Sample records for dwarf nova systems

  1. Proper-motion age dating of the progeny of Nova Scorpii AD 1437.

    PubMed

    Shara, M M; Iłkiewicz, K; Mikołajewska, J; Pagnotta, A; Bode, M F; Crause, L A; Drozd, K; Faherty, J; Fuentes-Morales, I; Grindlay, J E; Moffat, A F J; Pretorius, M L; Schmidtobreick, L; Stephenson, F R; Tappert, C; Zurek, D

    2017-08-30

    'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions.

  2. The awakening of a classical nova from hibernation.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2016-09-29

    Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.

  3. On the implications of the period distributions of subclasses of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank

    1997-09-01

    The period distributions of dwarf novae and nova-like variables above the period gap are different if the VY Scl systems are classed with the nova-like variables, but the same when the VY Scl phenomenon is classed with the dwarf nova outbursts. For the remaining nova-like variables, the period gap is no longer significant. Classification of the VY Scl phenomenon with dwarf novae suggests that dwarf nova outbursts are caused by variation in mass transfer from the donor. Absence of the period gap obviates the need for models explaining it, and invalidates one piece of evidence for the importance of magnetic braking for the evolution of cataclysmic variables and of low-mass binaries in general.

  4. Models for various aspects of dwarf novae and nova-like stars

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.

  5. Recent Results on SNRs and PWNe from the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2010-01-01

    a) Symbiotic Binary System: White dwarf + red giant system. b) Nova: White dwarf builds up mass envelope to the point of thermonuclear fusion. c) Dramatic increase in visual magnitude. d) Recurrent Nova? e) Hints but no strong confirmation of previous nova f) Pre-nova activity: 1) White dwarf shows ongoing variability at level of several in magnitude. 2) V407 Cyg companion is a Mira star showing variability at level of several in magnitude. g) Origin of the gamma rays? 1) Strong shock propagating into dense medium around giant star land stellar wind. 2) Pion decay or electron processes?

  6. The inter-outburst behavior of cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Szkody, Paula; Mattei, Janet A.; Waagen, Elizabeth O.; Stablein, Clay

    1990-01-01

    Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined.

  7. On the interpretation and implications of nova abundances: An abundance of riches or an overabundance of enrichments

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Truran, James W.

    1994-01-01

    We reexamine the question of the frequency of occurrence of oxygen-neon-magnesium (ONeMg) degenerate dwarfs in classical nova systems, in light of recent observations which have been interpreted as suggesting that 'neon novae' can be associated with relatively low mass white dwarfs. Determinations of heavy-element concentrations in nova ejecta are reviewed, and possible interpretations of their origin are examined. We conclude that, of the 18 classical novae for which detailed abundance analyses are availble, only two (or possibly three) seem unambiguously to demand the presence of an underlying ONeMg white dwarf: V693 CrA 1981, V1370 Aql 1982, and possibly QU Vul 1984. Three other novae which exhibit significant neon enrichments, relative to their total heavy-element concentrations, are RR Pic 1925, V977, Sco 1989, and LMC 1990 No. 1. This result is entirely consistent with present frequency estimates, and our interpretation of the lower levels of enrichment in other systems explains, in a natural way, the existence of relatively low mass white dwarfs in some of the 'neon' novae.

  8. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV wavelengths.

  9. Recent progress in understanding the eruptions of classical novae

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.

    1988-01-01

    Dramatic progress has occurred in the last two decades in understanding the physical processes and events leading up to, and transpiring during the eruption of a classical nova. The mechanism whereby a white dwarf accreting hydrogen-rich matter from a low-mass main-sequence companion produces a nova eruption has been understood since 1970. The mass-transferring binary stellar configuration leads inexorably to thermonuclear runaways detected at distances of megaparsecs. Summarized here are the efforts of many researchers in understanding the physical processes which generate nova eruptions; the effects upon nova eruptions of different binary-system parameters (e.g., chemical composition or mass of the white dwarf, different mass accretion rates); the possible metamorphosis from dwarf to classical novae and back again; and observational diagnostics of novae, including x ray and gamma ray emission, and the characteristics and distributions of novae in globular clusters and in extragalactic systems. While the thermonuclear-runaway model remains the successful cornerstone of nova simulation, it is now clear that a wide variety of physical processes, and three-dimensional hydrodynamic simulations, will be needed to explain the rich spectrum of behavior observed in erupting novae.

  10. AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Mizusawa, Trisha; Zurek, David

    2012-10-20

    We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf novamore » AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.« less

  11. New insights from a statistical analysis of IUE spectra of dwarf novae and nova-like stars. I - Inclination effects in lines and continua

    NASA Technical Reports Server (NTRS)

    La Dous, Constanze

    1991-01-01

    IUE observations of dwarf novae at maximum at quiescence and novalike objects at the high brightness state are analyzed for effects of the inclination angle on the emitted continuum and line radiation. A clear pattern in the continuum flux distribution is exhibited only by dwarf novae at maximum where some 80 percent of the non-double-eclipsing systems show essentially identical distributions. This result is not in disagreement with theoretical expectations. All classes of objects exhibit a clear, but in each case different, dependence of the line radiation on the inclination angle.

  12. Ultraviolet spectroscopy of old novae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.; Slovak, M. H.; Shields, G. A.; Ferland, G. J.

    1981-01-01

    The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination.

  13. Accretional Heating by Periodic Dwarf Nova Outburst Events

    NASA Astrophysics Data System (ADS)

    Godon, P.; Sion, E. M.

    2001-12-01

    We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.

  14. Nova-like variables

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.

  15. The Shape of Long Outbursts in U Gem Type Dwarf Novae from AAVSO Data

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.

    2012-01-01

    We search the American Association of Variable Star Observers (AAVSO) archives of the two best studied dwarf novae in an attempt to find light curves for long out bursts that are extremely well-characterized. The systems are U Gem and S8 Cyg. Our goal is to search for embedded precursors such as those that have been found recently in the high fidelity Kepler data for superoutbursts of some members of the 8U UMa subclass of dwarf novae. For the vast majority of AAV80 data, the combination of low data cadence and large errors associated with individual measurements precludes one from making any strong statement about the shape of the long outbursts. However, for a small number of outbursts, extensive long term monitoring with digital photometry yields high fidelity light curves. We report the finding of embedded precursors in two of three candidate long outbursts. This reinforces van Paradijs' finding that long outbursts in dwarf novae above the period gap and superoutbursts in systems below the period gap constitute a unified class. The thermal-tidal instability to account for superoutbursts in the SU UMa stars predicts embedded precursors only for short orbital period dwarf novae, therefore the presence of embedded precursors in long orbital period systems - U Gem and SS Cyg - argues for a more general mechanism to explain long outbursts.

  16. When does an old nova become a dwarf nova? Kinematics and age of the nova shell of the dwarf nova AT Cancri

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Drissen, Laurent; Martin, Thomas; Alarie, Alexandre; Stephenson, F. Richard

    2017-02-01

    The Z Cam-type dwarf nova AT Cancri (AT Cnc) displays a classical nova (CN) shell, demonstrating that mass transfer in cataclysmic binaries decreases substantially after a CN eruption. The hibernation scenario of cataclysmic binaries predicts such a decrease, on a time-scale of a few centuries. In order to measure the time since AT Cnc's last CN eruption, we have measured the radial velocities of a hundred clumps in its ejecta with SITELLE, Canada-France-Hawaii Telescope's recently commissioned imaging Fourier transform spectrometer. These range from -455 to +490 km s-1. Coupled with the known distance to AT Cnc of 460 pc, the size of AT Cnc's shell, and a simple model of nova ejecta deceleration, we determine that the last CN eruption of this system occurred 330_{-90}^{+135} yr ago. This is the most rapid transition from a high mass-transfer rate, nova-like variable to a low mass-transfer rate, dwarf nova yet measured, and in accord with the hibernation scenario of cataclysmic binaries. We conclude by noting the similarity in the deduced outburst date (within a century of 1686 CE) of AT Cnc to a `guest star' reported in the constellation Cancer by Korean observers in 1645 CE.

  17. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexander; Ayres, Thomas R.; Neff, James E.

    2015-02-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4more » year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.« less

  18. The Fall and the Rise of X-Rays from Dwarf Novae in Outburst: RXTE Observations of VW Hydri and WW Ceti

    NASA Technical Reports Server (NTRS)

    Fertig, D.; Mukai, K.; Nelson, T.; Cannizzo, J. K.

    2011-01-01

    In a dwarf nova, the accretion disk around the white dwarf is a source of ultraviolet, optical, and infrared photons, but is never hot enough to emit X-rays. Observed X-rays instead originate from the boundary layer between the disk and the white dwarf. As the disk switches between quiescence and outburst states, the 2-10 keV X-ray flux is usually seen to be anti-correlated with the optical brightness. Here we present RXTE monitoring observations of two dwarf novae, VW Hyi and WW Cet, confirming the optical/X-ray anti-correlation in these two systems. However, we do not detect any episodes of increased hard X-ray flux on the rise (out of two possible chances for WW Cet) or the decline (two for WW Cet and one for VW Hyi) from outburst, attributes that are clearly established in SS Cyg. The addition of these data to the existing literature establishes the fact that the behavior of SS Cyg is the exception, rather than the archetype as is often assumed. We speculate that only dwarf novae with a massive white dwarf may show these hard X-ray spikes.

  19. ASASSN-16eg: New candidate for a long-period WZ Sge-type dwarf nova

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Yasuyuki; Isogai, Keisuke; Kimura, Mariko; Kato, Taichi; Vanmunster, Tonny; Stone, Geoff; Tordai, Tamás; Richmond, Michael; Miller, Ian; Oksanen, Arto; Itoh, Hiroshi; Akazawa, Hidehiko; Kiyota, Seiichiro; de Miguel, Enrique; Pavlenko, Elena P.; Antonyuk, Kirill A.; Antonyuk, Oksana I.; Neustroev, Vitaly V.; Sjoberg, George; Dubovsky, Pavol A.; Pickard, Roger D.; Nogami, Daisaku

    2017-12-01

    We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the superoutburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) × 10-5 in stage B. The orbital period (Porb), which is almost identical with the period of the early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio (q = M2/M1) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also too large for a WZ Sge-type dwarf nova. This suggests that the 2 : 1 resonance can be reached in such high-q systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg, and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates for long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.

  20. A statistical analysis of IUE spectra of dwarf novae and nova-like stars

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1990-01-01

    First results of a statistical analysis of the IUE International Ultraviolet Explorer archive on dwarf novae and nova like stars are presented. The archive contains approximately 2000 low resolution spectra of somewhat over 100 dwarf novae and nova like stars. Many of these were looked at individually, but so far the collective information content of this set of data has not been explored. The first results of work are reported.

  1. Follow-up Observations of SDSS and CRTS Candidate Cataclysmic Variables II

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Everett, Mark E.; Dai, Zhibin; Serna-Grey, Donald

    2018-01-01

    Spectra of 38 candidate or known cataclysmic variables are presented. Most are candidate dwarf novae or systems containing possible highly magnetic white dwarfs, while a few (KR Aur, LS Peg, V380 Oph, and V694 Mon) are previously known objects caught in unusual states. Individual spectra are used to confirm a dwarf nova nature or other classification while radial velocities of 15 systems provide orbital periods and velocity amplitudes that aid in determining the nature of the objects. Our results substantiate a polar nature for four objects, find an eclipsing SW Sex star below the period gap, another as a likely intermediate polar, as well as two dwarf novae with periods in the middle of the gap. Based on observations obtained with the Apache Point Observatory (APO) 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium (ARC).

  2. RZ Leonis Minoris bridging between ER Ursae Majoris-type dwarf nova and nova-like system

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Ishioka, Ryoko; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Miller, Ian; Masumoto, Kazunari; Nishino, Hirochika; Kojiguchi, Naoto; Kawabata, Miho; Sakai, Daisuke; Sugiura, Yuki; Furukawa, Hisami; Yamamura, Kenta; Kobayashi, Hiroshi; Matsumoto, Katsura; Wang, Shiang-Yu; Chou, Yi; Ngeow, Chow-Choong; Chen, Wen-Ping; Panwar, Neelam; Lin, Chi-Sheng; Hsiao, Hsiang-Yao; Guo, Jhen-Kuei; Lin, Chien-Cheng; Omarov, Chingis; Kusakin, Anatoly; Krugov, Maxim; Starkey, Donn R.; Pavlenko, Elena P.; Antonyuk, Kirill A.; Sosnjvskij, Aleksei A.; Antonyuk, Oksana I.; Pit, Nikolai V.; Baklanov, Alex V.; Babina, Julia V.; Itoh, Hiroshi; Padovan, Stefano; Akazawa, Hidehiko; Kafka, Stella; de Miguel, Enrique; Pickard, Roger D.; Kiyota, Seiichiro; Shugarov, Sergey Yu.; Chochol, Drahomir; Krushevska, Viktoriia; Sekeráš, Matej; Pikalova, Olga; Sabo, Richard; Dubovsky, Pavol A.; Kudzej, Igor; Ulowetz, Joseph; Dvorak, Shawn; Stone, Geoff; Tordai, Tamás; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Vanmunster, Tonny; Oksanen, Arto; Maeda, Yutaka; Kasai, Kiyoshi; Katysheva, Natalia; Morelle, Etienne; Neustroev, Vitaly V.; Sjoberg, George

    2016-12-01

    We observed RZ LMi, which is renowned for its extremely short (˜19 d) supercycle and is a member of a small, unusual class of cataclysmic variables called ER UMa-type dwarf novae, in 2013 and 2016. In 2016, the supercycles of this object substantially lengthened in comparison to the previous measurements to 35, 32, and 60 d for three consecutive superoutbursts. We consider that the object virtually experienced a transition to the nova-like state (permanent superhumper). This observed behavior reproduced the prediction of the thermal-tidal instability model extremely well. We detected a precursor in the 2016 superoutburst and detected growing (stage A) superhumps with a mean period of 0.0602(1) d in 2016 and in 2013. Combined with the period of superhumps immediately after the superoutburst, the mass ratio is not as small as in WZ Sge-type dwarf novae, having orbital periods similar to RZ LMi. By using least absolute shrinkage and selection operator (Lasso) two-dimensional power spectra, we detected possible negative superhumps with a period of 0.05710(1) d. We estimated an orbital period of 0.05792 d, which suggests a mass ratio of 0.105(5). This relatively large mass ratio is even above that of ordinary SU UMa-type dwarf novae, and it is also possible that the exceptionally high mass-transfer rate in RZ LMi may be a result of a stripped secondary with an evolved core in a system evolving toward an AM CVn-type object.

  3. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II The Second Year (2009-2010)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Maehara, Hiroyuki; Uemura, Makoto; Henden, Arne; de Miguel, Enrique; Miller, Ian; Dubovsky, Pavol A.; Kudzej, Igor; Kiyota, Seiichiro; Hambsch, Franz-Josef; Tanabe, Kenji; Imamura, Kazuyoshi; Kunitomi, Nanae; Takagi, Ryosuke; Nose, Mikiha; Akazawa, Hidehiko; Masi, Gianluca; Nakagawa, Shinichi; Iino, Eriko; Noguchi, Ryo; Matsumoto, Katsura; Fujii, Daichi; Kobayashi, Hiroshi; Ogura, Kazuyuki; Ohtomo, Sachi; Yamashita, Kousei; Yanagisawa, Hirofumi; Itoh, Hiroshi; Bolt, Greg; Monard, Berto; Ohshima, Tomohito; Shears, Jeremy; Ruiz, Javier; Imada, Akira; Oksanen, Arto; Nelson, Peter; Gomez, Tomas L.; Staels, Bart; Boyd, David; Voloshina, Irina B.; Krajci, Thomas; Crawford, Tim; Stockdale, Chris; Richmond, Michael; Morelle, Etienne; Novák, Rudolf; Nogami, Daisaku; Ishioka, Ryoko; Brady, Steve; Simonsen, Mike; Pavlenko, Elena P.; Ringwald, Frederick A.; Kuramoto, Tetsuya; Miyashita, Atsushi; Pickard, Roger D.; Hynek, Tomáš; Dvorak, Shawn; Stubbings, Rod; Muyllaert, Eddy

    2010-12-01

    Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O - C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses.

  4. A Search for Novae in the M31 Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin; Crotts, Arlin; Shafter, Allen

    1992-12-01

    Roughly 10% of all low mass X-ray binaries (LMXB's, neutron star - low mass sequence close binaries) are found in Galactic globular clusters (GC's) implying an enhancement per unit mass of roughly three orders of magnitude of these objects inside GC's compared with the field. Fabian, Pringle and Rees (1975) suggested that these lcose binary systems may be formed via tidal capture in the dense cluster cores. Similar arguments are likely to apply to nova systems which are cataclysmic variables (CV's) consisting of a close binary white dwarf - low mass main sequence star. Supporting arguments include the discovery over the past century of two novae in Galactic GC's, and the existence of low luminosity X-ray sources in GC's (Hertz and Grindlay 1983). In addition, surveys for novae in M31 indicate that the specfic density of novae in its bulge is an order of magnitude higher than its disk and it has been argued by Ciardullo et al. (1987) that novae in the bulge of M31 have been spawned inside GC's and subsequently ejected into the field. We present the results of a search (during 1988 and 1989) of over 200 M31 GC's using a fibre multi-object spectrograph to detect Hα emission, a signature of a potential nova eruptions. No eruptions were detected over an effective survey time of one year for the entire known M31 GC system. Although the lower mass of white dwarfs compared with neutron stars implies their effective capture cross section is smaller, we argue that since novae occur much more frequently on high mass white dwarfs this survey provides a sensitive test to the number of high mass CV's in GC's and their enhancement is unlikely to be as high as LMXB's.

  5. Magnetic activity of red secondaries: clues from the outburst cycle variations of dwarf novae

    NASA Astrophysics Data System (ADS)

    Chinarova, L. L.

    Photometric variations of 6 dwarf novae stars are studied based on the photographic observations from the Odessa, Moscow and Sonneberg plate collections and published visual monitoring data from the AFOEV database (Schweitzer E.: 1993, Bull. AFOEV, 64, 14). The moments of maxima are determined by using the "running parabola" fit (Andronov I.L., 1990, Kinematika Fizika Nebesn. Tel., v.6,,N 6, 87) with automatically determined filter half-width (Andronov I.L., 1997, As.Ap. Suppl., in press). All investigated stars exhibit significant changes not only from cycle-to-cycle, but from season-to-season as well. Secondary decade-scale cycles of smooth variations (Bianchini A., 1990, AJ 99, 1941) and abrupt switchings (Andronov I.L., Shakun L.I., 1990, ASS 169, 237) were interpreted by a solar-type activity of the red dwarf secondary in a binary system and may argue for existence of two different subgroups of the dwarf novae.

  6. The Masses and Accretion Rates of White Dwarfs in Classical and Recurrent Novae

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Prialnik, Dina; Hillman, Yael; Kovetz, Attay

    2018-06-01

    Models have long predicted that the frequency-averaged masses of white dwarfs (WDs) in Galactic classical novae are twice as large as those of field WDs. Only a handful of dynamically well-determined nova WDs masses have been published, leaving the theoretical predictions poorly tested. The recurrence time distributions and mass accretion rate distributions of novae are even more poorly known. To address these deficiencies, we have combined our extensive simulations of nova eruptions with the Strope et al. and Schaefer databases of outburst characteristics of Galactic classical and recurrent novae (RNe) to determine the masses of 92 WDs in novae. We find that the mean mass (frequency-averaged mean mass) of 82 Galactic classical novae is 1.06 (1.13) M ⊙, while the mean mass of 10 RNe is 1.31 M ⊙. These masses, and the observed nova outburst amplitude and decline time distributions allow us to determine the long-term mass accretion rate distribution of classical novae. Remarkably, that value is just 1.3 × 10‑10 M ⊙ yr‑1, which is an order of magnitude smaller than that of cataclysmic binaries in the decades before and after classical nova eruptions. This predicts that old novae become low-mass transfer rate systems, and hence dwarf novae, for most of the time between nova eruptions. We determine the mass accretion rates of each of the 10 known Galactic recurrent nova, finding them to be in the range of 10‑7–10‑8 M ⊙ yr‑1. We are able to predict the recurrence time distribution of novae and compare it with the predictions of population synthesis models.

  7. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  8. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; hide

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  9. Fermi establishes classical novae as a distinct class of gamma-ray sources

    DOE PAGES

    Cheung, C. C.

    2014-07-31

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient γ-ray sources detected over 2-3 week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linkedmore » to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.« less

  10. Synthetic Spectral Analysis of the Far Ultraviolet Spectra of the Old Nova HR Del

    NASA Astrophysics Data System (ADS)

    Robertson, Jordan; Sion, E.

    2012-05-01

    We present a synthetic spectral analysis of the archival IUE far ultraviolet spectra of the post-nova, HR Del (Nova Del 1967). The system has an estimated white dwarf mass of 0.55 Msun (Ritter and Kolb 2003), orbital period P_orb = 0.214165 days, estimated orbital inclination of 40 degrees (Keurster 1988) and distance determinations in the literature ranging from 970 pc to 285 pc. The spectra reveal P Cygni profiles indicative of wind outflow from the disk and closely resemble the IUE spectra of UX UMa nova-likes, which have never had recorded outbursts. We de-reddened the archival IUE spectra using E(B-V) = 0.16. Our synthetic spectral analysis utilized optically thick, steady state accretion disk models and white dwarf model atmospheres that we constructed using TLUSTY and SYNSPEC (Hubeny 1988, Hubeny and Lanz (1995). Our input parameters were the white dwarf mass, inclination and a range of accretion rates for which we found the best-fitting model. We report the results of our model fitting and compare HR Del with other post-novae at comparable times past their nova outburst. This work was supported by NSF grant 0807892 to Villanova University

  11. Liverpool Telescope Spectroscopy of the Nova Eruption from V392 Persei

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Copperwheat, C. M.; Harvey, E. J.; Healy, M. W.

    2018-05-01

    Here we report Liverpool Telescope (LT; Steele et al. 2004) spectroscopy of the recent nova eruption (ATel #11588) from the known dwarf nova system V392 Per. A Fermi & gamma;-ray detection of the eruption has also been reported (ATel #11590) along with additional photometry (ATel #11594).

  12. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?

    PubMed

    Hause, Connor; Sion, Edward M; Godon, Patrick; Boris, T Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2017-08-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B-V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8 M ⊙ , our results indicate the presence of a 22-27,000 K white dwarf and a low mass accretion rate [Formula: see text], for a derived distance o ~200 to ~300 pc.

  13. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  14. Nucleosynthesis and the nova outburst

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.

    1995-01-01

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10(sup 8)K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into (beta)(sup +)-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M(sub (circle dot)), 1.25M(sub (circle dot)), and 1.35M(sub (circle dot)) white dwarfs. Our results show that novae can produce (sup 22)Na, (sup 26)Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.

  15. Synthesis of C-rich dust in CO nova outbursts

    NASA Astrophysics Data System (ADS)

    José, Jordi; Halabi, Ghina M.; El Eid, Mounib F.

    2016-09-01

    Context. Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in stellar binary systems. The material transferred onto the white dwarf piles up under degenerate conditions, driving a thermonuclear runaway. In these outbursts, about 10-7-10-3 M⊙, enriched in CNO and sometimes other intermediate-mass elements (e.g., Ne, Na, Mg, or Al for ONe novae) are ejected into the interstellar medium. The large concentrations of metals spectroscopically inferred in the nova ejecta reveal that the solar-like material transferred from the secondary mixes with the outermost layers of the underlying white dwarf. Aims: Most theoretical models of nova outbursts reported to date yield, on average, outflows characterized by O > C, from which, in principle, only oxidized condensates (e.g., O-rich grains) would be expected. Methods: To specifically address whether CO novae can actually produce C-rich dust, six different hydrodynamic nova models have been evolved, from accretion to the expansion and ejection stages, with different choices for the composition of the substrate with which the solar-like accreted material mixes. Updated chemical profiles inside the H-exhausted core have been used, based on stellar evolution calculations for a progenitor of 8 M⊙ through H- and He-burning phases. Results: We show that these profiles lead to C-rich ejecta after the nova outburst. This extends the possible contribution of novae to the inventory of presolar grains identified in meteorites, particularly in a number of carbonaceous phases (I.e., nanodiamonds, silicon carbides, and graphites).

  16. The Nova-Dwarf Nova Connection

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola

    The extraordinary discovery that thermonuclear runaway (TNR) processed material lives on the white dwarf (WD) surface in the dwarf nova (DN) system VW Hyi is in direct conflict with the currently accepted model for DNe. The WD in VW Hyi should be continuously buried in solar-abundance material accreted from its fully-convective, low-mass main sequence companion. IT ISNT. There are either subtle metallicity-varying forces at work, or the current theory of DNe is completely wrong. Only by monitoring the abundances of key elements throughout an entire dwarf nova cycle will we be able to observe the rate of change of key abundance ratios by accretion and mixing processes, and hence deduce the relative importance of diffusion (in removing metals), accretion (in adding metals) and (non-party line but possible) local nuclear burning. FUSE is ideal for this task, because its spectral range contains key lines of important elements, because of its high temperature sensitivity and because in its wavelength range, the VW Hyi spectrum is totally dominated by the WD. VW Hyi is the obvious candidate for this project, because we already know that its abundances are indicative of recent TNR processing.

  17. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?1

    PubMed Central

    Hause, Connor; Sion, Edward M.; Godon, Patrick; Boris, T. Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2018-01-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B−V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8M⊙, our results indicate the presence of a 22–27,000 K white dwarf and a low mass accretion rate (M˙≲10−10M⊙/yr), for a derived distance o ~200 to ~300 pc. PMID:29430023

  18. A hydrodynamic study of a slow nova outburst. [computerized simulation of thermonuclear runaway in white dwarf envelope

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Starrfield, S.; Truran, J. W.

    1978-01-01

    The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.

  19. Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

    NASA Astrophysics Data System (ADS)

    Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene

    2018-05-01

    Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html

  20. Nova V2214 Ophiuchi 1988 - A magnetic nova inside the period gap

    NASA Technical Reports Server (NTRS)

    Baptista, R.; Jablonski, F. J.; Cieslinski, D.; Steiner, J. E.

    1993-01-01

    The discovery of a coherent photometric modulation in Nova Oph 1988 with period 0.117515 +/- 0.000002 d, which is associated with the orbital period of the underlying binary, is reported. On the basis of photometric observations, it is concluded that Nova V2214 Oph 1988 is a magnetic nova with an orbital period inside the period gap. The inclusion of this system in the statistics of novae suggests that there is no period gap for novae and that there is a clear correlation between the occurrence of novae with short orbital periods and the presence of magnetic white dwarfs. It is suggested that funneling of the accretion flow onto the magnetic poles favors the conditions for a thermonuclear runaway, increasing the frequency of eruptions for magnetic systems.

  1. Impact of convection and resistivity on angular momentum transport in dwarf novae.

    NASA Astrophysics Data System (ADS)

    Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.

    2017-12-01

    The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α≈ 0.1 required in outburst compared to α≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO MHD simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. In the quiescent state, the disk is only very weakly ionized so, in the second part of our work, we studied the impact of resistive MHD on transport.We find that the MRI-driven transport is quenched (α≈ 0) below the critical density at which the magnetic Reynolds number R_{m}≤ 10^4. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf.

  2. The Dwarf Nova SY Cancri and its Environs

    NASA Astrophysics Data System (ADS)

    Landolt, A. U.; Clem, J. L.

    2018-06-01

    Multicolor UBVRI photometry, collected intermittedly over a period of 22 years, is presented for the dwarf nova SY Cancri. Additional UBVRI photometry for a handful of sequence stars in the vicinity of SY Cancri is also presented.

  3. Far Ultraviolet Spectroscopy of Seven Nova-Like Variables

    NASA Astrophysics Data System (ADS)

    Mizusawa, Trisha; Merritt, Jason; Ballouz, Ronald-Louis; Bonaro, Michael; Foran, Sean; Plumberg, Christopher; Stewart, Heather; Wiley, Trayer; Sion, Edward M.

    2010-03-01

    We present the results of a multicomponent synthetic spectral analysis of the archival far ultraviolet spectra of several key nova-like variables including members of the SW Sex, RW Tri, UX UMa, and VY Scl subclasses: KR Aur, RW Tri, V825 Her, V795 Her, BP Lyn, V425 Cas, and HL Aqr. Accretion rates as well as the possible flux contribution of the accreting white dwarf are included in our analysis. Except for RW Tri, which has a reliable trigonometric parallax, we computed the distances to the nova-like systems using the method of Knigge. Our analysis of seven archival IUE spectra of RW Tri at its parallax distance of 341 pc consistently indicates a low mass (˜0.4 M⊙) white dwarf and an average accretion rate, . For KR Aur, we estimate that the white dwarf has Teff = 29,000 ± 2000 K, log g = 8.4, and contributes 18% of the far-UV flux, while an accretion disk with accretion rate at an inclination of 41° contributes the remainder. We find that an accretion disk dominates the far-UV spectrum of V425 Cas but a white dwarf contributes nonnegligibly with approximately 18% of the far-UV flux. For the two high state nova-likes, HL Aqr and V825 Her, their accretion disks totally dominate with and 3 × 10-9 M⊙ yr-1, respectively. For BP Lyn we find while for V795 Her, we find an accretion rate of . We discuss the implications of our results for the evolutionary status of nova-like variables.

  4. X-ray Novae and Related Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig; Kim, Soonwook; Mineshige, Shin

    1992-01-01

    Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long 'precursor plateau' in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the co-rotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), IE 1740.7-2942 (the 'Galactic Center' Einstein Source), and GS 1124-683 (Nova Muscae).

  5. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  6. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int

  7. On the long term evolution of white dwarfs in cataclysmic variables and their recurrence times

    NASA Technical Reports Server (NTRS)

    Sion, E. M.; Starrfield, S. G.

    1985-01-01

    The relevance of the long term quasi-static evolution of accreting white dwarfs to the outbursts of Z Andromeda-like symbiotics; the masses and accretion rates of classical nova white dwarfs; and the observed properties of white dwarfs detected optically and with IUE in low M dot cataclysmic variables is discussed. A surface luminosity versus time plot for a massive, hot white dwarf bears a remarkable similarity to the outburst behavior of the hot blue source in Z Andromeda. The long term quasi-static models of hot accreting white dwarfs provide convenient constraints on the theoretically permissible parameters to give a dynamical (nova-like) outburst of classic white dwarfs.

  8. Roche tomography of cataclysmic variables - VIII. The irradiated and spotted dwarf nova, SS Cygni

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Smith, Robert Connon; Hebb, L.; Szkody, P.

    2017-12-01

    We present the results of our spectroscopic study of the dwarf nova SS Cyg, using Roche tomography to map the stellar surface and derive the system parameters. Given that this technique takes into account the inhomogeneous brightness distribution on the surface of the secondary star, our derived parameters are (in principle) the most robust yet found for this system. Furthermore, our surface maps reveal that the secondary star is highly spotted, with strongly asymmetric irradiation on the inner hemisphere. Moreover, by constructing Doppler tomograms of several Balmer emission lines, we find strong asymmetric emission from the irradiated secondary star, and an asymmetric accretion disc that exhibits spiral structures.

  9. M31N 2008-12a: The Remarkable Recurrent Nova in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Darnley, Matthew; Henze, Martin; Williams, Steven C.

    2017-08-01

    The recurrent nova M31N 2008-12a in M31 has the shortest interoutburst time of any known recurrent nova. Since its discovery in December 2008 by two Japanese amateur astronomers, Koichi Nishiyama and Fujio Kabashima, a total of 8 subsequent outbursts have been observed. The mean time between observed eruptions (all observed between late August and December) is 364+/-52 days. M31 is close to the sun in March through May, so it is likely that any eruptions that may have occurred during this period have been missed and the recurrence period could be as short as 6 months. Models of thermonuclear runaways on white dwarfs show that only near Chandrasekhar mass white dwarfs accreting at a few times 10-7 solar masses per year can produce nova outbursts with a recurrence time of a year, or less. Furthermore, the models show that during the interval between each nova event the accreted mass is expected to be greater than the expelled mass. The white dwarf mass must therefore be growing, and is predicted to reach the Chandrasekhar mass in of order 500,000 years. Thus, M31N 2008-12a is destined either to become a Type Ia supernova (if the white dwarf has a CO composition) or to form a neutron star in an accretion-induced collapse (if the white dwarf has an ONe composition). In this poster, I will describe the latest observations of this fascinating nova.

  10. The classical nova hibernation scenario: a definitive confirmation

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2017-08-01

    The detached white dwarf plus M-dwarf binary LL Eri exhibits truly unique behaviour within this class of compact binaries. As part of a COS snapshot survey, we detected large-amplitude variability in the ultraviolet flux of the white dwarf, confirmed by extensive ground-based blue-band photometry. The three independent frequencies detected in the light curves clearly identify this variability as non-radial pulsations of the white dwarf. However, with a hydrogen atmosphere and Teff=17200K, this white dwarf is nearly 5000K hotter than the canonical instability strip.The COS spectrum, albeit noisy, reveals that the metal lines typically detected in this class of stars, arising from material captured from the M-dwarf wind, are very broad. If interpreted as rotationally broadened, they imply a spin of only a few minutes. Such a short period could be explained by a past phase of intense accretion of mass and angular momentum. It has been postulated for over thirty years that classical nova eruptions on the white dwarf could cause such switching from a semi-detached to a detached binary configuration, during which the system hibernates - yet, to date no hibernating nova has been identified. However, the broad lines could also be due to pulsation-driven surface velocity fields, in which case the nature and past evolution of LL Eri would not be easily linked to any exisiting scenario for compact binary evolution. We propose to obtain a deeper COS observations to unambiguosly determine whether the cause of the observed line broadening is due to rapid rotation, which would unequivocally confirm the hibernation scenario.

  11. A transient radio jet in an erupting dwarf nova.

    PubMed

    Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom

    2008-06-06

    Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.

  12. Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions

    DOE PAGES

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; ...

    2016-10-25

    Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 10 8 K. During these events, about 10 -3-10 -7 M ⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metalsmore » spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. We performed three-dimensional simulations of mixing at the core-envelope interface during nova outbursts with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We also show that the presence of an ONe-rich substrate, as in “neon novae”, yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). Finally, a number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.« less

  13. Cataclysmic variables. Recent multi-frequency observations and theoretical developments; Proceedings of the 93rd IAU Colloquium, Bamberg, West Germany, June 16-19, 1986

    NASA Technical Reports Server (NTRS)

    Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)

    1987-01-01

    Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.

  14. On the Progenitor System of V392 Persei

    NASA Astrophysics Data System (ADS)

    Darnley, M. J.; Starrfield, S.

    2018-05-01

    A discussion regarding the progenitor system of the nova and dwarf nova system V392 Persei using archival data from 2MASS and WISE. We find that the system is unlikely to contain a luminous red giant donor (i.e. a symbiotic system), but cannot exclude the presence of a lower luminosity red giant or a sub-giant donor. The similarity of the SED of the quiescent V392 Per to that of GK Persei is noted.

  15. Optical Variability Analysis of UU Aqr - an Eclipsing Nova-like System

    NASA Astrophysics Data System (ADS)

    Khruzina, T.; Katysheva, N.; Golysheva, P.; Shugarov, S.

    2015-12-01

    By using our photometric observations of nova-like system UU Aqr with unstable light curve during a few nights, we plotted phase-folded light curves and calculated a model of the system. We show that the complicated character of light curves can be explained by the spiral arms in the disk. We decomposed the syntesis photometric curve into separated components as accretion disk, white and red dwarf, hot line.

  16. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints on the mass depletion mechanisms. Finally, detailed calculations of the thermonuclear history of the matter ejected in novae will be carried out for representative nova configurations involving both carbon-oxygen (CO) and oxygen-neon-magnesium (ONeMg) white dwarfs.

  17. Hydrodynamic studies of oxygen, neon, and magnesium novae

    NASA Technical Reports Server (NTRS)

    Starrfield, Sumner; Sparks, W. M.; Truran, J. W.

    1987-01-01

    Results are presented from recent theoretical studies that have examined the properties of nova outbursts on ONeMg white dwarfs. These outbursts are much more violent and occur much more frequently than outbursts on CO white dwarfs. Hydrodynamic simulations of both kinds of outbursts are in excellent agreement with the observations.

  18. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the model of radio emission where the red giant wind is photoionized by the white dwarf, and suggest that there may be a greater population of radio faint, accretion driven symbiotic systems.

  19. Follow-up spectroscopy and photometry of Dwarf Nova V392 Per

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Gilbert, H.; Hoffmann, S.

    2018-05-01

    On 2018 May 1th 20 UT (JD=2458240.333) we took spectroscopic data of the dwarf nova V392 Per (ATel #11588; ATel #11601; ATel #11605) with the echelle spectrograph FLECHAS (Mugrauer et al. 2014, AN 335, 417) at the 90cm telescope of the University Observatory Jena.

  20. Superhumps and Repetitive Rebrightenings of the WZ Sge-Type Dwarf Nova, EG Cancri

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Nogami, Daisaku; Matsumoto, Katsura; Baba, Hajime

    2004-03-01

    We report on time-resolved photometric observations of the WZ Sge-type dwarf nova, EG Cnc (Huruhata's variable), during its superoutburst in 1996-1997. EG Cnc, after the main superoutburst accompanied by the development of superhumps typical of a WZ Sge-type dwarf nova, exhibited a series of six major rebrightenings. During these rebrightenings and the following long fading tail, EG Cnc persistently showed superhumps having a period equal to the superhump period observed during the main superoutburst. The persistent superhumps had a constant superhump flux with respect to the rebrightening phase. These findings suggest that the superhumps observed during the rebrightening stage and the fading tail are a ``remnant'' of the usual superhumps, and are not newly triggered by rebrightenings. By a comparison with the 1977 outburst of this object and outbursts of other WZ Sge-type dwarf novae, we propose an activity sequence of WZ Sge-type superoutbursts, in which the current outburst of EG Cnc is placed between a single-rebrightening event and distinct outbursts separated by a dip. The post-superoutburst behavior of WZ Sge-type dwarf novae can be understood in the presence of a considerable amount of remnant matter behind the cooling front in the outer accretion disk, even after the main superoutburst. We consider that a premature quenching of the hot state due to the weak tidal effect under the extreme mass ratio of the WZ Sge-type binary is responsible for the origin of the remnant mass.

  1. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  2. Analysis of observations of the dwarf nova pegasi 2010

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Mitrofanova, A. A.; Borisov, N. V.; Gabdeev, M. M.

    2013-06-01

    Analysis of photometric and spectroscopic observations of GSC 02197-00886 at the outburst maximum (on May 8, 2010) and at the stage of relaxation towards the quiescent (on August 4, 2010) was performed. Radiation of an optically thick accretion disc with a hot boundary layer dominates the spectra, which are consistent with the spectra of a WZ Sge-type dwarf novae. In the relaxation phase, an optically thin accretion disc with radiation in the HI and HeI emission lines is observed against the background of the absorption spectrum of a white dwarf. The parameters of GSC 02197-00886, which were determined by combining the radial velocities of the components with the assumption that the secondary component is close to mainsequence stars, differ significantly from the parameters that characterize other WZ Sge-type systems. We hypothesize that the secondary component was excited in the course of the outburst and experienced long-lasting relaxation towards the main-sequence state.

  3. High-velocity winds from a dwarf nova during outburst

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  4. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  5. OAO/MITSuME photometry of dwarf novae. II. HV Virginis and OT J012059.6+325545

    NASA Astrophysics Data System (ADS)

    Imada, Akira; Isogai, Keisuke; raki, Takahiro; Tanada, Shunsuke; Yanagisawa, Kenshi; Kawai, Nobuyuki

    2018-01-01

    We report on multicolor photometry of WZ Sge-type dwarf novae HV Vir and OT J012059.6+325545 during superoutbursts. These systems show early superhumps with mean periods of 0.057093(45) d for HV Vir and 0.057147(15) d for OT J012059.6+325545. The observed early superhumps showed a common feature that the brightness minima corresponded to the bluest peaks in color variations, which may be a ubiquitous phenomenon among early superhumps of WZ Sge-type dwarf novae. We confirmed that the amplitudes of early superhumps depend on wavelength: amplitudes with longer bandpass filters show larger values. This indicates that the light source of early superhumps is generated at the outer region of the vertically extended accretion disk. On the other hand, amplitudes of ordinary superhumps are likely to be independent of wavelength. This implies that the superhump light source is geometrically thin. We also examined color variations of ordinary superhumps and found that the bluest peaks in g΄ - Ic tend to coincide with the brightness minima, particularily in stage B superhumps. This may reflect that the pressure effect plays a dominant role during stage B superhumps.

  6. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  7. On the origin of the peculiar cataclysmic variable AE Aquarii

    NASA Astrophysics Data System (ADS)

    Beskrovnaya, N. G.; Ikhsanov, N. R.

    2015-02-01

    The nova-like variable AE Aquarii is a close binary system containing a red dwarf and a magnetized white dwarf rotating with the period of 33 s. A short spin period of the white dwarf is caused by an intensive mass exchange between the system components during a previous epoch. We show that a high rate of disk accretion onto the white dwarf surface resulted in temporary screening of its magnetic field and spin-up of the white dwarf to its present spin period. Transition of the white dwarf to the ejector state occurred at a final stage of the spin-up epoch after its magnetic field had emerged from the accreted plasma due to diffusion. In the frame of this scenario AE Aqr represents a missing link in the chain of Polars evolution and the white dwarf resembles a recycled pulsar.

  8. Kepler Observations of V447 Lyr: an Eclipsing U Gem Cataclysmic Variable

    NASA Technical Reports Server (NTRS)

    Ramsay, Gavin; Cannizzo, John K.; Howell, Steve B.; Wood, Matt A.; Still, Martin; Barclay, Thomas; Smale, Alan

    2012-01-01

    We present the results of an analysis of Kepler data covering 1.5 yr of the dwarf nova V447 Lyr. We detect eclipses of the accretion disc by the mass donating secondary star every 3.74 h which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses.We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem-type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disc is larger during outburst than quiescence. This is consistent with an expansion of the outer disc radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.

  9. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS

    PubMed Central

    Godon, Patrick; Sion, Edward M.; Starrfield, Sumner; Livio, Mario; Williams, Robert E.; Woodward, Charles E.; Kuin, Paul; Page, Kim L.

    2018-01-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10−5 M⊙ to 3.3 × 10−4 M⊙, and assuming a mass accretion rate of 10−8−10−7 M⊙ yr−1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E(B − V) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E(B−V) ≤ 0.50) and white dwarf mass (0.70 M⊙ ≤ Mwd ≤ 1.35 M⊙) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening. PMID:29430290

  10. High-cadence Multi-color Observations of the Dwarf Nova KSP-OT-201503a by the KMTNet Supernova Program

    NASA Astrophysics Data System (ADS)

    Brown, Shannon; Moon, Dae-Sik; Ni, Yuan Qi; Drout, Maria; Antoniadis, John; Afsariardchi, Niloufar; Cha, Sang-Mok; Lee, Yongseok

    2018-06-01

    We report multicolor BVI monitoring and spectroscopic classification of the dwarf nova KSP-OT-201503a. The transient was detected by the Korean Microlensing Telescope Network (KMTNet) Supernova Program (KSP) in 2015 March, reached a peak apparent magnitude V ≃ 17.3 mag from a quiescent magnitude V ≃ 22.6 mag, and lasted for approximately 17 days. Our high-cadence sampling allows us to identify distinctive phases consisting of a rapid ascent, a main outburst composed of a flat plateau followed by a gradual dimming, and a quick decline. We observe the sharp transition between the ascent phase and main outburst phase, likely related to the deceleration of the heating front as it passes through the accretion disk. These features in the light curves indicate that the outburst is outside-in. Archival data reveal the outburst history of the source, showing at least three outbursts between 2011 and 2015. These are equally separated by approximately 25 months, though we find a recurrence time as short as 189 days is compatible with the archival data. An optical spectrum obtained 701 days from outburst peak shows prominent Balmer emission lines superimposed on a blue continuum, consistent with a cataclysmic variable in quiescence. The outburst properties of KSP-OT-201503a closely resemble those of U Gem-type dwarf novae usually associated with younger, longer-period systems above the period gap of 2–3 hr observed in cataclysmic variables. This suggests that the source may be a rare U Gem-type dwarf nova with a long recurrence time, though we are unable to rule out the possibility that KSP-OT-201503a lies below the period gap.

  11. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS.

    PubMed

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  12. The HEAO-A2 soft X-ray survey of cataclysmic variable stars - EX Hydrae during optical quiescence

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Riegler, G. R.

    1979-01-01

    Results are reported for HEAO A2 soft X-ray (below 2 keV) scanning observations of the southern dwarf nova EX Hya. An X-ray light curve is presented which shows no apparent orbital modulation. The best-fitting spectral parameters are derived for the source, and the observations are compared with the spectral behavior of the dwarf nova SS Cyg during optical quiescence. The results are discussed in terms of models for X-ray production by accreting white dwarfs.

  13. Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sparks, W. M.; Truran, J. W.

    1985-01-01

    The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.

  14. Polarimetry and spectroscopy of the "oxygen flaring" DQ Herculis-like nova: V5668 Sagittarii (2015)

    NASA Astrophysics Data System (ADS)

    Harvey, E. J.; Redman, M. P.; Darnley, M. J.; Williams, S. C.; Berdyugin, A.; Piirola, V. E.; Fitzgerald, K. P.; O'Connor, E. G. P.

    2018-03-01

    Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii. Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve's dust-dip. Methods: High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure. Results: Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm-3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called "nitrogen flaring" is more naturally explained as flaring of the O II multiplet (V1) from 4638-4696 Å, i.e. "oxygen flaring". Conclusions: V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova's evolving outflow. The high densities that were found early-on combined with knowledge of the system's behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual "cusps" are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.

  15. Impact of convection and resistivity on angular momentum transport in dwarf novae

    NASA Astrophysics Data System (ADS)

    Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.

    2018-01-01

    The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf. We verify that these X-rays cannot self-sustain MRI-driven turbulence by photo-ionizing the disk and discuss possible solutions to the issue of accretion in quiescence.

  16. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. IX. D-TYPE SYMBIOTIC NOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2013-06-10

    Time-series spectra of the near-infrared 1.6 {mu}m region have been obtained for five of the six known D-type symbiotic novae. The spectra map the pulsation kinematics of the Mira component in the Mira-white dwarf binary system and provide the center-of-mass velocity for the Mira. No orbital motion is detected in agreement with previous estimates of orbital periods {approx}>100 yr and semimajor axes {approx}50 AU. The 1-5 {mu}m spectra of the Miras show line weakening during dust obscuration events. This results from scattering and continuum emission by 1000 K dust. In the heavily obscured HM Sge system the 4.6 {mu}m COmore » spectrum formed in 1000 K gas is seen in emission against an optically thick dust continuum. Spectral features that are typically produced in either the cool molecular region or the expanding circumstellar region of late-type stars cannot be detected in the D-symbiotic novae. This is in accord with the colliding wind model for interaction between the white dwarf and Mira. Arguments are presented that the 1000 K gas and dust are not Mira circumstellar material but are in the wind interaction region of the colliding winds. CO is the first molecule detected in this region. We suggest that dust condensing in the intershock region is the origin of the dust obscuration. This model explains variations in the obscuration. Toward the highly obscured Mira in HM Sge the dust zone is estimated to be {approx}0.1 AU thick. The intershock wind interaction zone appears thinnest in the most active systems. Drawing on multiple arguments masses are estimated for the system components. The Miras in most D-symbiotic novae have descended from intermediate mass progenitors. The large amount of mass lost from the Mira combined with the massive white dwarf companion suggests that these systems are supernova candidates. However, timescales and the number of objects make these rare events.« less

  17. The orbital period of the dwarf nova AF Camelopardalis

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Howell, Steve B.

    1989-04-01

    Time-resolved optical spectroscopy of the dwarf nova AF Cam for 4.5 hr during a decline from outburst reveals that the orbital period is relatively long (5-6 hr). CCD photometry at quiescence also supports this finding. This rules out the previously observed 67-76 min modulations (evident in IR photometric measurements at quiescence and optical photometry at outburst) as orbital in nature.

  18. Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita; Ferri, Carlo; Sala, Glòria

    2009-05-01

    Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.

  19. Spectroscopic confirmation and photometry of the first reported nova in NGC 147

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Vinokurov, A.; Solovyeva, Yu.; Valeev, A. F.; Makarov, D. I.; Hornoch, K.; Kucakova, H.; Korotkiy, S.; Henze, M.; Shafter, A. W.

    2017-12-01

    We report optical spectroscopic confirmation of the recent nova TCP J00333837+4836022 in the Local Group dwarf spheroidal galaxy NGC 147. The nova was discovered 2017 Dec. 22.4056 UT by K. Itagaki (Yamagata, Japan).

  20. Chandra Discovers Eruption and Pulsation in Nova Outburst

    NASA Astrophysics Data System (ADS)

    2001-09-01

    NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6,000 light years, it could be seen with the naked eye for about a month, during which it was about 100,000 times brighter than our own Sun," said R. Mark Wagner of the University of Arizona. Nova Aquilae Chandra observed the nova, so-called because early astronomers believed they heralded the appearance of a new star, four times from April 2000 through October 2000. "Our first Chandra observations showed that the expanding gas around Nova Aquilae was hot and nearly opaque," said Joachim Krautter of the State Observatory in Heidelberg, Germany. "When we looked months later with Chandra, the expanding gases cleared enough for us to see through them to the underlying star on which the explosion occurred." The latter Chandra X-ray data revealed the cyclical changes in brightness are due to the white dwarf expanding and shrinking over a 40-minute period. They also showed that the temperature on the surface of the white dwarf was 300,000 degrees Celsius, making Nova Aquilae one of the hottest stars ever observed to undergo such pulsations. "The observations told us that thermonuclear fusion reactions were still occurring on the surface layers of the white dwarf - more than eight months after the explosion first began!" said Robert Gehrz of the University of Minnesota. Other members of the team are Howard Bond (Space Telescope Science Institute), Yousaf Butt (Harvard-Smithsonian Center for Astrophysics), Koji Mukai (Goddard Space Flight Center), Peter Hauschildt (University of Georgia), Margarida Hernanz (Institute for Space Studies, Catalonia, Spain), Marina Orio (University of Wisconsin and the Torino Observatory in Italy), and Charles Woodward (University of Minnesota). Chandra observed Nova Aquilae for a total of 10 hours with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). The HRC was built for NASA by the Smithsonian Astrophysical Observatory, Cambridge, MA. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  1. Infrared photometry of the dwarf nova V2051 Ophiuchi - I. The mass-donor star and the distance

    NASA Astrophysics Data System (ADS)

    Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago

    2018-04-01

    We report the analysis of time series of infrared JHKs photometry of the dwarf nova V2051 Oph in quiescence. We modelled the ellipsoidal variations caused by the distorted mass-donor star to infer its JHKs fluxes. From its infrared colours, we estimate a spectral type of M(8.0 ± 1.5) and an equivalent blackbody temperature of TBB = (2700 ± 270) K. We used the Barnes & Evans relation to infer a photometric parallax distance of dBE = (102 ± 16) pc to the binary. At this short distance, the corresponding accretion disc temperatures in outburst are too low to be explained by the disc-instability model for dwarf nova outbursts, underscoring a previous suggestion that the outbursts of this binary are powered by mass-transfer bursts.

  2. Investigating the Current State of V1535 Sco

    NASA Astrophysics Data System (ADS)

    Linford, Justin

    2017-09-01

    We request 25 ks of time on the ACIS instrument to image the nova system V1535 Sco in quiescence. The observations will reveal several details about the physics of the system. The presence of X-rays and variations in the light curve will prove the resumption of accretion onto the white dwarf. Absorption, especially in the soft X-rays, will probe the presence of a strong stellar wind from the companion star. The X-ray spectrum will place limits on the white dwarf mass.

  3. White Dwarfs in Cataclysmic Variables: An Update

    PubMed Central

    Sion, Edward M.; Godon, Patrick

    2018-01-01

    In this review, we summarize what is currently known about the surface temperatures of accreting white dwarfs in non-magnetic and magnetic cataclysmic variables (CVs) based upon synthetic spectral analyses of far ultraviolet data. We focus only on white dwarf surface temperatures, since in the area of chemical abundances, rotation rates, WD masses and accretion rates, relatively little has changed since our last review, pending the results of a large HST GO program involving 48 CVs of different CV types. The surface temperature of the white dwarf in SS Cygni is re-examined in the light of its revised distance. We also discuss new HST spectra of the recurrent nova T Pyxidis as it transitioned into quiescence following its April 2011 nova outburst. PMID:29505036

  4. One Thousand New Dwarf Novae from the OGLE Survey

    NASA Astrophysics Data System (ADS)

    Mróz, P.; Udalski, A.; Poleski, R.; Pietrukowicz, P.; Szymański, M. K.; Soszyński, I.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Skowron, J.

    2015-12-01

    We present one of the largest collections of dwarf novae (DNe) containing 1091 objects that have been discovered in the long-term photometric data from the Optical Gravitational Lensing Experiment (OGLE) survey. They were found in the OGLE fields toward the Galactic bulge and the Magellanic Clouds. We analyze basic photometric properties of all systems and tentatively find a population of DNe from the Galactic bulge. We identify several dozen of WZ Sge-type DN candidates, including two with superhump periods longer than 0.09 d. Other interesting objects include SU UMa-type stars with "early" precursor outbursts or a Z Cam-type star showing outbursts during standstills. We also provide a list of DNe which will be observed during the K2 Campaign 9 microlensing experiment in 2016. Finally, we present the new OGLE-IV real-time data analysis system: CVOM, which has been designed to provide continuous real time photometric monitoring of selected CVs.

  5. Unusual ``Stunted'' Outbursts in Old Novae and Nova-Like Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Honeycutt, R. K.; Robertson, J. W.; Turner, G. W.

    1998-06-01

    Outbursts averaging 0.6 mag in amplitude and 10 days in width are described in five old novae and nova-like cataclysmic variables: UU Aqr, Q Cyg, CP Lac, X Ser, and RW Sex. These stars are thought to be high mass transfer rate systems for which the accretion disk is expected to be stable against the thermal instability responsible for dwarf nova outbursts. The widths and spacings of these events are similar to those of dwarf nova eruptions, but the amplitudes are significantly smaller, or ``stunted.'' The outbursts are sometimes accompanied by dips. These dips have amplitudes that are similar to the outbursts' but have shapes that scatter significantly more than the shapes of the outbursts. The outbursts and dips sometimes occur as pairs and are sometimes isolated. We are not able at this time to determine a single common mechanism for this behavior, or even to conclude that some mechanisms are preferred. Rather, we characterize these phenomena with regard to outburst shapes and frequency of occurrence and explore a range of possible causes, including truncated disks, mass transfer modulations, and Z Camelopardalis type behavior. Arguments are assembled for and against such possible mechanisms, and key observations are suggested. It appears unlikely that accretion disk instabilities are the single common cause of these phenomena, and we are left with either a combination of accretion disk and mass transfer events or a situation in which mass transfer events are somehow responsible for all these varied behaviors.

  6. EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.

    2015-05-20

    Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less

  7. X ray and gamma ray emission from classical nova outbursts

    NASA Technical Reports Server (NTRS)

    Truran, James W.; Starrfield, Sumner; Sparks, Warren M.

    1992-01-01

    The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.

    We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for 'Fast Transients In Nearest Galaxies' (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburstmore » environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.« less

  9. Firework Nova

    NASA Image and Video Library

    2017-12-08

    Nova Stars are essentially giant fusion reactions occurring in the vacuum of space. Because stars have so much mass, they possess powerful gravitational force—but they don’t collapse because of the outward force generated by nuclear fusion, continually converting hydrogen atoms to helium. Sometimes stars begin orbiting each other, forming a binary star system. Typically this involves a white dwarf star and a red giant. Orbiting the red giant like a moon, the dwarf star rips matter from its companion until it essentially gags on the excess, coughing hot gas and radiation into space. This dramatic phenomenon is relatively common, and the white dwarf is not destroyed in the resulting nova. To learn more about x-ray emissions, read about NASA’s Chandra mission: www.nasa.gov/mission_pages/chandra/main/ --- Original caption: In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star. Read Full Article: www.nasa.gov/mission_pages/chandra/mini-supernova-explosi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Orbital Period Changes in WZ Sagittae

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Stone, Geoffrey; Kemp, Jonathan; Skillman, David R.; de Miguel, Enrique; Potter, Michael; Starkey, Donn; Uthas, Helena; Jones, Jim; Slauson, Douglas; Koff, Robert; Myers, Gordon; Menzies, Kenneth; Campbell, Tut; Roberts, George; Foote, Jerry; Vanmunster, Tonny; Cook, Lewis M.; Krajci, Thomas; Ogmen, Yenal; Sabo, Richard; Seargeant, Jim

    2018-06-01

    We report a long-term (1961–2017) study of the eclipse times in the dwarf nova WZ Sagittae, in an effort to learn its rate of orbital-period change. Some wiggles with a timescale of 20–50 years are apparent, and a connection with the ∼23 year interval between dwarf-nova eruptions is possible. These back-and-forth wiggles dominate the O–C diagram, and prevent a secure measurement of the steady rate of orbital-period change.

  11. Detecting Nova Shells around known Cataclysmic Variable systems

    NASA Astrophysics Data System (ADS)

    Xhakaj, Enia; Kupfer, Thomas; Prince, Thomas A.

    2017-01-01

    Nova shells are hydrogen-rich nebulae around Cataclysmic Variables that are created when a Nova outburst takes place. Learning more about Nova shells can help us get a better understanding of the long-term evolution of white dwarfs in active Cataclysmic Variables. In this project, we present the search for Nova shells around 1700 Cataclysmic Variables, using Hα images from the Palomar Transient Factory (PTF) survey. The PTF Hα survey started in 2009 using the 48’’ Oschin telescope at Palomar Observatory and is the first of its type covering the whole northern hemisphere while reaching 18 mags in 60 seconds of exposure. We concentrated our search on the IAU catalogue of Historical Novae, as well as on the SDSS and the Ritter-Kolb catalogue of Cataclysmic Variables. We numerically analyzed radial profiles centered on the target sources to search for excess emission potentially associated with the shells. Out of 1700 Cataclysmic Variables present in these catalogues, we detected 25 Nova shells, out of which 20 are not observed before.

  12. NuSTAR and Swift Observations of the Dwarf Nova Z Camelpardalis in a Standstill

    NASA Astrophysics Data System (ADS)

    Mukai, Koji; Sokoloski, Jennifer; Nelson, Thomas; Luna, Gerardo Juan Manuel; Ringwald, Frederick

    2018-01-01

    Dwarf nova outbursts are dramatic increases in the optical/UV emission from the accretion disks surrounding non-magnetic, or weakly magnetic, white dwarfs, and they are believed to be caused by disk instabilities. During the optical outburst, the optically thin X-rays originating from the boundary layer between the disk and the white dwarf are known to become fainter and softer. However, during an outburst, neither the disk nor the boundary layer has the time to settle into a steady state, exhibiting clear hysteresis effects instead. The Z Cam-type dwarf novae exhibit a rare, third state called standstill, lasting several months to several years, at an optical brightness roughly one magnitude below outburst peak. A standstill is therefore an ideal opportunity to study a high-state disk while minimizing the hysteresis effects. Here we report our NuSTAR and Swift observations of the prototype, Z Cam, in late September, 2017, roughly 6 months into its most recent standstill episode. To the best of our knowledge, this is the first pointed X-ray observation of a Z Cam-type object in a standstill, and our preliminary analysis suggests Z Cam in standstill has X-ray properties broadly similar to those seen during past outbursts. We will describe these results and discuss implications for the disk physics.

  13. A UNIVERSAL DECLINE LAW OF CLASSICAL NOVAE. IV. V838 HER (1991): A VERY MASSIVE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Hachisu, Izumi; Cassatella, Angelo, E-mail: mariko@educ.cc.keio.ac.j, E-mail: hachisu@ea.c.u-tokyo.ac.j, E-mail: cassatella@fis.uniroma3.i

    2009-10-20

    We present a unified model of optical and ultraviolet (UV) light curves for one of the fastest classical novae, V838 Herculis (Nova Herculis 1991), and estimate its white dwarf (WD) mass. Based on an optically thick wind theory of nova outbursts, we model the optical light curves with free-free emission and the UV 1455 A light curves with blackbody emission. Our models of 1.35 +- 0.02 M {sub sun} WD simultaneously reproduce the optical and UV 1455 A observations. The mass lost by the wind is DELTAM {sub wind} approx 2 x 10{sup -6} M {sub sun}. We provide newmore » determinations of the reddening, E(B - V) = 0.53 +- 0.05, and of the distance, 2.7 +- 0.5 kpc.« less

  14. Discovery of a New Photometric Sub-class of Faint and Fast Classical Novae

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R.; Rau, A.

    2011-07-01

    We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60 inch telescope during a search for "Fast Transients In Nearest Galaxies" (P60-FasTING). Designed as a fast cadence (1 day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M 31, 6 in M 81, 3 in M 82, 1 in NGC 2403, and 1 in NGC 891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical maximum-magnitude-rate-of-decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps the MMRD, which is characterized only by the white dwarf mass, was an oversimplification. Nova physics appears to be characterized by a relatively rich four-dimensional parameter space in white dwarf mass, temperature, composition, and accretion rate.

  15. Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable

    NASA Astrophysics Data System (ADS)

    Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.

    2018-04-01

    The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.

  16. New Southern Cataclysmic Variables: Discoveries from MASTER-SAAO

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Potter, S. B.; Kniazev, A.; Lipunov, V.; Gorbovskoy, E.; Tiurina, N.

    2017-03-01

    In this paper we report on new cataclysmic variables (CVs) discovered by the first local optical transient detection system established at the SAAO Sutherland station, namely MASTER-SAAO. The characteristics of the MASTER-SAAO system are described and the parameters of the survey compared to the Catalina Real Time Survey (CRTS). To date MASTER-SAAO has discovered over 200 (non-Solar System) optical transients with about 75% of these being likely new CVs, most being dwarf novae (DNe). Approximately 50% of the DNe have outburst amplitudes in excess of 4 magnitudes, with some extreme amplitude (> 7 mag), probable WZ Sge systems. The MASTER-SAAO detection limit of B = 19-20 is comparable to the ˜20 magnitude limit of the CRTS (depending on CV colour). Based on the CV detection statistics of CRTS, we believe that MASTER-SAAO is detecting essentially the same CV population as CRTS, for a detection outburst amplitude threshold >2.2 magnitudes. We also present results of the initial follow-up program on CVs discovered by MASTER, including dwarf novae, a bright new VY Scl system and a new eclipsing polar.

  17. A White Dwarf at the Limit: V838 Herculis 25 Years After Its Nova Outburst

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter; Kennedy, Mark; Littlefield, Colin; Szkody, Paula; Mukadam, Anjum

    2018-01-01

    We present time-resolved photometry and spectroscopy of V838 Her (aka Nova Herculis 1991) a quarter of a century after its unique nova outburst. No new optical observations of the star have been published since the early 1990s. Here, we confirm the presence of deep primary eclipses with a period of 7.14 hours and we detect clear secondary minima. Night-to-night changes of 30% in the system brightness suggests the mass transfer rate is not stable. Spectroscopy reveals absorption features from the secondary star consistent with a K4±1.5 spectral type. From the velocity amplitudes we directly measure the mass ratio of the binary to be q=0.73±0.04. Assuming the secondary is filling its Roche lobe, we estimate the white dwarf mass to be 1.38±0.13 M⊙, consistent with the indirect mass indicators such as the early light curve decay rate and metal abundance in the nebular phase. The mass of the secondary star is also quite high at 1.01±0.06 M⊙. We estimate that the luminosity of the nova peaked at MV = –9.1±0.4 mag, and that its current luminosity is MV = 6.5±0.4 mag.

  18. Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions.

    PubMed

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; Shore, Steven N; Calder, Alan C

    2011-10-19

    Classical novae are thermonuclear explosions in binary stellar systems containing a white dwarf accreting material from a close companion star. They repeatedly eject 10(-4)-10(-5) solar masses of nucleosynthetically enriched gas into the interstellar medium, recurring on intervals of decades to tens of millennia. They are probably the main sources of Galactic (15)N, (17)O and (13)C. The origin of the large enhancements and inhomogeneous distribution of these species observed in high-resolution spectra of ejected nova shells has, however, remained unexplained for almost half a century. Several mechanisms, including mixing by diffusion, shear or resonant gravity waves, have been proposed in the framework of one-dimensional or two-dimensional simulations, but none has hitherto proven successful because convective mixing can only be modelled accurately in three dimensions. Here we report the results of a three-dimensional nuclear-hydrodynamic simulation of mixing at the core-envelope interface during nova outbursts. We show that buoyant fingering drives vortices from the Kelvin-Helmholtz instability, which inevitably enriches the accreted envelope with material from the outer white-dwarf core. Such mixing also naturally produces large-scale chemical inhomogeneities. Both the metallicity enhancement and the intrinsic dispersions in the abundances are consistent with the observed values.

  19. The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Mikołajewska, Joanna; Shara, Michael M.

    2017-10-01

    If accreting white dwarfs (WDs) in binary systems are to produce type Ia supernovae (SNe Ia), they must grow to nearly the Chandrasekhar mass and ignite carbon burning. Proving conclusively that a WD has grown substantially since its birth is a challenging task. Slow accretion of hydrogen inevitably leads to the erosion, rather than the growth of WDs. Rapid hydrogen accretion does lead to growth of a helium layer, due to both decreased degeneracy and the inhibition of mixing of the accreted hydrogen with the underlying WD. However, until recently, simulations of helium-accreting WDs all claimed to show the explosive ejection of a helium envelope once it exceeded ˜ {10}-1 {M}⊙ . Because CO WDs cannot be born with masses in excess of ˜ 1.1 {M}⊙ , any such object in excess of ˜ 1.2 {M}⊙ must have grown substantially. We demonstrate that the WD in the symbiotic nova RS Oph is in the mass range 1.2-1.4 M ⊙. We compare UV spectra of RS Oph with those of novae with ONe WDs and with novae erupting on CO WDs. The RS Oph WD is clearly made of CO, demonstrating that it has grown substantially since birth. It is a prime candidate to eventually produce an SN Ia.

  20. Cecilia Payne-Gaposchkin, Henry Norris Russell Lecture: Fifty Years of Novae

    NASA Astrophysics Data System (ADS)

    Burbidge, E. M.

    1999-05-01

    It is easy to pick out my most memorable meeting of the AAS: the 149th meeting held in January, 1977, and hosted by the University of Hawaii, in Honolulu, HI. It was the meeting at which two traditions of the Society were broken, and we moved into the era of equal opportunity for women astronomers. Cecilia Payne-Gaposchkin received the highest award of the AAS: the Henry Norris Russell Lectureship. This award had never before been available to women, otherwise Cecilia would, years earlier, have been honored for the many achievements in her lifetime of renowned astronomical research. And I, the first woman to be elected President of the AAS, had the honor of presenting the illuminated scroll to Cecilia, and of introducing her on the platform where she delivered the Henry Norris Russell Prize Lecture, entitled ``Fifty Years of Novae"(1) . Cecilia opened by comparing the experience of young and old scientists in achieving exciting results from their research, and then led us through the history of the discoveries of and about some famous novae. She described the physical picture that emerged from studies of their light curves, their spectra, and the discovery of their binary nature. Three important tables were included, listing data on cataclysmic binaries (dwarf novae) and their link to the nova phenomenon in general. She recalled that she and Sergei Gaposchkin had hesitated between the names catastrophic and cataclysmic for the dwarf novae, and decided on the latter, from the dictionary definitions of those two terms: ``a cataclysm is a great and general flood" while a catastrophe ``is a final event". The nova phenomenon is recurrent, as are the dwarf novae, and both involve an outpouring of a flood of energy. She concluded by describing her 50 years' experience with novae as presenting ``the contemporary portrait of a nova", rather than a final picture, and by forecasting that the next 50 years of discovering and studying novae will be as full of surprises as the last. (1) Cecilia H. Payne-Gaposchkin, 1977, AJ, 82, 665.

  1. Local Thermonuclear Runaways in Dwarf Novae?

    NASA Astrophysics Data System (ADS)

    Shara, Michael

    2012-10-01

    We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.

  2. Multiwavelength monitoring of the dwarf nova VW Hydri. IV - Voyager observations

    NASA Technical Reports Server (NTRS)

    Polidan, R. S.; Holberg, J. B.

    1987-01-01

    Results from Voyager far-ultraviolet (500-1200 A) observations of the dwarf nova VW Hyi are presented as part of a coordinated, multiwavelength program. Data from one normal outburst and one superoutburst are discussed in detail. Far-ultraviolet (1050 A) light curves are produced showing a significant delay (0.5 day) in the rise to maximum at 1050 A with respect to optical wavelength, followed by a simultaneous decline. The superoutburst data show a distinct double-peaked light curve with the first rise and decline closely resembling that of a normal outburst. These data suggest that the rise to supermaximum in the far-ultraviolet is also delayed with respect to optical wavelengths. The spectral distribution of VW Hyi shows the steeply falling spectrum shortward of 1200 A, characteristic of dwarf novae in outburst and absorption features at 985 (N III, C III and Ly gamma) and 1030 (Ly beta and O VI). No flux shortward of 912 A was detected in VW Hyi.

  3. Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda

    2018-06-01

    Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.

  4. 3D Hydrodynamic Simulation of Classical Novae Explosions

    NASA Astrophysics Data System (ADS)

    Kendrick, Coleman J.

    2015-01-01

    This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.

  5. Testing Cataclysmic Variable Evolution Models with Light Curves of >10,000 Magnitudes Over >100 years and Fully-Corrected to Johnson B & V

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2014-06-01

    A combination of magnitudes from the Harvard and Sonneberg plates stacks and the AAVSO data base can create very well-sampled light curves with >10,000 magnitudes and covering all of 1890-2014 for roughly a hundred cataclysmic variables (CVs; novae, novalikes, and dwarf novae). Care must be taken to get all these magnitudes into a modern magnitude system. For the archival plates, these are all close to the B magnitude system so that color terms are small, hence, with the use of modern B magnitudes for the comparison stars, these magnitudes can all be placed onto the Johnson B system. For the archival visual observations, the original comparison sequences can always be found, and the magnitudes for the CV and comparisons must be converted from visual to V, so that the reported magnitudes can be fully corrected to Johnson V. The uncertainties from the plates and the visual magnitudes can always be beaten down by daily or yearly averaging to typical real total error bars of ±0.03 mag, and these are always much smaller than the sampling error arising from flickering and greatly smaller than the range of variations. These very-well-sampled >100 year Johnson B & V light curves can be used to test long term evolution models for CVs. With colleagues, I have made light curves for old novae (GK Per from 1890-2014 with 47,000 mags, V603 Aql from 1898-2014 using 22,722 mags, Q Cyg from 1876-2014 with 6400 mags, T CrB from 1855-2014 using 104,000 mags), Z Cam stars (Z Cam from 1923-2014 with 90,000 mags), and dwarf novae (SS Cyg from 1896-2014 with 403,800 mags). The relative accretion rate is given by both the average flux and by the inverse of the average peak-to-peak time for the dwarf novae. By this means, I have measured the changes in the accretion rate for many CVs and how they change on a yearly basis for a century and longer. These observations are directly compared to various CV evolution models. A complex set of agreements and disagreements is found.

  6. Monitoring of RU Peg requested for Swift observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that there is a ~12.5-magnitude star 11" NE of RU Peg.

  7. Recent developments on SU UMa stars - theory vs. observation

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.

    2015-01-01

    Kepler light curves of short period dwarf novae have resparked interest in the nature of superoutbursts and led to the question: Is the thermal-tidal instability needed, or can the plain vanilla version of the accretion disk limit cycle do the job all by itself? A detailed time-resolved study of an eclipsing SU UMa system during superoutburst onset should settle the question - if there is a dramatic contraction of the disk at superoutburst onset, Osaki's thermal-tidal model would be preferred; if not, the plain disk instability model would be sufficient. I will present recent results that support the contention by Osaki & Kato that the time varying negative superhump frequencies can be taken as a surrogate for the outer disk radius variations. Finally, it may be necessaryto look beyond the short period dwarf novae to gain perspective on the nature of embedded precursors in long outbursts.

  8. X-ray Modeling of Classical Novae

    NASA Astrophysics Data System (ADS)

    Nemeth, Peter

    2010-01-01

    It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).

  9. Orbital period determination in an eclipsing dwarf nova HT Cas

    NASA Astrophysics Data System (ADS)

    Bąkowska, Karolina; Olech, Arkadiusz

    2014-09-01

    HT Cassiopeiae was discovered over seventy years ago (Hoffmeister 1943). Unfortunately, for 35 years this object did not receive any attention, until the eclipses of HT Cas were observed by Bond. After a first analysis, Patterson (1981) called HT Cas "a Rosetta stone among dwarf novae". Since then, the literature on this star is still growing, reaching several dozens of publications. We present an orbital period determination of HT Cas during the November 2010 super-outburst, but also during a longer time span, to check its stability.

  10. The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra

    NASA Astrophysics Data System (ADS)

    Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.

    2017-05-01

    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  11. Recurrent novae

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi

    1993-01-01

    Recurrent novae seem to be a rather inhomogeneous group: T CrB is a binary with a M III companion; U Sco probably has a late dwarf as companion. Three are fast novae; two are slow novae. Some of them appear to have normal chemical composition; others may present He and CNO excess. Some present a mass-loss that is lower by two orders of magnitude than classical novae. However, our sample is too small for saying whether there are several classes of recurrent novae, which may be related to the various classes of classical novae, or whether the low mass-loss is a general property of the class or just a peculiarity of one member of the larger class of classical novae and recurrent novae.

  12. Disk-Anchored Magnetic Propellers - A Cure for the SW Sex Syndrome

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly-spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad, single-peaked, flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad, single-peaked, phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars - and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than, or in addition to, the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas-stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local, dissipationless angular-momentum-extraction mechanism, which should result in cool inner disks with temperature profiles flatter than T propto R^{-3/4}, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.

  13. The disappearance and reformation of the accretion disc during a low state of FO Aquarii

    NASA Astrophysics Data System (ADS)

    Hameury, J.-M.; Lasota, J.-P.

    2017-09-01

    Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.

  14. The population of single and binary white dwarfs of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  15. BK Lyncis: the oldest old nova and a Bellwether for cataclysmic variable evolution

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Uthas, Helena; Kemp, Jonathan; de Miguel, Enrique; Krajci, Thomas; Foote, Jerry; Hambsch, Franz-Josef; Campbell, Tut; Roberts, George; Cejudo, David; Dvorak, Shawn; Vanmunster, Tonny; Koff, Robert; Skillman, David; Harvey, David; Martin, Brian; Rock, John; Boyd, David; Oksanen, Arto; Morelle, Etienne; Ulowetz, Joseph; Kroes, Anthony; Sabo, Richard; Jensen, Lasse

    2013-09-01

    We summarize the results of a 20-yr campaign to study the light curves of BK Lyn, a nova-like star strangely located below the 2 to 3 h orbital-period gap in the family of cataclysmic variables (CVs). Two apparent superhumps dominate the nightly light curves, with periods 4.6 per cent longer, and 3.0 per cent shorter, than the orbital period. The first appears to be associated with the star's brighter states (V ˜ 14), while the second appears to be present throughout and becomes very dominant in the low state (V ˜ 15.7). It is plausible that these arise, respectively, from a prograde apsidal precession and a retrograde nodal precession of the star's accretion disc. Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. No such clear transition has ever been observed in a CV before. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 101 December 30, and (b) it has been fading ever since, but it has taken ˜2000 yr for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behaviour is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period nova-likes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they are just getting started in their post-nova cooling). Four: why the orbital periods, accretion rates and white dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced post-nova brightness boosts the mean mass-transfer rate). And maybe even five: why very old, post-period-bounce CVs are hard to find (because the higher mass-loss rates have `burned them out'). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides orbital period, is time since the last classical-nova eruption.

  16. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less

  17. Accretion onto Carbon-Oxygen White Dwarfs as a possible mechanism for growth to the Chandrasekhar Limit

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-08-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material. We use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only Solar matter, which show that sufficient core material is dredged-up by the TNR and then ejected by the explosion to agree with the observations of the ejecta abundances. We have also found that the initial 12C abundance is inversely proportional to the amount of material accreted prior to the TNR. Therefore, we first accrete Solar material and follow the evolution until a TNR occurs. Because the 12C abundance is significantly smaller then if we had initially mixed the accreting gas with the carbon-oxygen core, more matter takes part in the explosion than if we had begun the evolution with the mixed composition. We then instantaneously switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Josè and Hernanz). We find that there are some white dwarf masses where significantly less mass is ejected than accreted during the Classical Nova event and, therefore, the white dwarf is growing in mass as a result of the accretion and in spite of the resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  18. Highlights of Odessa Branch of AN in 2017

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    2017-12-01

    An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.

  19. The spectroscopic evolution of novae in the bulge of M31 and a search for their possible origin in the M31 globular cluster system

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin Bede

    Results are presented from a three year (1987 to 1989) spectroscopic and photometric survey of novae in M3l's bulge, the first comprehensive study of novae outside the Galactic and Magellanic Cloud systems. Nine novae were detected and monitored and their spectra cover a range of outburst states from early decline to the early nebular phases. Broad agreement in spectral morphology and evolution is found with Galactic novae. Since Galactic novae are mainly disk objects, this indicates that novae outburst properties are not critically dependent on the metallicity of the progenitor population. However, in this sample, and in a sample of four M31 nova spectra taken in 1983, no fast, violent outbursts frequently associated with nova systems containing ONeMg white dwarfs were found, suggestive of a systematic difference between the observed proportion of such outbursts between Galactic and M31 bulge novae. Three novae in the sample were observed on succeeding nights during the transition phase of their evolution. Extraordinary variations in some nightly line strengths, particularly the N III lines, were discovered. It is argued that this variability reflects the deposition of drag energy by the secondary star during the common envelope phase of nova evolution and is indicative of a key phase in mass loss from nova systems. Observations include the spectroscopic coverage of an extremely slow nova from 1987 to l990, during the object's evolution in the nebula phase. This provided a unique opportunity to make the first detailed comparison of the evolution and properties of an extra galactic nova with those in our own Galaxy. The roughly solar abundances obtained are typical of similar slow Galactic novae. Further observations are also presented of a unique outburst in 1988 that was independently discovered and reported by Rich et al. These data confirm the inferences of other observers that the outburst differed markedly from that of a typical classical nova. Finally an extensive spectroscopic survey of the M31 globular cluster system was made in an effort to find evidence of a previously suggested enhanced nova rate in these objects. No outbursts were detected during an effective survey time of one year for the entire system.

  20. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  1. The Expanding Bipolar Shell of the Helium Nova V445 Puppis

    NASA Astrophysics Data System (ADS)

    Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-11-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  2. Oscillations of Accretion Disks in Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Osaki, Y.

    2013-12-01

    The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.

  3. Spectroscopic and Photometric Behaviour of Nova Cygni 1992 IN the First Nine Months Following Outburst

    NASA Astrophysics Data System (ADS)

    Chochol, D.; Hric, L.; Urban, Z.; Komzik, R.; Grygar, J.; Papousek, J.

    1993-09-01

    We present the results of UBV photometry and high dispersion 360-500 nm spectroscopy of Nova Cygni 1992 (= V 1974 Cyg), obtained between February 25 and November 9, 1992. Our data cover the early decline, transition and nebular stages of the evolution of the nova. We discuss the photometric and spectroscopic behaviour of the star during the first nine months after outburst and briefly compare our findings with the data already published by other authors. We have classified the nova as a fast one with t2,V = 16 d, t2,B = 23 d, and t3,V = 42 d, t3,B = 51 d. We have derived the absolute magnitudes of the nova at maximum to be M0,V = -7.67 and M0,B = -7.49. The latter value yields a mass of 0.83 Msun for the white dwarf component. The values of the distance modulus 12.23 and the colour excess EB-V = +0.32 correspond to a distance r = 1.77 kpc. We have found a period of 0.814 days by period analysis of photoelectric V data obtained before the nova declined 3m. During the nebular stage, forbidden lines of highly ionized neon were prominent, confirming the 0-Ne-Mg classification of the nova. The outburst of Nova Cygni 1992 was apparently caused by a super-Eddington thermonuclear runaway on the surface of an evolutionarily eroded O-Ne-Mg white dwarf.

  4. A Far Ultraviolet Spectroscopic Explorer Survey of High-Declination Dwarf Novae

    DTIC Science & Technology

    2009-08-20

    and the occurrence of standstills. It was clas- sified as a Z Camelopardalis system by Notni & Richter (1984). Optical spectra were later obtained by...reddening in the direction of the constellation of Perseus is quite large. To estimate the reddening of FO Per, we note (Table 3) that TZ Per has a

  5. Simultaneous IUE and Ground Based Observations of SS Cygni and HL Canis Majoris

    NASA Astrophysics Data System (ADS)

    Mansperger, C. S.; Kaitchuck, R. H.; Garnavich, P.; Dinshaw, N.

    1993-05-01

    SS Cyg and HL CMa were observed by IUE for three consecutive nights in November of 1992. During the first two nights, simultaneous photometric ground based observations of SS Cyg were made at the Ball State University Observatory. SS Cyg and HL CMa were observed simultaneously with the 90-inch telescope at the Steward Observatory on the last two nights of this run. These spectroscopic observations covered the wavelength range of 4100 Angstroms to 5000 Angstroms, while the spectra taken with the short wavelength camera on IUE resulted in wavelength coverage from 1150 Angstroms to 1980 Angstroms. SS Cyg is a U Gem type dwarf nova with an orbital period of 6.6 hours. Good simultaneous UV and optical orbital coverage was obtained for this system. HL CMa is a Z Cam type dwarf nova with an outburst period of 18 days. The AAVSO reports that this system was in outburst 4 days after the observing run. Therefore, HL CMa may have been in a preoutburst state during these observations. The C IV and H \\beta emission lines appeared to have weakened during this time.

  6. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  7. On the decay of outbursts in dwarf novae nad X-ray novae

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.

    1994-01-01

    We perform computations using a time-dependent model for the accretion disk limit-cycle mechanism to examine the decay of the optical light following the peak of a dwarf nova outburst. We present the results of a parameter study of the physical input variables which affect the decay rate. In the model, the decay is brought about by a cooling transition front which begins at large radii in the disk and moves inward. The nature of the decay is strongly influenced by the radial dependence of the accretion disk viscosity parameter alpha. To obtain exponential decays for typical dwarf nova parameters, we require alpha proportional to r(exp epsilon(sub 0)), where epsilon(sub 0) approximately = 0.3-0.4. The exact value of epsilon(sub 0) which produces exponential decays depends on factors such as the mass of the accreting star and the inner radius of the accretion disk. Therefore, the observed ubiquity of exponential decays in two different types of systems (dwarf novae and X-ray novae) leads us to believe that alpha is an unnatural scaling for the viscosity. The physics of the cooling transition front must be self-regulating in that the timescale (-parital derivative of lnSigma(r)/partial derivative +)(exp -1) (where Sigma is the surface density) for mass extraction across the front remains constant. This may be consistent with a scaling alpha proportional to (h/r)(exp n), where h is the local disk semi-thickness and n approximately 1-2. As regards the speed of the cooling front, we find v(sub F)(r) proportional to r(exp p), where p approximately 3 at large radii, with an abrupt transition to p approximately 0 at some smaller radius. The r(exp 3) dependence is much steeper than has been found by previous workers and appears to result from the strong variation of specific heat within the cooling front when the front resides at a large radius in the disk. The outflow of disk material across the cooling front causes a significant departure of dln T(sub dff0/dln r from the standard value of -0.75 (expected from steady state accretion) within about 0.2 dex in radius of the break associated with the cooling front -- T(sub eff) aproximately 10(exp 3.9) K (r/10(exp 10 cm)) (exp -0.1). These effects should be observable with eclipse mapping. Finally, it appears that the relatively slow decay rate for the optical flux in the 1975 outburst of A0620-00 can be accounted for if the primary is a approximately 10 Solar mass black hole.

  8. The SW Sextantis-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    NASA Astrophysics Data System (ADS)

    Khruzina, T.; Dimitrov, D.; Kjurkchieva, D.

    2013-03-01

    Context. Cataclysmic variables (CVs) present a short evolutional stage of binary systems. The nova-like stars are rare objects, especially those with eclipses (only several tens). But precisely these allow to determine the global parameters of their configurations and to learn more about the late stage of stellar evolution. Aims: The light curve solution allows one to determine the global parameters of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188 and to estimate the contribution of the different light sources. Methods: We present new photometric and spectral observations of 2MASS J01074282+4845188. To obtain a light curve solution we used a model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. The obtained global parameters are compared with those of the eclipsing nova-like UX UMa. Results: 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. Conclusions: The high mass accretion rate Ṁ = 8 × 10-9 M⊙ yr-1, the broad and single-peaked Hα emission profile, and the presence of an S-wave are sure signs for the SW Sex classification of 2MASS J01074282+4845188. The obtained flat temperature distribution along the disk radius as well as the deviation of the energy distribution from the black-body law are evidence of the non-steady emission of the disk. It can be attributed to the low viscosity of the disk matter due to its unusual high temperature. The close values of the disk temperature and the parameter αg of 2MASS J01074282+4845188 and those of the cataclysmic stars at eruptions might be considered as an additional argument for the permanent active state of nova-like stars. Based on data collected with telescopes at Rozhen National Astronomical Observatory.

  9. The 2011 Outburst of Recurrent Nova T Pyx: X-Ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam; hide

    2014-01-01

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  10. The 2011 outburst of recurrent nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji

    2014-06-20

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (∼45 eV) and implies that the white dwarf in T Pyx is significantly below themore » Chandrasekhar mass (∼1 M {sub ☉}). The late turn-on time of the super-soft component yields a large nova ejecta mass (≳ 10{sup –5} M {sub ☉}), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ∼1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.« less

  11. Optical Studies of 20 Longer-Period Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Thorstensen, John R.; Peters, Christopher S.; Skinner, Julie N.

    2010-11-01

    We obtained time-series radial-velocity spectroscopy of 20 cataclysmic variable stars, with the aim of determining orbital periods Porb. All of the stars reported here prove to have Porb > 3.5 h. For 16 of the stars, these are the first available period determinations, and for the remaining four (V709 Cas, AF Cam, V1062 Tau, and RX J2133 + 51), we use new observations to improve the accuracy of previously published periods. Most of the targets are dwarf novae, without notable idiosyncrasies. Of the remainder, three (V709 Cas, V1062 Tau, and RX J2133 + 51) are intermediate polars (DQ Her stars); one (IPHAS 0345) is a secondary-dominated system without known outbursts, similar to LY UMa; one (V1059 Sgr) is an old nova; and two others (V478 Her and V1082 Sgr) are long-period novalike variables. The stars with new periods are IPHAS 0345 (0.314 days) V344 Ori (0.234 days) VZ Sex (0.149 days) NSVS 1057 + 09 (0.376 days) V478 Her (0.629 days) V1059 Sgr (0.286 days) V1082 Sgr (0.868 days) FO Aql (0.217 days) V587 Lyr (0.275 days) V792 Cyg (0.297 days) V795 Cyg (0.181 days) V811 Cyg (0.157 days) V542 Cyg (0.182 days) PQ Aql (0.247 days) V516 Cyg (0.171 days) and VZ Aqr (0.161 days). Noteworthy results on individual stars are as follows. We see no indication of the underlying white dwarf star in V709 Cas, as has been previously claimed; based on the nondetection of the secondary star, we argue that the system is farther away that had been thought and the white dwarf contribution is probably negligible. V478 Her had been classified as an SU UMa-type dwarf nova, but this is incompatible with the long orbital period we find. We report the first secondary-star velocity curve for V1062 Tau. In V542 Cyg, we find a late-type contribution that remains stationary in radial velocity, yet the system is unresolved in a direct image, suggesting that it is a hierarchical triple system. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan.

  12. Photometric Investigation of Novae T Pyx, BT Mon and V574 Pup at Quiescence by using the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Thipboon, Ritthichai; Kaewrakmuk, Metichai; Surina, Farung; Sanguansak, Nuanwan

    2017-09-01

    Recurrent novae (RNe) are novae with multiple recorded outbursts powered by a thermonuclear runaway. The outburst occurs on the surface of the white dwarf which accompanies with a late type main-sequence or giant secondary star transferring material onto the white dwarf primary star. They resemble classical novae (CNe) outbursts but only RNe has more than one recorded outbursts. RNe play an important role as one of the suspected progenitor systems of Type Ia supernovae (SNe) which are used as primary distance indicators in cosmology. Thus, it is important to investigate the outburst type of CNe and RNe and finally ascertain the population of objects that might ultimately be candidates for Type Ia SNe explosions. The proposal that RNe occupy a region separated from CNe in an outburst amplitude versus speed class diagram was adopted. Since the low amplitude results from the existence of an evolved secondary and/or high mass transfer rate in the quiescent system, RNe candidates should accordingly have low amplitude. We selected 3 preliminary targets including T Pyx, BT Mon and V574 Pup. Their amplitudes are not that low but the lowest amplitude that can be observed with Thai National Telescope (TNT). We obtained their magnitudes at quiescence using ULTRASPEC camera on the 2.4-m TNT. The positions of three targets on optical and near-infrared color-magnitude diagrams suggest that all three should have main-sequence secondary stars. This is true for T Pyx, whose secondary star has been confirmed its spectroscopy to be a main-sequence star, but not yet confirmed for BT Mon and V574 Pup.

  13. Eastern Spruce Dwarf Mistletoe

    Treesearch

    F. Baker; Joseph O' Brien; R. Mathiasen; Mike Ostry

    2006-01-01

    Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic flowering plant that causes the most serious disease of black spruce (Picea mariana) throughout its range. The parasite occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland; in the Lake States of Minnesota,...

  14. On Presolar Stardust Grains from CO Classical Novae

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Downen, Lori N.; José, Jordi; Nittler, Larry R.; Starrfield, Sumner

    2018-03-01

    About 30%–40% of classical novae produce dust 20–100 days after the outburst, but no presolar stardust grains from classical novae have been unambiguously identified yet. Although several studies claimed a nova paternity for certain grains, the measured and simulated isotopic ratios could only be reconciled, assuming that the grains condensed after the nova ejecta mixed with a much larger amount of close-to-solar matter. However, the source and mechanism of this potential post-explosion dilution of the ejecta remains a mystery. A major problem with previous studies is the small number of simulations performed and the implied poor exploration of the large nova parameter space. We report the results of a different strategy, based on a Monte Carlo technique, that involves the random sampling over the most important nova model parameters: the white dwarf composition; the mixing of the outer white dwarf layers with the accreted material before the explosion; the peak temperature and density; the explosion timescales; and the possible dilution of the ejecta after the outburst. We discuss and take into account the systematic uncertainties for both the presolar grain measurements and the simulation results. Only those simulations that are consistent with all measured isotopic ratios of a given grain are accepted for further analysis. We also present the numerical results of the model parameters. We identify 18 presolar grains with measured isotopic signatures consistent with a CO nova origin, without assuming any dilution of the ejecta. Among these, the grains G270_2, M11-334-2, G278, M11-347-4, M11-151-4, and Ag26 have the highest probability of a CO nova paternity.

  15. Nova Delphini 2013: Backyard Analysis of a Classical Nova

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2014-01-01

    On August 14, 2013, Nova Delphini was discovered by Koichi Itagaki. This nova erupted to a maximum brightness of magnitude 4.4 by August 16, 2013. The extraordinary brightness of this event has allowed many amateur astronomers to have the chance to study it. More than 750 amateur astronomers have contributed to the AAVSO photometry database of Nova Delphini.1 The amount and quality of spectroscopic data gathered is unprecedented as well, as over 700 individual spectra have been collected so far in the ARAS database.2 A nova is a class of variable star that undergoes a cataclysmic eruption, which can be observed through a sudden increase in brightness that declines over a series of months or years. At the center of a nova is an accreting white dwarf star which is collecting hydrogen from its surroundings. The accreting mass causes a nuclear reaction on the surface of the white dwarf and as the pressure increases the reaction becomes super-critical and a thermonuclear runaway is ignited causing the brightness increase as well as triggering the ejection of a shell of material form the star. The stages of a classical nova outburst are outlined along with techniques available to amateur astronomers for study of these phenomena. The author’s equipment and software setup are detailed. Results obtained using a low resolution grating, Schmidt-cassegrain telescope and CCD camera that were acquired while Nova Delphini was in the “fireball stage” 3 and subsequent “iron curtain phase”3 are compared and discussed. Results obtained using a high resolution spectroscope, Schmidt-cassegrain telescope and CCD camera that were acquired during the “lifting of the iron curtain phase”3 are also presented. References 1. Turner, Rebecca. “AAVSO - Nova Del 2013” 20 Aug 2013 Web. 8 Sep 2013 2. Tessier, Francois. “ARAS Spectral Database - Nova-Del-2013” 22 Sep 2013 Web. 22 Sep 2013 3. Shore, Steven N. “Spectroscopy of Novae - A User’s Manual” arXiv:1211.3176 [astro-ph.SR] 14 Nov 2012

  16. Nova Eruptions from Radio to Gamma-raysówith AAVSO Data in the Middle (Abstract)

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Kafka, S.; Chomiuk, L.; Li, R.; Finzell, T.; Linford, J.; Sokoloski, J.; Nelson, T.; Rupen, M.; Mioduszewski, A.; Weston, J.

    2018-06-01

    (Abstract only) Novae are among the longest-known class of optical transients. In recent years, V1369 Cen in the south reached magnitude 3.3 in late 2013, and had repeated (but not periodic) cycles of re-brightening. Earlier in 2013, V339 Del almost reached magnitude 4.0 during the northern summer. An expanding ball of gas, at about 10,000 K, expelled by a nuclear explosion on the surface of a white dwarf, can explain much of the visible light outputs of novae. But these spectacular visible light displays turn out to be just a small part of the show. Novae are also transient objects in the radio through gamma-raysóin addition to the warm, visible light-emitting gas, we need cold dust particles that emit in the infra-red, 10 million degree shock-heated gas that emits hard X-rays, and the exposed surface of the nuclear-burning white dwarf that emits soft X-rays. Last but not least, we need an exotic process of particle acceleration to explain the gamma-rays and some radio data.

  17. A Hubble Space Telescope survey for Novae in M87. II. Snuffing out the maximum magnitude–rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.

    The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less

  18. A Hubble Space Telescope Survey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Doyle, Trisha; Zurek, David

    The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giantmore » elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.« less

  19. A Hubble Space Telescope survey for Novae in M87. II. Snuffing out the maximum magnitude–rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae

    DOE PAGES

    Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.; ...

    2017-04-20

    The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less

  20. High-speed photometry of the eclipsing dwarf nova OY Carinae

    NASA Technical Reports Server (NTRS)

    Cook, M. C.

    1985-01-01

    High-speed photometry of the eclipsing dwarf nova OY Car in the quiescent state is presented. OY Car becomes highly reddened during eclipse, with minimum flux colours inconsistent with optically thick emission in the U and B bandpasses. Mass ratios in the range 6.5 to 12 are required to reconcile the eclipse structure with theoretical gas stream trajectories. Primary eclipse timings reveal a significant decrease in the orbital period and the duration of primary eclipse indicates the presence of a luminous ring about the white dwarf. The hotspot eclipse reveals a hotspot which is elongated along the rim of the accretion disc, with optical emission being non-uniformly distributed along the rim. The location of the hotspot in the accretion disc implies a disc radius larger than that of an inviscid disc, with variation in the position of the hotspot being consistent with a fixed stream trajectory.

  1. White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas

    2013-01-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.

  2. GW LIBRAE: STILL HOT EIGHT YEARS POST-OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.

    We report continued Hubble Space Telescope ( HST ) ultraviolet spectra and ground-based optical photometry and spectroscopy of GW Librae eight years after its largest known dwarf nova outburst in 2007. This represents the longest cooling timescale measured for any dwarf nova. The spectra reveal that the white dwarf still remains about 3000 K hotter than its quiescent value. Both ultraviolet and optical light curves show a short period of 364–373 s, similar to one of the non-radial pulsation periods present for years prior to the outburst, and with a similar large UV/optical amplitude ratio. A large modulation at amore » period of 2 hr (also similar to that observed prior to outburst) is present in the optical data preceding and during the HST observations, but the satellite observation intervals did not cover the peaks of the optical modulation, and so it is not possible to determine its corresponding UV amplitude. The similarity of the short and long periods to quiescent values implies that the pulsating, fast spinning white dwarf in GW Lib may finally be nearing its quiescent configuration.« less

  3. Very high-energy γ -ray observations of novae and dwarf novae with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.

    2015-10-01

    In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV γ-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the γ-ray spectrum at TeV energies.

  4. Atypical dust species in the ejecta of classical novae

    NASA Astrophysics Data System (ADS)

    Helton, L. A.; Evans, A.; Woodward, C. E.; Gehrz, R. D.

    2011-03-01

    A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.

  5. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  6. Multiwavelength observations of nova SMCN 2016-10a - one of the brightest novae ever observed

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Page, K. L.; Kuin, N. P. M.; Darnley, M. J.; Walter, F. M.; Mróz, P.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P.; Woudt, P.; Williams, S. C.; Orio, M.; Williams, R. E.; Beardmore, A. P.; Osborne, J. P.; Kniazev, A.; Ribeiro, V. A. R. M.; Udalski, A.; Strader, J.; Chomiuk, L.

    2018-02-01

    We report on multiwavelength observations of nova Small Magellanic Cloud Nova 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including low-, medium-, and high-resolution optical spectroscopy and spectropolarimetry from Southern African Large Telescope, Folded Low-Order Yte-Pupil Double-Dispersed Spectrograph, and Southern Astrophysical Research; long-term Optical Gravitational Lensing Experiment V- and I-bands photometry dating back to 6 yr before eruption; Small and Moderate Aperture Research Telescope System optical and near-IR photometry from ˜11 d until over 280 d post-eruption; Swift satellite X-ray and ultraviolet observations from ˜6 d until 319 d post-eruption. The progenitor system contains a bright disc and a main sequence or a sub-giant secondary. The nova is very fast with t2 ≃ 4.0 ± 1.0 d and t3 ≃ 7.8 ± 2.0 d in the V band. If the nova is in the SMC, at a distance of ˜61 ± 10 kpc, we derive MV, max ≃ -10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and an Full Width at Half Maximum of ˜3500 km s-1, indicating moderately high ejection velocities. The nova entered the nebular phase ˜20 d post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ˜28 d post-eruption. The super-soft source properties indicate a white dwarf mass between 1.2 and 1.3 M⊙ in good agreement with the optical conclusions.

  7. Photometry of the long period dwarf nova GY Hya

    NASA Astrophysics Data System (ADS)

    Bruch, Albert; Monard, Berto

    2017-08-01

    Although comparatively bright, the cataclysmic variable GY Hya has not attracted much attention in the past. As part of a project to better characterize such systems photometrically, we observed light curves in white light, each spanning several hours, at Bronberg Observatory, South Africa, in 2004 and 2005, and at the Observatório do Pico dos Dias, Brazil, in 2014 and 2016. These data permit to study orbital modulations and their variations from season to season. The orbital period, already known from spectroscopic observations of Peters and Thorstensen (2005), is confirmed through strong ellipsoidal variations of the mass donor star in the system and the presence of eclipses of both components. A refined period of 0.34723972 (6) days and revised ephemeries are derived. Seasonal changes in the average orbital light curve can qualitatively be explained by variations of the contribution of a hot spot to the system light together with changes of the disk radius. The amplitude of the ellipsoidal variations and the eclipse contact phases permit to put some constraints on the mass ratio, orbital inclination and the relative brightness of the primary and secondary components. There are some indications that the disk radius during quiescence, expressed in units of the component separation, is smaller than in other dwarf novae.

  8. Cataclysmic variables and related objects

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Ladous, Constanze; Jordan, Stuart D. (Editor); Thomas, Richard N. (Editor); Goldberg, Leo; Pecker, Jean-Claude

    1993-01-01

    This volume begins with an introductory chapter on general properties of cataclysmic variables. Chapters 2 through 5 of Part 1 are devoted to observations and interpretation of dwarf novae and nova-like stars. Chapters 6 through 10, Part 2, discuss the general observational properties of classical and recurrent novae, the theoretical models, and the characteristics and models for some well observed classical novae and recurrent novae. Chapters 11 through 14 of Part 3 are devoted to an overview of the observations of symbiotic stars, to a description of the various models proposed for explaining the symbiotic phenomenon, and to a discussion of a few selected objects, respectively. Chapter 15 briefly examines the many unsolved problems posed by the observations of the different classes of cataclysmic variables and symbiotic stars.

  9. MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Szkody, Paula; Mukadam, Anjum

    2013-08-01

    We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less

  10. On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.

    1993-01-01

    The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.

  11. The cataclysmic variables from the Palomar-Green survey

    NASA Astrophysics Data System (ADS)

    Ringwald, F. A.

    1993-09-01

    This thesis explores the cataclysmic variables (CVs) found by the Palomar-Green (PG) survey. This is the first compilation of a statistically complete sample of CVs found by ultraviolet color excess, and not outburst behavior. Blue and red follow-up spectrophotometry suggests that 22 of 68 objects classified originally as CVs are hot subdwarfs. Cool companions may be mimicking CVs' flat energy distributions, although the possibility remains that some are face-on CVs. Spectra taken with the International Ultraviolet Explorer satellite prove useful for distinguishing difficult cases. With the CV sample defined, the orbital periods for eleven systems are investigated with radial velocity studies. At 16th magnitude, CV number counts increase by 2.3 mag-1, although this may level off. The luminosity function is examined for the first time, and a trend toward higher space density at low luminosity is suspected. Outburst properties are compiled, and low-luminosity dwarf novae inflate the total space density to 6 x 10-6 pc-3. I describe all the PG CVs and candidate objects, and show spectra for most. This sample should be useful for population studies, such as measuring the space density with trigonometric parallaxes, or finding the fraction of eclipsing CVs. A new class of nova-likes, the SW Sextantis stars, is characterized by absorption events of the emission lines at spectroscopic phase 0.5, accompanied by large phase lags between the lightcurves and the radial velocity curves and strong high-excitation emission. There are at least six such CVs in this sample of 33, so this mysterious behavior must be common and not peculiar, as previously thought. Five of these six objects eclipse. Serendipitous results for individual CVs include finding low-frequency quasi-periodic variations in the radial velocity curve of the dwarf nova BZ Ursae Majoris. While erratic from epoch to epoch, these are too coherent to be pure noise. Another dwarf nova, HX Pegasi, is caught with time-resolved spectrophotometry on the rise to outburst. This is the second-ever such observation, and the first with red spectra. HX Pegasi is also confirmed as having a novel subdwarf-K red star.

  12. Classification of ASASSN-18ix as a dwarf nova

    NASA Astrophysics Data System (ADS)

    Aydi, E.; Buckley, D. A. H.; Mohamed, S.; Whitelock, P. A.; Chomiuk, L.; Strader, J.; Stanek, K. Z.

    2018-05-01

    We report on SALT high-resolution spectroscopy of ASASSN-18ix which was reported as a possible Galactic nova by K. Z. Stanek et al. (ATel #11561). We obtained a 2000 s spectrum of this object under the SALT Large Science Program on transients on 2018 April 24.99 (HJD 2458233.50), using the High Resolution Spectrograph (HRS; Crause et al. 2014, Proc.

  13. THE NEW ECLIPSING CV MASTER OTJ192328.22+612413.5—A POSSIBLE SW SEXTANTIS STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M. R.; Callanan, P.; Bouanane, S.

    2016-07-01

    We present optical photometry and spectroscopy of the new eclipsing cataclysmic variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P = 0.16764612(5) day/4.023507(1) hr. The depth of the eclipse (2.9 ± 0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.°3 and 83.°6. The brightness outside the eclipse varies between observations, with a change of 1.6 ± 0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750more » ± 250 pc, depending on the companion’s spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest that the system is possibly a dwarf nova. The lack of any high-excitation He ii lines suggests that this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.« less

  14. Absolute Nuv magnitudes of Gaia DR1 astrometric stars and a search for hot companions in nearby systems

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.

    2017-10-01

    Accurate parallaxes from Gaia DR1 (TGAS) are combined with GALEX visual Nuv magnitudes to produce absolute Mnuv magnitudes and an ultraviolet HR diagram for a large sample of astrometric stars. A functional fit is derived of the lower envelope main sequence of the nearest 1403 stars (distance <40 pc), which should be reddening-free. Using this empirical fit, 50 nearby stars are selected with significant Nuv excess. These are predominantly late K and early M dwarfs, often associated with X-ray sources, and showing other manifestations of magnetic activity. The sample may include systems with hidden white dwarfs, stars younger than the Pleiades, or, most likely, tight interacting binaries of the BY Dra-type. A separate collection of 40 stars with precise trigonometric parallaxes and Nuv-G colors bluer than 2 mag is presented. It includes several known novae, white dwarfs, and binaries with hot subdwarf (sdOB) components, but most remain unexplored.

  15. Far Ultraviolet Spectroscopy of Three Long Period Nova-Like Variables, V363 Aur, AC Cnc and RZ Gru

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra; Sion, E. M.

    2011-01-01

    We have selected three nova-like variables: V363 Aur, RZ Gru and AC Cnc, all of which are UX UMa types, having similar orbital periods well beyond the 3 to 4 hour range where most nova-likes are found. All should have very similar secondary stars given the fact that they their physical parameters are so similar. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru is not a member of the SW Sex subclass. Our objective is to carry out the first synthetic spectral analysis of far ultraviolet spectra of the three systems using state-of-the-art models both of accretion disks and photospheres. Therefore we shall compare the distances we obtain from the best fitting synthetic spectral models to other distance estimates in the literature. We present model-derived accretion rates and distances for all three systems. The FUV flux range of RZ Gru and V363 Aur is dominated by radiation from an optically thick, steady state, accretion but for AC Cnc, we find that a hot white dwarf accounts for 70% of the FUV flux. We compare the FUV characteristics and physical properties of these three long period nova-like systems to the properties of other nova-likes at shorter periods. This work was supported in part by NSF grant AST0807892 to Villanova University.

  16. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is notmore » accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.« less

  17. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.

    2017-10-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  18. Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi)

    NASA Astrophysics Data System (ADS)

    Izzo, L.; Molaro, P.; Bonifacio, P.; Della Valle, M.; Cano, Z.; de Ugarte Postigo, A.; Prieto, J. L.; Thöne, C.; Vanzi, L.; Zapata, A.; Fernandez, D.

    2018-02-01

    We present high-resolution spectroscopic observations of the fast nova ASASSN-16kt (V407 Lup). A close inspection of spectra obtained at early stages has revealed the presence of low-ionization lines, and among the others we have identified the presence of the ionised 7Be doublet in a region relatively free from possible contaminants. After studying their intensities, we have inferred that ASASSN-16kt has produced (5.9 - 7.7)× 10-9 M⊙ of 7Be. The identification of bright Ne lines may suggest that the nova progenitor is a massive (1.2 M⊙) oxygen-neon white dwarf. The high outburst frequency of oxygen-neon novae implies that they likely produce an amount of Be similar, if not larger, to that produced by carbon-oxygen novae, then confirming that classical novae are among the main factories of lithium in the Galaxy.

  19. Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis

    NASA Astrophysics Data System (ADS)

    Knigge, Ch.; King, A. R.; Patterson, J.

    2000-12-01

    We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.

  20. SALT Spectroscopic classification of ASASSN-18lp as a dwarf nova

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Gromadzki, M.; Dong, Subo; Stanek, K. Z.

    2018-06-01

    ASASSN-18lp (AT 2018cex) was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) on UT 2018-06-05.24 at g 16 mag. It was observed with the Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph on UT 2018-06-05.75 UT (HJD 2458275.2561) employing the PG300 lines/mm grating.

  1. IUE observations of the 1987 superoutburst of the dwarf nova Z Cha

    NASA Technical Reports Server (NTRS)

    Harlaftis, E.; Hassall, B. J. M.; Sonneborn, G.; Naylor, T.; Charles, P. A.

    1988-01-01

    Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst.

  2. Outburst Cycle of the Dwarf Nova SS Cygni

    NASA Astrophysics Data System (ADS)

    Voikhanskaya, N. F.

    2018-01-01

    Extensive observational data obtained to date is analyzed with special attention given to space observations. The spectral type of the white dwarf is estimated and it is concluded that accretion of matter on it is the only source of the x-ray flux in the system. The rotation of the secondary is shown to be synchronous and therefore its illumination by hard x-rays results in the formation of stellar wind. This is the main mechanism of mass transfer onto the white dwarf. The geometry of the system prevents the formation of the disk by stellar wind. Instead, stellar wind forms a quasispherical envelope whose variability influences the outburst process. Based on these conclusions, the properties of the system are interpreted, which so far have remained unexplained: short-term appearance of peculiar spectrum during the rising phase of the outburst, rather constant width of absorption lines during the outburst, decrease of the width of emission lines during the outburst, variation of the x-ray and ultraviolet fluxes during ordinary and low-amplitude anomalous outbursts, and, finally, the quasiperiodicity of the outbursts.

  3. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

  4. IX Draconis - a curious ER UMa-type dwarf nova

    NASA Astrophysics Data System (ADS)

    Otulakowska-Hypka, M.; Olech, A.; de Miguel, E.; Rutkowski, A.; Koff, R.; Bąkowska, K.

    2013-02-01

    We report results of an extensive worldwide observing campaign devoted to a very active dwarf nova star - IX Draconis. We investigated photometric behaviour of the system to derive its basic outburst properties and understand peculiarities of IX Draconis as well as other active cataclysmic variables, in particular dwarf novae of the ER UMa type. In order to measure fundamental parameters of the system, we carried out analyses of the light curve, O - C diagram, and power spectra. During over two months of observations, we detected two superoutbursts and several normal outbursts. The V magnitude of the star varied in the range 14.6-18.2 mag. Superoutbursts occur regularly with the supercycle length (Psc) of 58.5 ± 0.5 d. When analysing data over the past 20 years, we found that Psc is increasing at a rate of dot{P} = 1.8 × 10^{-3}. Normal outbursts appear to be irregular, with typical occurrence times in the range 3.1-4.1 d. We detected a double-peaked structure of superhumps during superoutburst, with the secondary maximum becoming dominant near the end of the superoutburst. The mean superhump period observed during superoutbursts is Psh = 0.066982(36) d (96.45 ± 0.05 min), which is constant over the last two decades of observations. Based on the power spectrum analysis, the evaluation of the orbital period was problematic. We found two possible values: the first one, 0.066 41(3) d (95.63 ± 0.04 min), which is in agreement with previous studies and our O - C analysis [0.06646(2) d, 95.70 ± 0.03 min], and the second one, 0.06482(3) d (93.34 ± 0.04 min), which is less likely. The evolutionary status of the object depends dramatically on the choice between these two values. A spectroscopic determination of the orbital period is needed. We updated available information on ER UMa-type stars and present a new set of their basic statistics. Thereby, we provide evidence that this class of stars is not uniform.

  5. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  6. SALT Spectroscopic classification of ASASSN-18lw as a dwarf nova

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Gromadzki, M.; Dong, Subo; Stanek, K. Z.

    2018-06-01

    ASASSN-18lw (AT 2018cgo; RA: 19:28:50.74 Dec: -19:32:54.02) was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) on 2018 June 5.92 UT. It was observed with the Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph on 2018 June 10.92 UT (HJD 2458280.4297) employing the PG300 lines/mm grating.

  7. The Orbital Ephemeris of the Classical Nova RR Pictoris: Presence of a Third Body?

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Schreiber, M. R.; Hambsch, F.-J.; Retamales, G.; Tappert, C.; Schmidtobreick, L.; Fuentes-Morales, I.

    2017-01-01

    The ex-nova RR Pic presents a periodic hump in its light curve which is considered to refer to its orbital period. By analyzing all available epochs of these hump maxima in the literature and then combining them with those from new light curves obtained in 2013 and 2014, we establish an unique cycle count scheme valid during the past 50 years and derive an ephemeris with the orbital period 0.145025959(15) days. The O—C diagram of this linear ephemeris reveals systematic deviations that could have different causes. One of them could be a light-travel-time effect caused by the presence of a hypothetical third body near the star/brown dwarf mass limit, with an orbital period of the order of 70 years. We also examine the difficulty of the problematic of detecting substellar or planetary companions of close red-dwarf white-dwarf binaries (including cataclysmic variables) and discuss other possible mechanisms responsible for the observed deviations in O—C. For RR Pic, we propose strategies to solve this question by new observations.

  8. The Radio Light Curve of the Gamma-Ray Nova in V407 CYG: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer; hide

    2012-01-01

    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.

  9. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.

  10. Parallaxes and Distance Estimates for Eleven Cataclysmic Binary Stars

    NASA Astrophysics Data System (ADS)

    Thorstensen, John R.; Lepine, S.; Shara, M.; Peters, C. S.

    2007-12-01

    We will present new distance estimates for eleven cataclysmic binary stars, based on trigonometric parallaxes measured with the 2.4m Hiltner telescope at MDM Observatory. The MDM parallaxes have typical uncertainties of 1 mas. A Bayesian formalism is used to find the most likely distance given the parallax, proper motion, and prior information. Results will be reported for the eclipsing dwarf nova HT Cas, for which our parallax favors a relatively short distance; KT Per, which proves to have a K-dwarf physical companion; the 65-minute double-degenerate system V396 Hya (CE 315); and the low accretion rate-polar MQ Dra (SDSS 1553). We gratefully acknowledge funding from the NSF through grants AST-9987334, AST-0307413, and AST-0708810.

  11. Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1997-01-01

    This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.

  12. A 60-NIGHT Campaign on Dwarf Novae - Part One - Photometric Variability of Su-Ursae and Yz-Cancri

    NASA Astrophysics Data System (ADS)

    van Paradijs, J.; Charles, P. A.; Harlaftis, E. T.; Arevalo, M. J.; Baruch, J. E. F.; Callanan, P. J.; Casares, J.; Dhillon, V. S.; Gimenez, A.; Gonzalez, R.; Matinez-Pais, I. G.; Jones, D. H. P.; Hassall, B. J. M.; Hellier, C.; Kidger, M. R.; Lazaro, C.; Marsh, T. R.; Mason, K. O.; Mukai, K.; Naylor, T.; Reglero, V.; Rutten, R. G. M.; Smith, R. C.

    1994-04-01

    A 60-night campaign on SU UMa, YZ Cnc and some secondary targets was carried out during 1988 December and 1989 January at the Observatorio del Roque de Los Muchachos (the 1988 International Time Project). The aim was to study the behaviour of these dwarf novae through their outburst cycle. Here we present the overall light curves of the main targets, SU UMa and YZ Cnc, which show that the optical fluxes continue to decrease after the end of the outburst. For YZ Cnc we find that, during quiescence, orbital variability is present, which may be interpreted as modulation caused by the bright-spot region. Near the end of an outburst, a weak, sinusoidal variation is observed; we discuss the possibility that this arises either from the secondary star or the accretion disc.

  13. Light Curves Analysis of Deeply Eclipsed Dwarf Nova GY Cnc

    NASA Astrophysics Data System (ADS)

    Voloshina, I.; Khruzina, T.

    2017-03-01

    The results of photometric observations of the dwarf nova GY Cnc in the Rc filter in 2013-2016 are presented, including observations during its outburst in April 2014. The orbital ephemerides of the system have been determined more accurately using these numerous data. The orbital period has not significantly changed during the ˜ 30000 orbital cycles since the earlier observations; no systematic variations of O-C were found out. The fluctuations within the limits 0.004d on a timescale of 1500-2000 Porb were detected. A combined model is used to solve for the parameters of GY Cnc for both states of the system. The donor star temperature, T2˜ 3667 K (Sp M0.2 V) varies between 3440 and 3900 K (Sp K8.8-M1.7 V). The semi-major axis of the disk is a˜0.22a0, on average. In quiet state, a varies within ˜ 40%. The disk has a considerable eccentricity (e˜0.2-0.3) for the small a values, a≤0.2a0. With increasing a the disk shape becomes more circular (e<0.1). The GY Cnc outburst is due to a sharp growth of the disk luminosity because of a diminution of αg parameter (which is related to the viscosity of the disk material) up to 0.1-0.2, and the temperature of the disk interiors increasing twofold to Tin ˜ 95000 K. These changes were probably due to infall of matter onto the surface of white dwarf as the outburst developed. For all accretion disk parameters in a quiet state considerable variations about their mean values are typical.

  14. Observations and Analysis of the GK Persei Nova Shell and its "Jet-like" Feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2015-12-01

    GK Persei (1901, the "Firework Nebula") is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the SHAPE software. New imaging from the Aristarchos telescope continues to track the proper motion, extinction and structural evolution of the knots, which have been observed intermittently over several decades. We present for the first time, kinematical constraints on a large faint "jet" feature, that was previously detected beyond the shell boundary. These observational constraints allow for the generation of models for individual knots, interactions within knot complexes, and the "jet" feature. Put together, and taking into account dwarf-nova accelerated winds emanating from the central source, these data and models give a deeper insight into the GK Per nova remnant as a whole.

  15. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here in this paper, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particlesmore » can be accelerated effectively to produce π 0 decay γ-rays from proton-proton interactions. Lastly, emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.« less

  16. A Light-curve Analysis of Gamma-Ray Nova V959 Mon: Distance and White Dwarf Mass

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2018-05-01

    V959 Mon is a nova detected in gamma-rays. It was discovered optically about 50 days after the gamma-ray detection owing to its proximity to the Sun. The nova’s speed class is unknown because of the lack of the earlier half of its optical light curve and a short supersoft X-ray phase due to eclipse by the disk rim. Using the universal decline law and time-stretching method, we analyzed the data on V959 Mon and obtained nova parameters. We estimated the distance modulus in the V band to be (m ‑ M) V = 13.15 ± 0.3 for the reddening of E(B ‑ V) = 0.38 ± 0.01 by directly comparing it with novae of a similar type—LV Vul, V1668 Cyg, IV Cep, and V1065 Cen. The distance to V959 Mon is 2.5 ± 0.5 kpc. If we assume that the early phase of the light curve of V959 Mon is the same as that of time-stretched light curves of LV Vul, our model fitting of the light curve suggests that the white dwarf (WD) mass is 0.9–1.15 M ⊙, which is consistent with a neon nova identification. At the time of gamma-ray detection the photosphere of the nova envelope extends to 5–8 R ⊙ (about two or three times the binary separation) and the wind mass-loss rate is (3{--}4)× {10}-5 {M}ȯ yr‑1. The period of hard X-ray emission is consistent with the time of appearance of the companion star from the nova envelope. The short supersoft X-ray turnoff time is consistent with the epoch when the WD photosphere shrank to behind the rising disk rim, which occurred 500 days before nuclear burning turned off.

  17. Monitoring of Northern dwarf novae for radio jets campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-10-01

    Ms. Deanne Coppejans (PhD candidate, Radboud University Nijmegen (Netherlands) and University of Cape Town) and colleagues have requested AAVSO observer assistance in monitoring nine Northern dwarf novae in support of their campaign to observe them in outburst with the Very Large Array (VLA) to search for radio jets. They will observe 5 targets from the following list: U Gem*, EX Dra, Z Cam*, RX And*, EM Cyg, AB Dra, SY Cnc, SU UMa*, and YZ Cnc*. Stars with an asterisk (*) will be given higher priority. The campaign will begin now, starting with monitoring of RX And and EM Cyg, and run through September 2015, or until all five VLA triggers have been used. This campaign is similar to previous AAVSO campaigns, namely the 2007 campaign to monitor a sample of 10 dwarf novae (AAVSO Alert Notice 345), which resulted in the first detection of a radio jet in a dwarf nova system (Koerding et al. 2008, Science, 320, 1318), and the ones carried out at the request of Dr. James Miller-Jones and colleagues on SS Cyg in 2010-2011 (AAVSO Special Notices #204, #206, Alert Notice 445). The latter resulted in an accurate distance determination to SS Cyg, thereby reconciling its behavior with our understanding of accretion disc theory in accreting compact objects (Miller-Jones et al. 2013, Science, 340, 950). Ms. Coppejans writes: "The relation between accretion and outflow is one of the basic problems in modern astrophysics. It has long been thought that CVs are the only accreting systems that do not produce jets, and this notion has even been used to constrain jet models. However, there are now some indications that CVs do show jets, possibly allowing a universal link between accretion and ejection. Radio observations provide the best unambiguous tracer of the corresponding jet or directed outflow, but there are only two clear detections. By observing a more extensive sample of cataclysmic variables in outburst we will determine the existence of jets or other outflows in these accreting binary systems. These observations will decide if either CVs do show jets and thus support a universal link between accretion and ejection, or if they do not show jets, further constraining future jet models." The radio jet, if it exists in any of these nine systems, is expected to be seen shortly after the beginning of the outburst (as it was in SS Cyg). Catching the outburst as it is just starting and reporting that information to AAVSO HQ immediately is crucial, as the astronomers need to be alerted, make their decision whether to trigger the VLA observations, and allow enough time for the VLA to start the observations. Please observe these systems NIGHTLY (visual, CCD V) and report all observations as soon as is practical. In the event of an outburst, please report your observations as quickly as you can via WebObs, and also notify Dr. Matthew Templeton and Elizabeth Waagen at AAVSO Headquarters and Deanne Coppejans. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.

  18. FUSE SPECTROSCOPIC ANALYSIS OF THE SLOWEST SYMBIOTIC NOVA AG PEG DURING QUIESCENCE

    NASA Astrophysics Data System (ADS)

    Sion, Edward Michael; Godon, Patrick; Katynski, Marcus; Mikolajewska, Joanna

    2018-01-01

    We present a far ultraviolet spectroscopic analysis of the slowest known symbiotic nova AG Peg (MIII giant + hot white dwarf; P_orb = 818.4 days) which underwent a nova explosion in 1850 followed by a very slow decline that did not end until ~ 1996, marking the beginning of queiscence. Eight years of quiescence ended in June 2015, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ~ 3 magnitudes. We have carried out accretion disk and WD photosphere synthetic spectral modeling of a FUSE spectrum (Froning et al. 2014) obtained on June 5.618, 2003 during the quiescence intervai ~ 12 years before the 2015 outburst. The spectrum is heavily affected by ISM absorption as well as strong broad emission lines. We de-reddened the FUSE fluxes with E(B-V) = 0.10 which is the maximum galactic reddening in the direction of AG Peg and took the distance of 800 pc (Kenyon et al. 1993) but used a range of white dwarf masses, surface temperatures and disk inclination angles. Our analysis also incororates archival HST FOS spectra obtained in 1996 at the onset of quiescence, 147 years after the 1850 nova explosion. The results of our analysis are presented and implications are discussed.This work is supported in part by NASA ADP grant NNX17AF36G to Villanova University.

  19. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis

    NASA Astrophysics Data System (ADS)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia

    2017-08-01

    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while drastically reducing the hard X-ray luminosity. We will discuss the implication of variable accretion on the total mass accumulated since the last eruption.

  20. A Classical Nova Explosion in a Binary System with B[e] Star

    NASA Astrophysics Data System (ADS)

    Filippova, E.; Revnivtsev, M.; Lutovinov, A.

    2011-09-01

    The description of a thermonuclear runaway on a white dwarf, which causes a Classical Nova (CN) explosion, has several uncertainties. Observational tests of models are challenging because the majority of CNe are observed in optical and NIR spectral bands days after the onset of the explosion. We propose to use the properties of the X-ray emission of CNe for these tests. We have developed a model for the 1998 CN explosion in the binary system CI Cam. According to the adopted model the stellar wind from the optical component (a B[e] star), heated by a strong shock wave that was produced when matter was ejected from the white dwarf as the result of a thermonuclear explosion on its surface, is the source of X-ray emission in the standard X-ray band (˜ 2 - 10 keV). We use this model to explain the behaviour of the X-ray luminosity and of the mean temperature of the heated material during the explosion, and obtain velocity and mass estimates of the ejected matter from the WD surface. Discrepancies between model and observations, for example the slower decline of the theoretical luminosity compared to the observed one, are likely caused by the rough assumption of spherical symmetry. Using 3D calculations we find possible density perturbations (accretion wakes) that can reconcile theory with observations.

  1. V1006 Cygni: Dwarf nova showing three types of outbursts and simulating some features of the WZ Sge-type behavior

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Pavlenko, Elena P.; Shchurova, Alisa V.; Sosnovskij, Aleksei A.; Babina, Julia V.; Baklanov, Aleksei V.; Shugarov, Sergey Yu.; Littlefield, Colin; Dubovsky, Pavol A.; Kudzej, Igor; Pickard, Roger D.; Isogai, Keisuke; Kimura, Mariko; de Miguel, Enrique; Tordai, Tamás; Chochol, Drahomir; Maeda, Yutaka; Cook, Lewis M.; Miller, Ian; Itoh, Hiroshi

    2016-04-01

    We observed the 2015 July-August long outburst of V1006 Cyg and established this object to be an SU UMa-type dwarf nova in the period gap. Our observations have confirmed that V1006 Cyg is the second established object showing three types of outbursts (normal, long normal, and superoutbursts) after TU Men. We have succeeded in recording the growing stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.26-0.33, which is close to the stability limit of tidal instability. This identification of stage A superhumps demonstrates that superhumps indeed slowly grow in systems near the stability limit, the idea first introduced by Kato et al. (2014, PASJ, 66, 90). The superoutburst showed a temporary dip followed by a rebrightening. The moment of the dip coincided with the stage transition of superhumps, and we suggest that stage C superhumps are related to the start of the cooling wave in the accretion disk. We interpret that the tidal instability was not strong enough to maintain the disk in the hot state when the cooling wave started. We propose that the properties commonly seen in the extreme ends of mass ratios (WZ Sge-type objects and long-period systems) can be understood as a result of weak tidal effect.

  2. SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw

    2015-06-10

    The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind–white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe anmore » aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh–Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100–300 km s{sup −1}, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.« less

  3. Identifying and quantifying recurrent novae masquerading as classical novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnotta, Ashley; Schaefer, Bradley E., E-mail: pagnotta@amnh.org

    2014-06-20

    Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our Galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNemore » and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (1) outburst amplitude smaller than 14.5 – 4.5 × log (t {sub 3}), (2) orbital period >0.6 days, (3) infrared colors of J – H > 0.7 mag and H – K > 0.1 mag, (4) FWHM of Hα > 2000 km s{sup –1}, (5) high excitation lines, such as Fe X or He II near peak, (6) eruption light curves with a plateau, and (7) white dwarf mass greater than 1.2 M {sub ☉}. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction among the known CNe using three methods to get 24% ± 4%, 12% ± 3%, and 35% ± 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.« less

  4. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binarymore » merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.« less

  5. A flickering study of nova-like systems KR Aur and UU Aqr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Mineshige, S.; Casares, J.

    2012-03-01

    We present a study of the flickering activity in two nova-like systems, KR Aur and UU Aqr. We applied a statistical model of flickering simulations in accretion discs based on turbulent angular momentum transport between two adjacent rings with an exponential distribution of the turbulence dimension scale. The model is based on a steady-state disc model, which is satisfied in the case of hot ionized discs of nova-like cataclysmic variables. Our model successfully fits the observed power-density spectrum of KR Aur with the disc parameter α= 0.10-0.40 and an inner-disc truncation radius in the range Rin= 0.88-1.67 × 109 cm. The exact values depend on the mass-transfer rate in the sense that α decreases and Rin increases with mass-transfer rate. In any case, the inner-disc radius found for KR Aur is considerably smaller than those for quiescent dwarf novae, as predicted by the disc instability model. On the other hand, our simulations fail to reproduce the power-density spectrum of UU Aqr. A tantalizing explanation involves the possible presence of spiral waves, which are expected in UU Aqr because of its low mass ratio but not in KR Aur. In general our model predicts the observed concentration of flickering in the central disc. We explain this by the radial dependence of the angular-momentum gradient.

  6. Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.

    2018-05-01

    We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.

  7. Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.

    2018-06-01

    We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.

  8. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  9. Hot SPOT Eclipses in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Smak, J.

    1996-10-01

    Eclipses of the hot spot in four dwarf novae: U Gem, IP Peg, Z Cha, and OY Car are re-analyzed, assuming two models for the shape of the spot. In Model 1 an elliptical spot is assumed, with the semi-axes s_a in the orbital plane and s_b perpendicular to the orbital plane, its center located on the stream trajectory. The results show that such an ellipse is, within errors, tangent to the disk's circumference. In all four cases the resulting dimensions of the spot s_a are larger than the theoretical cross-section of the stream. Accordingly, in Model2 the spot is assumed to consist of a head, centered on the stream trajectory, and a tail, extending downstream, ie., along disk's circumference. In some cases the resulting parameters, eg., mass ratios or disk radii, differ significantly from those obtained with Model 1.

  10. Superhumps in a Peculiar SU Ursae Majoris-Type Dwarf Nova, ER Ursae Majoris.

    PubMed

    Gao; Li; Wu; Zhang; Li

    1999-12-10

    We report the photometry of a peculiar SU Ursae Majoris-type dwarf nova, ER Ursae Majoris, for 10 nights during 1998 December and 1999 March, covering a complete rise to the supermaximum and a normal outburst cycle. Superhumps have been found during the rise to the superoutburst. A negative superhump appeared in the December 22 light curve, while the superhump on the next night became positive and had a large-amplitude waveform distinct from that of the previous night. In the normal outbursts we captured, superhumps with larger or smaller amplitudes seem to always exist, although it is not necessarily true for every normal outburst. These results show great resemblance to V1159 Ori. It is more likely that superhumps occasionally exist at essentially all phases of the eruption cycles of ER UMa stars, which should be considered in modeling.

  11. Stellar atmosphere modeling of extremely hot, compact stars

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas; Ringat, Ellen; Werner, Klaus

    Present X-ray missions like Chandra and XMM-Newton provide excellent spectra of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) can calculate such model at-mospheres and spectral energy distributions at a high level of sophistication. We present a new grid of models that is calculated in the parameter range of novae and supersoft X-ray sources and show examples of their application.

  12. An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; hide

    2014-01-01

    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.

  13. Development of a Monte Carlo code for the data analysis of the 18F(p,α)15O reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Caruso, A.; Cherubini, S.; Spitaleri, C.; Crucillà, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Rapisarda, G.; Romano, S.; Sergi, ML.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; Hammache, F.; de Séréville, N.

    2015-02-01

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called "narrow systems" because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of "hot hydrogen burning" are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as 13N and 18F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of 18F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of 18F . Among these, the 18F(p,α)15O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the 18F(p,α)15O reaction, using a beam of 18F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.

  14. A XMM-Newton Observation of Nova LMC 1995, a Bright Supersoft X-ray Source

    NASA Technical Reports Server (NTRS)

    Orio, Marina; Hartmann, Wouter; Still, Martin; Greiner, Jochen

    2003-01-01

    Nova LMC 1995, previously detected during 1995-1998 with ROSAT, was observed again as a luminous supersoft X-ray source with XMM-Newton in December of 2000. This nova offers the possibility to observe the spectrum of a hot white dwarf, burning hydrogen in a shell and not obscured by a wind or by nebular emission like in other supersoft X-ray sources. Notwithstanding uncertainties in the calibration of the EPIC instruments at energy E<0.5 keV, using atmospheric models in Non Local Thermonuclear Equilibrium we derived an effective temperature in the range 400,000-450,000 K, a bolometric luminosity Lbolabout equal to 2.3 times 10 sup37 erg s sup-l, and we verified that the abundance of carbon is not significantly enhanced in the X-rays emitting shell. The RGS grating spectra do not show emission lines (originated in a nebula or a wind) observed for some other supersoft X-ray sources. The crowded atmospheric absorption lines of the white dwarf cannot be not resolved. There is no hard component (expected from a wind, a surrounding nebula or an accretion disk), with no counts above the background at E>0.6 keV, and an upper limit Fx,hard = 10 sup-14 erg s sup-l cm sup-2 to the X-ray flux above this energy. The background corrected count rate measured by the EPIC instruments was variable on time scales of minutes and hours, but without the flares or sudden obscuration observed for other novae. The power spectrum shows a peak at 5.25 hours, possibly due to a modulation with the orbital period. We also briefly discuss the scenarios in which this nova may become a type Ia supernova progenitor.

  15. The V471 Tauri System: A Multi-data-type Probe

    NASA Astrophysics Data System (ADS)

    Vaccaro, T. R.; Wilson, R. E.; Van Hamme, W.; Terrell, Dirk

    2015-09-01

    V471 Tauri, a white dwarf-red dwarf eclipsing binary (EB) in the Hyades, is well known for stimulating development of common envelope theory, whereby novae and other cataclysmic variables form from much wider binaries by catastrophic orbit shrinkage. Our evaluation of a recent imaging search that reported negative results for a much postulated third body shows that the object could have escaped detection or may have actually been seen. The balance of evidence continues to favor a brown dwarf companion about 12 AU from the EB. A recently developed algorithm finds unified solutions from three data types. New radial velocities (RVs) of the red dwarf and {{BVR}}C{I}C light curves are solved simultaneously along with white dwarf and red dwarf RVs from the literature, uvby data, the Microvariability and Oscillations of Stars mission light curve, and 40 years of eclipse timings. Precision-based weighting is the key to proper information balance among the various data sets. Timewise variation of modeled starspots allows unified solution of multiple data eras. Light-curve amplitudes strongly suggest decreasing spottedness from 1976 to about 1980, followed by approximately constant spot coverage from 1981 to 2005. An explanation is proposed for lack of noticeable variation in 1981 light curves, in terms of competition between spot and tidal variations. Photometric-spectroscopic distance is estimated. The red dwarf mass comes out larger than normal for a K2 V star, and even larger than adopted in several structure and evolution papers. An identified cause for this result is that much improved red dwarf RV curves now exist.

  16. Inter-Longitude Astronomy (ILA) Project: Current Highlights And Perspectives. I. Magnetic vs. Non-Magnetic Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Antoniuk, K. A.; Baklanov, A. V.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Dubovsky, P. A.; Han, W.; Hegedus, T.; Henden, A.; Hric, L.; Chun-Hwey, Kim; Yonggi, Kim; Kolesnikov, S. V.; Kudzej, I.; Liakos, A.; Niarchos, P. G.; Oksanen, A.; Patkos, L.; Petrik, K.; Pit', N. V.; Shakhovskoy, N. M.; Virnina, N. A.; Yoon, J.; Zola, S.

    2010-12-01

    We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova- like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".

  17. Classical novae and recurrent novae: General properties

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi; Duerbeck, Hilmar W.

    1993-01-01

    We describe the observable characteristics of classical novae and recurrent novae obtained by different techniques (photometry, spectroscopy, and imaging) in all the available spectral ranges. We consider the three stages in the life of a nova: quiescence (pre- and post-outburst), outburst, final decline and nebular phase. We describe the photometric properties during the quiescent phase. We describe the photometric properties during outburst, the classification according the rate of decline (magnitudes per day), which permits us to define very fast, fast, intermediate, slow, and very slow novae and the correlation between luminosity and speed class. We report the scanty data on the spectra of the few known prenovae and those on the spectra of old novae and those of dwarf novae and nova-like, which, however, are almost undistinguishable. We describe the typical spectra appearing from the beginning of the outburst, just before maximum, up to the nebular phase and the correlation between spectral type at maximum, expansional velocity, and speed class of the nova. We report the existing infrared observations, which permit us to explain some of the characteristics of the outburst light curve, and give evidence of the formation of a dust shell in slow and intermediate novae (with the important exception of the very slow nova HR Del 1967) and its absence or quasi-absence in fast novae. The ultraviolet and X-ray observations are described. The X ray observations of novae, mainly from the two satellites EINSTEIN and EXOSAT, are reported. Observations of the final decline and of the envelopes appearing several months after outburst are also reported.

  18. Disc structure and variability in dwarf novae

    NASA Astrophysics Data System (ADS)

    Harlaftis, Emilios Theofanus

    An introduction is given to dwarf novae reviewing the current research status in the field. We present IUE observations of Z Cha which support the mass transfer instability as the cause of the superoutbursts observed in SU UMa type dwarf novae. Comparison between the superoutburst and a normal outburst of Z Cha shows that the disc is flatter and has significantly less azimuthal structure than during superoutburst. Z Cha exhibits a soft x-ray deficit during superoutburst compared to OY Car. We find that the secondary star of Z Cha contributes approximately 30 percent of the infrared flux at peak of outburst. The second part of the thesis presents results from the 1988 International Time Project at the Observatorio del Roque de los Muchachos. Investigation of the behavior of SU UMa and YZ Cnc is carried out through the outburst cycle. The secular changes of the equivalent widths of both systems shows an increasing trend even during quiescence and are caused by the continuum decrease. Both systems show a low-velocity emission component which contaminates the wings of the H(alpha) profile. In addition to doppler broadening, the Stark effect is found to cause significant broadening to the line profile. The radial dependence of the emission lines is discussed in relation to other cataclysmic variables. H(alpha) emission from the secondary star of YZ Cnc is found during superoutburst, during outburst and during quiescence after outburst. Photometry during late decline of outburst shows a sinusoidal, weak variation peaking at 0.5 orbital phase and which is related to heating of the red star or to a transient disc event. During quiescence, the flickering is found to be caused by the bright spot. This modulation increases with time and is maximum before the outburst. Doppler tomography of IP Peg during quiescence reveals an emission line distribution not consistent to the standard model. We find Balmer emission from the secondary star, at a level of only 2.5 percent of the total flux during quiescence. Simultaneously to this, line emission from the outer disc decreases by approximately 70 percent 5 days before an outburst.

  19. Magnetic novae

    NASA Astrophysics Data System (ADS)

    Zemko, Polina; Orio, Marina

    2016-07-01

    We present the results of optical and X-ray observations of two quiescent novae, V2491 Cyg and V4743 Sgr. Our observations suggest the intriguing possibility of localization of hydrogen burning in magnetic novae, in which accretion is streamed to the polar caps. V2491 Cyg was observed with Suzaku more than 2 years after the outburst and V4743 Sgr was observed with XMM Newton 2 and 3.5 years after maximum. In the framework of a monitoring program of novae previously observed as super soft X-ray sources we also obtained optical spectra of V4743 Sgr with the SALT telescope 11.5 years after the eruption and of V2491 Cyg with the 6m Big Azimutal Telescope 4 and 7 years post-outburst. In order to confirm the possible white dwarf spin period of V2491 Cyg measured in the Suzaku observations we obtained photometric data using the 90cm WIYN telescope at Kitt Peak and the 1.2 m telescope in Crimea. We found that V4743 Sgr is an intermediate polar (IP) and V2491 Cyg is a strong IP candidate. Both novae show modulation of their X-ray light curves and have X-ray spectra typical of IPs. The Suzaku and XMM Newton exposures revealed that the spectra of both novae have a very soft blackbody-like component with a temperature close to that of the hydrogen burning white dwarfs in their SSS phases, but with flux by at least two orders of magnitude lower, implying a possible shrinking of emitting regions in the thin atmosphere that is heated by nuclear burning underneath it. In quiescent IPs, independently of the burning, an ultrasoft X-ray flux component originates at times in the polar regions irradiated by the accretion column, but the soft component of V4743 Sgr disappeared in 2006, indicating that the origin may be different from accretion. We suggest it may have been due to an atmospheric temperature gradient on the white dwarf surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. The optical spectra of V2491 Cyg and V4743 Sgr showed the prominent He II 4686 A line and the Bowen blend, which indicate a hot region, with peak temperature in the ultraviolet range. This may be the same region that previously emitted supersoft X-rays, and later cooled shifting the peak of emission to the ultraviolet.

  20. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  1. SDSS J162520.29+120308.7 - a new SU Ursae Majoris star in the period gap

    NASA Astrophysics Data System (ADS)

    Olech, A.; de Miguel, E.; Otulakowska, M.; Thorstensen, J. R.; Rutkowski, A.; Novak, R.; Masi, G.; Richmond, M.; Staels, B.; Lowther, S.; Stein, W.; Ak, T.; Boyd, D.; Koff, R.; Patterson, J.; Eker, Z.

    2011-08-01

    We report results of an extensive world-wide observing campaign devoted to the recently discovered dwarf nova SDSS J162520.29+120308.7 (SDSS J1625). The data were obtained during the July 2010 eruption of the star and in August and September 2010 when the object was in quiescence. During the July 2010 superoutburst, SDSS J1625 clearly displayed superhumps with a mean period of Psh = 0.095942(17) days (138.16 ± 0.02 min) and a maximum amplitude reaching almost 0.4 mag. The superhump period was not stable, decreasing very rapidly at a rate of Ṗ = -1.63(14) × 10-3 at the beginning of the superoutburst and increasing at a rate of Ṗ = 2.81(20) × 10-4 in the middle phase. At the end of the superoutburst, it stabilized around the value of Psh = 0.09531(5) day. During the first twelve hours of the superoutburst, a low-amplitude double wave modulation was observed whose properties are almost identical to early superhumps observed in WZ Sge stars. The period of early superhumps, the period of modulations observed temporarily in quiescence, and the period derived from radial velocity variations are the same within measurement errors, allowing us to estimate the most probable orbital period of the binary to be Porb = 0.09111(15) days (131.20 ± 0.22 min). This value clearly indicates that SDSS J1625 is another dwarf nova in the period gap. Knowledge of the orbital and superhump periods allows us to estimate the mass ratio of the system to be q ≈ 0.25. This high value poses serious problems for both the thermal and tidal instability (TTI) model describing the behaviour of dwarf novae and for some models explaining the origin of early superhumps. The reduced lightcurve data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A64

  2. V1369 Cen High-resolution Panchromatic Late Nebular Spectra in the Context of a Unified Picture for Nova Ejecta

    NASA Astrophysics Data System (ADS)

    Mason, Elena; Shore, Steven N.; De Gennaro Aquino, Ivan; Izzo, Luca; Page, Kim; Schwarz, Greg J.

    2018-01-01

    Nova Cen 2013 (V1369 Cen) is the fourth bright nova observed panchromatically through high-resolution UV+optical multiepoch spectroscopy. It is also the nova with the richest set of spectra (in terms of both data quality and number of epochs) thanks to its exceptional brightness. Here, we use the late nebular spectra taken between day ∼250 and day ∼837 after outburst to derive the physical, geometrical, and kinematical properties of the nova. We compare the results with those determined for the other panchromatic studies in this series: T Pyx, V339 Del (nova Del 2013), and V959 Mon (nova Mon 2012). From this we conclude that in all these novae the ejecta geometry and phenomenology can be consistently explained by clumpy gas expelled during a single, brief ejection episode and in ballistic expansion, and not by a wind. For V1369 Cen the ejecta mass (∼1 × 10‑4 M⊙) and filling factor (0.1 ≤ f ≤ 0.2) are consistent with those of classical novae but larger (by at least an order of magnitude) than those of T Pyx and the recurrent novae. V1369 Cen has an anomalously high (relative to solar) N/C ratio that is beyond the range currently predicted for a CO nova, and the Ne emission line strengths are dissimilar to those of typical ONe or CO white dwarfs.

  3. Mixing in classical novae: a 2-D sensitivity study

    NASA Astrophysics Data System (ADS)

    Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.

    2011-03-01

    Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org

  4. V2676 Oph: Estimating Physical Parameters of a Moderately Fast Nova

    NASA Astrophysics Data System (ADS)

    Raj, A.; Pavana, M.; Kamath, U. S.; Anupama, G. C.; Walter, F. M.

    2018-03-01

    Using our previously reported observations, we derive some physical parameters of the moderately fast nova V2676 Oph 2012 #1. The best-fit Cloudy model of the nebular spectrum obtained on 2015 May 8 shows a hot white dwarf source with TBB≍1.0×105 K having a luminosity of 1.0×1038 erg/s. Our abundance analysis shows that the ejecta are significantly enhanced relative to solar, He/H=2.14, O/H=2.37, S/H=6.62 and Ar/H=3.25. The ejecta mass is estimated to be 1.42×10-5 M⊙. The nova showed a pronounced dust formation phase after 90 d from discovery. The J-H and H-K colors were very large as compared to other molecule- and dust-forming novae in recent years. The dust temperature and mass at two epochs have been estimated from spectral energy distribution fits to infrared photometry.

  5. Nonradial Pulsations in Post-outburst Novae

    NASA Astrophysics Data System (ADS)

    Wolf, William M.; Townsend, Richard H. D.; Bildsten, Lars

    2018-03-01

    After an optical peak, a classical or recurrent nova settles into a brief (days to years) period of quasi-stable thermonuclear burning in a compact configuration nearly at the white dwarf (WD) radius. During this time, the underlying WD becomes visible as a strong emitter of supersoft X-rays. Observations during this phase have revealed oscillations in the X-ray emission with periods on the order of tens of seconds. A proposed explanation for the source of these oscillations is internal gravity waves excited by nuclear reactions at the base of the hydrogen-burning layer. In this work, we present the first models exhibiting unstable surface g-modes with periods similar to oscillation periods found in galactic novae. However, when comparing mode periods of our models to the observed oscillations of several novae, we find that the modes that are excited have periods shorter than that observed.

  6. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  7. Optical Spectroscopy of TCP J04432130+4721280 (V392 Per) Confirms a Nova Eruption

    NASA Astrophysics Data System (ADS)

    Wagner, R. M.; Terndrup, D.; Darnley, M. J.; Starrfield, S.; Woodward, C. E.; Henze, M.

    2018-04-01

    Following reports of a new transient of magnitude 6.2 in Perseus on 2018 April 29.4740 UT discovered by Y. Nakamura designated TCP J04432130+4721280 (http://www.cbat.eps.harvard.edu/unconf/followups/J04432130+4721280.html) and positionally coincident with the previously known U Gem type dwarf nova V392 Per, we obtained an optical spectrum on 2018 April 30.116 UT (range: 396-687 nm; resolution 0.3 nm) with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory on Kitt Peak.

  8. The Death Spiral of T Pyxidis

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Oksanen, A.; Monard, B.; Rea, R.; Hambsch, F.; McCormick, J.; Nelson, P.; Kemp, J.; Allen, W.; Krajci, T.; Lowther, S.; Dvorak, S.; Richards, T.; Myers, G.; Bolt, G.

    2014-12-01

    We report a long campaign to track the 1.8 hr photometric wave in the recurrent nova T Pyxidis, using the global telescope network of the Center for Backyard Astrophysics. During 1996-2011, that wave was highly stable in amplitude and waveform, resembling the orbital wave commonly seen in supersoft binaries. The period, however, was found to increase on a timescale P/P =3 ×105 yr. This suggests a mass transfer rate of ˜ 10-7 M⊙/yr in quiescence. The orbital signal became vanishingly weak (< 0.003 mag) near maximum light of the 2011 eruption. After it returned to visibility near V=11, the orbital period had increased by 0.0054(6) %. This is a measure of the mass ejected in the nova outburst. For a plausible choice of binary parameters, that mass is at least 3×10-5 M⊙, and probably more. This represents > 300 yr of accretion at the pre-outburst rate, but the time between outbursts was only 45 yr. Thus the erupting white dwarf seems to have ejected at least 6 × more mass than it accreted. If this eruption is typical, the white dwarf must be eroding, rather than growing, in mass — dashing the star's hopes of ever becoming famous via a supernova explosion. Instead, it seems likely that the binary dynamics are basically a suicide pact between the eroding white dwarf and the low-mass secondary, excited and rapidly whittled down, probably by the white dwarf's EUV radiation.

  9. Featured Image: Identifying a Glowing Shell

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    New nebulae are being discovered and classified every day and this false-color image reveals one of the more recent objects of interest. This nebula, IPHASX J210204.7+471015, was recently imaged by the Andalucia Faint Object Spectrograph and Camera mounted on the 2.5-m Nordic Optical Telescope in La Palma, Spain. J210204 was initially identified as a possible planetary nebula a remnant left behind at the end of a red giants lifetime. Based on the above imaging, however, a team of authors led by Martn Guerrero (Institute of Astrophysics of Andalusia, Spain) is arguing that this shell of glowing gas was instead expelled around a classical nova. In a classical nova eruption, a white dwarf and its binary companion come very close together, and mass transfers to form a thin atmosphere of hydrogen around the white dwarf. When this hydrogen suddenly ignites in runaway fusion, this outer atmosphere can be expelled, forming a short-lived nova remnant which is what Guerrero and collaborators think were seeing with J210204. If so, this nebula can reveal information about the novathat caused it. To find out more about what the authors learned from this nebula, check out the paper below.CitationMartn A. Guerrero et al 2018 ApJ 857 80. doi:10.3847/1538-4357/aab669

  10. Survey of period variations of superhumps in SU UMa-type dwarf novae. VIII. The eighth year (2015-2016)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Monard, Berto; Vanmunster, Tonny; Maeda, Yutaka; Miller, Ian; Itoh, Hiroshi; Kiyota, Seiichiro; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Tordai, Tamás; Akazawa, Hidehiko; Tanabe, Kenji; Otani, Noritoshi; Ogi, Minako; Ando, Kazuko; Takigawa, Naoki; Dubovsky, Pavol A.; Kudzej, Igor; Shugarov, Sergey Yu.; Katysheva, Natalia; Golysheva, Polina; Gladilina, Natalia; Chochol, Drahomir; Starr, Peter; Kasai, Kiyoshi; Pickard, Roger D.; de Miguel, Enrique; Kojiguchi, Naoto; Sugiura, Yuki; Fukushima, Daiki; Yamada, Eiji; Uto, Yusuke; Kamibetsunawa, Taku; Tatsumi, Taiki; Takeda, Nao; Matsumoto, Katsura; Cook, Lewis M.; Pavlenko, Elena P.; Babina, Julia V.; Pit, Nikolaj V.; Antonyuk, Oksana I.; Antonyuk, Kirill A.; Sosnovskij, Aleksei A.; Baklanov, Aleksei V.; Kafka, Stella; Stein, William; Voloshina, Irina B.; Ruiz, Javier; Sabo, Richard; Dvorak, Shawn; Stone, Geoff; Andreev, Maksim V.; Antipin, Sergey V.; Zubareva, Alexandra M.; Zaostrojnykh, Anna M.; Richmond, Michael; Shears, Jeremy; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Simon, Andrei; Oksanen, Arto; Goff, William N.; Bolt, Greg; Dębski, Bartłomiej; Kochanek, Christopher S.; Shappee, Benjamin; Stanek, Krzysztof Z.; Prieto, José L.; Stubbings, Rod; Muyllaert, Eddy; Hiraga, Mitsutaka; Horie, Tsuneo; Schmeer, Patrick; Hirosawa, Kenji

    2016-08-01

    Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the distribution of orbital periods, the relation between the orbital period and the variation of superhumps, and the relation between period variations and the rebrightening type in WZ Sge-type objects. Coupled with new measurements of mass ratios using growing stages of superhumps, we now have a clearer and statistically greatly improved evolutionary path near the terminal stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel, and ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to reflect the slow growth of the 3 : 1 resonance near the stability border. ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6, and CRTS J200331.3-284941 are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae. ASASSN-15cy has a short (˜0.050 d) superhump period and appears to belong to EI Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn, ASASSN-15hn, ASASSN-15kh, and ASASSN-16bu are candidate period bouncers with superhump periods longer than 0.06 d. We have newly obtained superhump periods for 79 objects and 13 orbital periods, including periods from early superhumps. In order that future observations will be more astrophysically beneficial and rewarding to observers, we propose guidelines on how to organize observations of various superoutbursts.

  11. Eclipse Mapping Experiments in Dwarf Novae Outbursts

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.

    2006-06-01

    In this work, we report the eclipse mapping analysis of CCD photometric data of two short period dwarf novae - V4140 Sgr (Borges & Baptista 2005) and HT Cas (Borges, Baptista & Catalán, in preparation) - during observed outburst events. The analysis of the observations of V4140 Sgr, done between 1991 and 2001, reveals that the object was in the decline from an outburst in 1992 and again in outburst in 2001. A distance of d = 170+/-30 pc is obtained from a method similar to that used to constrain the distance to open clusters. From this distance, disc radial brightness temperature distributions are determined, and the disc temperatures remain below the critical effective temperature T_{crit} at all disc radii during the outburst. The distributions in quiescence and in outburst are significantly different from those of other dwarf novae of similar orbital period. These results cannot be explained within the framework of the disc instability model and the small amplitude outbursts of V4140 Sgr can be due bursts of enhanced mass transfer rate from the secondary star. Our HT Cas data consist of V and R CCD photometric observations done in 2005 November with the 0.95-m James Gregory Telescope (JGT) and cover a outburst cycle. We used the entropy associated to the eclipse maps to obtain the semi-opening disc angle α evolution throught the outburst. The obtained angles are systematically lower than those obtained by Ioannou et al. (1999) and we can conclude that the outburst radial profiles must be flatter than the the T ∝ r^{-3/4} law of steady state dics, against the expectations of the disc instability model. Our intensity radial distributions presents the same ``outside-in'' outburst behavior as obtained by the referred author.

  12. The remarkable outburst of the highly evolved post-period-minimum dwarf nova SSS J122221.7-311525★

    NASA Astrophysics Data System (ADS)

    Neustroev, V. V.; Marsh, T. R.; Zharikov, S. V.; Knigge, C.; Kuulkers, E.; Osborne, J. P.; Page, K. L.; Steeghs, D.; Suleimanov, V. F.; Tovmassian, G.; Breedt, E.; Frebel, A.; García-Díaz, Ma. T.; Hambsch, F.-J.; Jacobson, H.; Parsons, S. G.; Ryu, T.; Sabin, L.; Sjoberg, G.; Miroshnichenko, A. S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.

    2017-05-01

    We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d-1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B - I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess ≲0.8 per cent, indicating a very low mass ratio q ≲ 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7-311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim.

  13. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of w hether a symbiotic is powered predominantly by shell burning on the surface of the WD or by accretion. We additionally make the first ever radio detections of seven of the targets in our survey. Our survey of seventeen radio bright symbiotics, comparing observations before and after the upgrades to the VLA, shows the technological feasibility to resolve the nebulae of nearby symbiotic binaries, opening the door for new lines of research. We spatially resolve extended structure in several symbiotic systems in radio for the first time. Additionally, our observations reveal extreme radio variability in symbiotic BF Cyg before and after the production of a jet from the system. Our results from our surveys of symbiotics provide some support for the model of radio emission where the red giant wind is photoionized by the WD, and suggests that there may be a greater population of radio faint, accretion driven symbiotic systems. This work emphasizes the powerful nature of radio observations as a tool for understanding eruptive WD binaries and their outflows.

  14. "Special Case" Stellar Blast Teaching Astronomers New Lessons About Cosmic Explosions

    NASA Astrophysics Data System (ADS)

    2006-07-01

    A powerful thermonuclear explosion on a dense white-dwarf star last February has given astronomers their best look yet at the early stages of such explosions, called novae, and also is giving them tantalizing new clues about the workings of bigger explosions, called supernovae, that are used to measure the Universe. RS Ophiuchi Expansion RS Ophiuchi Expansion CREDIT: Rupen, Mioduszewski & Sokoloski, NRAO/AUI/NSF (Click on image for full-sized image and detailed caption) Using the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes, "We have seen structure in the blast earlier than in any other stellar explosion," said Tim O'Brien of the University of Manchester's Jodrell Bank Observatory in the U.K. "We see evidence that the explosion may be ejecting material in jets, contrary to theoretical models that assumed a spherical shell of ejected material," O'Brien added. The explosion occurred in a star system called RS Ophiuchi, in the constellation Ophiuchus. RS Ophiuchi consists of a dense white dwarf star with a red giant companion whose prolific stellar wind dumps material onto the surface of the white dwarf. When enough of this material has accumulated, theorists say, a gigantic thermonuclear explosion, similar to a hydrogen bomb but much larger, occurs. Systems such as RS Ophiuchi may eventually produce a vastly more powerful explosion -- a supernova -- when the white dwarf accumulates enough mass to cause it to collapse and explode violently. Because such supernova explosions (called Type 1a supernovae by astronomers) all are triggered as the white dwarf reaches the same mass, they are thought to be identical in their intrinsic brightness. This makes them extremely valuable as "standard candles" for measuring distances in the Universe. "We think the white dwarf in RS Ophiuchi is about as massive as a white dwarf can get, and so is close to the point when it will become a supernova," said Jennifer Sokoloski, of the Harvard- Smithsonian Center for Astrophysics. "If astronomers use such supernovae to measure the Universe, it's important to fully understand how these systems evolve prior to the explosion," she added. RS Ophiuchi is a "recurrent" nova that experienced such blasts in 1898, 1933, 1958, 1967, and 1985 prior to this year's event. Sokoloski also pointed out that RS Ophiuchi is "a very special type of system," in which the nova explosions occur inside a gaseous nebula created by the stellar wind coming from the red giant companion to the white dwarf. "This means that we can track the outward-moving blast wave from the explosion by observing X-rays produced as the blast plows through this nebula," said Sokoloski, who led a team using the Rossi X-Ray Timing Explorer (RXTE) satellite to do so. "One natural way to produce what we observe is with an explosion that was not spherical," she added. Another surprise came when the radio waves coming from RS Ophiuchi indicated that a strong magnetic field is present in the material ejected by the explosion. "This is the first case we've seen that showed signs of such a magnetic field in a recurrent nova," said Michael Rupen who, with Amy Mioduszewski, both of the National Radio Astronomy Observatory, and Sokoloski, did another study of the system using the VLBA. Rupen pointed out the importance of observing the object with both X-ray and radio telescopes. "What we could infer from the X-ray data, we could image with the radio telescopes," he said. All the researchers agree that their studies show that the explosion is more complex than scientists previously thought such blasts to be. "It's a jet-like explosion, probably shaped by the geometry of the binary-star system at the center," said O'Brien. Rupen added that RS Ophiuchi showed the "earliest detection ever of such a jet. In fact, we could actually tell -- within a couple of days -- when the jet turned on." The new information is valuable for understanding not just nova explosions but other stellar blasts, the scientists believe. "The physics is analogous to the physics of supernova explosions, so what we're learning from this object can be applied to supernovae and possibly to stellar explosions in general," Sokoloski said. In addition, she said, "in the early days of this explosion, we saw changes in the blast wave that it would take hundreds of years to see in a supernova explosion." The teams led by O'Brien and Sokoloski reported their findings in the July 20 edition of the scientific journal Nature. Rupen and Mioduszewski are submitting their results to the Astrophysical Journal Letters. Working with O'Brien were Mike Bode of Liverpool John Moores University in the U.K., Richard Porcas of the Max Planck Institute for Radioastronomy in Germany, Tom Muxlow of Jodrell Bank Observatory, Stewart Eyres of the University of Central Lancashire in the U.K., Rob Beswick, Simon Garrington and Richard Davis, all of Jodrell Bank, and Nye Evans of Keele University in the U.K. Working with Sokoloski were Gerardo Luna of the Harvard Smithsonian Center for Astrophysics, Koji Mukai of NASA's Goddard Space Flight Center and Scott Kenyon of the Harvard-Smithsonian Center for Astrophysics. In addition to the VLBA, O'Brien's group used the NSF's Very Large Array (VLA), the Multi-Element Radio-Linked Interferometer Network (MERLIN) in the U.K., and the European VLBI Network (EVN). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Turbulent fluctuations and the excitation of Z Cam outbursts

    NASA Astrophysics Data System (ADS)

    Ross, Johnathan; Latter, Henrik N.

    2017-09-01

    Z Cam variables are a subclass of dwarf nova that lie near a global bifurcation between outbursting ('limit cycle') and non-outbursting ('standstill') states. It is believed that variations in the secondary star's mass-injection rate instigate transitions between the two regimes. In this paper, we explore an alternative trigger for these transitions: stochastic fluctuations in the disc's turbulent viscosity. We employ simple one-zone and global viscous models which, though inappropriate for detailed matching to observed light curves, clearly indicate that turbulent disc fluctuations induce outbursts when the system is sufficiently close to the global bifurcation point. While the models easily produce the observed 'outburst/dip' pairs exhibited by Z Cam and Nova-like variables, they struggle to generate long trains of outbursts. We conclude that mass transfer variability is the dominant physical process determining the overall Z Cam standstill/outburst pattern, but that viscous stochasticity provides an additional ingredient explaining some of the secondary features observed.

  16. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.

  17. The SSS classical nova V5116 Sgr

    NASA Astrophysics Data System (ADS)

    Sala, G.; Ness, J.; Greiner, J.; Hernanz, M.

    2017-10-01

    XMM-Newton observed the nova V5116 Sgr during its supersoft phase (SSS). V5116 Sgr showed a decrease of the flux by a factor around 8 during 2/3 of the orbital period. The broad band EPIC spectra remain unchanged during the different flux phases, suggesting an occultation of the central source in a high inclination system. While the global SED does not change significantly, the RGS spectrum is changing between the high and the low flux phases. The non-occultation phase shows a typical white dwarf atmosphere spectrum, dominated by absorption lines. During the low flux periods an extra component of emission lines is superimposed to the soft X-ray continuum. This supports the picture of V5116 Sgr as the clearest example of a system switching between the SSa class of SSS novae, with spectra dominated by absorption lines, and the SSe class, showing an emission lines component. In addition, the simultaneous OM images allow us to find a phase solution for the X-ray light-curve. A thick rim of the accretion disk as the one developed for the SSSs CAL 87, RX J0019.8, and RX J0513.9 could provide a plausible model both for the optical and the X-ray light curve of V5116 Sgr.

  18. Superhumps in cataclysmic variables: I. T. Leonis

    NASA Astrophysics Data System (ADS)

    Lemm, Kristi; Patterson, Joseph; Thomas, Gino; Skillman, David R.

    1993-10-01

    We report photometry of the dwarf nova T Leonis during its 1993 supermaximum. The principle outburst lasted approximately 20 days, during which large-amplitude superhumps were consistently seen in the light curve. The mean period was 86.7 + or - 0.1 min, about 2.4% longer than the orbital period determined from radial-velocity measurements. Analysis of data obtained during the 1987 supermaximum implies that the superhump period decreased slowly, with dP/dt = - 6 x 10-5, or dP/dm = -0.6 min. mag. These are typical values for SU Ursae Majoris-type dwarf novae. At the end of the outburst, the star suddenly brightened again to magnitude 13, from which it declined on a time scale of about 1 day and without superhumps. It is possible that this event was a normal outburst. This suggests that superoutbursts can trigger normal outbursts, and may explain the 'bump' frequently found in the light curves of SU UMa stars very late in a superoutburst.

  19. UV spectroscopy of Z Chamaeleontis. I - Time dependent dips in superoutburst

    NASA Technical Reports Server (NTRS)

    Harlaftis, E. T.; Hassall, B. J. M.; Naylor, T.; Charles, P. A.; Sonneborn, G.

    1992-01-01

    Extensive IUE observations of the dwarf nova Z Cha during the 1987 April superoutburst and IUE-Exosat observations during the 1985 July superoutburst are presented. The UV light curve shows two dips when folded on the orbital period. One dip, at orbital phase 0.8 becomes shallower as the superoutburst progresses and can be associated with decreasing mass transfer rate from the secondary star. The other dip, at orbital phase 0.15, appears after the development of the superhump and some days after the occurrence of the largest dip at phase 0.8. The continuum flux distribution during superoutbursts is fainter and redder than in low-inclination dwarf novae during superoutbursts. This is interpreted in terms of the extended vertical disk structure which occults the hot inner parts of the disk with the development of a 'cool' bulge on the edge of the disk at orbital phase 0.75. Details of the behaviour of the UV emission lines during eclipse and away from eclipse are discussed.

  20. The Masses and Evolutionary State of the Stars in the Dwarf Nova SS Cygni

    NASA Astrophysics Data System (ADS)

    Bitner, Martin A.; Robinson, Edward L.; Behr, Bradford B.

    2007-06-01

    The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg. Fits of synthetic spectra for Roche lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K star's radial velocity curve and the mass ratio, KK=162.5+/-1.0 km s-1 and q=MK/MWD=0.685+/-0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f=0.535+/-0.075 of the total flux at 5500 Å. Taking the weighted average of our results with previously published results obtained using similar techniques, we find =163.7+/-0.7 km s-1 and =0.683+/-0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations, we limit the orbital inclination to the range 45deg<=i<=56deg. The derived masses of the K star and white dwarf are MK=0.55+/-0.13 Msolar and MWD=0.81+/-0.19 Msolar, where the uncertainties are dominated by systematic errors in the orbital inclination. The K star in SS Cyg is 10%-50% larger than an unevolved star with the same mass and thus does not follow the mass-radius relation for zero-age main-sequence stars, nor does it follow the ZAMS mass-spectral type relation. Its mass and spectral type are, however, consistent with models in which the core hydrogen has been significantly depleted. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  1. β Decay as a Probe of Explosive Nucleosynthesis in Classical Novae

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bardayan, D. W.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Fry, C.; Glassman, B.; Irvine, D.; José, J.; Langer, C.; Larson, N.; McNeice, E. I.; Meisel, Z.; Montes, F.; Naqvi, F.; Pain, S. D.; O'Malley, P.; Ortez, R.; Ong, W.; Pereira, J.; Pérez-Loureiro, D.; Prokop, C.; Quaglia, J.; Quinn, S.; Santia, M.; Schatz, H.; Schwartz, S. B.; Simon, A.; Shanab, S.; Spyrou, A.; Suchyta, S.; Thiagalingam, E.; Thompson, P.; Walters, M.

    Classical novae are common thermonuclear explosions in the Milky Way galaxy, occurring on the surfaces of white-dwarf stars that are accreting hydrogen-rich material from companion stars. Nucleosynthesis in classical novae depends on radiative proton-capture reaction rates on radioactive nuclides. Many of these reactions cannot be measured directly at current accelerator facilities due to the lack of intense, high-quality, radioactive-ion beams at the relevant energies. Since most of these reactions proceed via resonant capture, their rates can be determined indirectly by measuring the properties of the resonances. At the National Superconducting Cyclotron Laboratory, we have used the β-delayed γ decays of 26P and 31Cl to populate resonances in 26Si and 31S and study the radiative proton captures on 25Al and 30P, respectively. These were two out of the three most important nuclear-physics uncertainties associated with the observable products of nova nucleosynthesis. The 26P experiment has enabled a more accurate estimate of the nova contribution to the long-lived Galactic 26Al detected with γ-ray telescopes. The 31Cl experiment, currently under analysis, will calibrate potential nova thermometers and mixing meters based on elemental abundance ratios, and facilitate the identification of pre-solar nova grain candidates found in primitive meteorites based on isotopic ratios.

  2. Overshoot Convective Mixing in Nova Outbursts

    NASA Astrophysics Data System (ADS)

    Glasner, A. S.; Livne, E.; Truran, J. W.

    2014-12-01

    We present a 2D study of the overshoot convective mechanism in nova outbursts for a wide range of possible compositions of the layer underlying the accreted envelope. Previous surveys studied this mechanism only for solar composition matter accreted on top of carbon oxygen (CO) white dwarfs. Since, during the runaway, mixing with carbon enhances the hydrogen burning rates dramatically, one should question whether significant enrichment of the ejecta is possible also for other underlying compositions (He, O, Ne, Mg) predicted by stellar evolution models. When needed we upgraded our reaction network and simulated several non-carbon cases. Despite large differences in rates, time scales and energetics, our results show that the convective dredge up mechanism predicts significant enrichment in all cases, including that of helium enrichment in recurrent novae.

  3. The 2011 outburst of recurrent nova T PYX: Radio observations reveal the ejecta mass and hint at complex mass loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam

    2014-04-10

    Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausiblemore » range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.« less

  4. ToO Galactic Nova -- Michelle ``Quick Response''

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2006-08-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  5. Synoptic Mid-IR Spectra ToO Novae

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2007-02-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  6. Development of a Monte Carlo code for the data analysis of the {sup 18}F(p,α){sup 15}O reaction at astrophysical energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, A.; Cherubini, S.; Spitaleri, C.

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called 'narrow systems' because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclearmore » fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of 'hot hydrogen burning' are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as {sup 13}N and {sup 18}F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of {sup 18}F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of {sup 18}F. Among these, the {sup 18}F(p,α){sup 15}O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the {sup 18}F(p,α){sup 15}O reaction, using a beam of {sup 18}F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.« less

  7. Life after eruption VII: A search for stunted outbursts in thirteen post-novae

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Tappert, C.; Puebla, E. C.; Fuentes-Morales, I.; Ederoclite, A.; Schmidtobreick, L.

    2018-06-01

    The results of a photometric campaign during three observing seasons 2013 - 2016 at the Cerro Tololo International Observatory (1.3-meter SMARTS telescope) are presented. The aim was to detect "stunted" outbursts in a total of 13 post novae more than 38 years after maximum brightness registered in their nova eruption light curve. In six of the targets (V728 Sco 1862, V1059 Sgr 1898, V849 Oph 1919, V363 Sgr 1927, HS Pup 1963 and V2572 Sgr 1969) we detected such dwarf nova-like mini-outbursts, with mean amplitudes between 0.2m and 2.2m and typical FWHM of 4-11 days, repeating every 9-32 days. The most regular outburst behavior is present in the eclipsing post-nova V728 Sco. In our sample there is no significant correlation between the occurrences of stunted outbursts and the time passed since the nova eruption maximum. However, considering all 15 post-novae that have been reported to show stunted outbursts we found a possible tendency for increasing outburst amplitudes at the rate 0.52 ± 0.23 mag/century during 30 - 250 years after nova eruption. This tendency is still doubtful due to the low number of cases available. If the stunted outburst activity is related to the mass transfer rate \\dot{M}, we conclude that the secular decrease of \\dot{M} predicted by the hibernation scenario must be at much longer time scales than ˜200 years actually covered with post-nova observations.

  8. A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp

    2015-01-10

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of theirmore » lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.« less

  9. Strong circumstantial proofs about the intermediate polar nature of the cataclysmic variable SS Cygni

    NASA Astrophysics Data System (ADS)

    Giovannelli, Franco; Sabau-Graziati, Lola

    This paper is the updated version of that published in the proceedings of the Integral/Bart Workshop 2011 (Giovannelli & Sabau-Graziati, 2012a). SS Cyg is a cataclysmic variable usually classified as dwarf nova, a subclass of the non-magnetic cataclysmic variables. The goal of this paper is to demonstrate -- on the basis of the many arguments and circumstantial proofs derived from the numerous multifrequency data obtained from the SS Cyg binary system -- that such classification is wrong and that the intermediate polar nature of SS Cyg is the most probable. We derive the magnetic field intensity at the surface of the white dwarf in SS Cyg as B ≃ 1.6 ± 0.7 MG. This value is in complete agreement with the evaluation made by Fabbiano et al. (1981) (B< 1.9 MG) using simultaneous X-ray, UV, and optical data.

  10. Disks, Winds, and Veiling Curtains: Dissecting the Ultraviolet Spectrum of the Dwarf Nova Z Camelopardalis in Outburst

    NASA Astrophysics Data System (ADS)

    Knigge, Christian; Long, Knox S.; Blair, William P.; Wade, Richard A.

    1997-02-01

    We present a far-ultraviolet spectrum of the dwarf nova Z Cam near the peak of a normal outburst as observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-2 mission. The continuum shape and luminosity are almost identical to an Astro-1 HUT spectrum of the same object in a similar state obtained about 4 years or 50 outburst episodes earlier. This suggests that, following the onset of an outburst, the system quickly reaches a (quasi-) steady state that is insensitive to the interoutburst history. A variance analysis of the Astro-2 data reveals no evidence for spectral variability on a timescale of minutes. The rms amplitude of any intrinsic fluctuations is <5% of the flux in both continuum and lines. Z Cam's continuum can be described moderately well in terms of an optically thick, steady state accretion disk with Ṁacc ~= 3 × 1017 g s-1 if the disk is assumed to radiate as an ensemble of stellar atmospheres. This type of model reproduces the turnover in the data at about 1050 Å, but the predicted spectrum is somewhat too blue at longer wavelengths, causing it to underpredict the flux longward of about 1500 Å. This discrepancy appears to be resistant to all potential remedies we have tested, which include differential limb-darkening, reddening, and white dwarf, boundary layer, or hot spot spectral components. This suggests either that our modeling of the standard accretion disk picture is too simplistic--the effects of radial interactions and disk irradiation, for example, have been ignored--or that the standard picture itself may require modification. Blackbody disk models actually match the data better at longer HUT wavelengths, but the redder color of these models is a direct consequence of the neglect of all radiative transfer effects. The same neglect prevents blackbody models from reproducing the turnover in the spectrum and causes them to overpredict the accretion rate. We use a Monte Carlo line profile synthesis code to model five of the high-ionization lines in Z Cam's spectrum in terms of a simple, kinematic description of a rotating, biconical accretion disk wind. Adopting the picture of such an outflow that has recently been proposed for another cataclysmic variable, UX UMa, we find that acceptable fits to the data can be obtained. The relative mean ionization fractions we derive for the ionic species included in our wind modeling appear to be consistent with photoionization by a radiation field with T ~ 1.2 × 105 K. This temperature is within the range that has recently been inferred for Z Cam's soft X-ray component from ROSAT data and similar to the boundary layer temperature that has been derived on the basis of Extreme-Ultraviolet Explorer (EUVE) observations for the dwarf nova U Gem in outburst. An important feature of our adopted outflow model is the existence of a vertically extended, dense, slow-moving ``transition region'' between the disk photosphere and the fast-moving wind. Using a static LTE slab to crudely model this region, we find many of the absorption features in Z Cam's line spectrum that we have not modeled with our Monte Carlo code. The physical conditions expected in the extended disk atmosphere--ne ~ 1012 cm-3, NH ~ 1022 cm-2, and T ~= few × 104 K--are similar to those in the ``Fe II curtain'' that has been found to veil the white dwarf in the dwarf nova OY Car in quiescence. Based on observations obtained with the Hopkins Ultraviolet Telescope as part of the Astro-2 mission.

  11. Evidence for GeV cosmic rays from white dwarfs in the local cosmic ray spectra and in the gamma-ray emissivity of the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Lee, Shiu-Hang; Makishima, Kazuo; Shibata, Shinpei; Shigeyama, Toshikazu

    2018-03-01

    Recent observations found that electrons are accelerated to ˜10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected, implying that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor ˜2.5. The cosmic rays (CRs) produced by local CVs and novae will accumulate in the local bubble for 106-107 yr. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum from gamma-ray spectra at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy (>100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs, and that the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100-200 GeV. All local CR spectra populate a limited energy band below 100-200 GeV and enhance gamma-ray emissivity below ˜10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.

  12. Watching a 'New Star' Make the Universe Dusty

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Using ESO's Very Large Telescope Interferometer, and its remarkable acuity, astronomers were able for the first time to witness the appearance of a shell of dusty gas around a star that had just erupted, and follow its evolution for more than 100 days. This provides the astronomers with a new way to estimate the distance of this object and obtain invaluable information on the operating mode of stellar vampires, dense stars that suck material from a companion. Uncovering the disc ESO PR Photo 22/08 Dust shells around a nova Although novae were first thought to be new stars appearing in the sky, hence their Latin name, they are now understood as signaling the brightening of a small, dense star. Novae occur in double star systems comprising a white dwarf - the end product of a solar-like star - and, generally, a low-mass normal star - a red dwarf. The two stars are so close together that the red dwarf cannot hold itself together and loses mass to its companion. Occasionally, the shell of matter that has fallen onto the ingesting star becomes unstable, leading to a thermonuclear explosion which makes the system brighter. Nova Scorpii 2007a (or V1280 Scorpii), was discovered by Japanese amateur astronomers on 4 February 2007 towards the constellation Scorpius ("the Scorpion"). For a few days, it became brighter and brighter, reaching its maximum on 17 February, to become one of the brightest novae of the last 35 years. At that time, it was easily visible with the unaided eye. Eleven days after reaching its maximum, astronomers witnessed the formation of dust around the object. Dust was present for more than 200 days, as the nova only slowly emerged from the smoke between October and November 2007. During these 200 days, the erupting source was screened out efficiently, becoming more than 10,000 times dimmer in the visual. An unprecedented high spatial resolution monitoring of the dust formation event was carried out with the Very Large Telescope Interferometer (VLTI), extending over more than 5 months following the discovery. The astronomers first used the AMBER near-infrared instrument, then, as the nova continued to produce dust at a high rate, they moved to using the MIDI mid-infrared instrument, that is more sensitive to the radiation of the hot dust. Similarly, as the nova became fainter, the astronomers switched from the 1.8-m Auxiliary Telescopes to their larger brethren, the 8.2-m Unit Telescopes. With the interferometry mode, the resolution obtained is equivalent to using a telescope with a size between 35 and 71 metres (the distance between the 2 telescopes used). The first observations, secured 23 days after the discovery, showed that the source was very compact, less than 1 thousandth of an arcsecond (1 milli-arcsecond or mas), which is a size comparable to viewing one grain of sand from about 100 kilometres away. A few days later, after the detection of the major dust formation event, the source measured 13 mas. "It is most likely that the latter size corresponds to the diameter of the dust shell in expansion, while the size previously measured was an upper limit of the erupting source," explains lead author Olivier Chesneau. Over the following months the dusty shell expanded regularly, at a rate close to 2 million km/h. "This is the first time that the dust shell of a nova is spatially resolved and its evolution traced starting from the onset of its formation up to the point that it becomes too diluted to be seen", says co-author Dipankar Banerjee, from India. The measurement of the angular expansion rate, together with the knowledge of the expansion velocity, enables the astronomer to derive the distance of the object, in this case about 5500 light-years. "This is a new and promising technique for providing distances of close novae. This was made possible because the state of the art facility of the VLTI, both in terms of infrastructure and management of the observations, allows one to schedule such observations," says co-author Markus Wittkowski from ESO. Moreover, the quality of the data provided by the VLTI was such that it was possible to estimate the daily production of dust and infer the total mass ejected. "Overall, V1280 Sco probably ejected more than the equivalent of 33 times the mass of the Earth, a rather impressive feat if one considers that this mass was ejected from a star not larger in radius than the Earth," concludes Chesneau. Of this material, about a percent or less was in the form of dust.

  13. OV Bootis: Forty Nights Of World-Wide Photometry

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; de Miguel, Enrique; Barret, Douglas; Brincat, Stephen; Boardman, James, Jr.; Buczynski, Denis; Campbell, Tut; Cejudo, David; Cook, Lew; Cook, Michael J.; Collins, Donald; Cooney, Walt; Dubois, Franky; Dvorak, Shawn; Halpern, Jules P.; Kroes, Anthony J.; Lemay, Damien; Licchelli, Domenico; Mankel, Dylan; Marshall, Matt; Novak, Rudolf; Oksanen, Arto; Roberts, George; Seargeant, Jim; Sears, Huei; Silcox, Austin; Slauson, Douglas; Stone, Geoff; Thorstensen, J. R.; Ulowetz, Joe; Vanmunster, Tonny; Wallgren, John; Wood, Matt

    2017-06-01

    Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo" - the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody...... and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!

  14. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  15. The scientific results of the low energy portion of A-2

    NASA Technical Reports Server (NTRS)

    Garmire, G.

    1979-01-01

    Galactic phenomena observed using the HEAO 1 detectors are discussed. A source map of the soft X-ray sky is presented. Specific topics covered include the optical outburst of U Geminorum, low energy RS CVn stars, and the dwarf nova SS Cygni. Aspects of the SS Cygni pulsations are analyzed.

  16. A Brief Glossary of Commonly Used Astronomical Terms.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…

  17. Twenty Years of Work with Janet Mattei on Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Szkody, P.

    2005-08-01

    Janet Mattei and the AAVSO database have had a large impact on the field of cataclysmic variables, especially in the areas of outburst light curves of dwarf novae and ground-based support of space observations. A summary of some of the major results from AAVSO data during the last 20 years is presented.

  18. T Pyxidis: The First Cataclysmic Variable with a Collimated Jet

    NASA Technical Reports Server (NTRS)

    Shahbaz, T.; Livio, M.; Southwell, K. A.; Charles, P. A.

    1997-01-01

    We present the first observational evidence for a collimated jet in a cataclysmic variable system; the recurrent nova T Pyxidis. Optical spectra show bipolar components of H(alpha) with velocities approx. 1400 km/s, very similar to those observed in the supersoft X-ray sources and in SS 433. We argue that a key ingredient of the formation of jets in the supersoft X-ray sources and T Pyx (in addition to an accretion disk threaded by a vertical magnetic field), is the presence of nuclear burning on the surface of the white dwarf.

  19. Selected highlights from the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1995-01-01

    We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.

  20. Nova Ophiuchus 2017 as a Probe of 13C Nucleosynthesis and Carbon Monoxide Formation and Destruction in Classical Novae

    NASA Astrophysics Data System (ADS)

    Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit

    2017-12-01

    We present a series of near-infrared spectra of Nova Ophiuchus 2017 in the K band that record the evolution of the first overtone CO emission in unprecedented detail. Starting from 11.7 days after maximum, when CO is first detected at great strength, the spectra track the CO emission to +25.6 days by which time it is found to have rapidly declined in strength by almost a factor of ∼35. The cause for the rapid destruction of CO is examined in the framework of different mechanisms for CO destruction, namely, an increase in photoionizating flux, chemical pathways of destruction, or destruction by energetic nonthermal particles created in shocks. From LTE modeling of the CO emission, the 12C/13C ratio is determined to be 1.6 ± 0.3. This is consistent with the expected value of this parameter from nucleosynthesis theory for a nova eruption occuring on a low mass (∼ 0.6 {M}ȯ ) carbon–oxygen core white dwarf. The present 12C/13C estimate constitutes one of the most secure estimates of this ratio in a classical nova.

  1. An accreting white dwarf near the Chandrasekhar limit in the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.

    The intermediate Palomar Transient Factory (iPTF) detection of the most recent outburst of the recurrent nova (RN) system RX J0045.4+4154 in the Andromeda galaxy has enabled the unprecedented study of a massive (M > 1.3 M {sub ☉}) accreting white dwarf (WD). We detected this nova as part of the near-daily iPTF monitoring of M31 to a depth of R ≈ 21 mag and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of M{sub R} = –6.6 mag, and with a decay time of 1 mag per day, it is a faintmore » and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900-2600 km s{sup –1} 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT {sub eff} ≈ 90-110 eV that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is an RN with a time between outbursts of approximately 1 yr, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a M > 1.3 M {sub ☉} WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to M-dot >1.7×10{sup −7} M{sub ⊙} yr{sup −1} and WD mass >1.30 M {sub ☉}. If the WD keeps 30% of the accreted material, it will take less than a Myr to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.« less

  2. IRAS observations of binaries with compact objects

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.

    1986-01-01

    The infrared emission data, obtained on 260 binary systems by the all-sky IRAS survey in wavelengths between 12 and 100 microns, are reported. Of all the 260 sources, which contained compact objects including white dwarfs, neutron stars, or possibly black holes, only 32 contained detectable IR radiation. The X-ray emitting Be-type stars (gamma-Cas and X Per) were found to have their energy flux proportional to frequency in the range of the log nu values of 12.7-14.7. However, the GS304-1 flux distribution is unique, in that its flux rises by several orders of magnitude as the wavelength changes from 4000 A to 60 microns. A static dust cloud was detected, with a radius of about 1 AU, which has formed around the classical nova RR Pic since its 1925 eruption. The post-eruption far-IR light curve of a classical nova provides strong evidence for IR emissions from both dust grains formed during the eruption and dust grains existing from previous eruptions.

  3. Photoionisation modelling of Nova LMC 1990 #1

    NASA Technical Reports Server (NTRS)

    Dopita, M. A.; Meatheringham, S. J.; Sutherland, R.; Williams, R. E.; Starrfield, S.; Sonneborn, G.; Shore, S.

    1992-01-01

    Nova LMC 1990A was a very fast Ne-O-Mg nova, for which a particularly dense coverage of spectral observation in both the UV and optical was obtained. The data for the nebular phase were subjected to an analysis by the photoionization modeling code MAPPINGS 2. The following parameters were obtained: L(sub max) = 8 x 10(exp 4) solar luminosity, T(sub eff) = 2 x 10(exp 5) K and the mass of ejecta = 5/5 x 10(exp -5) solar mass. The abundnace ratios in the ejecta were similar to those obtained by Williams et al. (1985) in the case of V693 CrA 1981. The N/O ratio and the overabundance of Al is consistent with ourburst on a ONeMg white dwarf of mass approximately equal to 1.2 solar mass, but the super-Eddington luminosity, and amount of mass ejected presents some problems to theory.

  4. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow waist, with lobes on each side. Two knots are also seen at both the extreme ends of the shell, which appear to move at about 30 million kilometres per hour. The shell - unlike any previously observed for a nova - is itself moving at about 24 million kilometres per hour. A thick disc of dust, which must have been produced during the last outburst, obscures the two central stars. "The incredible detail that we can see on such small scales - about hundred milliarcseconds, which is the apparent size of a one euro coin seen from about forty kilometres - is only possible thanks to the adaptive optics technology available on large ground-based telescopes such as ESO's VLT," says Steeghs. A supernova is one way that a star can end its life, exploding in a display of grandiose fireworks. One family of supernovae, called Type Ia supernovae, are of particular interest in cosmology as they can be used as "standard candles" to measure distances in the Universe [3] and so can be used to calibrate the accelerating expansion that is driven by dark energy. One defining characteristic of Type Ia supernovae is the lack of hydrogen in their spectrum. Yet hydrogen is the most common chemical element in the Universe. Such supernovae most likely arise in systems composed of two stars, one of them being the end product of the life of sun-like stars, or white dwarfs. When such white dwarfs, acting as stellar vampires that suck matter from their companion, become heavier than a given limit, they become unstable and explode [4]. The build-up is not a simple process. As the white dwarf cannibalises its prey, matter accumulates on its surface. If this layer becomes too dense, it becomes unstable and erupts as a nova. These controlled, mini-explosions eject part of the accumulated matter back into space. The crucial question is thus to know whether the white dwarf can manage to gain weight despite the outburst, that is, if some of the matter taken from the companion stays on the white dwarf, so that it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: http://www.eso.org/public/astronomy/technology/adaptive_optics.html [3] See for example http://www.eso.org/~bleibund/papers/EPN/epn.html [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey Facility and the SIRIUS camera at the Sutherland station of the South African Astronomical Observatory. More information This research was presented in a paper to appear in the 20 November 2009 issue of the Astrophysical Journal, vol. 706, p. 738 ("The expanding bipolar shell of the helium nova V445 Puppis", by P. A. Woudt et al.). The team is composed of P. A. Woudt and B. Warner (University of Cape Town, South Africa), D. Steeghs and T. R. Marsh (University of Warwick, UK), M. Karovska and G. H. A. Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA), P. J. Groot and G. Nelemans (Radboud University Nijmegen, the Netherlands), T. Nagayama (Kyoto University, Japan), D. P. Smits (University of South Africa, South Africa), and T. O'Brien (University of Manchester, UK). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.

  6. Rms-flux relation and fast optical variability simulations of the nova-like system MV Lyr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Mineshige, S.; Ness, J.-U.

    2015-03-01

    The stochastic variability (flickering) of the nova-like system (subclass of cataclysmic variable) MV Lyr yields a complicated power density spectrum with four break frequencies. Scaringi et al. analysed high-cadence Kepler data of MV Lyr, taken almost continuously over 600 d, giving the unique opportunity to study multicomponent Power Density Spectra (PDS) over a wide frequency range. We modelled this variability with our statistical model based on disc angular momentum transport via discrete turbulent bodies with an exponential distribution of the dimension scale. Two different models were used, a full disc (developed from the white dwarf to the outer radius of ˜1010 cm) and a radially thin disc (a ring at a distance of ˜1010 cm from the white dwarf) that imitates an outer disc rim. We succeed in explaining the two lowest observed break frequencies assuming typical values for a disc radius of 0.5 and 0.9 times the primary Roche lobe and an α parameter of 0.1-0.4. The highest observed break frequency was also modelled, but with a rather small accretion disc with a radius of 0.3 times the primary Roche lobe and a high α value of 0.9 consistent with previous findings by Scaringi. Furthermore, the simulated light curves exhibit the typical linear rms-flux proportionality linear relation and the typical log-normal flux distribution. As the turbulent process is generating fluctuations in mass accretion that propagate through the disc, this confirms the general knowledge that the typical rms-flux relation is mainly generated by these fluctuations. In general, a higher rms is generated by a larger amount of superposed flares which is compatible with a higher mass accretion rate expressed by a larger flux.

  7. Hydrogen burning of oxygen-17

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    Classical novae are explosive binary systems involving the accretion of hydrogen rich material from a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T = 0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the modeling of these explosions. Novae are thought to be the most significant source of 15 N and 17 O in the universe. The 17 O(p,g) 18 F and 17 O(p,g) 14 N reactions have an important effect on nucleosynthesis in novae, since they determine the creation and destruction of 17 O and 18 F, which produces detectable g- radiation. The dominant contributor to the 17 O(p,g) 14 N reaction is a resonance at [Special characters omitted.] = 193 keV. The strength of this resonance has been measured and the results are presented. For the 17 O(p,g) 18 F reaction, the dominant contribution comes from the nonresonant direct capture process. The literature direct capture cross sections currently differ by a factor of two. This cross section has been measured in the current work and the results are also presented. New reaction rates have been calculated with these measured cross sections using a new Monte Carlo technique and these new rates have significantly reduced uncertainties compared to the current literature.

  8. Three New Z Cam Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2016-12-01

    (Abstract only) I will present the evidence and discovery stories of three cataclysmic variables who appear to be members of the Z Cam class of dwarf novae. One discovered by a lone visual observer and his unwavering patience and persistence, one through the directed effort of the ongoing Z CamPaign and one via survey data from the Gaia satellite.

  9. OV Bootis: Forty Nights of World-Wide Photometry (Abstract)

    NASA Astrophysics Data System (ADS)

    Patterson, J.; de Miguel, E.; Barret, D.; Brincat, S.; Boardman, J., Jr.; Buczynski, D.; Campbell, T.; Cejudo, D.; Cook, L.; Cook, M. J.; Collins, D.; Cooney, W.; Dubois, F.; Dvorak, S.; Halpern, J. P.; Kroes, A. J.; Lemay, D.; Licchelli, D.; Mankel, D.; Marshall, M.; Novak, R.; Oksanen, A.; Roberts, G.; Seargeant, J.; Sears, H.; Silcox, A.; Slauson, D.; Stone, G.; Thorstensen, J. R.; Ulowetz, J.; Vanmunster, T.; Wallgren, J.; Wood, M.

    2017-12-01

    (Abstract only) Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo"-the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody - and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!

  10. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  11. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  12. On the Existence of Low-Luminosity Cataclysmic Variables Beyond the Orbital Period Minimum

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Rappaport, Saul; Politano, Michael

    1997-01-01

    Models of the present-day intrinsic population of cataclysmic variables predict that 99 per cent of these systems should be of short orbital period. The Galaxy is old enough that approx. 70 per cent of these stars will have already reached their orbital period minimum (approx. 80 min), and should be evolving back toward longer periods. Mass-transfer rates in these highly evolved binaries are predicted to be less or equal to 10(exp -11), leading to M(sub V) of approx. 10 or fainter, and the secondaries would be degenerate, brown dwarf-like stars. Recent observations of a group of low-luminosity dwarf novae (TOADS) provide observational evidence for systems with very low intrinsic M,. and possibly low-mass secondaries. We carry out population synthesis and evolution calculations for a range of assumed ages of the Galaxy in order to study P(sub orb) and M distributions for comparison with the TOAD observations. We speculate that at least some of the TOADs are the predicted very low- luminosity, post-period-minimum cataclysmic variables containing degenerate (brown dwarf-like) secondaries having masses between 0.02 and 0.06 M, and radii near 0.1 R., We show that these low-luminosity systems are additionally interesting in that they can be used to set a lower limit on the age of the Galaxy. The TOAD with the longest orbital period currently known (123 min), corresponds to a Galaxy age of at least 8.6 x 10(exp 9) yr.

  13. Ultraviolet spectral variations of symbiotic nova PU Vul during and after second eclipse

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2016-12-01

    I have analyzed spectral data of the symbiotic nova PU Vul observed with the International Ultraviolet Explorer (IUE) during the period 1993-1996. The study concentrated on the two sources of nebular emitting regions, the first is a nebula around the white dwarf partially eclipsed by a cool giant star and the second is a very extended nebular region not affected by the eclipse of the giant star. I concentrated on the N IV] 1486 Å and C IV 1550 Å emission lines produced in the first region and N III] 1750 Å and C III] 1909 Å emission lines produced in the second region very far from the giant star.

  14. HUBBLE SEES CHANGES IN GAS SHELL AROUND NOVA CYGNI 1992

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The European Space Agency's ESA Faint Object Camera utilizing the corrective optics provided by NASA's COSTAR (Corrective Optics Space Telescope Axial Replacement), has given astronomers their best look yet at a rapidly ballooning bubble of gas blasted off a star. The shell surrounds Nova Cygni 1992, which erupted on February 19, 1992. A nova is a thermonuclear explosion that occurs on the surface of a white dwarf star in a double star system. The new HST image [right] reveals an elliptical and slightly lumpy ring-like structure. The ring is the edge of a bubble of hot gas blasted into space by the nova. The shell is so thin that the FOC does not resolve its true thickness, even with HST's restored vision. An HST image taken on May 31 1993, [left] 467 days after the explosion, provided the first glimpse of the ring and a mysterious bar-like structure. But the image interpretation was severely hampered by HST's optical aberration, that scattered light from the central star which contaminated the ring's image. A comparison of the pre and post COSTAR/FOC images reveals that the ring has evolved in the seven months that have elapsed between the two observations. The ring has expanded from a diameter of approximately 74 to 96 billion miles. The bar-like structure seen in the earlier HST image has disappear. These changes might confirm theories that the bar was produced by a dense layer of gas thrown off in the orbital plane of the double star system. The gas has subsequently grown more tenuous and so the bar has faded. The ring has also grown noticeably more oblong since the earlier image. This suggests the hot gas is escaping more rapidly above and below the system's orbital plane. As the gas continues escaping the ring should grow increasingly egg-shaped in the coming years. HST's newly improved sensitivity and high resolution provides a unique opportunity to understand the novae by resolving the effects of the explosion long before they can be resolved in ground based telescopes. Nova Cygni is 10,430 light years away (as measured directly from the ring's diameter), and located in the summer constellation Cygnus the Swan. Credit: F. Paresce, R. Jedrzejewski (STScI) NASA/ESA PHOTO RELEASE NO.: STScI-PR94-06

  15. Breaking the Habit - The peculiar 2016 eruption of the remarkable recurrent nova M31N 2008-12a

    NASA Astrophysics Data System (ADS)

    Henze, Martin; M31N 2008-12a Monitoring Collaboration

    2018-01-01

    Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every year. This makes it the most extreme member of the new class of Rapidly Recurring Novae (RRN) which show repeated eruptions within a time span of a decade or less. Such frequent outbursts indicate a high mass accretion rate onto a white dwarf that is extremely close to the Chandrasekhar limit, thereby making RRN the most promising observable candidates for the progenitors of type-Ia supernovae currently known.The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multi-wavelength properties. From a relatively faint peak brightness the optical light curve declined rapidly by two magnitudes in less than two days. Early spectra showed high velocities that declined significantly within days and displayed clear helium and nitrogen lines throughout. The supersoft X-ray source phase of the nova began extremely early, around day six after eruption, and only lasted for about two weeks.In contrast, the delayed 2016 eruption showed significant deviations from the established pattern. In this talk, I will discuss the observational results and their impact on our understanding of the physics and evolution of this unique nova.

  16. Photometric long-term variations and superhump occurrence in the Classical Nova RR Pictoris

    NASA Astrophysics Data System (ADS)

    Fuentes-Morales, I.; Vogt, N.; Tappert, C.; Schmidtobreick, L.; Hambsch, F.-J.; Vučković, M.

    2018-02-01

    We present an analysis of all available time-resolved photometry from the literature and new light curves obtained in 2013-2014 for the old nova RR Pictoris. The well-known hump light curve phased with the orbital period reveals significant variations over the last 42 yr in shape, amplitude and other details which apparently are caused by long-term variations in the disc structure. In addition, we found evidence for the presence of superhumps in 2007, with the same period ( ˜ 9 per cent longer than the orbital period), as reported earlier by other authors from observations in 2005. Possibly, superhumps arise quickly in RR Pic, but are sporadic events, because in all the other observing runs analysed no significant superhump signal was detected. We also determined an actual version of the Stolz-Schoembs relation between superhump period and orbital period, analysing separately dwarf novae, classical novae and nova-like stars, and conclude that this relation is of general validity for all superhumpers among the cataclysmic variables (CVs), in spite of small but significant differences among the sub-types mentioned above. We emphasize the importance of such a study in context with the still open question of the interrelation between the different sub-classes of CVs, crucial for our understanding of the long-term CV evolution.

  17. Period changes of the long-period cataclysmic binary EX Draconis

    NASA Astrophysics Data System (ADS)

    Pilarčík, L.; Wolf, M.; Dubovský, P. A.; Hornoch, K.; Kotková, L.

    2012-03-01

    The cataclysmic variable star EX Dra is a relatively faint but frequently investigated eclipsing dwarf nova. In total 35 new eclipses were measured photometrically as part of our long-term monitoring of interesting eclipsing systems. Using published and new mid-eclipse times obtained between 2004 and 2011 we constructed the observed-minus-calculated diagram. The current data present 21 years of period modulation with a semi-amplitude of 2.5 min. The eclipse timings show significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not a complete description of the data. The fractional period change is roughly ΔP/P = 3 × 10-6.

  18. The orbital and superhump periods of the deeply eclipsing dwarf nova SDSS J150240.98+333423.9

    NASA Astrophysics Data System (ADS)

    Shears, J.; Campbell, T.; Foote, J.; Garrett, R.; Hager, T.; Mack Julian, W.; Kemp, J.; Masi, G.; Miller, I.; Patterson, J.; Richmond, M.; Ringwald, F.; Roberts, G.; Ruiz, J.; Sabo, R.; Stein, W.

    2011-04-01

    During 2009 July we observed the first confirmed superoutburst of the eclipsing dwarf nova SDSS J150240.98+333423.9 using CCD photometry. The outburst amplitude was at least 3.9 magnitudes and it lasted at least 16 days. Superhumps having up to 0.35 mags peak-to-peak amplitude were present during the outburst, thereby establishing it to be a member of the SU UMa family. The mean superhump period during the first 4 days of the outburst was Psh= 0.06028(19)d, although it increased during the outburst with dPsh/dt= +2.8(1.0)?10^-4. The orbital period was measured as Porb= 0.05890946(5)d from times of eclipses measured during outburst and quiescence. Based on the mean superhump period, the superhump period excess was e= 0.023(3). The FWHM eclipse duration declined from a maximum of 10.5 min at the peak of the outburst to 3.5 min later in the outburst. The eclipse depth increased from ~0.9 mag to 2.1 mag over the same period. Eclipses in quiescence were 2.7 min in duration and 2.8 mag deep.

  19. Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst

    NASA Technical Reports Server (NTRS)

    Bullock, Eric; Szkody, Paula; Mukadam, Anjum S.; Borges, Bernardo W.; Fraga, Luciano; Gansicke, Boris T.; Harrison, Thomas E.; Henden, Arne; Holtzman, Jon; Howell, Steve B.; hide

    2011-01-01

    The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state.

  20. Sonification of Kepler Field SU UMa Cataclysmic Variable Stars V344 Lyr and V1504 Cyg

    NASA Technical Reports Server (NTRS)

    Tutchton, Roxanne M.; Wood, Matt A.; Still, Martin D.; Howell, Steve B.; Cannizzo, John K.; Smale, Alan P.

    2012-01-01

    Sonification is the conversion of quantitative data into sound. In this work we explain the methods used in the sonification of light curves provided by the Kepler instrument from Q2 through Q6 for the cataclysmic variable systems V344 Lyr and V1504 Cyg . Both systems are SU UMa stars showing dwarf nova outbursts and superoutbursts as well as positive and negative superhumps. Focused sonifications were done from average pulse shapes of each superhump, and separate sonifications of the full, residual light curves were done for both stars. The audio of these data reflected distinct patterns within the evolutions of supercycles and superhumps that matched pervious observations and proved to be effective aids in data analysis.

  1. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    NASA Technical Reports Server (NTRS)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  2. A Public Set of Synthetic Spectra from Expanding Atmospheres for X-Ray Novae. I. Solar Abundances

    NASA Astrophysics Data System (ADS)

    van Rossum, Daniel R.

    2012-09-01

    X-ray grating observations have revealed great detail in the spectra of novae in the Super Soft Source (SSS) phase. Notable features in the SSS spectra are blueshifted absorption lines, P-Cygni line profiles, and the absence of strong ionization edges, all of which are indicators of an expanding atmosphere. We present, and make publicly available, a set of 672 wind-type (WT) synthetic spectra, obtained from the expanding NLTE SSS models introduced in Van Rossum & Ness with the PHOENIX stellar atmosphere code. The set presented in this paper is limited to solar abundances with the aim to focus on the basic model parameters and their effect on the spectra, providing the basis upon which abundance effects can be studied using a much bigger non-solar set in the next paper in this series. We fit the WT spectra to the five grating spectra taken in the SSS phase of nova V4743 Sgr 2003 as an example application of the WT models. Within the limits of solar abundances we demonstrate that the following parameters are constrained by the data (in order of decreasing accuracy): column density N H, bolometric luminosity L bol, effective temperature T eff, white dwarf radius R, wind asymptotic velocity v ∞, and the mass-loss rate \\dot{M}. The models are also sensitive to the assumed white dwarf mass M WD but the effect on the spectra can largely be compensated by the other model parameters. The WT spectra with solar abundances fit the data better than abundance optimized hydrostatic models.

  3. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  4. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.

  5. ASASSN-17fp rebrightening event and ongoing monitoring

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-05-01

    ASASSN-17fp, discovered on 2017 April 28 and classified as a helium dwarf nova, was observed to be in outburst again on May 16 after fading 2.5 magnitudes from its original outburst. Dr. Tom Marsh (University of Warwick) and Dr. Elme Breedt (University of Cambridge) requested immediate time-series coverage. Dr. Breedt wrote: "The transient was identified as a helium dwarf nova (also known as an AMCVn star) from a spectrum taken by the PESSTO survey and reported in ATel #10334. Since then, we have been observing the target using the New Technology Telescope on La Silla in Chile. We measured a photometric period of 51 minutes in the first few nights during which the object was bright at g=16.03 (Marsh et al., ATel #10354), and then it faded to about g 18. However last night [ May 16] it brightened back to g 16 again, apparently starting a second outburst. Time series observations during this bright state would be very valuable to determine whether the 51 min period we saw in earlier data returns, and whether it is the orbital period of the binary or related to the distortion of the accretion disc in outburst (superhumps). If the 51 min signal is the orbital period or close to it, this would be the helium dwarf nova with the longest orbital period known. Multiple successive outbursts are not uncommon in binaries like this..." Observers should continue to monitor ASASSN-17fp with nightly snapshots for two weeks after it fades, in case it rebrightens again. It appears to have faded, according to an observation in the AAVSO International Database by F.-J. Hambsch (HMB, Mol, Belgium), who observed it remotely from Chile on 2017 May 24.2252 UT at magnitude 19.944 CV ± 0.595. Continue nightly snapshots through June 6 at least, and if it brightens again, resume time series. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Databa! se. See full Alert Notice for more details.

  6. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-11-01

    We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.

  7. SW Sextantis in an excited, low state

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Rutten, R. G. M.; van Paradijs, J.

    2001-03-01

    We present low-resolution spectrophotometric optical observations of the eclipsing nova-like cataclysmic variable SW Sex, the prototype of the SW Sex stars. We observed the system when it was in an unusual low state. The spectrum is characterized by the presence of strong Heii and Civ emission lines as well as the normal single peaked Balmer emission lines. The radial temperature profile of the disk follows the expected T~ R-3/4 only in the outer parts and flattens off inside 0.5 times the white dwarf Roche lobe radius. The single peaked emission lines originate in a region above the plane of the disk, at the position of the hot spot.

  8. New {sup 34}Cl proton-threshold states and the thermonuclear {sup 33}S(p,{gamma}){sup 34}Cl rate in ONe novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parikh, A.; Faestermann, T.; Kruecken, R.

    2009-07-15

    Analysis of presolar grains in primitive meteorites has shown isotopic ratios largely characteristic of the conditions thought to prevail in various astrophysical environments. A possible indicator for a grain of ONe nova origin is a large {sup 33}S abundance: nucleosynthesis calculations predict as much as 150 times the solar abundance of {sup 33}S in the ejecta of nova explosions on massive ONe white dwarfs. This overproduction factor may, however, vary by factors of at least 0.01-3 because of uncertainties of several orders of magnitude in the {sup 33}S(p,{gamma}){sup 34}Cl reaction rate at nova peak temperatures (T{sub peak}{approx}0.1-0.4 GK). These uncertaintiesmore » arise due to the lack of nuclear physics information for states within {approx}600 keV of the {sup 33}S+p threshold in {sup 34}Cl (S{sub p}({sup 34}Cl) = 5143 keV). To better constrain this rate we have measured, for the first time, the {sup 34}S({sup 3}He,t){sup 34}Cl reaction over the region E{sub x}({sup 34}Cl) = 4.9-6 MeV. We confirm previous states and find 15 new states in this energy region. New {sup 33}S(p,{gamma}){sup 34}Cl resonances at E{sub R}=281(2), 301(2), and 342(2) keV may dominate this rate at relevant nova temperatures. Our results could affect predictions of sulphur isotopic ratios in nova ejecta (e.g., {sup 32}S/{sup 33}S) that may be used as diagnostic tools for the nova paternity of grains.« less

  9. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  10. Photometric and Spectroscopic Analysis of Classical Novae: An Examination of Their Observational Characteristics and Greater Astronomical Impact

    NASA Astrophysics Data System (ADS)

    Helton, Lorren Andrew

    2010-12-01

    Classical novae (CNe) are violent thermonuclear explosions arising on the surface of white dwarfs in binary systems and are contributors to the chemical evolution of the interstellar medium through the production and ejection of copious amounts of metal-rich material. Observations and modeling of CNe eruptions illuminate numerous fundamental processes of astrophysical interest, including non-equilibrium thermonuclear runaway, radiative processes in dynamic nebular environments, binary star interaction, as well as dust condensation and grain growth. Here I summarize key findings from selected Galactic CNe observed as part of a 5 year, panchromatic optical/infrared observing campaign using Spitzer, Gemini, and other ground based optical facilities. In particular, I present detailed analysis of nova V1065 Centauri, including photoionization analysis of the emission lines, which enabled the derivation of abundances in the ejecta, and radiative transport modeling of the dust emission features, which allowed determination of the composition and characteristics of the dust in this system. I present analysis of three novae, V1974 Cygni, V382 Velorum, and V1494 Aquilae, observed from 4.4--15.5 years after outburst, discuss the characteristics of the nebulae at these late times, and estimate the abundances in their ejecta. In the case of V1494 Aql, I also report the first detection of neon. Finally, I present observations of three novae, DZ Crucis, V2361 Cygni, and V2362 Cygni, that exhibited unidentified infrared (UIR) features in their mid-infrared spectra, which exhibited unusual characteristics. I relate these features to other dusty novae in which features with similar characteristics were observed, and discuss possible sources for the UIR carriers. Analysis of the data obtained in the CNe monitoring campaign presented here highlights the need for synoptic observations obtained with broad wavelength coverage. Observations of V1065 Cen, which exhibited spectra rich in metals (e.g O, Ne, Mg, S, Ar, and Fe) produced during the thermonuclear runaway and through dredge up from the surface layers of the underlying WD, yielded robust estimates of WD composition, ejecta mass, and absolute abundances in the ejecta. Dusty novae such as V1065 Cen, V2362 Cyg, and V2361 Cyg, produced a variety of grain types as revealed by emission features characteristic of silicates, hydrogenated amorphous carbon dust, and PAH-like molecules, often in the same system. This data set is exceptional in that observations of many targets commenced immediately after eruption and followed the development for hundreds of days post-outburst providing unique insight into the evolution of conditions within the ejecta including the complete cycle of growth, processing, and dissipation of dust grains.

  11. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  12. Thermonuclear runaways in nova outbursts

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David; Fryxell, Bruce A.

    1992-01-01

    Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.

  13. Binary supersoft X-ray sources and the supernova Ia progenitor problem

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas John

    In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe Ia that appear to be associated with recent star formation.

  14. Improving the {sup 33}S(p,{gamma}){sup 34}Cl Reaction Rate for Models of Classical Nova Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parikh, A.; Faestermann, Th.; Kruecken, R.

    2011-10-28

    Reduced uncertainty in the thermonuclear rate of the {sup 33}S(p,{gamma}){sup 34}Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times themore » solar abundance of {sup 33}S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved {sup 33}S(p,{gamma}){sup 34}Cl rate (the principal destruction mechanism for {sup 33}S in novae) would help to ensure a robust model prediction for the amount of {sup 33}S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of {sup 34}Cl(E{sub x} = 146 keV, t{sub 1/2} = 32 m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the {sup 33}S(p,{gamma}){sup 34}Cl rate, using both indirect methods (measurement of the {sup 34}S({sup 3}He,t){sup 34}Cl and {sup 33}S({sup 3}He,d){sup 34}Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables.« less

  15. The Progenitor and Remnant of the Helium Nova V445 Puppis

    NASA Astrophysics Data System (ADS)

    Goranskij, V.; Shugarov, S.; Zharova, A.; Kroll, P.; Barsukova, E. A.

    2010-10-01

    V445 Pup was a peculiar nova with no hydrogen spectral lines during the outburst. The spectrum contained strong emission lines of carbon, oxygen, calcium, sodium, and iron. We have performed digital processing of photographic images of the V445 Pup progenitor using astronomical plate archives. The brightness of the progenitor in the B band was 14.3m. It was a periodic variable star, its most probable period being 0.650654+/-0.000011 days. The light curve shape suggests that the progenitor was a common-envelope binary with a spot on the surface and variable surface brightness. The spectral energy distribution of the progenitor between 0.44 and 2.2 microns was similar to that of an A0V type star. After the explosion in 2001, the dust was formed in the ejecta, and the star became a strong infrared source. This resulted in the star's fading below 20m in the V band. Our CCD BVR observations acquired between 2003 and 2009 suggest that the dust absorption minimum finished in 2004, and the remnant reappeared at the level of 18.5m V. The dust dispersed but a star-like object was absent in frames taken in the K band with the VLT adaptive optics. Only expanding ejecta of the explosion were seen in these frames till March 2007. No reddened A0V type star reappeared in the spectral energy distribution. The explosion of V445 Pup in 2000 was a helium flash on the surface of a CO-type white dwarf. Taking into account the results of modern dynamic calculations, we discuss the possibility of a white-dwarf core detonation triggered by the helium flash and the observational evidence for it. Additionally, the common envelope of the system was lost in the explosion. Destruction in the system and mass loss from its components exclude the future SN Ia scenario for V445 Pup.

  16. An eLIMA model for the 67 s X-ray periodicity in CAL 83

    NASA Astrophysics Data System (ADS)

    Odendaal, A.; Meintjes, P. J.

    2017-05-01

    Supersoft X-ray sources (SSSs) are characterized by their low effective temperatures and high X-ray luminosities. The soft X-ray emission can be explained by hydrogen nuclear burning on the surface of a white dwarf (WD) accreting at an extremely high rate. A peculiar ˜67 s periodicity (P67) was previously discovered in the XMM-Newton light curves of the SSS CAL 83. P67 was detected in X-ray light curves spanning ˜9 yr, but exhibits variability of several seconds on time-scales as short as a few hours, and its properties are remarkably similar to those of dwarf nova oscillations (DNOs). DNOs are short time-scale modulations (≲1 min) often observed in dwarf novae during outburst. DNOs are explained by the well-established low-inertia magnetic accretor (LIMA) model. In this paper, we show that P67 and its associated period variability can be satisfactorily explained by an application of the LIMA model to the more 'extreme' environment in an SSS (eLIMA), contrary to another recent study attempting to explain P67 and its associated variability in terms of non-radial g-mode oscillations in the extended envelope of the rapidly accreting WD in CAL 83. In the eLIMA model, P67 originates in an equatorial belt in the WD envelope at the boundary with the inner accretion disc, with the belt weakly coupled to the WD core by an ˜105 G magnetic field. New optical light curves obtained with the Sutherland High-speed Optical Camera are also presented, exhibiting quasi-periodic modulations on time-scales of ˜1000 s, compatible with the eLIMA framework.

  17. MID-INFRARED SPECTROSCOPIC OBSERVATIONS OF THE DUST-FORMING CLASSICAL NOVA V2676 OPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakita, Hideyo; Arai, Akira; Shinnaka, Yoshiharu

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C{sub 2} and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon ({sup 12}C/{sup 13}C) and nitrogen ({sup 14}N/{sup 15}N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infraredmore » spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μ m was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μ m originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.« less

  18. Increasing Supercycle Lengths of Active SU UMa-type Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Otulakowska-Hypka, M.; Olech, A.

    2014-12-01

    We present observational evidence that supercycle lengths of the most active SU UMa-type stars are increasing during the past decades. We analyzed a large number of photometric measurements from available archives and found that this effect is generic for this class of stars, independently of their evolutionary status. This finding is in agreement with previous predictions and the most recent work of Patterson et al. (2012) on BK Lyn.

  19. MULTIPLICITY OF NOVA ENVELOPE SOLUTIONS AND OCCURRENCE OF OPTICALLY THICK WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Hachisu, Izumi

    2009-07-10

    We revisit the occurrence condition of optically thick winds reported by Kato in 1985 and Kato and Hachisu in 1989 who mathematically examined nova envelope solutions with an old opacity and found that optically thick winds are accelerated only in massive white dwarfs (WDs) of {approx}>0.9 M{sub sun}. With the OPAL opacity we find that the optically thick wind occurs for {approx}>0.6 M{sub sun} WDs and that the occurrence of winds depends not only on the WD mass but also on the ignition mass. When the ignition mass is larger than a critical value, winds are suppressed by a density-inversionmore » layer. Such a static solution can be realized in WDs of mass {approx}0.6-0.7 M{sub sun}. We propose that sequences consisting only of static solutions correspond to slow evolutions in symbiotic novae like PU Vul because PU Vul shows no indication of strong winds in a long-lasted flat peak followed by a very slow decline in its light curve.« less

  20. Suzaku Observation of the Classical Nova V2491 Cyg in Quiescence

    NASA Technical Reports Server (NTRS)

    Zemko, P.; Mukai, K.; Orio, M.

    2015-01-01

    We present Suzaku XIS observation of V2491 Cyg (Nova Cyg 2008 No. 2) obtained in quiescence, more than two years after the outburst. The nova was detected as a very luminous source in a wide spectral range from soft to hard X-rays. A very soft blackbody-like component peaking at 0.5 keV indicates that either we observe remaining, localized hydrogen burning on the surface of the white dwarf, or accretion onto a magnetized polar cap. In the second case, V2491 Cyg is a candidate "soft intermediate polar". We obtained the best fit for the X-ray spectra with several components: two of thermal plasma, a blackbody and a complex absorber. The later is typical of intermediate polars. The X-ray light-curve shows a modulation with an approximately 38 min period. The amplitude of this modulation is strongly energy dependent and reaches maximum in the 0.8-2.0 keV range. We discuss the origin of the X-ray emission and pulsations, and the likelihood of the intermediate polar scenario.

  1. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  2. An extensive optical study of V2491 Cyg (Nova Cyg 2008 N.2), from maximum brightness to return to quiescence

    NASA Astrophysics Data System (ADS)

    Munari, U.; Siviero, A.; Dallaporta, S.; Cherini, G.; Valisa, P.; Tomasella, L.

    2011-04-01

    The photometric and spectroscopic evolution of the He/N and very fast Nova Cyg 2008 N.2 (V2491 Cyg) is studied in detail. A primary maximum was reached at V = 7.45 ± 0.05 on April 11.37 (±0.1) 2008 UT, followed by a smooth decline characterized by t2V=4.8 days, and then a second maximum was attained at V = 9.49 ± 0.03, 14.5 days after the primary one. This is the only third nova to have displayed a secondary maximum, after V2362 Cyg and V1493 Aql. The development and energetics of the secondary maximum is studied in detail. The smooth decline that followed was accurately monitored until day +144 when the nova was 8.6 mag fainter than maximum brightness, well into its nebular phase, with its line and continuum emissivity declining as t-3. The reddening affecting the nova was EB- V = 0.23 ± 0.01, and the distance of 14 kpc places the nova at a height above the galactic plane of 1.1 kpc, larger than typical for He/N novae. The expansion velocity of the bulk of ejecta was 2000 km/s, with complex emission profiles and weak P-Cyg absorptions during the optically thick phase, and saddle-like profiles during the nebular phase. Photo-ionization analysis of the emission line spectrum indicates that the mass ejected by the outburst was 5.3 × 10 -6 M ⊙ and the mass fractions to be X = 0.573, Y = 0.287, Z = 0.140, with those of individual elements being N = 0.074, O = 0.049, Ne = 0.015. The metallicity of the accreted material was [Fe/H] = -0.25, in line with ambient value at the nova galacto-centric distance. Additional spectroscopic and photometric observations at days +477 and +831 show the nova returned to the brightness level of the progenitor and to have resumed the accretion onto the white dwarf.

  3. Firework Nova

    NASA Image and Video Library

    2015-07-02

    In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings. Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions. A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.

  4. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely thank them. The white dwarf community has been steadily growing since the first white dwarf workshop, held in Kiel (Germany) in 1974. Some of the participants in the first colloquium have already effectively retired; others - although officially retired - continue to attend successive workshops, Professor Weidemann, one of the first organizers, being a leading example. We hope we will be able to continue counting on them for many years. A very graphical view of the evolution of the field can be found in the homepage of Professor Detlev Koester, who has collected pictures of almost all the previous workshops:. Additionally, several astronomers coming from related fields have joined our (not so) small community. Most importantly, several generations of young scientists gave their first talks in these workshops. In summary our community is an active one, and we have close, durable and solid ties of friendship. We are optimistic and we foresee that the spirit of the previous workshops will continue in future editions. We would like to express our deepest gratitude to our sponsors: The Universitat Politècnica de Catalunya (UPC), the Institut de Ciències de l'Espai (CSIC), the Institute for Space Studies of Catalonia (IEEC), the Spanish Ministry of Education and Science, the Generalitat de Catalunya, the Ajuntament de Barcelona, the School of Civil Engineering of Barcelona and UPCnet. Finally, the IEEC staff and our graduate students have enthusiastically supported the organization of the workshop in every single detail; without them we would have not succeeded. We thank them especially. Also, we acknowledge the task of the Scientific Organizing Committee, which gave their full support in all the scientific tasks. Enrique García-Berro, UPC Margarida Hernanz, ICE (CSIC) Jordi Isern, ICE (CSIC) Santiago Torres, UPC Editors Conference photograph

  5. Highly-evolved stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1981-01-01

    The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.

  6. A DWARF NOVA IN THE GLOBULAR CLUSTER M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Servillat, M.; Van den Berg, M.; Grindlay, J.

    Dwarf novae (DNe) in globular clusters (GCs) seem to be rare with only 13 detections in the 157 known Galactic GCs. We report the identification of a new DN in M13, the 14th DN identified in a GC to date. Using the 2 m Faulkes Telescope North, we conducted a search for stars in M13 that show variability over a year (2005-2006) on timescales of days and months. This led to the detection of one DN showing several outbursts. A Chandra X-ray source is coincident with this DN and shows both a spectrum and variability consistent with that expected frommore » a DN, thus supporting the identification. We searched for a counterpart in Hubble Space Telescope Advanced Camera for Surveys/Wide Field Camera archived images and found at least 11 candidates, of which we could characterize only the 7 brightest, including one with a 3{sigma} H{alpha} excess and a faint blue star. The detection of one DN when more could have been expected likely indicates that our knowledge of the global Galactic population of cataclysmic variables is too limited. The proportion of DNe may be lower than found in catalogs, or they may have a much smaller mean duty cycle ({approx}1%) as proposed by some population synthesis models and recent observations in the field.« less

  7. A luminous, blue progenitor system for the type Iax supernova 2012Z

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.

    2014-08-01

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  8. A luminous, blue progenitor system for the type Iax supernova 2012Z.

    PubMed

    McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D

    2014-08-07

    Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

  9. Instabilities in Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other parts of the ILA project are “Stellar Bell” (interesting pulsating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct with changes of characteristics) and “Novice”(=“New Variable”) discoveries and classification based on special own observations and data mining with a subsequent monitoring for searching and studying possible multiple components of variability. Special mathematical methods have been developed to create a set of complementary software for statistically optimal modeling of variable stars of different types.

  10. WD+RG systems as the progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Han, Zhan-Wen

    2010-03-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log Pi - Mi2) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs (<0.45 Modot).

  11. HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Brown, Justin

    2013-09-20

    Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less

  12. Measuring the Spin Rate Change of V455 And

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gaensicke, Boris T; Hermes, JJ

    2014-06-01

    V455 And (HS2331+3905) is an unusual cataclysmic variable that displays both an orbital (81 min) and a spin (67s) period, thus classifying it as an Intermediate Polar. The magnetic field of this interacting white dwarf channels the accretion stream from the secondary towards the white dwarf poles, which become heated, resulting in the visibility of both the spin period and its harmonic in the lightcurves of V455 And. Our group has been observing this object since its discovery. In 2007, V455 And underwent a large amplitude dwarf nova outburst. This provided an unique opportunity to gauge the overall angular momentum gain due to its long-term accretion as well as its 2007 outburst. Using these data that span the timebase of a decade from 2003 to 2013, we constrain the rate of change of its spin period with time to be dP/dt = (-6.8 +/- 4.8) 10^{-15} s/s for the spin period of 67.61970396 +/- 0.00000024s. We were able to fit the pre- and post-outburst data together because we did not find any evidence for a significant discontinuity in the O-C diagram due to the 2007 outburst. This implies that the magnetic field couples the angular momentum gain to the white dwarf interior. Our next goal is to constrain the angular momentum evolution of a non-magnetic accreting white dwarf to probe how the gain in angular momentum due to accretion is transferred to the envelope and core of the white dwarf.

  13. An Unusual Transient in the Extremely Metal-Poor Galaxy SDSS J094332.35+332657.6 (Leoncino Dwarf)

    NASA Astrophysics Data System (ADS)

    Filho, Mercedes E.; Sánchez Almeida, J.

    2018-05-01

    We have serendipitously discovered that Leoncino Dwarf, an ultra-faint, low-metallicity record-holder dwarf galaxy, may have hosted a transient source, and possibly exhibited a change in morphology, a shift in the center of brightness, and peak variability of the main (host) source in images taken approximately 40 yr apart; it is highly likely that these phenomena are related. Scenarios involving a Solar System object, a stellar cluster, dust enshrouding, and accretion variability have been considered, and discarded, as the origin of the transient. Although a combination of time-varying strong and weak lensing effects, induced by an intermediate mass black hole (104 - 5 × 105 M⊙) moving within the Milky Way halo (0.1 - 4 kpc), can conceivably explain all of the observed variable galaxy properties, it is statistically highly unlikely according to current theoretical predictions, and, therefore, also discarded. A cataclysmic event such as a supernova/hypernova could have occurred, as long as the event was observed towards the later/late-stage descent of the light curve, but this scenario fails to explain the absence of a post-explosion source and/or host HII region in recent optical images. An episode related to the giant eruption of a luminous blue variable star, a stellar merger or a nova, observed at, or near, peak magnitude may explain the transient source and possibly the change in morphology/center of brightness, but can not justify the main source peak variability, unless stellar variability is evoked.

  14. No hot and luminous progenitor for Tycho's supernova

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.

    2017-11-01

    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  15. Superhumps linked to X-ray emission. The superoutbursts of SSS J122221.7-311525 and GW Lib

    NASA Astrophysics Data System (ADS)

    Neustroev, V. V.; Page, K. L.; Kuulkers, E.; Osborne, J. P.; Beardmore, A. P.; Knigge, C.; Marsh, T.; Suleimanov, V. F.; Zharikov, S. V.

    2018-03-01

    Context. We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS J122222) from 6 days after discovery. Aims: Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. Methods: We collected 60 Swift-XRT observations of SSS J122222 between 2013 January 6 and 2013 July 1. Four follow-up observations were performed in 2014, 2015, 2016 and 2017. The total exposure time of our observations is 86.6 ks. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. Results: SSS J122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS J122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. Conclusions: We show that the X-ray flux exhibits changes at the times of changes in the superhump behaviour of both SSS J122222 and GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and suggests that models for accretion discs in high mass ratio accreting binaries are currently incomplete. The very long decline to X-ray quiescence is also in strong contrast to the expectation of low viscosity in the disc after outburst.

  16. FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.

    2012-01-20

    The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less

  17. On the colour variations of negative superhumps

    NASA Astrophysics Data System (ADS)

    Imada, Akira; Yanagisawa, Kenshi; Kawai, Nobuyuki

    2018-06-01

    We present simultaneous g΄, Rc, and Ic photometry of the notable dwarf nova ER UMa during the 2011 season. Our photometry revealed that the brightness maxima of negative superhumps coincide with the bluest peaks in g΄ - Ic colour variations. We also found that the amplitudes of negative superhumps are the largest in the g΄ band. These observed properties are significantly different from those observed in early and positive superhumps. Our findings are consistent with a tilted disk model as the light source of negative superhumps.

  18. CXO J004318.8+412016, a steady supersoft X-ray source in M 31

    NASA Astrophysics Data System (ADS)

    Orio, Marina; Luna, G. J. M.; Kotulla, R.; Gallager, J. S.; Zampieri, L.; Mikolajewska, J.; Harbeck, D.; Bianchini, A.; Chiosi, E.; Della Valle, M.; de Martino, D.; Kaur, A.; Mapelli, M.; Munari, U.; Odendaal, A.; Trinchieri, G.; Wade, J.; Zemko, P.

    2017-09-01

    We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Å. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 1035 erg s-1 and a few times 1037 erg s-1 in the space of a few weeks. The optical, infrared and ultraviolet colours of the optical object are consistent with an an accretion disc around a compact object companion, which may be either a white dwarf or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m ≥ 1.2 M⊙) and it is accreting and burning at the high rate \\dot{m} > 10^{-8} M⊙ yr-1 expected for Type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.

  19. Direct measurement of astrophysically important resonances in 38K(p ,γ )39Ca

    NASA Astrophysics Data System (ADS)

    Christian, G.; Lotay, G.; Ruiz, C.; Akers, C.; Burke, D. S.; Catford, W. N.; Chen, A. A.; Connolly, D.; Davids, B.; Fallis, J.; Hager, U.; Hutcheon, D.; Mahl, A.; Rojas, A.; Sun, X.

    2018-02-01

    Background: Classical novae are cataclysmic nuclear explosions occurring when a white dwarf in a binary system accretes hydrogen-rich material from its companion star. Novae are partially responsible for the galactic synthesis of a variety of nuclides up to the calcium (A ˜40 ) region of the nuclear chart. Although the structure and dynamics of novae are thought to be relatively well understood, the predicted abundances of elements near the nucleosynthesis endpoint, in particular Ar and Ca, appear to sometimes be in disagreement with astronomical observations of the spectra of nova ejecta. Purpose: One possible source of the discrepancies between model predictions and astronomical observations is nuclear reaction data. Most reaction rates near the nova endpoint are estimated only from statistical model calculations, which carry large uncertainties. For certain key reactions, these rate uncertainties translate into large uncertainties in nucleosynthesis predictions. In particular, the 38K(" close=")p ,γ )">p ,γ 39Ca reaction has been identified as having a significant influence on Ar, K, and Ca production. In order to constrain the rate of this reaction, we have performed a direct measurement of the strengths of three candidate ℓ =0 resonances within the Gamow window for nova burning, at 386 ±10 keV, 515 ±10 keV, and 689 ±10 keV. Method: The experiment was performed in inverse kinematics using a beam of unstable 38K impinged on a windowless hydrogen gas target. The 39Ca recoils and prompt γ rays from 38K, 39Ca reactions were detected in coincidence using a recoil mass separator and a bismuth-germanate scintillator array, respectively. Results: For the 689 keV resonance, we observed a clear recoil-γ coincidence signal and extracted resonance strength and energy values of 120-30+50(stat.)-60 +20(sys .) meV and 679-1+2(stat .) ±1 (sys .) keV , respectively. We also performed a singles analysis of the recoil data alone, extracting a resonance strength of 120 ±20 (stat .)±15 (sys .) meV, consistent with the coincidence result. For the 386 keV and 515 keV resonances, we extract 90 % confidence level upper limits of 2.54 meV and 18.4 meV, respectively. Conclusions: We have established a new recommended 38K(p ,γ ) 39Ca rate based on experimental information, which reduces overall uncertainties near the peak temperatures of nova burning by a factor of ˜250 . Using the rate obtained in this work in model calculations of the hottest oxygen-neon novae reduces overall uncertainties on Ar, K, and Ca synthesis to factors of 15 or less in all cases.

  20. Eclipse studies of the dwarf nova EX Draconis

    NASA Astrophysics Data System (ADS)

    Baptista, R.; Catalán, M. S.; Costa, L.

    2000-08-01

    We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a M0+/-2 main-sequence star.

  1. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    NASA Astrophysics Data System (ADS)

    2000-07-01

    The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours. After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min and were carried out with three optical filters (B, V and I). The most distant Novae observed so far ESO PR Photo 18b/00 ESO PR Photo 18b/00 [Preview - JPEG: 400 x 452 pix - 83k] [Normal - JPEG: 800 x 904 pix - 224k] ESO PR Photo 18c/00 ESO PR Photo 18c/00 [Preview - JPEG: 400 x 458 pix - 54k] [Normal - JPEG: 800 x 916 pix - 272k] Caption : Images of two of the novae in NGC 1316 that were discovered during the observational programme described in this Press Release. Both composites show the blue images (B-filter) obtained on January 9 (upper left), 12 (upper right), 15 (lower left) and 19 (lower right), 2000, respectively. The decline of the brightness of the objects is obvious. An analysis of the images that were obtained in blue light (B-filter) resulted in the detection of four novae. They were identified because of the typical change of brightness over the observation period, cf. PR Photos 18b-c/00 , as well as their measured colours. Although the time-consuming reduction of the data and the subsequent astrophysical interpretation is still in progress, the astronomers are already now very satisfied with the outcome. In particular, no less than four novae were detected in a single giant galaxy within only 11 days . This implies a rate of approximately 100 novae/year in NGC 1316, or about 3 times larger than the rate estimated for the Milky Way galaxy. This may (at least partly) be due to the fact that NGC 1316 is of a different type and contains more stars than our own galaxy. The novae in NGC 1316 are quite faint, of about magnitude 24 and decreasing towards 25-26 during the period of observation. This corresponds to nearly 100 million times fainter than what can be seen with the naked eye. The corresponding distance to NGC 1316 is found to be about 70 million light-years . Moreover, the discovery of four novae in one galaxy in the Fornax cluster was possible with only 3 hours of observing time per filter. This clearly shows that the new generation of 8-m class telescopes like the VLT, equipped with the new and large detectors, is able to greatly improve the efficiency of this type of astronomical investigations (by a factor of 10 or more) , as compared to previous searches with 4-m telescopes. The road is now open for exhaustive searches for novae in remote galaxies, with all the resulting benefits, also for the accurate determination of the extragalactic distance scale. Notes [1]: The group consists of Massimo Della Valle (Osservatorio Astrofisico di Arcetri, Firenze, Italy), Roberto Gilmozzi and Rodolfo Viezzer (both ESO). [2]: A graphical illustration of the nova phenomenon can be found at this website. [3]: For example, in 1987, Canadian astronomers Christopher Pritchet and Sidney van den Bergh , in an heroic tour de force with the 4-m Canada-France-Hawaii telescope, found 9 novae after 56 hours of monitoring of 3 giant elliptical galaxies in the Virgo cluster of galaxies.

  2. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    NASA Astrophysics Data System (ADS)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  3. The Symbiotic System SS73 17 seen with Suzaku

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig

    2007-01-01

    We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.

  4. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  5. VizieR Online Data Catalog: CONCH-SHELL catalog of nearby M dwarfs (Gaidos+, 2014)

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Mann, A. W.; Lepine, S.; Buccino, A.; James, D.; Ansdell, M.; Petrucci, R.; Mauas, P.; Hilton, E. J.

    2015-04-01

    Lepinet et al. 2011 (J/AJ/142/138) selected candidate M dwarfs as stars that were (i) bright (J<10), (ii) red (V-J>2.7), (iii) had absolute magnitudes or reduced proper motions, proxies for absolute magnitudes, consistent with the main sequence and (iv) infrared Two Micron All-Sky Survey (2MASS; Skrutskie et al. 2006, Cat. II/246) JHKS colours that are consistent with M dwarfs. In this work, we constructed a revised catalogue of J<9 M dwarfs using modified criteria and new photometry from APASS. Spectroscopic observations with a resolution if ~1000 were achieved at the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Maunakea, Hawaii, the Mark III spectrograph and Boller & Chivens CCDS spectrograph (CCDS) on the 1.3m McGraw-Hill telescope at the MDM Observatory on Kitt Peak, Arizona, the REOSC spectrograph on the 2.15m Jorge Sahade telescope at the Complejo Astronomico El Leoncito Observatory (CASLEO), Argentina, and the RC spectrograph on the 1.9m Radcliffe telescope at the South African Astronomical Observatory. We obtained a total of 3071 spectra of 2583 stars or 86% of the catalog over the span 2002-2014 of more than 11 years. 425 stars were observed twice, 14 stars were observed thrice, and 6 stars had more than four observations. (2 data files).

  6. Photometric evolution of seven recent novae and the double-component characterizing the light curve of those emitting in gamma rays

    NASA Astrophysics Data System (ADS)

    Munari, U.; Hambsch, F.-J.; Frigo, A.

    2017-08-01

    The BVI light curves of seven recent novae (I.e. V1534 Sco, V1535 Sco, V2949 Oph, V3661 Oph, MASTER OT J010603.18-744715.8, TCP J1734475-240942 and ASASSN-16ma) have been extensively mapped with daily robotic observations from Atacama (Chile): five belong to the Galactic bulge, one to the Small Magellanic Cloud and another is a Galactic disc object. The two programme novae detected in γ-rays by Fermi-LAT (I.e. TCP J1734475-240942 and ASASSN-16ma) are bulge objects with unevolved companions. They distinguish themselves by showing a double-component optical light curve. The first component to develop is the fireball from freely expanding, ballistic-launched ejecta, with a time of passage through maximum that is strongly dependent on wavelength (˜1 d delay between the B and I bands). The second component, emerging simultaneously with the nova detection in γ-rays, evolves at a slower pace, its optical brightness being proportional to the γ-ray flux, and its passage through maximum not dependent on wavelength. The fact that γ-rays are detected at a flux level that differs by four times from novae at the distance of the bulge seems to suggest that γ-ray emission is not a widespread property of normal novae. We discuss the advantages offered by high-quality photometric observations collected with only one telescope (as opposed to data provided by a number of different instruments). We also observe the effects of the wavelength dependence of fireball expansion, the recombination in the flashed wind of a giant companion, the subtle presence of hiccups and plateaus, and the super-soft X-ray emission and its switch-off. Four programme novae (V2949 Oph, V3661 Oph, TCP J18102829-2729590 and ASASSN-16ma) have normal dwarf companions: V1534 Sco contains an M3 III giant, V1535 Sco a K-type giant and MASTER OT J010603.18-744715.8 a subgiant. We also comment briefly on the maximum absolute magnitude relation with decline time (MMRD).

  7. Counter-evidence against multiple frequency nature of 0.75 mHz oscillation in V4743 Sgr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Ness, J.-U.

    2017-06-01

    All X-ray light curves of nova V4743 Sgr (2002), taken during and after outburst, contain a 0.75 mHz periodic signal that can most plausibly be interpreted as being excited by the rotation of the white dwarf in an intermediate polar system. This interpretation faces the challenge of an apparent multifrequency nature of this signal in the light curves taken days 180 and 196 after outburst. We show that the multisine fit method, based on a superposition of two sine functions, yields two inherently indistinguishable solutions, I.e. the presence of two close frequencies, or a single signal with constant frequency but variable modulation amplitude. Using a power spectrum time map, we show that on day 180, a reduction of the modulation amplitude of the signal coincides with a substantial overall flux decline, while on day 196, the signal is present only during the first half of the observation. Supported by simulations, we show that such variations in amplitude can lead to false beating, which manifests itself as a multiple signal if computing a periodogram over the full light curve. Therefore, the previously proposed double-frequency nature of both light curves was probably an artefact, while we consider a single signal with frequency equal to the white dwarf rotation as more plausible.

  8. The secrets of T Pyxidis. I. UV observations

    NASA Astrophysics Data System (ADS)

    Gilmozzi, R.; Selvelli, P.

    2007-01-01

    Aims:We study the UV spectral behavior of the recurrent nova T Pyx during 16 years of IUE observations. Methods: We examined both the IUE line-by-line images and the extracted spectra in order to understand the reality and the origin of the observed spectral variations. We compare different extraction methods and their influence on the spectrum of an extended object. Results: The UV continuum of T Pyx has remained nearly constant in slope and intensity over this time interval, without any indication of long-term trends. The reddening determined from the UV data is EB-V=0.25 ± 0.02. The best single-curve fit to the dereddened UV continuum is a power-law distribution ∝λ-2.33. The tail of this curve agrees well with the B, V, and J magnitudes of T Pyx, indicating that the contribution of the secondary star is negligible. One peculiar aspect of T Pyx is that most emission lines (the strongest ones being those of CIV 1550 and HeII 1640) show substantial changes both in intensity and detectability, in contrast to the near constancy of the continuum. Several individual spectra display emission features that are difficult to identify, suggesting a composite spectroscopic system. We tentatively ascribe the origin of these transient emission features either to loops and jets from the irradiated secondary or to moving knots of the surrounding nebula that are (temporarily) projected in front of the system. The inspection of all IUE line-by-line images has led to the detection of emission spikes outside the central strip of the spectrum, which in some cases seem associated to known emission features in the (main) spectrum. A comparison with other ex-novae reveals a surprising similarity to the spectrum of the very-slow nova HR Del, whose white dwarf primary has a mass that is allegedly about one half that of T Pyx.

  9. Dust, Abundances, and the Evolution of Novae

    NASA Astrophysics Data System (ADS)

    Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark

    2008-03-01

    Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.

  10. Shortest recurrence periods of novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi

    Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ☉} WD with a mass accretion rate of 3.6 × 10{sup –7} M {sub ☉} yr{sup –1}. A 1 yr recurrence period is realized for very massivemore » (≳ 1.3 M {sub ☉}) WDs with very high accretion rates (≳ 1.5 × 10{sup –7} M {sub ☉} yr{sup –1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.« less

  11. The X-Ray Evolution of the Symbiotic Star V 407 Cygni During Its 2010 Outburst

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.

    2011-01-01

    We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V 407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.

  12. The X-Ray Evolution of the Symbiotic Star V407 Cygni During Its 2010 Outburst

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Donato, D.; Sokoloski, J.

    2011-01-01

    We present a summary of Swift and Suzaku X-ray observations of the 2010 nova outburst of the symbiotic star, V407 Cyg. The Suzaku spectrum obtained on day 30 indicates the presence of the supersoft component from the white dwarf surface, as well as optically thin component from the shock between the nova ejecta and the Mira wind. The Swift observations then allow us to track the evolution of both components from day 4 to day 150. Most notable is the sudden brightening of the optically think component around day 20. We identify this as the time when the blast wave reached the immediate vicinity of the photosphere of the Mira. We have developed a simplified model of the blast wave-wind interaction that can reproduce the gross features of the X-ray evolution of V407 Cyg. If the model is correct, the binary separation is likely to be large and the mass loss rate of the Mira is likely to be relatively low.

  13. The Orbital Period of the SU Ursae Majoris Star EK Trianguli Australis and Evidence for Ring-Like Accretion Disks in Long-Supercycle Length SU Ursae Majoris Stars

    NASA Astrophysics Data System (ADS)

    Mennickent, Ronald E.; Arenas, Jose

    1998-06-01

    An orbital period of 0.06288(5) d has been found from a radial velocity study of the Hα emission line. In addition, we have detected an extra line emitting source located ~ 80(deg) apart from the vector joining the secondary--primary centers, as measured in the opposite sense to the binary rotational motion. This is not the expected location for the hotspot in dwarf novae. This anomaly could be removed by assuming a line emission lagging behind the white dwarf binary motion. In addition, we have estimated line emissivity (~ r(-alpha ) ) and disk radius (R equiv r_in/r_out) for 8 SU UMa stars. Most stars fit alpha = 1.8 +/- 0.1 but AK Cnc and WZ Sge strongly deviate from the mean; their emission line shapes can be explained assuming a post-outburst accretion disk mostly emitting close to the white dwarf (AK Cnc) and a ring-like disk (WZ Sge). In addition, we have found a tendency of long-supercycle length SU UMa stars to show very compact (large R; probably ring-like) accretion disks. If the supercycle length were basically controlled by the mass transfer rate (dot {M}), the inner disk radius would be a function of dot {M}. A white dwarf magnetic field ~ 5000 G is required to fit the truncation radius with the magnetosphere radius of SU UMa stars.

  14. A study of extreme-ultraviolet emission from cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.; Mauche, Christopher W.; Wade, Richard A.

    1990-01-01

    Voyager far- and extreme UV spectrophotometric observations of five cataclysmic variables (the dwarf novae SS Cyg and VW Hyi and the novalike variables V3885 Sgr, RW Sex, and IX Vel) are combined with neutral hydrogen column densities derived from the curve-of-growth analysis of interstellar absorption lines in high-resolution IUE spectra to place upper limits on the emitted flux in the 600-700 A EUV band. The Voyager observations of VW Hyi were obtained during both normal and superoutbursts. Detailed accretion disk model calculations show that most of the 600-700 A flux in these systems should originate in the inner accretion disk rather than in the boundary layer. For VW Hyi, the low neutral hydrogen column and excellent Voyager superoutburst data place the observed upper limit to the 600-700 A flux well below the expected EUV flux from the model calculations.

  15. CCD time-resolved photometry of faint cataclysmic variables. I

    NASA Technical Reports Server (NTRS)

    Howell, Steve; Szkody, Paula

    1988-01-01

    CCD time-resolved V and B differential light curves are presented for the dwarf novae AR And, FS Aur, TT Boo, UZ Boo, AF Cam, AL Com, AW Gem, X Leo, RZ Leo, CW Mon, SW UMa, and TW Vir. The time-series observations ranged from 2 to 6 hours and have accuracies of 0.025 mag or better for the majority of the runs. Except for AR And, X Leo, CW Mon, and TW Vir, the periods are below the cataclysmic-variable period gap (about 2 hours), and the systems are potential SU UMa stars. Photometric periods for five of the stars are the first such determinations, while those for the other seven generally confirm previous spectroscopic or photometric observations. In several cases, the photometric modulations are large amplitude (up to 0.5 mag). The results on AL Com and SW UMa indicate they may be magnetic variables.

  16. The fight for accretion: discovery of intermittent mass transfer in BB Doradus in the low state

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gil, P.; Schmidtobreick, L.; Long, K. S.; Gänsicke, B. T.; Torres, M. A. P.; Rubio-Díez, M. M.; Santander-García, M.

    2012-05-01

    Our long-term photometric monitoring of southern nova-like cataclysmic variables with the 1.3-m Small and Moderate Aperture Research Telescope System (SMARTS) telescope found BB Doradus fading from V˜ 14.3 towards a deep low state at V˜ 19.3 in 2008 April. Here we present time-resolved optical spectroscopy of BB Dor in this faint state in 2009. The optical spectrum in quiescence is a composite of a hot white dwarf with Teff= 30 000 ± 5000 K and a M3-M4 secondary star with narrow emission lines (mainly of the Balmer series and He I) superposed. We associate these narrow profiles with an origin on the donor star. An analysis of the radial velocity curve of the Hα emission from the donor star allowed the measurement of an orbital period of 0.154 095 ± 0.000 003 d (3.698 28 ± 0.000 07 h), different from all previous estimates. We detected episodic accretion events which veiled the spectra of both stars and radically changed the line profiles within a time-scale of tens of minutes. This shows that accretion is not completely quenched in the low state. During these accretion episodes the line wings are stronger and their radial velocity curve is delayed by ˜0.2 cycle, similar to that observed in SW Sex and AM Her stars in the high state, with respect to the motion of the white dwarf. Two scenarios are proposed to explain the extra emission: impact of the material on the outer edge of a cold, remnant accretion disc, or the combined action of a moderately magnetic white dwarf (B1≲ 5 MG) and the magnetic activity of the donor star.

  17. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalomeni, B.; Rappaport, S.; Molnar, M.

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less

  18. Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf

    NASA Astrophysics Data System (ADS)

    Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.

    2016-12-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  19. Measurement of Reactions on 30P for Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.

    2003-05-01

    Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif-sur-Yvette: Editions Frontiere), 525(SMOKER). 3. Iliadis, C. et al., Astrophys. J. Suppl., 134,151(2001). 4. Snijders et al., 1987 Snijders, M. A. J., et al., Mon. Not. Roy. Astron. Soc., 228, 329(1987). 5. Andrea, J., Drechsel, H., Starrfield, S., Astron. Astrophys., 291,869(1994) *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  20. Cluster AgeS Experiment (CASE): deficiency of observed dwarf novae in globular clusters

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Kaluzny, J.; Schwarzenberg-Czerny, A.; Thompson, I. B.; Pych, W.; Krzeminski, W.; Mazur, B.

    2008-08-01

    We present the results of a search for dwarf novae (DNe) in globular clusters (GCs). It is based on the largest available homogeneous sample of observations, in terms of the time-span, number of observations and number of clusters. It includes 16 Galactic GCs and yielded two new certain DNe: M55-CV1 and M22-CV2. All previously known systems located in our fields were recovered, too. We surveyed M4, M5, M10, M12, M22, M30, M55, NGC 288, NGC 362, NGC 2808, NGC 3201, NGC 4372, NGC 6362, NGC 6752, ω Centauri (NGC 5139) and 47 Tucanae (NGC 104). The discovery of two DNe, namely M55-CV1 and M22-CV2, was already reported by Kaluzny et al. and Pietrukowicz et al., respectively. In the remaining 14 GCs, we found no certain new DNe. Our result raises the total number of known DNe in the Galactic GCs to 12 DNe, distributed among seven clusters. Our survey recovered all three already known erupting cataclysmic variables (CVs) located in our fields, namely M5-V101, M22-CV1, and V4 in the foreground of M30. To assess the efficiency of the survey, we analysed images with inserted artificial stars mimicking outbursts of the prototype DNe SS Cygni and U Geminorum. Depending on the conditions, we recovered between 16-100 per cent of these artificial stars. The efficiency seems to be predominantly affected by duty cycle/time-sampling and much less by distance/magnitude. Except for saturated tiny collapsed cores of M30, NGC 362 and NGC 6752 (and also the dense core of NGC 2808), crowding effects in the V band were avoided by our image subtraction technique augmented with auxiliary unsaturated B-band images. Our results clearly demonstrate that in GCs common types of DNe are very rare indeed. However, great care must be taken before these conclusions can be extended to the CV population in GCs.

  1. 1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-01-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  2. Origin of Ne emission line of very luminous soft X-ray transient MAXI J0158–744

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, Yukari; Morii, Mikio; Shigeyama, Toshikazu

    2014-06-01

    We investigate the mechanism that reproduced notable spectral features at the ignition phase of the nova explosion observed for a super-Eddington X-ray transient source MAXI J0158–744 in the Small Magellanic Cloud. These features include a strong Ne IX emission line at 0.92 keV with large equivalent widths of 0.32{sub −0.11}{sup +0.21} keV and the absence of the Ne X line at 1.02 keV. In this paper, we calculate the radiative transfer using a Monte Carlo code, taking into account the line blanketing effect due to transitions of N, O, Ne, Mg, and Al ions in an accelerating wind emanating frommore » a white dwarf with a structure based on a spherically symmetric stationary model. We found that the strong Ne IX line can be reproduced if the mass fraction of Ne is enhanced to 10{sup –3} or more and if that of O is reduced to ∼5 × 10{sup –9} or less and that the absence of other lines, including Ne X ions at higher energies, can be also reproduced by the line blanketing effect. This enhancement of the Ne mass fraction indicates that the ejecta are enriched by Ne dredged up from the surface of the white dwarf composed of O, Ne, and Mg rather than C and O, as already pointed out in previous work. We argue that the CNO cycle driving this nova explosion converted most of C and O into N and thus reduced the O mass fraction.« less

  3. ON THE HUBBLE SPACE TELESCOPE TRIGONOMETRIC PARALLAX OF THE DWARF NOVA SS CYGNI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelan, Edmund P.; Bond, Howard E., E-mail: nelan@stsci.edu, E-mail: heb11@psu.edu

    SS Cygni is one of the brightest dwarf novae (DNe), and one of the best studied prototypes of the cataclysmic variables. Astrometric observations with the Fine Guidance Sensors (FGSs) on the Hubble Space Telescope (HST), published in 2004, gave an absolute trigonometric parallax of 6.06 {+-} 0.44 mas. However, recent very long baseline interferometry (VLBI), obtained during radio outbursts of SS Cyg, has yielded a significantly larger absolute parallax of 8.80 {+-} 0.12 mas, as well as a large difference in the direction of the proper motion (PM) compared to the HST result. The VLBI distance reduces the implied luminositymore » of SS Cyg by about a factor of two, giving good agreement with predictions based on accretion-disk theory in order to explain the observed DN outburst behavior. This discrepancy raises the possibility of significant systematic errors in FGS parallaxes and PMs. We have reanalyzed the archival HST/FGS data, including (1) a critical redetermination of the parallaxes of the background astrometric reference stars, (2) updated input values of the reference-star PMs, and (3) correction of the position measurements for color-dependent shifts. Our new analysis yields a PM of SS Cyg that agrees well with the VLBI motion, and an absolute parallax of 8.30 {+-} 0.41 mas, also statistically concordant with the VLBI result at the {approx}1.2 {sigma} level. Our results suggest that HST/FGS parallaxes are free of large systematic errors, when the data are reduced using high-quality input values for the astrometry of the reference stars, and when instrumental signatures are properly removed.« less

  4. The Temporal Development of Dust Formation and Destruction in Nova Sagittarii 2015#2 (V5668 SGR): A Panchromatic Study

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Evans, A.; Woodward, C. E.; Helton, L. A.; Banerjee, D. P. K.; Srivastava, M. K.; Ashok, N. M.; Joshi, V.; Eyres, S. P. S.; Krautter, Joachim; Kuin, N. P. M.; Page, K. L.; Osborne, J. P.; Schwarz, G. J.; Shenoy, D. P.; Shore, S. N.; Starrfield, S. G.; Wagner, R. M.

    2018-05-01

    We present 5–28 μm SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during ∼500 days following outburst. Dust condensation commenced by 82 days after outburst at a temperature of ∼1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 × 10‑7 M ⊙ if the dust was amorphous carbon. The average grain radius grew to a maximum of ∼2.9 μm at a temperature of ∼720 K around day 113 when the shell visual optical depth was τ v ∼ 5.4. Maximum grain growth was followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the supersoft X-ray turn-on and turn-off times, suggests a white dwarf mass of ∼1.1 M ⊙. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.

  5. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  6. Observations of GAIA-identified Cataclysmic Variables Using the TUBITAK National Observatory

    NASA Astrophysics Data System (ADS)

    Esenoglu, Hasan H.; Kirbiyik, Halil; Kaynar, Suleyman; Okuyan, Oguzhan; Hamitoglu, Irek; Galeev, Almaz; Uluc, Kadir; Kocak, Murat; Kilic, Sila E.; Parmaksizoglu, Murat; Erece, Orhan; Ozisik, Tuncay; Gulsecen, Hulusi

    2016-07-01

    TUBITAK National Observatory supports the GAIA alerts with observations using three telescopes (RTT150, T100, T60) at the site with a limited time quota. We have observed 10 variable stars among GAIA sources discovered in the years 2014-2016 that may be candidate Cataclysmic Variables (CVs). Our TUG observations at this stage involve photometry and spectroscopy to aid the identification of these sources. The first preliminary result of our observations of Gaia14aat among them showed a dwarf nova outburst with an amplitude of 2.69 mag. We aim to construct a GAIA astrophysics group to study CVs along with supported studies using the SRG (Spectrum Roentgen Gamma astrophysical observatory) after the year of 2016. These observations will basically involve spectroscopy, narrow-band CCD imaging and photometry using several filters to aid the identification of these sources. RTT150 observations with very narrow filters (like H-alpha, SII, OIII with band width of range of 2 to 5 nm) will reveal whether shell around the SRG sources to aid identification novae among them.

  7. Ultraviolet spectroscopy of symbiotic nova V1016 Cyg with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2017-04-01

    We present International Ultraviolet Explorer (IUE) & Hubble Space Telescope Space Telescope Imaging Spectrograph (HST STIS) observations of the symbiotic nova V1016 Cyg through the period 1978 - 2000. Four spectra at different times revealing the changes in line fluxes are presented. The outflow velocity of the emitting region was calculated to be 900-2000 km s-1 (FWHM). The reddening of V1016 Cyg was determined from 2200 Å absorption feature to be E (B-V) = 0.36 ± 0.02. We calculated the fluxes of CIV 1550 Å & CIII] 1909 Å emission lines produced in a stellar wind from the hot white dwarf. We determined the average wind mass loss rate to be ˜2.3 × 10-6 M⊙, the average temperature of the emitting region to be ˜1.3 × 105 K, and an average ultraviolet luminosity to be ˜2 × 1035 erg s-1. The results show that there are modulations of line fluxes with time. We attributed these spectral modulations to the changes of density and temperature in the emitting region as a result of the variable stellar wind.

  8. Spectral behavior of the symbiotic nova AG Pegasi observed with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Bobrowsky, M.

    2017-05-01

    Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978-1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B-V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s-1 (FWHM). The mean wind mass loss rate is ˜6 × 10-7 M⊙ yr-1. The mean temperature is ˜6.5 × 105 K. The mean ultraviolet luminosity is ˜5 × 1033 erg s-1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.

  9. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less

  10. RECURRENT NOVAE IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafter, A. W.; Henze, M.; Rector, T. A.

    2015-02-01

    The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova (RN) candidates. To pass the initial screen and qualify as a RN candidate, two or more eruptions were required to be coincident within 0.′1, although this criterion was relaxed to 0.′15 for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential RN systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent, the original plates and published images of the relevant eruptions havemore » been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as RNe, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be RNe, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ∼4% of the nova eruptions seen in M31 over the past century are associated with RNe. A Monte Carlo analysis shows that the discovery efficiency for RNe may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times ≲100 yr. For plausible system parameters, it appears unlikely that RNe can provide a significant channel for the production of Type Ia supernovae.« less

  11. The Photometric Evolution of the Classical Nova V723 Cassiopeia from 2006 through 2016

    NASA Astrophysics Data System (ADS)

    Hamilton-Drager, Catrina M.; Lane, Ryan I.; Recine, Kristen A.; Ljungquist, Lindsey S.; Grant, Jacob A.; Shrader, Katherine; Frymark, Derek G.; Dornbush, Eric M.; Richey-Yowell, Tyler; Boyle, Robert J.; Schwarz, Greg J.; Page, Kim L.

    2018-02-01

    We present photometric data of the classical nova, V723 Cas (Nova Cas 1995), over a span of 10 years (2006 through 2016) taken with the 0.9 m telescope at Lowell Observatory, operated as the National Undergraduate Research Observatory (NURO) on Anderson Mesa near Flagstaff, Arizona. A photometric analysis of the data produced light curves in the optical bands (Bessel B, V, and R filters). The data analyzed here reveal an asymmetric light curve (steep rise to maximum, followed by a slow decline to minimum), the overall structure of which exhibits pronounced evolution including a decrease in magnitude from year to year, at the rate of ∼0.15 mag yr‑1. We model these data with an irradiated secondary and an accretion disk with a hot spot using the eclipsing binary modeling program Nightfall. We find that we can model reasonably well each season of observation by changing very few parameters. The longitude of the hot spot on the disk and the brightness of the irradiated spot on the companion are largely responsible for the majority of the observed changes in the light curve shape and amplitude until 2009. After that, a decrease in the temperature of the white dwarf is required to model the observed light curves. This is supported by Swift/X-Ray Telescope observations, which indicate that nuclear fusion has ceased, and that V723 Cas is no longer detectable in the X-ray.

  12. The onset of Wolf-Rayet wind outflow and the nature of the hot component in the symbiotic nova PU Vulpecula

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Shore, Steven N.; Ready, Christian J.; Scheible, Maureen P.

    1993-01-01

    We have analyzed temporal variations in the far ultraviolet He II (1640), Si IV (1393, 1402), and C IV (1548, 1550) line profiles in eight high dispersion, International Ultraviolet Explorer Short Wavelength Prime spectra of the symbiotic nova PU Vul by comparatively examining these profiles on a common velocity scale. We see clear evidence of the onset of a Wolf-Rayet-like wind outflow from the bloated, contracting white dwarf hot component with terminal velocity of approximately equals -550 to -600 km/s. We have quantitatively analyzed the complicated He II (1640) emission region for the first time and show that the discrete absorption features seen in the He II region occur at precisely the same velocites in each spectrum, thus demonstrating that the absorbing source is steady and not affected by any orbital motion. We demonstrate that there is an underlying He II wind emission feature whose true shape is hidden by superposed absorption due to the foreground red giant wind flowing in front of the white dwarf and abscuring the white dwarf's wind outflow. We present synthetic spectra of He II emission behind an absorbing slab with u = 20 km/s, T = 5000 K, and column densities in the range N = 1 x 10(exp 22) and 1 x 10(exp 23)/sq cm which explain these absorptions. Our analysis of the Si IV and C IV resonance doublets, in velocity space, reveal temporal variations in the profile between 1987 and 1991 with the emergence of clear P Cygni profiles in Si IV by 1990. A nebular emission feature in C III 1909 also appears in the most recent spectra (e.g., SW42538H) while it was absent or extremely weak in the earliest spectra (e.g., SW36332H), thus strengthening evidence that the nebular emission, as seen in permitted and semiforbidden lines, intensities in step with the onset of the hot, fast, wind outflow. We also report the first detection of narrow interstellar (circumbinary shell?) absorption lines near -1 km/s, most strongly in Al III (1854, 1862) and Si IV (1392, 1402). We have carried out a rough quantitative analysis of the He II wind emission by using the theoretical He II Wolf-Rayet profiles of Hamann & Schmutz (1987). We obtain a lower limit to the He II net emission equivalent width of approximately 1 A, a hot component temperature in the range 25,000 to 35,000 K, a hot component radius in the range 5 solar radius to 30 solar radius, a maximum wind velocity of approximately equals -600 km/s and a rough upper limit to the mass-loss rate of less than 1 x 10(exp -5) solar mass/yr. To our knowledge, this is the first quantitative wind analysis, albeit crude, to be carried out for the hot component of a symbiotic nova or symbiotic variable.

  13. The Progenitor of Tycho’s Supernova was Not Hot and Luminous

    NASA Astrophysics Data System (ADS)

    Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov

    2018-01-01

    Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.

  14. X-ray and optical observations of the ultrashort period dwarf nova SW Ursae Majoris - A likely new DQ Herculis star

    NASA Technical Reports Server (NTRS)

    Shafter, A. W.; Szkody, P.; Thorstensen, J. R.

    1986-01-01

    Time-resolved X-ray and optical photometric and optical spectroscopic observations of the ultrashort period cataclysmic variable SW UMa are reported. The spectroscopic observations reveal the presence of an s-wave component which is almost in phase with the extreme line wings and presumably the white dwarf. This very unusual phasing in conjunction with the available optical and X-ray data seems to indicate that a region of enhanced emission exists on the opposite side of the disk from the expected location of the hot spot. The photometric observations reveal the presence of a hump in the light curve occurring at an orbital phase which is consistent with the phase at which the region of enhanced line emission is most favorably seen. Changes in the hump amplitude are seen from night to night, and a 15.9 min periodicity is evident in the light curve. The optical and X-ray periodicities suggest that SW UMa is a member of the DQ Her class of cataclysmic variables.

  15. X-Ray Emissions from Accreting White Dwarfs: A Review

    NASA Technical Reports Server (NTRS)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  16. Hydrodynamic Simulations of Classical Nova explosions: predictions of 7Be and 7Li production and the growth to the Chandrasekhar Limit

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; Wagner, R. Mark; Woodward, Charles E.; Jose', Jordi; Hernanz, Margarita

    2018-01-01

    We have continued our studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. We now rely on the results of multi-D studies of TNRs in WDs that accrete only Solar matter. They find that mixing with the core occurs after the TNR is well underway, reaching enrichment levels in agreement with observations of the ejecta abundances. We, therefore, accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code) until the TNR is initiated and then switch the accreted composition to a mixed composition: either 25% core and 75% Solar or 50% core and 50% Solar. Because the amount of accreted material is inversely proportional to the initial 12C abundance, by accreting Solar matter the amount of material taking part in the outburst is larger than if we had used mixed material from the beginning. We follow the TNR through the peak and tabulate the amount of ejected gases, their velocities and abundances. We also predict the amount of 7Li and 7Be produced and ejected by the explosion and compare our predictions to the observations in a companion poster describing the LBT measurements of 7Li in V5668 Sgr. We also compare our abundance predictions to those measured in pre-solar grains that may arise from Classical Nova explosions. Our predictions are also compared to results with SHIVA (Josè and Hernanz). Finally, many of these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit. This suggests that the single degenerate scenario is still a viable option for SN Ia progenitors. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. Our results benefitted from collaborations and/or information exchange within NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate.

  17. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  18. The Evolution of Disks and Winds in Dwarf Nova Outbursts - FUSE

    NASA Technical Reports Server (NTRS)

    Long, Knox

    2002-01-01

    This project was a project to study the FUV spectra of two proto-typical dwarf novae, U Gem and SS Cygni, through an outburst cycle. The luminosity of the boundary layer in the two systems, as evidenced by earlier EUVE observations, is different in the two systems. Our intensive study of the two systems was intended to (1) probe the ionization and kinematic structure of the wind as a function of system brightness, (2) isolate the contributions of the disk to the FUV spectra, and (3) examine physical conditions and abundances of material just being accreted onto the disk from the secondary. The U Gem and SS Cyg observations took place in March and October 2000, respectively. The data obtained with FUSE was of excellent quality. Analysis of the both observations is now essentially complete, although some modeling of the SS Cyg spectra is ongoing, as we complete an ApJ manuscript on this object. Our main results for U Gem are as follows: The plateau spectra have continuum shapes and fluxes that are approximated by steady state accretion disk model spectra with an accretion rate 7x10(exp 9) Msolar/yr. The spectra also show numerous absorption lines of H I, He II, and 2-5 times ionized transitions of C, N, O, P, S, and Si. There are no emission features in the spectra, with the possible exception of a weak feature on the red wing of the 0 VI doublet. The absorption lines are narrow (FWHM approx. 50 km/s), too narrow to arise from the disk photosphere, and at low velocities (less than or equal to 700 km/s). The S VI and O VI doublets are optically thick. The absorption lines in the plateau spectra show orbital variability: in spectra obtained at orbital phases between 0.53 and 0.79, low-ionization absorption lines appear and the central depths of the preexisting lines increase. The increase in line absorption occurs at the same orbital phases as previously observed EUV and X-ray light-curve dips. If the absorbing material is in (near-) Keplerian rotation around the disk, it must be located at large disk radii. The final observation occurred when U Gem was about 2 mag from optical quiescence. The spectra are dominated by emission from an approx. 43,000 K, metal-enriched white dwarf (WD). The inferred radius of the WD is 4.95x10(exp 8) cm, close to that observed in quiescence. Allowing for a hot heated region on the surface of the WD improves the fit to the spectrum at short (less than 960 A) wavelengths. Our main results for SS Cyg are as follows: The first two of four observations of SS Cyg show disk dominated spectra with accretion rates of order 10(exp -8) Msolar/yr. Except for narrow interstellar features (atomic and molecular H), the lines are all broad consistent with a disk or wind origin. The O VI line in the spectra is mostly of wind origin as detailed modeling with our Monte Carlo code (developed in part using funds from this project) show. The continua from spectra in observations 3 and 4, observed during the decline phase, are not well fit with steady-state disks, and show considerable resemblance to quiescent spectra obtained with HUT. The most probable interpretation for the emission features seen in the spectrum in the last two observations is that they arise from a photo-illuminated choronosphere above the disk, rather than a wind.

  19. Doppler tomography and photometry of the cataclysmic variable 1RXS J064434.5+334451

    NASA Astrophysics Data System (ADS)

    Hernández Santisteban, J. V.; Echevarría, J.; Michel, R.; Costero, R.

    2017-01-01

    We have obtained simultaneous photometric and spectroscopic observations of the cataclysmic variable 1RXS J064434.5+334451. We have calibrated the spectra for slit losses using simultaneous photometry, allowing us to construct reliable Doppler images from Hα and He II 4686-Å emission lines. We have improved the ephemeris of the object based on new photometric eclipse timings, obtaining HJD = 245 3403.759 533 + 0.269 374 46E. Some eclipses present a clear internal structure, which we attribute to a central He II emission region surrounding the white dwarf, a finding supported by Doppler tomography. This indicates that the system has a large inclination angle I = 78 ± 2°. We have also analysed the radial velocity curve from the emission lines to measure its semi-amplitude, K1, from Hα and He II 4686 and derive the masses of the components M1 = 0.82 ± 0.06 M⊙, M2 = 0.78 ± 0.04 M⊙ and their separation a = 2.01 ± 0.06 R⊙. The Doppler tomography and other observed features in this nova-like system strongly suggest that this is a SW Sex type system.

  20. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  1. Observations of the May 1979 outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Raymand, J. C.; Dupree, A. K.

    1982-01-01

    The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.

  2. The Potential of NovaNET Communications for Education and Instruction.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.

    Intended to suggest ways of implementing the potential of NovaNet beyond its current applications, this report begins with an overview of current educational applications of telecommunications systems. It is noted that NovaNET is not only a successful computer system for presenting instructional courseware, but that it also supports…

  3. A Self-consistent Model for a Full Cycle of Recurrent Novae—Wind Mass-loss Rate and X-Ray Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Mariko; Saio, Hideyuki; Hachisu, Izumi, E-mail: mariko.kato@hc.st.keio.ac.jp

    2017-04-01

    An unexpectedly slow evolution in the pre-optical-maximum phase was suggested in the very short recurrence period of nova M31N 2008-12a. To obtain reasonable nova light curves we have improved our calculation method by consistently combining optically thick wind solutions of hydrogen-rich envelopes with white dwarf (WD) structures calculated by a Henyey-type evolution code. The wind mass-loss rate is properly determined with high accuracy. We have calculated light curve models for 1.2 M {sub ⊙} and 1.38 M {sub ⊙} WDs with mass accretion rates corresponding to recurrence periods of 10 yr and 1 yr, respectively. The outburst lasts 590/29 days,more » in which the pre-optical-maximum phase is 82/16 days, for 1.2/1.38 M {sub ⊙}, respectively. Optically thick winds start at the end of the X-ray flash and cease at the beginning of the supersoft X-ray phase. We also present supersoft X-ray light curves including a prompt X-ray flash and later supersoft X-ray phase.« less

  4. Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1:Fortran, C, and Python Editions

    NASA Astrophysics Data System (ADS)

    Kaplan, G. H.; Bangert, J. A.; Barron, E. G.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.

    2012-08-01

    The Naval Observatory Vector Astrometry Software (NOVAS) is a source - code library that provides common astrometric quantities and transformations to high precision. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS is used for a wide variety of applications, including the U.S. portions of The Astronomical Almanac and a number of telescope control systems. NOVAS uses IAU recommended models for Earth orientation, including the IAU 2006 precession theory, the IAU 2000A and 2000B nutation series, and diurnal rotation based on the celestial and terrestrial intermediate origins. Equinox - based quantities, such as sidereal time, are also supported. NOVAS Earth orientation calculations match those from SOFA at the sub - microarcsecond level for comparable transformations. NOVAS algorithms for aberration an d gravitational light deflection are equivalent, at the microarcsecond level, to those inherent in the current consensus VLBI delay algorithm. NOVAS can be easily connected to the JPL planetary/lunar ephemerides (e.g., DE405), and connections to IMCCE and IAA planetary ephemerides are planned. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and currently mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to exploit the object - oriented features of Python. In the Version 3.1 C edition, the ephemeris - access functions have been revised for use on 64 - bit systems and for improved performance in general. NOVAS source code, auxiliary files, and documentation are available from the USNO website (http://aa.usno.navy.mil/software/novas/novas_info.php).

  5. Light-curve Analysis of Neon Novae

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2016-01-01

    We analyzed light curves of five neon novae, QU Vul, V351 Pup, V382 Vel, V693 CrA, and V1974 Cyg, and determined their white dwarf (WD) masses and distance moduli on the basis of theoretical light curves composed of free-free and photospheric emission. For QU Vul, we obtained a distance of d ˜ 2.4 kpc, reddening of E(B - V) ˜ 0.55, and WD mass of MWD = 0.82-0.96 {M}⊙ . This suggests that an oxygen-neon WD lost a mass of more than ˜ 0.1 {M}⊙ since its birth. For V351 Pup, we obtained d˜ 5.5 {{kpc}}, E(B-V)˜ 0.45, and {M}{{WD}}=0.98-1.1 {M}⊙ . For V382 Vel, we obtained d˜ 1.6 {{kpc}}, E(B-V)˜ 0.15, and {M}{{WD}}=1.13-1.28 {M}⊙ . For V693 CrA, we obtained d˜ 7.1 {{kpc}}, E(B-V)˜ 0.05, and {M}{{WD}}=1.15-1.25 {M}⊙ . For V1974 Cyg, we obtained d˜ 1.8 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.95-1.1 {M}⊙ . For comparison, we added the carbon-oxygen nova V1668 Cyg to our analysis and obtained d˜ 5.4 {{kpc}}, E(B-V)˜ 0.30, and {M}{{WD}}=0.98-1.1 {M}⊙ . In QU Vul, photospheric emission contributes 0.4-0.8 mag at most to the optical light curve compared with free-free emission only. In V351 Pup and V1974 Cyg, photospheric emission contributes very little (0.2-0.4 mag at most) to the optical light curve. In V382 Vel and V693 CrA, free-free emission dominates the continuum spectra, and photospheric emission does not contribute to the optical magnitudes. We also discuss the maximum magnitude versus rate of decline relation for these novae based on the universal decline law.

  6. On the Accretion Rates of SW Sextantis Nova-like Variables

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald-Louis; Sion, Edward M.

    2009-06-01

    We present accretion rates for selected samples of nova-like variables having IUE archival spectra and distances uniformly determined using an infrared method by Knigge. A comparison with accretion rates derived independently with a multiparametric optimization modeling approach by Puebla et al. is carried out. The accretion rates of SW Sextantis nova-like systems are compared with the accretion rates of non-SW Sextantis systems in the Puebla et al. sample and in our sample, which was selected in the orbital period range of three to four and a half hours, with all systems having distances using the method of Knigge. Based upon the two independent modeling approaches, we find no significant difference between the accretion rates of SW Sextantis systems and non-SW Sextantis nova-like systems insofar as optically thick disk models are appropriate. We find little evidence to suggest that the SW Sex stars have higher accretion rates than other nova-like cataclysmic variables (CVs) above the period gap within the same range of orbital periods.

  7. The 26gAl(p,g)27Si reaction in Novae

    NASA Astrophysics Data System (ADS)

    Ruiz, Chris; Parikh, A.; José, J.; Buchmann, L.; Caggiano, J. A.; Chen, A. A.; Clark, J. A.; Crawford, H.; Davids, B.; D'Auria, J. M.; Davis, C.; Deibel, C.; Erikson, L.; Fogarty, L.; Frekers, D.; Greife, U.; Hussein, A.; Hutcheon, D. A.; Huyse, M.; Jewett, C.; Laird, A. M.; Lewis, R.; Mumby-Croft, P.; Olin, A.; Ottewell, D. F.; Ouellet, C. V.; Parker, P.; Pearson, J.; Ruprecht, G.; Trinczek, M.; Vockenhuber, C.; Wrede, C.

    The 26gAl(p,γ)27Si Reaction in Novae PoS(NIC-IX)004 1 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada 2 Wright Nuclear Structure Laboratory, Yale University, New Haven, Conneticut 06520-8124, USA 3 Dept. de Física í Enginyeria Nuclear, Universitat Politécnica de Catalunya, Barcelona, Spain 4 Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, Spain 5 McMaster University, Hamilton, ON L8S 481, Canada 6 Simon Fraser University, Burnaby, BC V5A 1S6, Canada 7 Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA 8 National University of Ireland, Maynooth, Co. Kildare, Ireland 9 Institut für Kernphysik, Westfälische Willhelms-Universität Münster, 48149 Münster, Germany 10 University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada 11 Katholieke Universiteit Leuven, 3000 Leuven, Belgium 12 Department of Physics, University of York, York YO10 5DD, United Kingdom The 184 keV resonance strength in the 26gAl(p,γ)27Si reaction was measured in inverse kinematics using the DRAGON facility at TRIUMF-ISAC. We obtain a value of ωγ=35±7 μeV for the strength and ER=184±1 keV for the resonance energy. These values are consistent with p-wave capture into the 7652(3) keV state in 27Si. We discuss the implications of these results for 26gAl nucleosynthesis in a typical O-Ne white dwarf nova.

  8. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  9. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off-center ignition of the underlying WD in the double detonation scenario for Type Ia supernovae.

  10. Identification of Recurrent Novae in M31

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Rector, T. A.; Schweizer, F.; Bryan, J.

    2014-01-01

    Over roughly the past century a total of more than 900 optical transient events have been recorded in M31, the vast majority of which are believed to represent eruptions of classical novae. The impressive dataset of nova positions put together by Pietsch (http://www.mpe.mpg.de m31novae/opt/m31/) provides the opportunity to search for multiple nova outbursts from the same progenitor system, and thus to characterize the population of recurrent novae (RNe) in M31. In order to identify RNe candidates, we have searched for spatial near coincidences among the 945 recorded novae given in the Pietsch catalog through the end of August 2013. Given that the positions of many of the early novae are quite uncertain, we have set our initial screen to include nova pairs with nominal separations less than or equal to 6 arcsec. We have identified a total of 102 novae that pass this coarse screen. Of these, 78 novae form 39 pairs, 15 form five triples, four novae are part of a quad, and five novae form a quint. As demonstrated by Shafter, Rice and Daub (2009, presented at the "Wild Stars in the Old West II" conference, mintaka.sdsu.edu/faculty/shafter/extragalactic_novae/RNePoster4.pdf), the majority of the 102 novae surviving our initial screen are expected to be associated with chance positional near coincidences (especially near the nucleus), and are not RNe. To decide which candidates are indeed RNe, we have undertaken a study to locate the original discovery plates, CCD images or published finding charts, and to perform the necessary astrometry to identify which of our candidate RNe are chance positional coincidences, and which are RNe. For each candidate, we estimate the probability that the object is a chance positional coincidence as in Shafter et al. (2009). To date, we have been successful in identifying finding charts or original images for most of the candidates, and have found a total of 23 nova outbursts in M31 associated with 10 systems that are almost certainly RNe.

  11. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  12. NOVA Fall 2002 Teacher's Guide.

    ERIC Educational Resources Information Center

    Ransick, Kristina; Rosene, Dale; Sammons, James; Turck, Mary

    This NOVA teacher's guide presents activities, information, and teaching ideas from the Public Broadcasting System's (PBS) NOVA television program series. Episodes include: (1) "Mysterious Life of Caves" which investigates the role microbes play in the creation of some limestone caves; (2) "Lost Roman Treasure" which follows…

  13. New Nova Candidates from the RSBE M31 Nova Survey

    NASA Astrophysics Data System (ADS)

    Lauber, Stephanie; Rector, Travis A.; Shafter, Allen W.

    2015-01-01

    Since 1995 the Kitt Peak National Observatory WIYN 0.9-m telescope has been used to monitor M31 for novae as part of the Research-Based Science Education Project (RBSE). The resulting images, which typically cover approximately the inner 20 arc min of M31, are taken through a broad-band H-alpha filter to isolate the strong H-alpha emission lines characteristic of novae shortly after eruption.We are in the process of reanalyzing the entire RBSE data set covering the period between September 1995 and August 2014 in order to produce an up-to-date list of novae from this survey. Here, we present coordinates and H-alpha magnitudes for 4 new nova discoveries not previous reported. Among the new nova discoveries, one system appears spatially coincident with M31N 1988-09a, and is thus a recurrent nova candidate.

  14. Supernova and optical transient observations using the three wide-field telescope array of the KMTNet

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Kim, Sang Chul; Lee, Jae-Joon; Pak, Mina; Park, Hong Soo; He, Matthias Y.; Antoniadis, John; Ni, Yuan Qi; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Gonzalez, Santiago

    2016-08-01

    The Korea Microlensing Telescope Network (KMTNet) is a network of three new 1.6-m, wide-field telescopes spread over three different sites in Chile, South Africa and Australia. Each telescope is equipped with a four square degree wide-field CCD camera, making the KMTNet an ideal facility for discovering and monitoring early supernovae and other rapidly evolving optical transients by providing 24-hour continuous sky coverage. We describe our inaugurating program of observing supernovae and optical transients using about 20% of the KMTNet time in 2015-2019. Our early results include detection of infant supernovae, novae and peculiar transients as well as numerous variable stars and low surface brightness objects such as dwarf galaxies.

  15. MR Persei - A new rotating, spotted flare star

    NASA Technical Reports Server (NTRS)

    Honeycutt, R. K.; Turner, G. W.; Vesper, D. N.; Schlegel, E. M.

    1992-01-01

    Spectroscopy and photometry are used to show that MR Persei, an object originally classified as a dwarf nova, is in fact a flare star. The automated CCD photometry consists of sequences of exposures within a single night as well as long-term photometry over a five-month interval. One sequence shows a 30-min flare, accompanied by post-flare 'dips'. A 0.2 mag variation with a period of about one-half day is also seen in this sequence. The long-term photometry is used to refine the period to 0.45483 d, which we attribute to the rotation of a spotted star. Evidence for membership of MR Per in the young Alpha Per cluster is considered, and found to be inconclusive.

  16. Ultraviolet observations of the symbiotic star AS 296

    NASA Technical Reports Server (NTRS)

    Gutierrez-Moreno, A.; Moreno, H.; Feibelman, W. A.

    1992-01-01

    AS 296 is a well-known S-type symbiotic star which underwent an optical outburst during 1988. In this paper, UV data based on IUE observations obtained both during the quiescent and outburst stages are presented and discussed, correlating them to observations made in the optical region. It is concluded that the object is a symbiotic nova, in which the outburst is due to a thermonuclear runaway produced in the hydrogen-burning shell of a white dwarf with M of about 0.5 solar masses, accreting from the late-type giant at a rate M(acc) of about 9.7 x 10 exp -9 solar mass/year. It is not possible to determine from the observations if the hydrogen flash is degenerate or nondegenerate.

  17. M Dwarfs From The SDSS, 2MASS and WISE Surveys: Identification, Characterisation and Unresolved Ultracool Companionship

    NASA Astrophysics Data System (ADS)

    Cook, Neil James

    2016-08-01

    The aim of this thesis is to use a cross-match between WISE, 2MASS and SDSS to identify a large sample of M dwarfs. Through the careful characterisation and quality control of these M dwarfs I aim to identify rare systems (i.e. unresolved UCD companions, young M dwarfs, late M dwarfs and M dwarfs with common proper motion companions). Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. This is done by using an optimised method for identifying M dwarfs which may have unresolved ultracool companions. To do this I construct a catalogue of 440 694 M dwarf candidates, from WISE, 2MASS and SDSS, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints I isolate a sub-sample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). I present 1 082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, I estimate that the occurrence of unresolved ultracool companions amongst my M dwarf + ultracool dwarf candidates should be at least four times the average for my full M dwarf catalogue. I discuss yields of candidates based on my simulations. The possible contamination and bias from misidentified M dwarfs is then discussed, from chance alignments with other M dwarfs and UCDs, from chance alignments with giant stars, from chance alignments with galaxies, and from blended systems (via visual inspection). I then use optical spectra from LAMOST to spectral type a subset of my M dwarf + ultracool dwarf candidates. These candidates need confirming as true M dwarf + ultracool dwarf systems thus I present a new method I developed to use low resolution near-infrared spectra which relies on two colour similar objects (one an excess candidate, one not) having very similar spectra. A spectral difference of these two colour similar objects should leave the signature of a UCD in the residual of their differences, which I look for using the difference in two spectral bands designed to identify UCD spectral features. I then present the methods used to identify other rare systems from my full M dwarf catalogue. Young M dwarfs were identified by measuring equivalent widths of Hα from the LAMOST spectra, and by measuring rotation periods from Kepler 2 light curves. I identify late M dwarfs photometrically (using reduced proper motion and colour cuts) and spectroscopically (using the LAMOST spectra with spectral indices from the literature). Also I present common proper motion analysis aimed at finding Tycho-2 primaries for my M dwarfs and look for physically separated M dwarf + M dwarf pairs (internally within my full M dwarf catalogue).

  18. Laying the foundation for a digital Nova Scotia

    NASA Astrophysics Data System (ADS)

    Bond, J.

    2016-04-01

    In 2013, the Province of Nova Scotia began an effort to modernize its coordinate referencing infrastructure known as the Nova Scotia Coordinate Referencing System (NSCRS). At that time, 8, active GPS stations were installed in southwest Nova Scotia to evaluate the technology's ability to address the Province's coordinate referencing needs. The success of the test phase helped build a business case to implement the technology across the entire Province. It is anticipated that by the end of 2015, 40 active GPS stations will be in place across Nova Scotia. This infrastructure, known as the Nova Scotia Active Control Stations (NSACS) network, will allow for instantaneous, centimetre level positioning across the Province. Originally designed to address the needs of the surveying community, the technology has also proven to have applications in mapping, machine automation, agriculture, navigation, emergency response, earthquake detection and other areas. In the foreseeable future, all spatial data sets captured in Nova Scotia will be either directly or indirectly derived from the NSACS network. The technology will promote high accuracy and homogenous spatial data sets across the Province. The technology behind the NSACS and the development of the system are described. Examples of how the technology is contributing to a digital Nova Scotia are presented. Future applications of the technology are also considered.

  19. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into sophisticated stellar models in the future. In both of these cases the available nuclear data were used to probe stellar processes. This analysis of stellar processes through nuclear reactions is an extremely useful technique that is crucial for the advancement of astrophysics.

  20. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, A.; Kawakita, H.; Shinnaka, Y.

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less

  1. Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1, Introducing a Python Edition

    NASA Astrophysics Data System (ADS)

    Barron, Eric G.; Kaplan, G. H.; Bangert, J.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.

    2011-01-01

    The Naval Observatory Vector Astrometry Software (NOVAS) is a source-code library that provides common astrometric quantities and transformations. NOVAS calculations are accurate at the sub-milliarcsecond level. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and, currently, mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to harness the object-oriented nature of the Python language, and will implement the ability to handle large quantities of objects or observers using the array functionality in NumPy (a third-party scientific package for Python). NOVAS 3.1 also adds a module to transform GCRS vectors to the ITRS; the ITRS to GCRS transformation was already provided in NOVAS 3.0. The module that corrects an ITRS vector for polar motion has been modified to undo that correction upon demand. In the C edition, the ephemeris-access functions have been revised for use on 64-bit systems and for improved performance in general. NOVAS, including documentation, is available from the USNO website (http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas).

  2. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  3. Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?

    NASA Astrophysics Data System (ADS)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  4. Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a

    NASA Astrophysics Data System (ADS)

    Henze, M.; Darnley, M. J.; Williams, S. C.; Kato, M.; Hachisu, I.; Anupama, G. C.; Arai, A.; Boyd, D.; Burke, D.; Ciardullo, R.; Chinetti, K.; Cook, L. M.; Cook, M. J.; Erdman, P.; Gao, X.; Harris, B.; Hartmann, D. H.; Hornoch, K.; Horst, J. Chuck; Hounsell, R.; Husar, D.; Itagaki, K.; Kabashima, F.; Kafka, S.; Kaur, A.; Kiyota, S.; Kojiguchi, N.; Kučáková, H.; Kuramoto, K.; Maehara, H.; Mantero, A.; Masci, F. J.; Matsumoto, K.; Naito, H.; Ness, J.-U.; Nishiyama, K.; Oksanen, A.; Osborne, J. P.; Page, K. L.; Paunzen, E.; Pavana, M.; Pickard, R.; Prieto-Arranz, J.; Rodríguez-Gil, P.; Sala, G.; Sano, Y.; Shafter, A. W.; Sugiura, Y.; Tan, H.; Tordai, T.; Vraštil, J.; Wagner, R. M.; Watanabe, F.; Williams, B. F.; Bode, M. F.; Bruno, A.; Buchheim, B.; Crawford, T.; Goff, B.; Hernanz, M.; Igarashi, A. S.; José, J.; Motta, M.; O’Brien, T. J.; Oswalt, T.; Poyner, G.; Ribeiro, V. A. R. M.; Sabo, R.; Shara, M. M.; Shears, J.; Starkey, D.; Starrfield, S.; Woodward, C. E.

    2018-04-01

    Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a Type Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multiwavelength properties: (i) from a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days, (ii) early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout, and (iii) the supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass accretion rate. The corresponding higher ignition mass caused a brighter peak in the free–free emission model. The less massive accretion disk experienced greater disruption, consequently delaying the re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.

  5. COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, Jeremy J.; Kashyap, Vinay; Delgado, Laura

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10{sup 7} K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s{sup 1}, an FWHM of 1200 ± 30 km s{sup 1}, and an average net blueshift of 165more » ± 10 km s{sup 1}. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 10{sup 43} erg and confirms an ejected mass of approximately 10{sup 7} M {sub ⊙}. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.« less

  6. NOVA, A BRIEF .....

    ERIC Educational Resources Information Center

    WHITING, RICHARD; AND OTHERS

    NOVA IS AN EXPERIMENTAL, 6-YEAR JUNIOR-SENIOR HIGH SCHOOL. ASPECTS OF THE PROGRAM INCLUDE THE TRIMESTER SYSTEM, THE CONTINUOUS PROGRESS CURRICULUM, TEAM TEACHING, A CLASS SCHEDULE OF FOUR 70-MINUTE PERIODS PER WEEK, THE USE OF DATA-PROCESSING EQUIPMENT, AND MODERN INSTRUCTIONAL AIDS. NOVA IS ORGANIZED CAMPUS-STYLE WITH INDIVIDUAL BUILDINGS DEVOTED…

  7. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie, E-mail: amanda.karakas@anu.edu.au

    2015-08-20

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10{sup −3} yr{sup −1}) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, wemore » calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.« less

  8. RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prato, L.; Mace, G. N.; Rice, E. L.

    2015-07-20

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less

  9. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habig, Alec; Zirnstein, Jan

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  10. Integration of the Super Nova early warning system with the NOvA Trigger

    DOE PAGES

    Habig, Alec; Zirnstein, Jan

    2015-12-23

    The NOvA experiment, with a baseline of 810km, samples Fermilab’s upgraded NuMI beam with a Near Detector on-site and a Far Detector (FD) at Ash River, MN, to observe oscillations of muon neutrinos. The 344,064 liquid scintillator-filled cells of the 14 kton FD provide high granularity of a large detector mass and enable us to also study non-accelerator based neutrinos with our Data Driven Trigger framework. This paper will focus on the real time integration of the SNEWS with the NOvA Trigger where we have set up an XML-RPC based messaging system to inject the SNEWS signal directly into ourmore » trigger. In conclusion, this presents a departure from the E-Mail based notification mechanism used by SNEWS in the past and allows NOvA more control over propagation and transmission timing.« less

  11. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  12. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of amore » white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.« less

  13. Adaptive evolution of sexual systems in pedunculate barnacles

    PubMed Central

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun; Kawane, Masako; Ozaki, Yuki; Yamato, Shigeyuki; Høeg, Jens T.

    2012-01-01

    How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin. PMID:21881138

  14. The critical binary star separation for a planetary system origin of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  15. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-07-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al., we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features, and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a nova-like and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al.

  16. Efficacy and patient satisfaction after NovaSure and Minerva endometrial ablation for treating abnormal uterine bleeding: a retrospective comparative study.

    PubMed

    Scordalakes, Constantine; delRosario, Robert; Shimer, Andrew; Stankiewicz, Russell

    2018-01-01

    Compare amenorrhea rate, menstrual symptoms, patient satisfaction, and adverse events in women who underwent endometrial ablation with the NovaSure versus the Minerva radiofrequency ablation systems. We surveyed 189 premenopausal women (mean 40.8±6.2 years old) who underwent endometrial ablation for abnormal uterine bleeding using the NovaSure (n=97) or Minerva (n=92) systems, at four private US gynecology clinics, and whose procedure date was after July 2015 with follow-up ≥3 months. Women were surveyed an average of 11.3±3.9 months (range 137-532 days) after ablation. The subject-reported amenorrhea rate was 52% higher in NovaSure subjects than Minerva subjects (64% and 42%, respectively; p =0.004). Age and bleeding cyclicity did not affect amenorrhea rate in either group. Normal-to-no bleeding was reported by >90% of subjects after either treatment. NovaSure was significantly more effective than Minerva at reducing pad/tampon use in women with any residual bleeding (2.4±5.2 items/day versus 4.7±5.5 items/day, p =0.049). NovaSure was significantly more effective than Minerva at reducing premenstrual syndrome (PMS) symptoms ( p =0.019) and menstrual pain ( p =0.003), and more NovaSure subjects (94%) than Minerva subjects (78%) were satisfied with clinical outcomes ( p =0.003). Adverse events did not differ by treatment; three women in each group progressed to hysterectomy. While overall bleeding reduction in premenopausal women with abnormal uterine bleeding was excellent with either endometrial ablation system, NovaSure treatment resulted in a higher patient-reported 1-year amenorrhea rate, and women with residual bleeding used fewer pads and tampons than Minerva-treated women. Additionally, NovaSure subjects reported better menstrual-related life quality and PMS symptom alleviation, and greater satisfaction with outcomes than Minerva-treated women.

  17. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  18. Infrared spectroscopy of the remnant of Nova Sco 2014: a symbiotic star with too little circumstellar matter to decelerate the ejecta

    NASA Astrophysics Data System (ADS)

    Munari, U.; Banerjee, D. P. K.

    2018-03-01

    Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.

  19. Doppler Tomography and Photometry of the Cataclysmic Variable 1RXS J064434.5+334451

    NASA Astrophysics Data System (ADS)

    Echevarria, Juan

    2015-08-01

    We have obtained simultaneous photometric and spectroscopic observations of the cataclysmic variable 1RXS J064434.5+334451. We have calibrated the spectra for slit losses using the simultaneous photometry. This has been used to construct reliable Doppler images from Hα, Hβ and He II 4686 Å emission lines. We have also analyzed the radial velocity curve of the emission lines to derive its semi-amplitude, and used a co-phasing method to determine the semi-amplitude of the secondary. We have improved the ephemeris of the object based on new photometric eclipse timings to obtain HJD = 2453403.759533 + 0.26937446E. Some eclipses present a clear internal structure which we attribute to a central blob of He II emission surrounding the white dwarf, a finding supported by the Doppler Tomography. This indicates that the system has a large inclination angle i = 78o ± 2. We discuss which radial velocity semi-amplitudes indicator yields a better result for the mass ratio of the system. We derive the masses of the components: M1 = 0.76 ± 0.04 M⊙, M2 = 0.57 ± 0.04 M⊙ and their separation a = 1.92 ± 0.04R⊙ . The Doppler tomography and other observed features in this nova-like system strongly suggests that this is an SW Sex type system.

  20. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  1. The first sub-70 min non-interacting WD-BD system: EPIC212235321

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Braker, I. P.; Parsons, S. G.; Hermes, J. J.; Burleigh, M. R.; Belardi, C.; Chaushev, A.; Finch, N. L.; Roy, M.; Littlefair, S. P.; Goad, M.; Dennihy, E.

    2018-05-01

    We present the discovery of the shortest period, non-interacting, white dwarf-brown dwarf post-common-envelope binary known. The K2 light curve shows the system, EPIC 21223532 has a period of 68.2 min and is not eclipsing, but does show a large reflection effect due to the irradiation of the brown dwarf by the white dwarf primary. Spectra show hydrogen, magnesium, and calcium emission features from the brown dwarf's irradiated hemisphere, and the mass indicates the spectral type is likely to be L3. Despite having a period substantially lower than the cataclysmic variable period minimum, this system is likely a pre-cataclysmic binary, recently emerged from the common-envelope. These systems are rare, but provide limits on the lowest mass object that can survive common-envelope evolution, and information about the evolution of white dwarf progenitors, and post-common-envelope evolution.

  2. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2015-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  3. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2014-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  4. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2016-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  5. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38

  6. Can isolated single black holes produce X-ray novae?

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  7. Olivier Chesneau's Work on Novae

    NASA Astrophysics Data System (ADS)

    Millour, F.; Lagadec, E.

    2015-12-01

    Olivier Chesneau founded a brand new field of observational astrophysics with his attempts to resolve the novae expanding fireball from the very first days of the explosion. With the images he could get, he showed that novae do indeed explode in an aspherical way, leading to a change of paradigm for the physics of these yet-poorly understood catastrophic systems. He also set the stage for a new way of estimating novae distances, by directly measuring the sky-size of the fireball and comparing it with spectroscopic scales, taking into account the tremendous effects of the fireball geometry.

  8. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  9. First detection of the white dwarf cooling sequence of the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamida, A.; Sahu, K. C.; Anderson, J.

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{supmore » –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.« less

  10. Discovery of deep eclipses in the cataclysmic variable IPHAS J051814.33+294113.0

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. P.

    2018-06-01

    Performing the photometric observations of the cataclysmic variable IPHAS J051814.33+294113.0, we discovered very deep eclipses. The observations were obtained over 14 nights, had a total duration of 56 hours and covered one year. The large time span, during which we observed the eclipses, allowed us to measure the orbital period in IPHAS J051814.33+294113.0 with high precision, P_{orb}=0.20603098± 0.00000025 d. The prominent parts of the eclipses lasted 0.1± 0.01 phases or 30± 3 min. The depth of the eclipses was variable in the range 1.8-2.9 mag. The average eclipse depth was equal to 2.42± 0.06 mag. The prominent parts of the eclipses revealed a smooth and symmetric shape. We derived the eclipse ephemeris, which, according to the precision of the orbital period, has a formal validity time of 500 years. This ephemeris can be useful for future investigations of the long-term period changes. During the latter four observational nights in 2017 January, we observed the sharp brightness decrease of IPHAS J051814.33+294113.0 by 2.3 mag. This brightness decrease imitated the end of the dwarf nova outburst. However, the long-term light curve of IPHAS J051814.33+294113.0 obtained in the course of the Catalina Sky Survey during 8 years showed no dwarf nova outbursts. From this we conclude that IPHAS J051814.33+294113.0 is a novalike variable. Moreover, the sharp brightness decrease, which we observed in IPHAS J051814.33+294113.0, suggests that this novalike variable belongs to the VY Scl-subtype. Due to very deep eclipses, IPHAS J051814.33+294113.0 is suitable to study the accretion disc structure using eclipse mapping techniques. Because this novalike variable has the long orbital period, it is of interest to determine the masses of the stellar components from radial velocity measurements. Then, our precise eclipse ephemeris can be useful to the phasing of spectroscopic data.

  11. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.

  12. The Evolution of NR TrA (Nova TrA 2008) from 2008 through 2017

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.; Burwitz, Vadim; Kafka, Stella

    2018-06-01

    The classical nova NR TrA was discovered as an O-type optically-thick classical nova. There is no evidence that it formed dust. Within four years the envelope became sufficiently thin to reveal an eclipsing accretion disk-dominated system with orbitally-modulated permitted lines of C IV, N V, and O VI. XMM observations reveal a non-eclipsing soft X-ray source and a deeply-eclipsing UV continuum. We will present the first ten years of optical spectral evolution of this system accompanied by ten years of BVRIJHK photometry, with an eye to deciphering the current nature of the system.

  13. Early evolution of the extraordinary Nova Delphini 2013 (V339 Del)

    NASA Astrophysics Data System (ADS)

    Skopal, A.; Drechsel, H.; Tarasova, T.; Kato, T.; Fujii, M.; Teyssier, F.; Garde, O.; Guarro, J.; Edlin, J.; Buil, C.; Antao, D.; Terry, J.-N.; Lemoult, T.; Charbonnel, S.; Bohlsen, T.; Favaro, A.; Graham, K.

    2014-09-01

    Aims: We determine the temporal evolution of the luminosity (LWD), radius (RWD) and effective temperature (Teff) of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. Methods: These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500-9200 Å), UBVRCIC and JHKLM photometry. Important insights in the physical conditions of the ejecta were gained from an analysis of the evolution of the Hα and Raman-scattered 6825 Å O vi line using medium-resolution spectroscopy (R ~ 10 000). Results: During the fireball stage (Aug. 14.8-19.9, 2013), Teff was in the range of 6000-12 000 K, RWD was expanding non-uniformly in time from ~66 to ~300 (d/ 3 kpc) R⊙, and LWD was super-Eddington, but not constant. Its maximum of ~9 × 1038 (d/ 3 kpc)2 erg s-1 occurred around Aug. 16.0, at the maximum of Teff, half a day before the visual maximum. After the fireball stage, a large emission measure of 1.0-2.0 × 1062 (d/ 3 kpc)2 cm-3 constrained the lower limit of LWD to be well above the super-Eddington value. The mass of the ionized region was a few × 10-4 M⊙, and the mass-loss rate was decreasing from ~5.7 (Aug. 22) to ~0.71 × 10-4 M⊙ yr-1 (Sept. 20). The evolution of the Hα line and mainly the transient emergence of the Raman-scattered O vi 1032 Å line suggested a biconical ionization structure of the ejecta with a disk-like H i region persisting around the WD until its total ionization, around day 40. On Sept. 20 (day 35), the model SED indicated a dust emission component in the spectrum. The dust was located beyond the H i zone, where it was shielded from the hard, ≳105 K, radiation of the burning WD at that time. Conclusions: Our extensive spectroscopic observations of the classical nova V339 Del allowed us to map its evolution from the very early phase after its explosion. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon. Based on data collected by amateur astronomers.

  14. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  15. Educational Technology Program for Nova Scotia: Initial Phase. A Report on the Federal-Provincial Study of Educational Technology in Nova Scotia.

    ERIC Educational Resources Information Center

    deVille, Barry, Ed.

    This is a preliminary examination of the present status and future prospects of educational technology in Nova Scotian schools. It is aimed at developing a plan to enhance the quality of educational technology by concentrating on systems which will be conducive to realizing educational goals at a reasonable cost. An overview of the institutional…

  16. The electrification of Nova Scotia, 1884--1973: Technological modernization as a response to regional disparity

    NASA Astrophysics Data System (ADS)

    King, Lionel Bradley

    This dissertation investigates local attempts to use technology as a force for regional rehabilitation in the economically-depressed Maritime region of Canada. At the time of Confederation in 1867, the Maritime province of Nova Scotia was prosperous, progressive, and cultured. By the end of the 1910s, the province had entered a long period of economic and social decline. Recent historiography has shown that, far from passively accepting their fate, Nova Scotians and other Maritimers, actively resisted marginalization with political, cultural, or social action. The thesis expands upon that literature by exploring technology-based strategies of provincial rehabilitation using Thomas P. Hughes's systems perspective and David E. Nye's semiotic approach. In doing so, it applies methods from the social constructivist school of the history of technology to the larger concerns of Maritime Canadian historiography. In large part, the North American culture of technology determined the ways in which Nova Scotians applied technological solutions to provincial concerns. Technology has long been central to the Western idea of progress. As the "high technology" of the late nineteenth and early twentieth centuries, electricity reinforced that view: its ephemeral nature and silent efficiency led people to endow it with transformative, even mystical, powers. As a result, Nova Scotians, adopted a program of electrical modernization in the late 1910s as a remedy for regional disparity. The Nova Scotia government's first step was the creation of an Ontario-style hydroelectric commission designed to bring order to the province's fragmented and inefficient electrical network. Over the next few decades, the Nova Scotia Power Commission implemented rural electrification, home modernization, and regional system-building models that had already proven successful in Ontario and the United States. The system-building philosophies behind these programs were adapted to local conditions and disseminated throughout the province by politicians, engineers, businesspeople, and social reformers. Although electrical modernization failed to address the structural reasons for the province's decline, Nova Scotians continued to include it in their provincial rehabilitation plans until the 1960s. In sum, the electrification of Nova Scotia was not merely a technical event, but was shaped by the province's aspiration to regain its prior position in Confederation.

  17. Hunting For Wild Brown Dwarf Companions To White Dwarfs In UKIDSS And SDSS

    NASA Astrophysics Data System (ADS)

    Day-Jones, Avril; Pinfield, D. J.; Jones, H. R. A.; Napiwotzki, R.; Burningham, B.; Jenkins, J. S.; UKIDSS Cool Dwarf Science Working Group

    2008-03-01

    We present findings from our search of the latest releases of SDSS and UKIDSS LAS for very widely separated white dwarf - ultracool dwarf binaries. Ultracool dwarfs found in such binary systems could be used as benchmark objects, whose properties, such as age and distance can be inferred indirectly from the white dwarf primary (with no need to refer to atmospheric models) and can provide a test bed for theoretical models, they can therefore be used observationally pin down how physical properties affect ultracool dwarf spectra.

  18. GRB070610: A Curious Galactic Transient

    NASA Technical Reports Server (NTRS)

    Kasliwal, M. M.; Kulkrarni. S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; hide

    2007-01-01

    GRB 070610 is a typical high-energy event with a duration of 5s.Yet within the burst localization we detect a highly unusual X-ray and optical transient, SwiftJ195509.6+261406. We see high amplitude X-ray and optical variability on very short time scares even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of SwiftJl95509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a sub-class of stellar black hole binaries -- the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma-rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics

  19. GRB 070610: A Curious Galactic Transient

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; Pollack, L. K.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Sato, G.; Chandra, P.; Frail, D.; Fox, D. B.; Price, P. A.; Berger, E.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2008-05-01

    GRB 070610 is a typical high-energy event with a duration of 5 s. Yet within the burst localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406. We see high-amplitude X-ray and optical variability on very short timescales even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf, assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a subclass of stellar black hole binaries—the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics.

  20. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology

    NASA Astrophysics Data System (ADS)

    Kroupa, P.

    2012-06-01

    The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.

  1. Character Sets for PLATO/NovaNET: An Expository Catalog.

    ERIC Educational Resources Information Center

    Gilpin, John B.

    The PLATO and NovaNET computer-based instructional systems use a fixed system character set ("normal font") and an author-definable character set ("alternate font"). The alternate font lets the author construct his own symbols and bitmapped pictures. This expository catalog allows users to determine quickly (1) whether there is…

  2. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less

  3. OGLE ATLAS OF CLASSICAL NOVAE. II. MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mróz, P.; Udalski, A.; Poleski, R.

    2016-01-15

    The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr{sup −1} (LMC) and 0.9 ± 0.4 yr{sup −1} (SMC) and confirm that the K-band luminosity-specific novamore » rates in both Clouds are 2–3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.« less

  4. The Cluster AgeS Experiment (CASE). Detecting Aperiodic Photometric Variability with the Friends of Friends Algorithm

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Narloch, W.; Pietrukowicz, P.; Thompson, I. B.; Pych, W.; Poleski, R.

    2018-03-01

    We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a ≍90% detection efficiency. A search involving ≍2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached. The method can also quite efficiently detect semi-regular variability. In particular, 28 new semi-regular variables have been found in the field of the globular cluster M22, which was examined earlier with the help of periodicity-searching algorithms.

  5. Astrometry with Hubble Space Telescope Fine Guidance Sensor 3: The Parallax of the Cataclysmic Variable RW Triangulum

    NASA Astrophysics Data System (ADS)

    McArthur, B. E.; Benedict, G. F.; Lee, J.; Lu, C.-L.; van Altena, W. F.; Deliyannis, C. P.; Girard, T.; Fredrick, L. W.; Nelan, E.; Duncombe, R. L.; Hemenway, P. D.; Jefferys, W. H.; Shelus, P. J.; Franz, O. G.; Wasserman, L. H.

    1999-07-01

    RW Triangulum (RW Tri) is a 13th magnitude nova-like cataclysmic variable star with an orbital period of 0.2319 days (5.56 hr). Infrared observations of RW Tri indicate that its secondary is most likely a late-K dwarf (Dhillon). Past analyses predicted a distance of 270 pc, derived from a blackbody fit to the spectrum of the central part of the disk (Rutten, van Paradijs, & Tinbergen). Recently completed Hubble Space Telescope Fine Guidance Sensor interferometric observations allow us to determine the first trigonometric parallax to RW Tri. This determination puts the distance of RW Tri at 341-31+38, one of the most distant objects with a direct parallax measurement. We compare our result with methods previously employed to estimate distances to cataclysmic variables.

  6. The Kepler Light Curve of V344 LYR: Constraining the Thermal-Viscous Limit Cycle Instability

    NASA Technical Reports Server (NTRS)

    Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.

    2010-01-01

    We present time dependent modeling based on the accretion disk limit cycle model for a 90 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass a super outburst, preceded by three normal (i.e., short) outbursts and followed by two normal outbursts. The main decay of the super outburst is nearly perfectly exponential, decaying at a rate approx.12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. We show that the standard limit cycle model can account for the light curve, without the need for either the thermal-tidal instability or enhanced mass transfer.

  7. Spectroscopic, orbital, and physical properties of the binary Feige 24 and detection of transient He II absorption in the system

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Thorstensen, John R.

    1994-01-01

    We have obtained new high-dispersion optical spectroscopy at Kitt Peak National Observatory (KPNO) and new International Ultraviolet Explorer (IUE) spectroscopy of the white dwarf+red dwarf binary system Feige 24. The optical range shows a composite DA+dM spectrum, together with H I Balmer and He I emission. The orbital phase dependence of the emission shows that it results from extreme ultraviolet (EUV) light reprocessing in the red dwarf upper atmosphere. The systems close enough and hot enough to show this reprocessing signature only recently emerged from common-envelope evolution. The ultraviolet spectrum exclusively emanates from the white dwarf and shows numerous heavy element absorption lines. We measured accurate radial velocities of the red dwarf component motion, traced by both optical absorption and emission lines, and new radial velocities of the white dwarf, traced by ultraviolet Fe V lines. Combining these measurements, we refined the orbital parameters presented by Vennes et al. (1991), and we confirmed that the white dwarf gravitational redshift is exceptionally small with 9 +/- 2 km/s. From this we deduced that the interior is either pure helium or carbon with a thick hydrogen layer, and we derived, for the combined interior compositions, a white dwarf mass and radius of M(sub WD) = 0.44-050 solar mass and R(sub WD) = 0.028-0.036 solar radius. We suggest that Feige 24 could be a typical case of close binary evolution leading to the formation of a low-mass helium white dwarf. The mass of the red dwarf and the inclination of the system naturally follow: M(sub dM) = 0.26-0.33 solar mass, i greater than or equal to 75 deg. High-dispersion H-alpha line profiles are asymmetrical, strongly enhanced toward the blue, suggesting a moving atmosphere possibly linked to a mass loss rate of 10(exp -10) solar mass/yr. The IUE spectra taken when the system is near inferior conjunction show strong He II 1640 A absorption. The profile is highly variable in width and intensity. Because it is correlated with the passage of the white dwarf at inferior conjunction, the absorption may occur in some foreground plasma emanated by the red dwarf and accumulating near a Lagrangian point or, alternatively, it may originate in an accretion spot on the white dwarf surface coaligned with the major orbital axis. Either way, the He II detection may imply substantial mass loss from the red dwarf with a corollary reclassification of Feige 24 as a mixed He/H DAO white dwarf resulting from accretion of secondary mass-loss material. Feige 24 is the prototype of a class of young, EUV-emitting, binary systems comprising a late main sequence secondary and a hot H-rich white dwarf; the class is characterized by optical and ultraviolet photospheric He II absorption, circumstellar C IV lambda (1550) absorption, and by the presence of EUV-induced, phase-dependent Balmer fluorescence. These young systems present the best opportunity to constrain theory of common-envelope evolution.

  8. Coordinated Analysis of Two Graphite Grains from the CO3.0 LAP 031117 Meteorite: First Identification of a CO Nova Graphite and a Presolar Iron Sulfide Subgrain

    NASA Astrophysics Data System (ADS)

    Haenecour, Pierre; Floss, Christine; José, Jordi; Amari, Sachiko; Lodders, Katharina; Jadhav, Manavi; Wang, Alian; Gyngard, Frank

    2016-07-01

    Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of {5}-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.

  9. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  10. Discovery of an old nova shell surrounding the cataclysmic variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Littlefair, S. P.; Hallinan, G.

    2018-04-01

    Following our tentative discovery of a faint shell around V1315 Aql reported in Sahman et al. (2015), we undertook deep Hα imaging and intermediate-resolution spectroscopy of the shell. We find that the shell has its geometric centre located on V1315 Aql. The mass, spectral features and density of the shell are consistent with other nova shells, rather than planetary nebulae or supernova remnants. The radial velocity of the shell is consistent with the systemic velocity of V1315 Aql. We believe this evidence strongly suggests that the shell originates from an earlier nova event. This is the first nova shell discovered around a novalike, and supports the theory of nova-induced cycles in mass transfer rates (hibernation theory) first proposed by Shara et al. (1986).

  11. Falsification of Dark Energy by Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  12. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar-Friedman-Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (I.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  13. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitationalmore » waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.« less

  14. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  15. A disintegrating minor planet transiting a white dwarf.

    PubMed

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T

    2015-10-22

    Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

  16. Transit probabilities for debris around white dwarfs in Kepler/K2 up to C13

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Johnson, John Asher

    2018-01-01

    WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. At present, there is a single example. We study all white dwarfs observed during the K2 mission to identify white dwarfs with either transits or light curve features similar to WD 1145+017. We correct for contamination using J.J. Hermes' list of high probability white dwarfs (available at k2wd.org ).

  17. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-05-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity {log}({L}\\star /{L}⊙ )=-5.16+/- 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai-Lidov mechanism and propose additional astrometric or Rossiter-McLaughlin measurements of the system to probe the dynamical history of the system.

  18. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes acrosswavelength bands.CitationJohn Southworth et al 2017 AJ 153 191. doi:10.3847/1538-3881/aa6477

  19. Race to the Top: Transiting Brown Dwarfs and Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.

    2015-12-01

    There are currently twelve known transiting brown dwarfs, nine of which orbit single main-sequence stars. These systems give us one of the only ways in which we may directly measure the masses and radii brown dwarfs, which in turn provides strong constraints on theoretical models of brown dwarf interiors and atmospheres. In addition, the transiting brown dwarfs allow us to forge a link between our understanding of transiting hot Jupiters, and our understanding of the field brown dwarf population. Comparing the two gives us a unique avenue to explore the role and interaction of surface gravity and stellar irradiation in the atmospheres of sub-stellar objects. It also allows us to leverage the detailed spectroscopic information we have for field brown dwarfs to interpret the broadband colors of hot Jupiters. This provides us with insight into the L/T transition in brown dwarfs, and the atmospheric chemistry changes that occur in hot Jupiter atmospheres as they cool. I will discuss recent observational results, with a particular focus on the transiting brown dwarf KELT-1b, and suggest how more of these important systems may be discovered in the future.

  20. Actively Disintegrating Astroids around a White Dwarf

    NASA Astrophysics Data System (ADS)

    Xu, Siyi

    2017-08-01

    Recent studies show that planetary systems can be widespread around white dwarfs. It has been proposed that planetary systems are responsible for the pollution observed in a white dwarf's atmosphere and the excess infrared radiation. This scenario is greatly strengthened by the recent discovery of actively disintegrating bodies orbiting around the white dwarf WD 1145+017. In addition, this system has a heavily polluted atmosphere, a dust disk, and circumstellar gas. Our team has been monitoring this system since its discovery and our recent COS data have revealed many new surprises. We propose to continue studying this system for the next two cycles and further constrain the evolution of the disintegrating bodies: what are the main mechanisms responsible for its destruction? How is circumstellar gas produced and maintained?

  1. Double cyclic variations in orbital period of the eclipsing cataclysmic variable EX Dra

    NASA Astrophysics Data System (ADS)

    Han, Zhong-tao; Qian, Sheng-bang; Voloshina, Irina; Zhu, Li-Ying

    2017-06-01

    EX Dra is a long-period eclipsing dwarf nova with ˜2-3 mag amplitude outbursts. This star has been monitored photometrically from November, 2009 to March, 2016 and 29 new mid-eclipse times were obtained. By using new data together with the published data, the best fit to the O-C curve indicate that the orbital period of EX Dra have an upward parabolic change while undergoing double-cyclic variations with the periods of 21.4 and 3.99 years, respectively. The upward parabolic change reveals a long-term increase at a rate of \\dot{P}= {+7.46}×10^{-11} s s^{-1}. The evolutionary theory of cataclysmic variables (CVs) predicts that, as a CV evolves, the orbital period should be decreasing rather than increasing. Secular increase can be explained as the mass transfer between the secondary and primary or may be just an observed part of a longer cyclic change. Most plausible explanation for the double-cyclic variations is a pair of light travel-time effect via the presence of two companions. Their masses are determined to be MAsin i'A=29.3(±0.6) M_{Jup} and MBsin i'B=50.8(±0.2) M_{Jup}. When the two companions are coplanar to the orbital plane of the central eclipsing pair, their masses would match to brown dwarfs.

  2. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  3. NOVA.

    ERIC Educational Resources Information Center

    WGBH-TV, Boston, MA.

    News clippings, reviews, and feature articles about the Public Broadcasting System science-adventure series "Nova" are collected here. Included are comments from the New York Times, Washington Post, Christian Science Monitor, and TV Guide. Commentaries are primarily favorable and include synopses of various episodes. (DGC)

  4. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  5. Brown Dwarf Companion Frequencies and Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Sterzik, Michael F.; Durisen, Richard H.

    2003-06-01

    Numerical simulations are used to explore how gravitational interactions within young multiple star systems may determine the binary properties of brown dwarfs. We compare different scenarios for cluster formation and decay and find that brown dwarf binaries, although possible, generally have a low frequency. We also discuss the frequencies of brown dwarf companions to normal stars expected from these models.

  6. White Dwarfs in Wide Binaries and the Age of the Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, John Allyn

    A comprehensive study of common proper binary systems suspected of containing white dwarf stars is being conducted by Oswalt and collaborators (Oswalt et al. 1988). These systems usually contain a white dwarf and a main sequence star. In the present study, we use the white dwarf luminosity function to determine the age of the local Galactic disk as well as the local space density of white dwarfs. We obtained BVRI photometry of approximately 475 systems (of 512) which were found to contain about 325 white dwarfs. Of these white dwarfs, 152 met the selection criteria for our study and were used in the final analysis. Using this largest sample of cool white dwarfs in binary systems observed to date, we have determined an age for the Galactic disk of 9.7-0.8+0.9 Gyr which yields a lower limit age for the Universe of about 11.7 Gyr. Recent globular cluster studies agree to within ±1σ for the Galaxy age derived from our Disk age. The latest cosmologically derived age for the Universe, modified for the recently released Hipparcos data, is now in accordance with our age estimates for the Universe, for H o (69 km s-1 Mpc-1) and an inflationary cosmology. Further, our age is in accord with the ages derived for the Galaxy from nucleocomsochronology and meteoritic sample analyses. As a part of this work, we have determined the white dwarf space density to be 4.5 ± 1.0 10-3 pc-3, in accord with the results previously reported by Liebert, Dahn & Monet (1987). This space density corresponds to a white dwarf birthrate of 4.65 × 10-13 yr-1 pc-3. This research also details a unique approach to calculating and correcting for the incompleteness of a proper motion and magnitude selected stellar sample.

  7. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  8. An X-ray survey of nine historical novae. [HEAO 2 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Marshall, F. E.

    1980-01-01

    The Einstein Observatory imaging proportional counter was used to search for X-ray emission from nine nearby historical novae. Six of the novae were detected with estimated X-ray intensities between .1 to 4 keV of 10 to the -13th power to 10 to the -11th power ergs/sq cm-s, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.

  9. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: discovery, light curve, hydrodynamics and evolution

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.

    2017-09-01

    We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.

  10. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  11. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  12. New sidescan sonar and gravity evidence that the Nova-Canton Trough is a fracture zone

    NASA Astrophysics Data System (ADS)

    Joseph, Devorah; Taylor, Brian; Shor, Alexander N.

    1992-05-01

    A 1990 sidescan sonar survey in the eastern region of the Nova-Canton Trough mapped 138°-striking abyssal-hill fabric trending into 70°-striking trough structures. The location and angle of intersection of the abyssal hills with the eastern Nova-Canton Trough effectively disprove a spreading-center origin of this feature. Free-air gravity anomalies derived from satellite altimetry data show continuity, across the Line Islands, of the Nova-Canton Trough with the Clipperton Fracture Zone. The Canton-Clipperton trend is copolar, about a pole at 30°S, 152°W, with other coeval Pacific-Farallon fracture-zone segments, from the Pau to Marquesas fracture zones. This copolarity leads us to postulate a Pacific-Farallon spreading pattern for the magnetic quiet zone region north and east of the Manihiki Plateau, with the Nova-Canton Trough originating as a transform fault in this system.

  13. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-06-01

    In a previous study, we analysed the spectra of 230 cool (Teff < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here, we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log [Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by three orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  14. Detection of the secondary star in HT Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Marsh, T. R.

    1990-01-01

    Low-resolution spectra of the eclipsing dwarf nova HT Cas, taken over the range 5000-9800 A show TiO bands and Na I absorption lines from the secondary star. From the TiO band ratio at mid-eclipse it is estimated that the secondary star contributes about 37 percent of the light at 7500 A during the eclipse, and that it has a Boeshaar spectral type M5.4 + or - 0.3. The mass, radius, and luminosity of the secondary star are all consistent with main-sequence values. The TiO band strength diminishes greatly near phase 0.5, but an eclipse by the disk is not sufficient to explain this. The radial velocity is measured from the Na line near 8200 A for most of the spectra and (after a correction for the asymmetric distribution of absorption over the secondary star) its radial velocity semiamplitude K2 = 430 + or - 25 km/sec.

  15. VizieR Online Data Catalog: Dwarf novae outbursts properties (Otulakowska-Hypka+, 2016)

    NASA Astrophysics Data System (ADS)

    Otulakowska-Hypka, M.; Olech, A.; Patterson, J.

    2017-11-01

    In this study, we used the following available catalogue data sources. The catalogue and atlas of CVs (https://archive.stsci.edu/prepds/cvcat/) by Downes et al. (2001PASP..113..764D, Cat. V/123) which contains 1830 objects that have been classified as a CV before 2006 February 1, when the catalogue was frozen. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (http://www.mpa-garching.mpg.de/RKcat/) by Ritter & Kolb (2003A&A...404..301R, Cat. B/cb). Although the reference corresponds to a catalogue which is over 10yr old, its newest edition 7.21 (2013 December 31) has been used in this study. This catalogue contains 1094 CVs. Catalogue of J. Patterson, that is the supplementary electronic material to the publication Patterson (2011) containing properties of 292 non-magnetic CVs with orbital periods smaller than 3h (http://cbastro.org/dwarfnovashort/) (1 data file).

  16. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inserra, C.; Sim, S. A.; Smartt, S. J.

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data aremore » broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.« less

  17. Release of the gPhoton Database of GALEX Photon Events

    NASA Astrophysics Data System (ADS)

    Fleming, Scott W.; Million, Chase; Shiao, Bernie; Tucker, Michael; Loyd, R. O. Parke

    2016-01-01

    The GALEX spacecraft surveyed much of the sky in two ultraviolet bands between 2003 and 2013 with non-integrating microchannel plate detectors. The Mikulski Archive for Space Telescopes (MAST) has made more than one trillion photon events observed by the spacecraft available, stored as a 130 TB database, along with an open-source, python-based software package to query this database and create calibrated lightcurves or images from these data at user-defined spatial and temporal scales. In particular, MAST users can now conduct photometry at the intra-visit level (timescales of seconds and minutes). The software, along with the fully populated database, was officially released in Aug. 2015, and improvements to both software functionality and data calibration are ongoing. We summarize the current calibration status of the gPhoton software, along with examples of early science enabled by gPhoton that include stellar flares, AGN, white dwarfs, exoplanet hosts, novae, and nearby galaxies.

  18. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  19. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the twomore » white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.« less

  20. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  1. Low-Mass Stars and Their Companions

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler

    In this thesis, I present seven studies aimed towards better understanding the demographics and physical properties of M dwarfs and their companions. These studies focus in turn on planetary, brown dwarf, and stellar companions to M dwarfs. I begin with an analysis of radial velocity and transit timing analyses of multi-transiting planetary systems, finding that if both signals are measured to sufficiently high precision the stellar and planetary masses can be measured to a high precision, eliminating a need for stellar models which may have systematic errors. I then combine long-term radial velocity monitoring and a direct imaging campaign to measure the occurrence rate of giant planets around M dwarfs. I find that 6.5 +/- 3.0% of M dwarfs host a Jupiter mass or larger planet within 20 AU, with a strong dependence on stellar metallicity. I then present two papers analyzing the LHS 6343 system, which contains a widely separated M dwarf binary (AB). Star A hosts a transiting brown dwarf (LHS 6343 C) with a 12.7 day period. By combining radial velocity data with transit photometry, I am able to measure the mass and radius of the brown dwarf to 2% precision, the most precise measurement of a brown dwarf to date. I then analyze four secondary eclipses of the LHS 6343 AC system as observed by Spitzer in order to measure the luminosity of the brown dwarf in both Spitzer bandpasses. I find the brown dwarf is consistent with theoretical models of an 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 +/- 130 K. This is the first non-inflated brown dwarf with a measured mass, radius, and multi-band photometry, making it an ideal test of evolutionary models of field brown dwarfs. Next, I present the results of an astrometric and radial velocity campaign to measure the orbit and masses of both stars in the GJ 3305 AB system, an M+M binary comoving with 51 Eridani, a more massive star with a directly imaged planetary companion. I compare the masses of both stars to largely untested theoretical models of young M dwarfs, finding that the models are consistent with the measured mass of star A but slightly overpredict the luminosity of star B. In the final two science chapters I focus on space-based transit surveys, present and future. First, I present the first catalog of statistically validated planets from the K2 mission, as well as updated stellar and planetary parameters for all systems with candidate planets in the first K2 field. The catalog includes K2-18b, a ``mini-Neptune'' planet that receives a stellar insolation consistent with the level that the Earth receives from the Sun, making it a useful comparison against planets of a similar size that are highly irradiated, such as GJ 1214 b. Finally, I present predictions for the WFIRST mission. While designed largely as a microlensing mission, I find it will be able to detect as many as 30,000 transiting planets towards the galactic bulge, providing information about how planet occurrence changes across the galaxy. These planets will be able to be confirmed largely through direct detection of their secondary eclipses. Moreover, I find that more than 50% of the planets it detects smaller than Neptune will be found around M dwarf hosts.

  2. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  3. Tracking the NOvA Detectors' Performance

    NASA Astrophysics Data System (ADS)

    Psihas, Fernanda; NOvA Collaboration

    2016-03-01

    The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.

  4. Brown dwarf science at Project 1640: the case of HD 19467 B

    NASA Astrophysics Data System (ADS)

    Aguilar, Jonathan; Crepp, Justin R.; Rice, Emily L.; Pueyo, Laurent; Veicht, Aaron; Nilsson, Ricky; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing; Giorla, Paige

    2015-01-01

    Project 1640 is an extreme-AO, coronagraphic, hyperspectral direct-imaging instrument designed to characterize substellar companions in the giant planet to brown dwarf mass regime. It also plays an important role in the TRENDS survey, which targets solar-type stars with Doppler accelerations known to be caused by brown dwarf-sized companions. A recent highlight from TRENDS is HD 19467 B -- this is currently the only directly-imaged benchmark T dwarf known to induce a measurable Doppler acceleration around its host. J- and H-band spectra taken by the Project 1640 integral field spectrograph were fitted against SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models. Spectral typing classified HD 19467 B as a T5.5±1 brown dwarf with an effective temperature of Teff = 978+20-43 K. The new spectrum helps resolve a previous disagreement about the system age, helping constrain the range of allowed masses for the companion. We expect that new data from the ongoing TRENDS survey will help improve our understanding of brown dwarf atmospheres in high mass ratio systems.

  5. PG1258+593 and its common proper motion magnetic white dwarf counterpart

    NASA Astrophysics Data System (ADS)

    Girven, J.; Gänsicke, B. T.; Külebi, B.; Steeghs, D.; Jordan, S.; Marsh, T. R.; Koester, D.

    2010-05-01

    We confirm SDSSJ130033.48+590407.0 as a common proper motion companion to the well-studied hydrogen-atmosphere (DA) white dwarf PG1258+593 (GD322). The system lies at a distance of 68 +/- 3pc, where the angular separation of 16.1 +/- 0.1arcsec corresponds to a minimum binary separation of 1091 +/- 7au. SDSSJ1300+5904 is a cool (Teff = 6300 +/- 300K) magnetic white dwarf (B ~= 6mG). PG1258+593 is a DA white dwarf with Teff = 14790 +/- 77K and logg = 7.87 +/- 0.02. Using the white dwarf mass-radius relation implies the masses of SDSSJ1300+5904 and PG1258+593 are 0.54 +/- 0.06 and 0.54 +/- 0.01Msolar, respectively, and therefore a cooling age difference of 1.67 +/- 0.05Gyr. Adopting main-sequence lifetimes from stellar models, we derive an upper limit of 2.2Msolar for the mass of the progenitor of PG1258+593. A plausible range of initial masses is 1.4-1.8 Msolar for PG1258+593 and 2-3 Msolar for SDSSJ1300+5904. Our analysis shows that white dwarf common proper motion binaries can potentially constrain the white dwarf initial mass-final mass relation and the formation mechanism for magnetic white dwarfs. The magnetic field of SDSSJ1300+5904 is consistent with an Ap progenitor star. A common envelope origin of the system cannot be excluded, but requires a triple system as progenitor.

  6. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  7. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-07-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  8. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-03-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  9. High Energy Neutrino Physics with NOvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coan, Thomas

    2016-09-09

    Knowledge of the position of energy deposition in “hit” detector cells of the NOvA neutrino detector is required by algorithms for pattern reconstruction and particle identification necessary to interpret the raw data. To increase the accuracy of this process, the majority of NOvA's 350 000 far detector cell shapes, including distortions, were measured as they were constructed. Using a special laser scanning system installed at the site of the NOvA far detector in Ash River, MN, we completed algorithmic development and measured shape parameters for the far detector. The algorithm and the measurements are “published” in NOνA’s document database (docmore » #10389, “Cell Center Finder for the NOνA Far Detector Modules”).« less

  10. Birth of an Unusual Planetary System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's animation shows a brown dwarf surrounded by a swirling disc of planet-building dust. NASA's Spitzer Space Telescope spotted such a disc around a surprisingly low-mass brown dwarf, or 'failed star.' The brown dwarf, called OTS 44, is only 15 times the size of Jupiter, making it the smallest brown dwarf known to host a planet-forming, or protoplanetary disc.

    Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disc has enough mass to make one small gas giant and a few Earth-sized rocky planets.

    OTS 44 is about 2 million years old. At this relatively young age, brown dwarfs are warm and appear reddish in color. With age, they grow cooler and darker.

  11. Probing LSST's Ability to Detect Planets Around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Cortes, Jorge; Kipping, David

    2018-01-01

    Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.

  12. Throwing Icebergs at White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that of a large asteroid up to several times the mass of Jupiter. These potential polluters have very wide orbits that allow them to maintain ice and volatile materials.At the end of the progenitors lifetime it loses a significant amount of mass, causing the orbits of the surviving objects in the system to expand. After this stage, the stellar companion gravitationally perturbs the potential polluters onto extremely eccentric orbits, bringing these massive and long-period objects close enough accrete onto what is now the white dwarf.The Need for ObservationsThe likelihood distributions for orbital parameters of the systems that result in white dwarfs polluted by Neptune-like planets and Kuiper-belt-analog objects. The black arrows mark the parameters for one of the few observed systems, WD 1425+540, for comparison. [Stephan et al. 2017]By running large Monte Carlo simulations, Stephan and collaborators demonstrate that this scenario can successfully produce accretion of both Neptune-like planets and Kuiper-belt-analog objects. Their simulation results indicate that 1% of all white dwarfs should accrete Neptune-like planets, and 7.5% of all white dwarfs should accrete Kuiper-belt-analog objects.While these fractions are broadly consistent with observations, its hard to say with certainty whether this model is correct, as observations are scant. Only 200 polluted white dwarfs have been observed, and of these, only 15 have had detailed abundance measurements made. Next steps for understanding white-dwarf pollution certainly must includegathering more observations of polluted white dwarfs and establishing the statistics of what is polluting them.CitationAlexander P. Stephan et al 2017 ApJL 844 L16. doi:10.3847/2041-8213/aa7cf3

  13. Rocky Planetary Debris Around Young WDs

    NASA Astrophysics Data System (ADS)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected, the low C/Si ratio demonstrates that the planetary material is of rocky nature. * None of the 9 systems where we measure the C/O ratio shows evidence for carbon-dominated chemistry, implying that "carbon planets" are not common. * In the most polluted white dwarfs, we measure the debris abundances of up to 11 elements, enabling a detailed comparison between the chemistry of exo-planetary material with that of solar system meteorites. We find that the exo-planetary debris shares many characteristics of solar-system material, i.e. a wide spread in the relative abundances of Mg, Fe, Si, and O, a constant Al/Ca ratio, and evidence for differentiation in the form of Fe over-abundances All of the above is suggestive that thermal and collisional processing of planetary material in those systems might have been similar to that in the solar system.

  14. A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    NASA Astrophysics Data System (ADS)

    Goldman, B.; Marsat, S.; Henning, T.; Clemens, C.; Greiner, J.

    2010-06-01

    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age and metallicity. We searched for new cool brown dwarfs in 186deg2 of the new area covered by the data release DR5+ of the UKIRT Deep Infrared Sky Survey (UKIDSS) Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102arcsec away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1Gyr. At 11.4pc, this new late-T benchmark dwarf is a promising target to constrain the evolutionary and atmospheric models of very low-mass brown dwarfs. We present proper motion measurements for our targets and for 13 known brown dwarfs. Two brown dwarfs have velocities typical of the thick disc and may be old brown dwarfs. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andaluc'a (CSIC), and on observations made with ESO/MPG Telescope at the La Silla Observatory under programme ID 081.A-9012 and 081.A-9014. E-mail: goldman@mpia.de

  15. Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan

    2018-06-01

    Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.

  16. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  17. Investigating the FUV Emission of Young M dwarfs with FUMES: the Far Ultraviolet M-dwarf Evolution Survey

    NASA Astrophysics Data System (ADS)

    Pineda, John

    2016-10-01

    M dwarf stars have become attractive candidates for exoplanet searches and will be a main focus of the upcoming TESS mission, with the continued search for nearby potentially habitable worlds. However, the atmospheric characterization of these exoplanetary systems depends critically on the high energy stellar radiation environment from X-ray to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey (Cycles 19, 22) provided the first comprehensive assessment of the high energy radiation field around old, planet hosting M dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high energy spectrum of young M dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, propose the Far Ultraviolet M-dwarf Evolution Survey (FUMES) to measure the strong FUV coronal/chromospheric emission features of young M dwarfs (12 - 650 Myr), e.g. He II, C IV, and S IV. FUMES will observe objects with a wide range of rotation rates to directly connect the emission features to the evolution of coronal heating and upper atmospheric structure, and provide observational benchmarks at young ages for models of M dwarf upper atmospheres. Building on results from MUSCLES, we will be able to estimate the whole high energy radiation field and establish the evolutionary picture of the incident radiation throughout the lifetime of exoplanetary systems around early-mid M dwarf hosts.

  18. The interacting binary white dwarf systems

    NASA Astrophysics Data System (ADS)

    Provencal, Judith Lucille

    1994-01-01

    Interacting binary white dwarfs are believed to contain two white dwarfs of extreme mass ratio, one of which is filling its Roche Lobe, transferring material to its companion via an accretion disk. The defining characteristic of an IBWD is the nondetection of hydrogen in the system. IBWD's represent the culmination of binary star evolution. In this final death dance, two degenerate objects are entangled, the massive white dwarf tidally stripping and devouring its helpless companion's outer layers. Because a white dwarf expands as it loses mass, the end result of this process is the complete absorption of one star by the other . My goal in the examination of these systems is to understand their photometric behavior and determine the best model of these objects. The IBWD's represent the endpoint of binary evolution. Knowledge of the physical properties of these objects will provide constraints on theories of binary evolution, white dwarf formation, the thermal and physical structure of accreting white dwarfs, and nucleosynthesis. To achieve this goal, I have analyzed the most comprehensive high speed photometric data sets available on 5 of the 6 known objects: AM CVn, PG1346+082, CP Eri, V803 Cen, and G61-29. AM CVn and PG1346+0S2 were targets of the Whole Earth Telescope in 1988 and 1990 respectively. We find a range of variation timescales, from minutes to days, and a range of physical behaviour. Most importantly, we measure a rate of period change of P = 1.68 +/- 0.03 x 10-11s/s for the dominant variation in AM CVn. We also find the differences in behavior can be attributed to a difference in mass transfer rate that may be evolutionary in origin. Finally, I discuss in detail the observational characteristics of each object, and overall properties of the IBWD family. In conclusion, I discuss past and future history of these objects, and touch on their possible influence on our knowledge of white dwarf evolution and formation. The IBWD's are possible progenitors of helium white dwarfs. If this hypothesis is correct, these systems represent a second entry point onto the white dwarf cooling curve.

  19. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.

    2017-02-01

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f gas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (f gas ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (f gas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f gas ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  20. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N -body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f {sub gas}, in the disk of the progenitor dwarf. Our numerical experimentsmore » incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs ( f {sub gas} ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless ( f {sub gas} = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f {sub gas} ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.« less

  1. Brown Dwarf Microlensing (Illustration)

    NASA Image and Video Library

    2016-11-10

    This illustration depicts a newly discovered brown dwarf, an object that weighs in somewhere between our solar system's most massive planet (Jupiter) and the least-massive-known star. This brown dwarf, dubbed OGLE-2015-BLG-1319, interests astronomers because it may fall in the "desert" of brown dwarfs. Scientists have found that, for stars roughly the mass of our sun, less than 1 percent have a brown dwarf orbiting within 3 AU (1 AU is the distance between Earth and the sun). This brown dwarf was discovered when it and its star passed between Earth and a much more distant star in our galaxy. This created a microlensing event, where the gravity of the system amplified the light of the background star over the course of several weeks. This microlensing was observed by ground-based telescopes looking for these uncommon events, and was the first to be seen by two space-based telescopes: NASA's Spitzer and Swift missions. http://photojournal.jpl.nasa.gov/catalog/PIA21076

  2. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  3. Spectroscopic and Orbital Properties of the Binary Feige 24 and Discovery of External Plasma at Inferior Conjunction

    NASA Astrophysics Data System (ADS)

    Vennes, S.; Thorstensen, J. R.

    1993-12-01

    We have obtained new high-dispersion optical (KPNO) and ultraviolet spectroscopy (IUE) of the close white dwarf + red dwarf binary system Feige 24 (P = 4.2316 d). The optical range shows a composite DA+dM spectrum, together with H i Balmer and He i emission. The orbital phase dependence of the emission shows that it results from extreme ultraviolet (EUV) light reprocessing in the red dwarf photosphere. The systems close enough and hot enough to show this reprocessing signature must arise from common-envelope evolution. The ultraviolet spectrum is dominated by the white dwarf. It shows numerous Fe v absorption lines together with C iv, N v, and Si iv resonance doublets and few excited lines from the most abundant elements (N iv, O iv, S v). We measured accurate (1 km s(-1) ) radial velocities of the red dwarf component motion, traced by both optical absorption and emission lines, and new radial velocities of the white dwarf, traced by UV Fe v lines. Combining these measurements, we refine the orbital parameters presented by Vennes et al. (1991, ApJ, 372, L37), and we confirm that the white dwarf gravitational redshift is exceptionally small (8 +/- 2 km s(-1) ). Using theoretical radii for thin hydrogen layers we can uniquely constrain its mass and radius to MWD = 0.40 +/- 0.04 Msun and RWD = 0.024-0.032 Rsun. The mass of the red dwarf and the inclination of the system naturally follow: MdM = 0.27 +/- 0.03 Msun, i = 65 deg . The IUE spectra taken when the system is near inferior conjunction show strong He ii 1640 absorption. The profile is highly variable in width and intensity and appears correlated with the passage of the white dwarf in the background of plasma associated with the red dwarf, almost 4 Rsun above the orbital plane. At maximum, the line absorption is broad (130 km s(-1) ) and blueshifted (-20 km s(-1) ) relative to the systemic velocity. The plasma probably consists of coronal material and/or wind material. Additional UV spectroscopy will help determine the nature, dynamics, and temperature of this external plasma. This work is supported by NASA contract NAS5-30180 and grant NAG5-1805.

  4. Searching for brown dwarfs from submotions of binaries with speckle observations

    NASA Astrophysics Data System (ADS)

    Fu, Hsieh-Hai

    1994-01-01

    The search for brown dwarfs in binary systems is of great scientific interest and is a quest that pushes observing accuracy to its limit. The study of brown dwarfs is related to the search for dark matter, the initial mass function for stars of all masses, and theories of stellar formation. On the other hand, searching for brown dwarfs is a challenge because of their faintness and very low mass. Although many techniques have been used to detect brown dwarfs, a direct measurement of mass is the only criterion for distinguishing a brown dwarf from a star, and binary observation is still the best way for determining the accurate masses of celestial objects through Kepler's third law. Since 1976, CHARA has accumulated thousands of binary star speckle observations with high precision that can be used to find masses of possible unseen companions in binary systems through astrometrically measured submotions. A modified discrete Fourier transform was used to detect periodicity in data sets having uneven temporal distributions. This dissertation, an extension of work initiated by Dr. Ali Al-Shukri in 1991, uses the CHARA speckle measurements to evaluate their limiting accuracy and then to search for unseen companions from submotions of binary orbital motions. The successful detection of the previously known 1.83-year period sub-motion of the astrometric system ADS 8119 Aa demonstrates that this analysis can be used to find other systems in future investigations, even though no convincing evidence was found for the existence of a brown dwarf. Four possible companions were found to the binaries ADS 8197, ADS 9392, ADS 9494, and ADS 14073 with periods of 3.3, 2.6, 0.3, and 3.78 years and minimum masses in the ranges of 0.015-0.019, 0.11-0.65, 0.04-0.19, and 0.14-0.16 solar masses, respectively. The overall null result for detecting brown dwarfs may be partially explained as a real lack of massive brown dwarfs as members of multiple systems.

  5. Seek a Minor Sun: The Distribution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric

    2015-07-01

    The Sun-Earth systems has long been used as a template to understand habitable planets around other stars and to develop missions to seek them. However, two decades of exoplanet studies have shown that many, if not most planetary systems around G dwarf stars do not resemble the Solar System. Moreover, an objective census of our Galaxy might ignore solar- type stars and focus on M dwarfs, which constitute some 80% of all stars in the neighborhood. Recent work has shown that M dwarfs have more close-in planets than solar-type stars, and perhaps more planets in the "habitable zone" defined by stellar irradiation. M dwarfs also burn hydrogen over a vastly longer time; slow evolution on the main sequence means a planet can remain habitable for much longer, providing a more permissive environment for the evo- lution of life and intelligence. If M dwarfs are such compelling locales to look for life, why are we ourselves not orbiting a red Sun?

  6. The Long-Term Spectroscopic Misadventures of AG Dra with a Nod toward V407 Cyg: Degenerates Behaving Badly

    NASA Technical Reports Server (NTRS)

    Shore, S.N.; Genovali, K.; Wahlgren, G. M.

    2013-01-01

    We present some results of an ongoing study of the long-term spectroscopic variations of AG Dra, a prototypical eruptive symbiotic system. We discuss the effects of the environment and orbital modulation in this system and some of the physical processes revealed by a comparison with the nova outburst of the symbiotic-like recurrent nova V407 Cyg 2010.

  7. Recent evolution of the offline computing model of the NOvA experiment

    DOE PAGES

    Habig, Alec; Norman, A.; Group, Craig

    2015-12-23

    The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study ν e appearance in a ν μ beam. Over the last few years there has been intense work to streamline the computing infrastructure in preparation for data, which started to flow in from the far detector in Fall 2013. Major accomplishments for this effort include migration to the use of off-site resources through the use of the Open Science Grid and upgrading the file-handling framework from simple disk storage to a tiered system using a comprehensive data management and delivery system to find and access files onmore » either disk or tape storage. NOvA has already produced more than 6.5 million files and more than 1 PB of raw data and Monte Carlo simulation files which are managed under this model. In addition, the current system has demonstrated sustained rates of up to 1 TB/hour of file transfer by the data handling system. NOvA pioneered the use of new tools and this paved the way for their use by other Intensity Frontier experiments at Fermilab. Most importantly, the new framework places the experiment's infrastructure on a firm foundation, and is ready to produce the files needed for first physics.« less

  8. Recent Evolution of the Offline Computing Model of the NOvA Experiment

    NASA Astrophysics Data System (ADS)

    Habig, Alec; Norman, A.

    2015-12-01

    The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study νe appearance in a νμ beam. Over the last few years there has been intense work to streamline the computing infrastructure in preparation for data, which started to flow in from the far detector in Fall 2013. Major accomplishments for this effort include migration to the use of off-site resources through the use of the Open Science Grid and upgrading the file-handling framework from simple disk storage to a tiered system using a comprehensive data management and delivery system to find and access files on either disk or tape storage. NOvA has already produced more than 6.5 million files and more than 1 PB of raw data and Monte Carlo simulation files which are managed under this model. The current system has demonstrated sustained rates of up to 1 TB/hour of file transfer by the data handling system. NOvA pioneered the use of new tools and this paved the way for their use by other Intensity Frontier experiments at Fermilab. Most importantly, the new framework places the experiment's infrastructure on a firm foundation, and is ready to produce the files needed for first physics.

  9. Slow magnetic monopoles search in NOvA

    NASA Astrophysics Data System (ADS)

    Antoshkin, Alexander; Frank, Martin

    2018-04-01

    The NOvA far detector is well suited for finding exotic particles due to its technical features (see [1]). One type of those exotic particles is a "slow" magnetic monopole. It is assumed that the energy deposition of such monopoles should be enough to be registered (see [2]). Measurement of the expected signals was performed on the NOvA test bench at JINR (see [3]). Result of this measurement allows us to perform slow monopole's research using NOvA software and hardware with high efficiency. As a whole, the research can lead to a discovery, or it can limit the existence of monopoles in a wide range of parameters, previously unreachable in other experiments (MACRO, SLIM, RICE, IceCube). Several special software tools have been developed. Slow Monopole Trigger has been created and implemented in the NOvA Data-Driven-Trigger system. Also, an online reconstruction algorithm has been developed and tested on 5% of the data. A technical description of these tools and current results of the analysis are presented in this work.

  10. Features of the matter flows in the peculiar cataclysmic variable AE Aquarii

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Ikhsanov, N. R.; Zhilkin, A. G.; Bisikalo, D. V.; Beskrovnaya, N. G.

    2016-05-01

    The structure ofmatter flows in close binary systems in which one of the components is a rapidly rotating magnetic white dwarf is studied. Themain example considered is the AEAquarii system; the period of the white dwarf's rotation is about a factor of 1000 shorter than the orbital period, and the magnetic field on the white-dwarf surface is of order 50MG. The matter flows in this system were analyzed via numerical solution of a systemofmagnetohydrodynamical equatons. These computations show that the white dwarf's magnetic field does not significantly influence the velocity field of the matter in its Roche lobe in the case of a laminar flow regime, so that the field does not hinder the formation of a transient disk (ring) surrounding the magnetosphere. However, the efficiency of the energy and angular-momentum exchange between the white dwarf and the surrounding matter increases considerably with the development of turbulent motions in the matter, accelerating the matter at the magnetosphere boundary and leading to a high escape rate from the system. The time scales for the system's transition between the laminar and turbulent modes are close to those for the transition of AE Aquarii between its quiet and active phases.

  11. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36

  12. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.

  13. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

  14. Typical examples of classical novae

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.

    1993-01-01

    Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.

  15. Typical examples of classical novae

    NASA Astrophysics Data System (ADS)

    Hack, Margherita; Selvelli, Pierluigi; Bianchini, Antonio; Duerbeck, Hilmar W.

    1993-09-01

    Because of the very complicated individualistic behavior of each nova, we think it necessary to review the observations of a few well-observed individuals. We have selected a few objects of different speed classes, which have been extensively observed. They are: V1500 Cygni 1975, a very fast nova; V603 Aql 1918, fast nova; CP Pup 1942, fast nova; GK Per 1901, fast nova; V 1668 Cyg 1979, moderately fast nova; FH Ser 1970, slow nova; DQ Her 1934, slow nova; T Aur 1891, slow nova; RR Pic 1925, slow nova; and HR Del 1967, very slow nova.

  16. Quantifying the use of the statin antilipemic drugs: comparisons and contrasts between Nova Scotia, Canada, and Queensland, Australia.

    PubMed

    Cooke, Charmaine; Nissen, Lisa; Sketris, Ingrid; Tett, Susan E

    2005-04-01

    Jurisdictions are developing public drug insurance systems to improve access to pharmaceuticals, cost-effective prescribing, and patient health and well-being. We compared 2 jurisdictions with different pharmaceutical policies to determine prescribing patterns for 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (ie, statins). The aim of this work was to investigate the feasibility of using available prescription administrative databases to compare the use of statins in Queensland, Australia, and in Nova Scotia, Canada. Data from the Nova Scotia Pharmacare Program and the Health Insurance Commission in Australia were used to obtain dispensing data. Utilization was compared for the 5-year period from 1997 through 2001, using the World Health Organization anatomic therapeutic chemical/defined daily dose (DDD) system. In the year 2001, there were 177,000 beneficiaries in the public drug plan in Nova Scotia (62% aged > or = 65 years old) and 960,000 concession beneficiaries (pensioners and social security recipients, 61 aged > or = 65 years) in Queensland. These 2 groups were comparable. The overall utilization of statin medications increased steadily in both areas over the study period, from 50 to 205 DDD/1000 beneficiaries per day. Comparison of the 2 growth lines showed no statistically significant differences in overall statin use despite differences in brand availabilities and policies about prescribing. In the year 2001, atorvastatin was the most commonly prescribed statin in both areas, comprising 46% of statin use in Nova Scotia and 51% in Queensland. Mean doses of each statin prescribed were slightly above the DDDs. Expenditure on statins per 1000 beneficiaries and per DDD were similar in each jurisdiction, being slightly higher in Nova Scotia. Despite differences in pharmaceutical reimbursement systems, use of the statins was similar in Nova Scotia and Queensland. The feasibility of the methodology was demonstrated. Future studies, including comparisons of drug utilization for other classes of drugs for which drug policies may be divergent (eg, different pricing structures or prior authorization requirements), or for which less evidence for appropriate use is available, may be useful.

  17. The Distance to Nova V959 Mon from VLA Imaging

    NASA Astrophysics Data System (ADS)

    Linford, J. D.; Ribeiro, V. A. R. M.; Chomiuk, L.; Nelson, T.; Sokoloski, J. L.; Rupen, M. P.; Mukai, K.; O'Brien, T. J.; Mioduszewski, A. J.; Weston, J.

    2015-06-01

    Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its γ-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February-May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from three-dimensional modeling of optical spectroscopy, the radio expansion implies a distance between 0.9 ± 0.2 and 2.2 ± 0.4 kpc, with a most probable distance of 1.4 ± 0.4 kpc. This distance implies a γ-ray luminosity of 0.6× {{10}35} erg s-1, which is much less than the prototype γ-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower γ-ray luminosity than other classical novae detected in γ-rays to date, indicating a range of at least a factor of 10 in the γ-ray luminosities for these explosions.

  18. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  19. Mid-Type M Dwarf Planet Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Cushing, Michael; Muirhead, Philip Steven

    2018-01-01

    Planet occurrence rates increase toward later spectral types; therefore, M dwarf systems are our most promising targets in the search for exoplanets. Stars in the original Kepler field were primarily characterized from photometry alone, resulting in large uncertainties (~30%) for properties of late-type stars like M dwarfs. Planet occurrence rate calculations require precise measurements of stellar radii, which can be constrained to ~10% using temperatures and metallicities derived from spectra. These measurements need to be performed on a statistically significant population of stars, including systems with and without planets. Using WIYN, the Discovery Channel Telescope, and IRTF, we have gathered spectra of about half of the ~550 probable mid-type M dwarfs in the Kepler field. Our observations have led to better constraints on stellar parameters and new planet occurrence rates for mid-type M dwarfs. We gratefully acknowledge support from the NASA-NSF Exoplanet Observational Research partnership, the National Optical Astronomy Observatory, and the NASA Exoplanet Science Institute.

  20. From Early to Current Developments in Online Learning at Nova Southeastern University: Reflections on Historical Milestones.

    ERIC Educational Resources Information Center

    Dringus, Laurie P.; Scigliano, John A.

    2000-01-01

    Traces the major historical milestones achieved by Nova Southeastern University in its pioneering of graduate level online learning programs. Highlights include delivery systems; Web-based electronic classrooms; overview of the technology, including telecommunications through UNIX; evaluation and research; and technology used in the School of…

  1. "I feel like I am surviving the health care system": understanding LGBTQ health in Nova Scotia, Canada.

    PubMed

    Colpitts, Emily; Gahagan, Jacqueline

    2016-09-22

    Currently, there is a dearth of baseline data on the health of lesbian, gay, bisexual, transgender, and queer (LGBTQ) populations in the province of Nova Scotia, Canada. Historically, LGBTQ health research has tended to focus on individual-level health risks associated with poor health outcomes among these populations, which has served to obscure the ways in which they maintain their own health and wellness across the life course. As such, there is an urgent need to shift the focus of LGBTQ health research towards strengths-based perspectives that explore the complex and resilient ways in which LGBTQ populations promote their health. This paper discusses the findings of our recent scoping review as well as the qualitative data to emerge from community consultations aimed at developing strengths-based approaches to understanding and advancing LGBTQ pathways to health across Nova Scotia. Our scoping review findings demonstrated the lack of strengths-based research on LGBTQ health in Nova Scotia. Specifically, the studies examined in our scoping review identified a number of health-promoting factors and a wide variety of measurement tools, some of which may prove useful for future strengths-based health research with LGBTQ populations. In addition, our community consultations revealed that many participants had negative experiences with health care systems and services in Nova Scotia. However, participants also shared a number of factors that contribute to LGBTQ health and suggestions for how LGBTQ pathways to health in Nova Scotia can be improved. There is an urgent need to conduct research on the health needs, lived experiences, and outcomes of LGBTQ populations in Nova Scotia to address gaps in our knowledge of their unique health needs. In moving forward, it is important that future health research take an intersectional, strengths-based perspective in an effort to highlight the factors that promote LGBTQ health and wellness across the life course, while taking into account the social determinants of health.

  2. The Fate of Exoplanetary Systems and the Implications for White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Veras, D.; Mustill, A. J.; Bonsor, A.; Wyatt, M. C.

    2013-09-01

    Mounting discoveries of extrasolar planets orbiting post-main-sequence stars motivate studies to understand the fate of these planets. Also, polluted white dwarfs (WDs) likely represent dynamically active systems at late times. Here, we perform full-lifetime simulations of one-, two- and three-planet systems from the endpoint of formation to several Gyr into the WD phase of the host star. We outline the physical and computational processes which must be considered for post-main-sequence planetary studies, and characterize the challenges in explaining the robust observational signatures of infrared excess in white dwarfs by appealing to late-stage planetary systems.

  3. Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B.

    PubMed

    Burgasser; Kirkpatrick; Cutri; McCallon; Kopan; Gizis; Liebert; Reid; Brown; Monet; Dahn; Beichman; Skrutskie

    2000-03-01

    We report the discovery of a widely separated (258&farcs;3+/-0&farcs;4) T dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was initially identified from the Two Micron All-Sky Survey. Its near-infrared spectrum shows the 1.6 and 2.2 µm CH4 absorption bands characteristic of T dwarfs, while its common proper motion with the Gl 570ABC system confirms companionship. Gl 570D (MJ=16.47+/-0.07) is nearly a full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and estimates of L=&parl0;2.8+/-0.3&parr0;x10-6 L middle dot in circle and Teff=750+/-50 K make it significantly cooler and less luminous than any other known brown dwarf companion. Using evolutionary models by Burrows et al. and an adopted age of 2-10 Gyr, we derive a mass estimate of 50+/-20 MJup for this object.

  4. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  5. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    PubMed

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  6. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterich, Sergio B.; Henry, Todd J.; Golimowski, David A.

    2012-08-15

    We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within {approx}10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel{sup -1}, NICMOS can easily resolve binaries with subarcsecond separations in the 19.''5 Multiplication-Sign 19.''5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during themore » second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of 0.0{sup +3.5}{sub -0.0}% for L companions to M dwarfs in the separation range of 5-70 AU, and 2.3{sup +5.0}{sub -0.7}% for L and T companions to M dwarfs in the separation range of 10-70 AU. We also discuss trends in the color-magnitude diagrams using various color combinations and present astrometry for 19 multiple systems in our sample. Considering these results and results from several other studies, we argue that the so-called brown dwarf desert extends to binary systems with low-mass primaries and is largely independent of primary mass, mass ratio, and separations. While focusing on companion properties, we discuss how the qualitative agreement between observed companion mass functions and initial mass functions suggests that the paucity of brown dwarfs in either population may be due to a common cause and not due to binary formation mechanisms.« less

  7. The True Ultracool Binary Fraction Using Spectral Binaries

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.

  8. The Origin of Dwarf Ellipticals in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2008-02-01

    We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.

  9. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Pace, Andrew B.; Bullock, James S.; Boylan-Kolchin, Michael; Oñorbe, Jose; Elbert, Oliver D.; Fitts, Alex; Hopkins, Philip F.; Kereš, Dušan

    2017-02-01

    We perform a systematic Bayesian analysis of rotation versus dispersion support (vrot/σ) in 40 dwarf galaxies throughout the local volume (LV) over a stellar mass range of 10^{3.5} M_{⊙}< M_{star }< 108 M_{⊙}. We find that the stars in ˜80 per cent of the LV dwarf galaxies studied - both satellites and isolated systems - are dispersion-supported. In particular, we show that 6/10 isolated dwarfs in our sample have vrot/σ ≲ 1.0, while all have vrot/σ ≲ 2.0. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally supported stellar discs, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between vrot/σ and distance to the closest L⋆ galaxy, nor between vrot/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9 M_{⊙}< M_{vir}< 10^{10} M_{⊙}) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/σ ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular-momentum-supported discs. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.

  10. Constraining the Properties of Small Stars and Small Planets Observed by K2

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Josh; Hawaii/California/Arizona/Indiana K2 Follow-up Consortium, HARPS-N Consortium

    2016-01-01

    We are using the results of the NASA K2 mission (the second career of the Kepler spacecraft) to study how the frequency and architectures of planetary systems orbiting M dwarfs throughout the ecliptic plane compare to those of the early M dwarf planetary systems observed by Kepler. In a previous analysis of the Kepler data set, we found that planets orbiting early M dwarfs are common: we measured a cumulative planet occurrence rate of 2.45 +/- 0.22 planets per M dwarf with periods of 0.5-200 days and planet radii of 1-4 Earth radii. Within a conservative habitable zone based on the moist greenhouse inner limit and maximum greenhouse outer limit, we estimated an occurrence rate of 0.15 (+0.18/-0.06) Earth-size planets and 0.09 (+0.10/-0.04) super-Earths per M dwarf HZ. Applying these occurrence rates to the population of nearby stars and assuming that mid- and late-M dwarfs host planets at the same rate as early M dwarfs, we predicted that the nearest potentially habitable Earth-size planet likely orbits an M dwarf a mere 2.6 ± 0.4 pc away. We are now testing the assumption of equal planet occurrence rates for M dwarfs of all types by inspecting the population of planets detected by K2 and conducting follow-up observations of planet candidate host stars to identify false positives and better constrain system parameters. I will present the results of recent observing runs with SpeX on the IRTF to obtain near-infrared spectra of low-mass stars targeted by K2 and determine the radii, temperatures, and metallicities of our target stars using empirical relations. We gratefully acknowledge funding from the NASA XRP Program, the John Templeton Foundation, and the NASA Sagan Fellowship Program.

  11. Measuring Atmospheric Abundances and Rotation of a Brown Dwarf with a Measured Mass and Radius

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne

    2015-08-01

    There are no cool brown dwarfs with both a well-characterized atmosphere and a measured mass and radius. LHS 6343, a brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to tie theoretical atmospheric models to the observed brown dwarf mass-radius diagram. We propose four half-nights of observations with NIRSPAO in 2015B to measure spectral features in LHS 6343 C by detecting the relative motions of absorption features during the system's orbit. In addition to abundances, we will directly measure the brown dwarf's projected rotational velocity and mass.

  12. Do some x-ray stars have white dwarf companions

    NASA Technical Reports Server (NTRS)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  13. Do Some X-ray Stars Have White Dwarf Companions?

    NASA Technical Reports Server (NTRS)

    McCollum, Bruce

    1995-01-01

    Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  14. Nearby Red Dwarfs are Sexy for Planets and Life

    NASA Astrophysics Data System (ADS)

    Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team

    2005-12-01

    The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.

  15. TMS communications hardware. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Weinrich, S. S.

    1979-01-01

    A prototpye coaxial cable bus communications system was designed to be used in the Trend Monitoring System (TMS) to connect intelligent graphics terminals (based around a Data General NOVA/3 computer) to a MODCOMP IV host minicomputer. The direct memory access (DMA) interfaces which were utilized for each of these computers are identified. It is shown that for the MODCOMP, an off-the-shell board was suitable, while for the NOVAs, custon interface circuitry was designed and implemented.

  16. NOVA2-mediated RNA regulation is required for axonal pathfinding during development.

    PubMed

    Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B

    2016-05-25

    The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

  17. FUSE Observations of the Bright, Eclipsing Nova-like Cataclysmic Variable, UX UMa (FUSE 2000)

    NASA Technical Reports Server (NTRS)

    Long, Knox; Froning, Cynthia

    2004-01-01

    This was a project to study the disk and wind of the eclipsing nova-like variable UX UMa, in order to better define the wind geometry of the system, including the nature of the transition region between the disk photosphere and the supersonic wind. We proposed to use phase resolved spectroscopy of the system, taking advantage of the fact that UX UMa is an eclipsing system, to isolate different regions of the wind and to use a Monte Carlo radiative transfer code to simulate the spectra through the eclipse.

  18. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use of the CLOUDY code, we have showed that a high-density gas region can effectively stop most of the UV flux from the white dwarf and provide the observed dust shielding.

  19. Characterizing K2 Planetary Systems Orbiting Cool Dwarfs

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2

    2017-01-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program, the NASA K2 Guest Observer Program, the NASA XRP Program, the John Templeton Foundation, the National Science Foundation Astronomy & Astrophysics Postdoctoral Program, and the National Science Foundation Graduate Research Fellowship Program.

  20. Imaging accretion sources and circumbinary disks in young brown dwarfs

    NASA Astrophysics Data System (ADS)

    Reiners, Ansgar

    2010-09-01

    We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.

Top