. Using this new MHD code, we simulate the formation of isolated disc galaxies similar to the Milky Way using idealized initial conditions with and without magnetic fields. We find that the magnetic field strength is quickly amplified in the initial central starburst and the differential rotation of the forming disc, eventually reaching a saturation value. At this point, the magnetic field pressure in the interstellar medium becomes comparable to the thermal pressure, and a further efficient growth of the magnetic field strength is prevented. The additional pressure component leads to a lower star formation rate at late times compared to simulations without magnetic fields, and induces changes in the spiral arm structures of the gas disc. In addition, we observe highly magnetized fountain-like outflows from the disc. These results are robust with numerical resolution and are largely independent of the initial magnetic seed field strength assumed in the initial conditions, as the amplification process is rapid and self-regulated. Our findings suggest an important influence of

  8. Collisional modelling of the debris disc around HIP 17439

    NASA Astrophysics Data System (ADS)

    Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Eiroa, C.

    2014-07-01

    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme, the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a previous study, we assumed that the size and radial distribution of the circumstellar dust are independent power laws. There, several scenarios capable of explaining the observations were suggested after exploring a very broad range of possible model parameters. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, which are the actual physical processes operating in debris discs. We find that all scenarios discussed in the first paper are physically reasonable and can reproduce the observed spectral energy distribution along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120 au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. Good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not confirmed - although not ruled out - by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of distinguishing between the competing scenarios by future observations are discussed.

  9. Viscoelastic shear properties of porcine temporomandibular joint disc

    PubMed Central

    Wu, Yongren; Kuo, Jonathan; Wright, Gregory J.; Cisewski, Sarah E.; Wei, Feng; Kern, Michael J.; Yao, Hai

    2016-01-01

    Objectives To investigate the intrinsic viscoelastic shear properties in porcine TMJ discs. Materials and Methods Twelve fresh porcine TMJ discs from young adult pigs (6-8 months) were used. Cylindrical samples (5 mm diameter) with uniform thickness (~1.2 mm) were prepared from five regions of the TMJ disc. Torsional shear tests were performed under 10% compressive strain. Dynamic shear was applied in two methods: (1) a frequency sweep test over the frequency range of 0.01-10 rad/s with a constant shear strain amplitude of 0.025 rad, and (2) a strain sweep test over the range of 0.005-0.05 rad at a constant frequency of 10 rad/s. Transient stress-relaxation tests were also performed to determine the equilibrium shear properties. Results As the frequency increased in the frequency sweep test, the dynamic shear complex modulus increased, with values ranging from 7 to 17 kPa. The phase angle, ranging from 11 to 15 degrees, displayed no pattern of regional variation as the frequency increased. The dynamic shear modulus decreased as the shear strain increased. The equilibrium shear modulus had values ranging from 2 to 4.5 kPa. The posterior region had significantly higher values for dynamic shear modulus than those in the anterior region while no significant regional difference was found for equilibrium shear modulus. Conclusion Our results suggest that the intrinsic region-dependent viscoelastic shear characteristics of TMJ disc may play a crucial role in determining the local strain of the TMJ disc under mechanical loading. PMID:25865544

  10. Dynamics of barred galaxies: effects of disc height

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Valenzuela, Octavio; Colín, Pedro; Quinn, Thomas

    2009-09-01

    We study dynamics of bars in models of disc galaxies embedded in realistic dark matter haloes. We find that disc thickness plays an important, if not dominant, role in the evolution and structure of the bars. We also make extensive numerical tests of different N-body codes used to study bar dynamics. Models with thick discs typically used in this type of modelling (height-to-length ratio hz/Rd = 0.2) produce slowly rotating, and very long, bars. In contrast, more realistic thin discs with the same parameters as in our Galaxy (hz/Rd ~ 0.1) produce bars with normal length Rbar ~ Rd, which rotate quickly with the ratio of the corotation radius to the bar radius compatible with observations. Bars in these models do not show a tendency to slow down, and may lose as little as 2-3 per cent of their angular momentum due to dynamical friction with the dark matter over cosmological time. We attribute the differences between the models to a combined effect of high phase-space density and smaller Jeans mass in the thin-disc models, which result in the formation of a dense central bulge. Special attention is paid to numerical effects, such as the accuracy of orbital integration, force and mass resolution. Using three N-body codes - GADGET, adaptive refinement tree (ART) and PKDGRAV - we find that numerical effects are very important and, if not carefully treated, may produce incorrect and misleading results. Once the simulations are performed with sufficiently small time-steps and with adequate force and mass resolution, all the codes produce nearly the same results: we do not find any systematic deviations between the results obtained with TREE codes (GADGET and PKDGRAV) and with the adaptive mesh refinement (ART) code.

  11. Successful disc surgery after 17 years of erectile dysfunction caused by a "silent" disc protrusion.

    PubMed

    Orlin, Jan Roar; Klevmark, Bjørn

    2008-01-01

    A 35-year-old male with normal erectile function up until the age of 18 years subsequently suffered permanent erectile dysfunction for the next 17 years. At the age of 15 years he had fallen from a horse and landed on his buttocks. He also complained of slight voiding dysfunction. Uroflowmetry showed reduced flow, indicating a possible common neurogenic cause of the disturbed bladder function and erectile dysfunction. CT of the lumbar spine showed a large protrusion of the intervertebral disc L5-S1. After operative removal of the protrusion, a normal erection was achieved after 15 days and urine flow improved at 1 and 2 months and became normal after 3 months. Both erectile and bladder function continued to be normal 10 years later. Thus, the effects of long-lasting mechanical compression of parasympathetic nerves need not be irreversible. Uroflowmetry is also a test for neurogenic aetiology of erectile dysfunction, as bladder contractility and erection are both dependent upon parasympathetic innervation from the spinal segments S2-S4.

  12. Multimodal Segmentation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach

    PubMed Central

    Miri, Mohammad Saleh; Abràmoff, Michael D.; Lee, Kyungmoo; Niemeijer, Meindert; Wang, Jui-Kai; Kwon, Young H.

    2015-01-01

    In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch’s Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup. PMID:25781623

  13. PCM1 is recruited to the centrosome by the cooperative action of DISC1 and BBS4 and is a candidate for psychiatric illness

    PubMed Central

    Kamiya, Atsushi; Tan, Perciliz L.; Kubo, Ken-ichiro; Engelhard, Caitlin; Ishizuka, Koko; Kubo, Akiharu; Tsukita, Sachiko; Pulver, Ann E.; Nakajima, Kazunori; Cascella, Nicola G.; Katsanis, Nicholas; Sawa, Akira

    2009-01-01

    Context A role for the centrosome has been suggested in the pathology of major mental illnesses, especially schizophrenia (SZ). Objectives To show that pericentriolar material-1 protein (PCM1) forms a complex at the centrosome with Disrupted-In-Schizophrenia-1 (DISC1) and Bardet-Biedl syndrome-4 protein (BBS4), which provides a crucial pathway for cortical development associated with the pathology of SZ. To identify mutations in the PCM1 gene in a SZ population. Design Interaction of DISC1, PCM1, and BBS proteins was assessed by immunofluorescent staining and co-immunoprecipitation. Effects of PCM1, DISC1, and BBS on centrosomal functions and corticogenesis in vivo were tested by RNAi. PCM1 gene was examined by sequencing 39 exons and flanking splice sites. Setting and Patients Thirty-two probands with SZ from families that had excess allele sharing among affected individuals at 8p22, and 219 Caucasian controls. Main Outcome Measures Protein interaction and recruitment at the centrosome in cells; neuronal migration in the cerebral cortex; variant discovery in PCM1 in SZ patients. Results PCM1 forms a complex with DISC1 and BBS4 through discrete binding domains in each protein. DISC1 and BBS4 are required for targeting PCM1 and other cargo proteins, such as ninein, to the centrosome in a synergistic manner. In the developing cerebral cortex, suppression of PCM1 leads to neuronal migration defects, which are phenocopied by the suppression of either DISC1 or BBS4, and are exacerbated by the concomitant suppression of both. Furtheremore, a nonsense mutation that segregates with schizophrenia-spectrum psychosis is found in one family. Conclusion Our data further support for the role of centrosomal proteins in cortical development and suggest that perturbation of centrosomal function contributes to the development of mental diseases including SZ. PMID:18762586

  14. A prospective morphological study of facet joint integrity following intervertebral disc replacement with the CHARITE Artificial Disc.

    PubMed

    Trouillier, Hans; Kern, P; Refior, H J; Müller-Gerbl, M

    2006-02-01

    In degenerative disc disease (DDD), increased loading in the posterior column increases facet joint subchondral bone density and may lead to facet joint degeneration. While spinal fusion is commonly used to treat patients with symptomatic DDD, increased stress at the levels adjacent to fusion may accelerate facet joint and adjacent segment degeneration. Artificial disc replacements have been developed as an alternative to fusion. In this prospective study, the effects of disc replacement with the CHARITE Artificial Disc on facet joint loading and integrity were evaluated. Thirteen patients aged <50 years with symptomatic DDD were recruited. Computed tomography (CT) osteoabsorptiometry was performed prior to the implantation of the CHARITE Artificial Disc and six months after. With this technique, increases or decreases in facet joint loading and integrity are indicated by corresponding changes in subchondral bone density. Changes in the distribution of load alter the distribution of the areas of maximum bone density. Clinical outcome was also assessed at pre-operative and 6 and 12 month post-operative visits using the Visual Analogue Scale back and leg pain scores, the Oswestry Disability Index and the Short Form-36 (SF-36) questionnaire. The height of the intervertebral space at the operated level was monitored by lateral X-ray. Subchondral bone density was evaluated in the facet joints of all 13 patients at the operated level, 12 patients at the level above the operated segment, and five patients at the level below the operated segment. Quantitative measurements revealed no significant increases (> or =3%) in subchondral bone density of the facet joints at any level in any patient. Significant decreases (> or =3%) in subchondral bone density were measured at the operated level in 10/13 patients, at the level above the operated segment in 6/12 patients, and at the level below the operated segment in 3/5 patients. There were no changes in the distribution of the

  15. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats

    PubMed Central

    Issy, A.C.; Castania, V.; Castania, M.; Salmon, C.E.G.; Nogueira-Barbosa, M.H.; Bel, E. Del; Defino, H.L.A.

    2013-01-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration. PMID:23532265

  16. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  17. Disrupted in schizophrenia 1 (DISC1) inhibits glioblastoma development by regulating mitochondria dynamics

    PubMed Central

    Hu, Zhifang; Hu, Fengrui; liu, Dou; Gao, Lei; Gou, Xingchun; Jin, Weilin

    2016-01-01

    Glioblastoma(GBM) is one of the most common and aggressive malignant primary tumors of the central nervous system and mitochondria have been proposed to participate in GBM tumorigenesis. Previous studies have identified a potential role of Disrupted in Schizophrenia 1 (DISC1), a multi-compartmentalized protein, in mitochondria. But whether DISC1 could regulate GBM tumorigenesis via mitochondria is still unknown. We determined the expression level of DISC1 by both bioinformatics analysis and tissue analysis, and found that DISC1 was highly expressed in GBM. Knocking down of DISC1 by shRNA in GBM cells significantly inhibited cell proliferation both in vitro and in vivo. In addition, down-regulation of DISC1 decreased cell migration and invasion of GBM and self renewal capacity of glioblastoma stem-like cells. Furthermore, multiple independent rings or spheres could be observed in mitochondria in GBM depleted of DISC1, while normal filamentous morphology was observed in control cells, demonstrating that DISC1 affected the mitochondrial dynamic. Dynamin-related protein 1 (Drp1) was reported to contribute to mitochondrial dynamic regulation and influence glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Our data showed a significant decrease of Drp1 both in mRNA and protein level in GBM lack of DISC1, indicating that DISC1 maybe affect the mitochondrial dynamic by regulating Drp1. Taken together, our findings reveal that DISC1 affects glioblastoma cell development via mitochondria dynamics partly by down regulation of Drp1. PMID:27852062

  18. MRI DWI/ADC signal predicts shrinkage of lumbar disc herniation after O2–O3 discolysis

    PubMed Central

    Perri, Marco; Grattacaso, Giuseppe; Di Tunno, Valeria; Marsecano, Claudia; Di Cesare, Ernesto; Gallucci, Massimo

    2015-01-01

    Purpose Evaluate the discal morpho-structural changes as a predictive sign in the clinical outcome after ozone therapy in lumbar disc herniation using the T2–shine through effect in diffusion-weighted imaging (DWI). Method One hundred and fifty-four patients suffering from lumbosciatica (89 men and 65 women; age range, 23–62 years) were included, previous MR study performed with FSE-T2 and T2-fat, SE-T1 and DWI sequences, and were randomly assigned to two groups. Seventy-seven patients (control group) underwent conservative treatment with intraforaminal injection of steroid and anaesthetic. The remaining 77 patients (study group) underwent the same treatment with the addition of oxygen–ozone (O2–O3). During the following six months, a MRI follow-up with the same sequences was performed. An intervertebral disc volumetric analysis (IDVA), DWI signal score and post treatment clinical outcome evaluation were performed for an assessment of hernia reduction. χ2 test, Student's t test and analysis of covariance were used for comparison of variables. Results In the study group, 58 of 77 patients had a successful outcome (responders). In the responders group, DWI T2–shine through effect was present during MRI follow-up and in particular in 53 of 77 patients in six months of follow-up (p < 0.05). Moreover, in the same group a statistically significant disc shrinkage was shown by IDVA in sixth months of follow-up (p < 0.05). Conclusions T2–shine through effect in DWI is present before morphological disc reduction and moreover could be considered as a predictive sign of response to oxygen–ozone treatment. PMID:25923680

  19. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  20. Stellar motion induced by gravitational instabilities in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Durisen, R. H.

    2010-07-01

    We test the effect of assumptions about stellar motion on the behaviour of gravitational instabilities (GIs) in protoplanetary discs around solar-type stars by performing two simulations that are identical in all respects except the treatment of the star. In one simulation, the star is assumed to remain fixed at the centre of the inertial reference frame. In the other, stellar motion is handled properly by including an indirect potential in the hydrodynamic equations to model the star's reference frame as one which is accelerated by star/disc interactions. The discs in both simulations orbit a solar mass star, initially extend from 2.3 to 40 au with a ϖ-1/2 surface density profile, and have a total mass of 0.14 Msolar. The γ = 5/3 ideal gas is assumed to cool everywhere with a constant cooling time of two outer rotation periods. The overall behaviour of the disc evolution is similar, except for weakening in various measures of GI activity by about at most tens of per cent for the indirect potential case. Overall conclusions about disc evolution in earlier papers by our group, where the star was always assumed to be fixed in an inertial frame, remain valid. There is no evidence for independent one-armed instabilities, like the Stimulation by the Long-range Interaction of Newtonian Gravity (SLING), in either simulation. On the other hand, the stellar motion about the system centre of mass (COM) in the simulation with the indirect potential is substantial, up to 0.25 au during the burst phase, as GIs initiate, and averaging about 0.9 au during the asymptotic phase, when the GIs reach an overall balance of heating and cooling. These motions appear to be a stellar response to non-linear interactions between discrete global spiral modes in both the burst and asymptotic phases of the evolution, and the star's orbital motion about the COM reflects the orbit periods of disc material near the corotation radii of the dominant spiral waves. This motion is, in principle

  1. Herschel observations of the debris disc around HIP 92043

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Krivov, A. V.; del Burgo, C.; Eiroa, C.; Mora, A.; Montesinos, B.; Ertel, S.; Bryden, G.; Liseau, R.; Augereau, J.-C.; Bayo, A.; Danchi, W.; Löhne, T.; Maldonado, J.; Pilbratt, G. L.; Stapelfeldt, K.; Thebault, P.; White, G. J.; Wolf, S.

    2013-09-01

    Context. Typical debris discs are composed of particles ranging from several micron sized dust grains to km sized asteroidal bodies, and their infrared emission peaks at wavelengths 60-100 μm. Recent Herschel DUNES observations have identified several debris discs around nearby Sun-like stars (F, G and K spectral type) with significant excess emission only at 160 μm. Aims: We observed HIP 92043 (110 Her, HD 173667) at far-infrared and sub-millimetre wavelengths with Herschel PACS and SPIRE. Identification of the presence of excess emission from HIP 92043 and the origin and physical properties of any excess was undertaken through analysis of its spectral energy distribution (SED) and the PACS images. Methods: The PACS and SPIRE images were produced using the HIPE photProject map maker routine. Fluxes were measured using aperture photometry. A stellar photosphere model was scaled to optical and near infrared photometry and subtracted from the far-infared and sub-mm fluxes to determine the presence of excess emission. Source radial profiles were fitted using a 2D Gaussian and compared to a PSF model based on Herschel observations of α Boo to check for extended emission. Results: Clear excess emission from HIP 92043 was observed at 70 and 100 μm. Marginal excess was observed at 160 and 250 μm. Analysis of the images reveals that the source is extended at 160 μm. A fit to the source SED is inconsistent with a photosphere and single temperature black body. Conclusions: The excess emission from HIP 92043 is consistent with the presence of an unresolved circumstellar debris disc at 70 and 100 μm, with low probability of background contamination. The extended 160 μm emission may be interpreted as an additional cold component to the debris disc or as the result of background contamination along the line of sight. The nature of the 160 μm excess cannot be determined absolutely from the available data, but we favour a debris disc interpretation, drawing parallels with

  2. Impacts of a flaring star-forming disc and stellar radial mixing on the vertical metallicity gradient

    NASA Astrophysics Data System (ADS)

    Kawata, Daisuke; Grand, Robert J. J.; Gibson, Brad K.; Casagrande, Luca; Hunt, Jason A. S.; Brook, Chris B.

    2017-01-01

    Using idealized N-body simulations of a Milky Way-sized disc galaxy, we qualitatively study how the metallicity distributions of the thin disc star particles are modified by the formation of the bar and spiral arm structures. The thin disc in our numerical experiments initially has a tight negative radial metallicity gradient and a constant vertical scaleheight. We show that the radial mixing of stars drives a positive vertical metallicity gradient in the thin disc. On the other hand, if the initial thin disc is flared, with vertical scaleheight increasing with galactocentric radius, the metal-poor stars, originally in the outer disc, become dominant in regions above the disc plane at every radii. This process can drive a negative vertical metallicity gradient, which is consistent with the current observed trend. This model mimics a scenario where the star-forming thin disc was flared in the outer region at earlier epochs. Our numerical experiment with an initial flared disc predicts that the negative vertical metallicity gradient of the mono-age relatively young thin disc population should be steeper in the inner disc, and the radial metallicity gradient of the mono-age population should be shallower at greater heights above the disc plane. We also predict that the metallicity distribution function of mono-age young thin disc populations above the disc plane would be more positively skewed in the inner disc compared to the outer disc.

  3. What's NEW at the GES DISC: Evolution of Data Management and Services for Aura Mission and Beyond

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer

    2016-01-01

    GES DISC world. Aura data usage and trend. Aura data users requests. GES DISC update (before/after); New Access method (ftp to http) with Earthdata Login System, New Website (DISC/Mirador to New Interface), New Giovanni (Giovanni to Now Federated). GES DISC support beyond Aura Mission; Multi-sensor coincident data subsets, Level 2 support (Sub-setter, Visualization), Data List.

  4. Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, K.; Reddy, K. S.

    2012-03-01

    In this article, heat transfer enhancement of line focus solar collector with porous disc receiver is studied with water and therminol oil. A three dimensional (3-D) numerical simulation of porous disc enhanced receiver is carried out using commercial CFD software Fluent 6.3 to evolve the optimum configuration. The 3-D numerical model is solved by renormalization-group based k-ɛ turbulent model associated with standard wall function. The effect of porous disc receiver configurations (solid disc at bottom; porous disc at bottom; porous disc at top; and alternative porous disc) on performance of the trough concentrator is investigated. The effect of porous disc geometric parameters (φ, θ, W, H and t) and fluid parameters (Pr and m) on heat transfer enhancement of the receiver is also studied. The numerical simulation results show that the flow pattern around the solid and porous discs are entirely different and it significantly influences the local heat transfer coefficient. The porous disc receiver experiences low pressure drop as compared to that of solid disc receiver due to less obstruction. The optimum configuration of porous disc receiver enhances the heat transfer rate of 221 W m-1 and 13.5% with pumping penalty of 0.014 W m-1 for water and for therminol oil-55, heat transfer rate enhances of 575 W m-1 and 31.4% with pumping penalty of 0.074 W m-1 as compared to that of tubular receiver at the mass flow rate of 0.5 kg s-1. The Nusselt number and friction factor correlations are proposed for porous disc receiver to calculate heat transfer characteristics. The porous disc receiver can be used to increase the performance of solar parabolic trough concentrator.

  5. Effect of Be disc evolution on global one-armed oscillations

    NASA Astrophysics Data System (ADS)

    Oktariani, F.; Okazaki, A. T.; Kunjaya, C.; Aprilia

    2016-07-01

    We study the effect of density distribution evolution on the global one-armed oscillation modes in low-viscosity discs around isolated and binary Be stars. Observations show that some Be stars exhibit evidence of formation and dissipation of the equatorial disc. In this paper, we first calculate the density evolution in discs around isolated Be stars. To model the formation stage of the disc, we inject mass at a radius just outside the star at a constant rate for 30-50 yr. As the disc develops, the density distribution approaches the form of the steady disc solution. Then, we turn-off the mass injection to model the disc dissipation stage. The innermost part of the disc starts accretion, and a gap forms between the star and the disc. Next, we calculate the one-armed modes at several epochs. We neglect the effect of viscosity because the time-scale of oscillations is much shorter than the disc evolution time-scale for low viscosity. In the disc formation stage, the eigenfrequency increases with time towards the value for the steady state disc. On the other hand, one-armed eigenmodes in dissipating Be discs have significantly higher eigenfrequencies and narrower propagation regions. Observationally, such a change of mode characteristics can be taken as an evidence for gap opening around the star. In binary Be stars, the characteristics of the disc evolution and the eigenmodes are qualitatively the same as in isolated Be stars, but quantitatively, they have shorter evolution time-scales and higher eigenfrequencies, which is in agreement with the observed trend.

  6. Comparison of ripening processes in intact tomato fruit and excised pericarp discs.

    PubMed

    Campbell, A D; Huysamer, M; Stotz, H U; Greve, L C; Labavitch, J M

    1990-12-01

    Physiological processes characteristic of ripening in tissues of intact tomato fruit (Lycopersicon esculentum Mill.) were examined in excised pericarp discs. Pericarp discs were prepared from mature-green tomato fruit and stored in 24-well culture plates, in which individual discs could be monitored for color change, ethylene biosynthesis, and respiration, and selected for cell wall analysis. Within the context of these preparation and handling procedures, most whole fruit ripening processes were maintained in pericarp discs. Pericarp discs and matched intact fruit passed through the same skin color stages at similar rates, as expressed in the L(*)a(*)b(*) color space, changing from green (a(*) < -5) to red (a(*) > 15) in about 6 days. Individual tissues of the pericarp discs changed color in the same sequence seen in intact fruit (exocarp, endocarp, then vascular parenchyma). Discs from different areas changed in the same spatial sequence seen in intact fruit (bottom, middle, top). Pericarp discs exhibited climacteric increases in ethylene biosynthesis and CO(2) production comparable with those seen in intact fruit, but these were more tightly linked to rate of color change, reaching a peak around a(*) = 5. Tomato pericarp discs decreased in firmness as color changed. Cell wall carbohydrate composition changed with color as in intact fruit: the quantity of water-soluble pectin eluted from the starch-free alcohol insoluble substances steadily increased and more tightly bound, water-insoluble, pectin decreased in inverse relationship. The cell wall content of the neutral sugars arabinose, rhamnose, and galactose steadily decreased as color changed. The extractable activity of specific cell wall hydrolases changed as in intact fruit: polygalacturonase activity, not detectable in green discs (a(*) = -5), appeared as discs turned yellow-red (a(*) = 5), and increased another eight-fold as discs became full red (a(*) value +20). Carboxymethyl-cellulase activity, low in

  7. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation.

    PubMed

    Zilly, Julian; Buhmann, Joachim M; Mahapatra, Dwarikanath

    2017-01-01

    We present a novel method to segment retinal images using ensemble learning based convolutional neural network (CNN) architectures. An entropy sampling technique is used to select informative points thus reducing computational complexity while performing superior to uniform sampling. The sampled points are used to design a novel learning framework for convolutional filters based on boosting. Filters are learned in several layers with the output of previous layers serving as the input to the next layer. A softmax logistic classifier is subsequently trained on the output of all learned filters and applied on test images. The output of the classifier is subject to an unsupervised graph cut algorithm followed by a convex hull transformation to obtain the final segmentation. Our proposed algorithm for optic cup and disc segmentation outperforms existing methods on the public DRISHTI-GS data set on several metrics.

  8. Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs

    NASA Astrophysics Data System (ADS)

    Li, Jiao Jiao; Xu, Hang; Raees, Ammarah; Zhao, Qing Kai

    2016-03-01

    An investigation is made for a three-dimensional unsteady mixed nano-bioconvection flow between two contracting or expanding rotating discs. The passively controlled nanofluid model in which Brownian diffusion and thermophoresis are considered as the two dominant factors for nanoparticle/base-fluid slip mechanisms is introduced for description of this flow problem. A novel similarity transformation is introduced so that the governing equations embodying the conservation of total mass, momentum, thermal energy, nanoparticle volume fraction, and microorganisms are reduced to a set of five fully coupled ordinary differential equations. Exact solutions are then obtained analytically for this complex nonlinear system. Besides, the influences of various physical parameters on distributions of velocity, temperature, nanoparticle volume fraction, and the density of motile microorganisms, along with the local Nusselt number and the local wall motile microorganisms flux, are presented and discussed. It is expected that this study can provide a theoretical base for understanding the transport mechanisms of unsteady bioconvection in nanofluids.

  9. Imbalanced Protein Expression Patterns of Anabolic, Catabolic, Anti-Catabolic and Inflammatory Cytokines in Degenerative Cervical Disc Cells: New Indications for Gene Therapeutic Treatments of Cervical Disc Diseases

    PubMed Central

    Mern, Demissew S.; Beierfuß, Anja; Fontana, Johann; Thomé, Claudius; Hegewald, Aldemar A.

    2014-01-01

    Degenerative disc disease (DDD) of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI), without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP) tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001) were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix

  10. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Rui, H.; Vollmer, B.; Jasinski, M. F.; Mocko, D. M.; Kempler, S. J.

    2014-12-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. The resulting system, the NCA - Land Data Assimilation System (NCA-LDAS), is a NASA contribution to the NCA. The outputs of the NCA-LDAS contribute to the development and evaluation of a suite of water indicators. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and validation data, to other NCA-teams and the general public. Currently released data include NCA-LDAS outputs from the Noah Land Surface Model version 3.3 (Noah-3.3) and Catchment Land Surface Model version Fortuna-2.5 (CLSM-F2.5) and the post- processed data sets for the routing variables. The NCA-LDAS data have temporal and spatial resolutions, respectively, of daily and 0.125x0.125 degree, covering North America (25N ~ 53N; 125W ~ 67W) and the period January 1979 to December 2012. The data files are in self-describing, machine-independent netCDF-4 format. The data contain a set of water- and energy-related Essential Climate Variables (ECV). The NCA-LDAS data are archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NCA_LDAS), THREDDS (http://hydro1.sci.gsfc.nasa.gov/thredds/catalog.html), and Mirador search and download (http://mirador.gsfc.nasa.gov/). This presentation describes the main characteristics of the NCA-LDAS data and data services (access, subsetting, visualization, and analysis). The major differences between the NCA-LDAS data and the North American Land Data Assimilation System (NLDAS) data are discussed

  11. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  12. Improvement of Disc Cutter Performance by Water Jet Assistance

    NASA Astrophysics Data System (ADS)

    Ciccu, Raimondo; Grosso, Battista

    2014-03-01

    This article deals with the problem of assisting disc cutters by means of high-velocity jets of water, with the aim of increasing the excavation rate while improving the working conditions, with particular reference to wear. The results of an experimental research undertaken at the Waterjet Laboratory of the University of Cagliari on a medium-hard abrasive rock clearly show that a higher removal rate is achieved owing to the weakening action of a jet directed on one side of the disc, causing deeper penetration. This outcome is interpreted on the basis of the scale formation model, which explains why smaller scales are obtained on the water jet's side of the groove. Accordingly, it is suggested that the results can be further improved if the jet is directed ahead of the tool along the same path, since, in this way, larger scales can be produced on both sides.

  13. Exploring the vertical age structure of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Casagrande, Luca

    While in external or high-redshift galaxies we can only measure integrated stellar properties at best, the Milky Way offers us the unique opportunity to study its individual baryonic components, including stars. We use oscillations measured in red giant stars by the Kepler satellite to derive stellar ages and explore the vertical age structure across few kpc of the Milky Way disc. We find that old stars dominate at increasing Galactic heights, whereas closer to the plane a rich zoology of ages exists. The age distribution of stars shows a smooth distribution over the last 10 Gyr, which together with a flat age-metallicity relation is consistent with a quiescent evolution for the Milky Way disc since a redshift of about two.

  14. Total analysis systems with Thermochromic Etching Discs technology.

    PubMed

    Avella-Oliver, Miquel; Morais, Sergi; Carrascosa, Javier; Puchades, Rosa; Maquieira, Ángel

    2014-12-16

    A new analytical system based on Thermochromic Etching Discs (TED) technology is presented. TED comprises a number of attractive features such as track independency, selective irradiation, a high power laser, and the capability to create useful assay platforms. The analytical versatility of this tool opens up a wide range of possibilities to design new compact disc-based total analysis systems applicable in chemistry and life sciences. In this paper, TED analytical implementation is described and discussed, and their analytical potential is supported by several applications. Microarray immunoassay, immunofiltration assay, solution measurement, and cell culture approaches are herein addressed in order to demonstrate the practical capacity of this system. The analytical usefulness of TED technology is herein demonstrated, describing how to exploit this tool for developing truly integrated analytical systems that provide solutions within the point of care framework.

  15. Vitrectomy for bilateral macular schisis without apparent optic disc anomalies

    PubMed Central

    Andonegui, José; Maya, José Ramón; Echeverría, Marta; Alcaine, Araceli

    2016-01-01

    A 78-year-old man complained of bilateral visual acuity loss. Optical coherence tomography examination showed bilateral macular schisis with fluid accumulation in the external retinal layers without vitreous traction. Fundus examination and fluorescein angiography were normal in both eyes. Both eyes were treated by phacoemulsification, intraocular lens implantation, and vitrectomy without laser, gas exchange, or retinal fenestration. Slow and progressive fluid resorption and improvement in VA were observed in both eyes. Macular schisis similar to the one associated with optic disc anomalies is a possibility in patients without apparent disc anomalies. Vitrectomy without laser, gas, or retinal fenestration may be a good therapeutic option even in patients with a PVD preoperatively. PMID:27703873

  16. Boxy isophotes, discs and dust lanes in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Lauer, T. R.

    1985-01-01

    CCD images of 42 elliptical and S0 galaxies are examined for low-contrast structures or subtle distortions of the isophotes from perfect ellipses. 75 percent of the galaxies have isophotes completely describable as concentric ellipses to within the photometry errors. 'Boxy' isophotes, stellar discs, and dust lanes are detected in the remaining 25 percent of the sample. The boxy elliptical galaxies appear dynamically indistinguishable from normal ellipticals and are therefore different from boxy bulges, which rotate rapidly. Most of the galaxies with faint discs, however, appear dynamically similar to S0 galaxies. Nearly edge-on dust lanes are found in four galaxies, which suggests that dust lanes may commonly occur in elliptical galaxies.

  17. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  18. James Clerk Maxwell and the dynamics of astrophysical discs.

    PubMed

    Ogilvie, Gordon I

    2008-05-28

    Maxwell's investigations into the stability of Saturn's rings provide one of the earliest analyses of the dynamics of astrophysical discs. Current research in planetary rings extends Maxwell's kinetic theory to treat dense granular gases of particles undergoing moderately frequent inelastic collisions. Rather than disrupting the rings, local instabilities may be responsible for generating their irregular radial structure. Accretion discs around black holes or compact stars consist of a