Science.gov

Sample records for dwarf-neutron star binaries

  1. Mass transfer in white dwarf-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  2. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    SciTech Connect

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-07-15

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  3. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-07-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  4. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2010-02-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets. )

  5. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-03-01

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models “pseudo-WDs (pWDs).” Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M⊙), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  6. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  7. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  8. Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Metzger, Brian D.

    2017-03-01

    We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.

  9. The initial stellar masses for the formation of white dwarfs, neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    Meynet, Georges

    As is well known a star may end its nuclear lifetime as a white dwarf, neutron star, black hole or may, in certain circumstances, leave no remnant at all. The main question to be addressed in this review is the following: what are the progenitors of these different final stages? After a brief review of the major physical principles governing stellar evolution, we present the different evolutionary scenarios resulting from numerical calculations. Particular attention will be paid to the effect of mass loss on theoretical determinations of the mass limits M WD and MBH which are respectively the maximum initial mass leading to the formation of a white dwarf and the minimum initial mass for the formation of a black hole. We terminate this review by the presentation of some relevant observational results. The bulk of this paper is devoted to the discussion of the evolution of single Population I stars. Les étoiles terminent leur évolution soit comme naines blanches, étoiles à neutrons, ou trous noirs, il peut également arriver qu'aucun résidu ne subsiste, l'étoile étant complètement détruite dans ses phases ultimes. La question à laquelle nous allons essayer de répondre dans cet article est la suivante : quels sont les progéniteurs de ces états finaux? Après un bref rappel de quelques principes importants gouvernant l'évolution stellaire, les différents scénarios évolutifs, tels qu'ils sont proposés par les modèles numériques, sont présentés. Les valeurs de la masse initiale maximale pour la formation des naines blanches ainsi que celles de la masse initiale minimale pour la formation des trous noirs sont discutées tant du point de vue théorique, qu'observationnel. La majeure partie de cet article concerne l'évolution d'étoiles simples et de composition chimique solaire.

  10. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  11. Quasisoft X-Ray Sources: White Dwarfs? Neutron Stars? Black Holes?

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    Two of the most exciting areas of current research in astrophysics are black holes and Type Ia supernovae. We propose archival work that has the potential to shed light on both areas. The focus of our research is a newly-established class of x-ray sources called Quasisoft X-ray Sources (QSSs). Although they comprise a significant fraction of the x- ray sources in galaxies of all types, including M31, it has proved difficult to identify members of this class in the Milky Way or Magellanic Clouds. We have developed methods to find these sources, and have begun to meet with success in the application of our methods. The three-year project we propose will allow us to identify QSSs. We will then use the full range of archived data to determine which QSS candidates are highly luminous, and which are members of less luminous classes, such as quiescent low-mass x-ray binaries (qLMXBs), or even isolated neutron stars. Many will be nearby x-ray active stars, or else distant AGN, whose discovery will also be of interest to a range of researchers. In the end, we will have a subset of intriguing physical systems, some of which may be accreting black holes and some of which may be unusual states of neutron stars or even of nuclear-burning white dwarfs. The systems identified through this ADAP program will be targets of future observing programs, from space and from the ground. The information we derive from NASA archived data will provide insight into important astrophysical questions. Do intermediate-mass black holes (IMBHs) exist? It has only been during the past 15 years or so that accreting compact objects that were considered as black hole candidates have been promoted to black holes. This achievement required years of observations of candidates in the Milky Way and Magellanic Clouds. The discovery of ultraluminous X- ray source in external galaxies suggests that there are black holes with masses larger than the 10-30 solar masses typical of the known black holes. To

  12. On the formation of Be stars through binary interaction

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2014-11-20

    Be stars are rapidly rotating B-type stars. The origin of their rapid rotation is not certain, but binary interaction remains as a possibility. In this work, we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results, we obtain the critical mass ratios q {sub cr} that determine the stability of the mass transfer. We also numerically calculate the parameter λ in common envelope evolution and then incorporate both q {sub cr} and λ into the population synthesis calculations. We present the predicted numbers and characteristics of Be stars in binary systems with different types of companions, including helium stars, white dwarfs, neutron stars, and black holes. We find that in Be/neutron star binaries, the Be stars can have a lower mass limit ∼8 M {sub ☉} if they are formed by stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally, the fraction of Be stars that have involved binary interactions in all B-type stars can be as high as ∼13%-30%, implying that most Be stars may result from binary interaction.

  13. Rotating and Binary Stars in General Relativit

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart

    The inspiral and coalescence of compact binary stars is one of the most challenging problems in theoretical astrophysics. Only recently have advances in numerical relativity made it possible to explore this topic in full general relativity (GR). The mergers of compact binaries have important consequences for the detection of gravitational waves. In addition, the coalescence of binary neutron stars (NSNSs) and binary black-hole neutron stars (BHNSs) may hold the key for resolving other astrophysical puzzles, such as the origin of short-hard gamma-ray bursts (GRBs). While simulations of these systems in full GR are now possible, only the most idealized treatments have been performed to date. More detailed physics, including magnetic fields, black hole spin, a realistic hot, nuclear equation of state and neutrino transport must be incorporated. Only then will we be able to identify reliably future sources that may be detected simultaneously in gravitational waves and as GRBs. Likewise, the coalescence of binary black holes (BHBHs) is now a solved problem in GR, but only in vacuum. Simulating the coalescence of BHBHs in the gaseous environments likely to be found in nearby galaxy cores or in merging galaxies is crucial to identifying an electromagnetic signal that might accompany the gravitational waves produced during the merger. The coalescence of a binary white dwarf-neutron star (WDNS) has only recently been treated in GR, but GR is necessary to explore tidal disruption scenarios in which the capture of WD debris by the NS may lead to catastrophic collapse. Alternatively, the NS may survive and the merger might result in the formation of pulsar planets. The stability of rotating neutron stars in these and other systems has not been fully explored in GR, and the final fate of unstable stars has not been determined in many cases, especially in the presence of magnetic fields and differential rotation. These systems will be probed observationally by current NASA

  14. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  15. Ecospheres around binary stars

    NASA Astrophysics Data System (ADS)

    Deka, B.

    2011-01-01

    Scientific investigations concerning ecospheres of other stars are very important for understanding the posibilities of existence and evolution of extraterrestrial life. In several last years astronomers discovered hundreds of extrasolar planets. Identification of stars with ecospheres is the first step in selecting those planets which could be inhabited. Usually an ecosphere of a single star is considered but it may also exist in planetary systems with two suns. This possibility is very promising in search for life on other planets as more that 60 % of stars reside in binary or multiple systems.

  16. Radio emission from binary stars

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1986-01-01

    This paper reviews the radio emission from binary star systems - the emission processes that occur, the characteristics of the binary systems inferred from the radio observations, and the reasons for the activity. Several classes of binary stars are described including those with two main sequence stars, those with one normal star and a white dwarf, and those containing a neutron star or a black hole.

  17. Radio emission from binary stars

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1986-01-01

    Radio emission from binary star systems; characteristics of the binary systems inferred from the radio observations; and the reasons for the activity are reviewed. Binary stars with two main sequence stars, with one normal star and a white dwarf, and those containing a neutron star or a black hole are described. Energy may be directly available as matter falls into the potential well of a compact object. Electromagnetic induction effects may occur due to relative motions of magnetic fields and matter. By enforcing rapid rotation, binaries can induce strong dynamo action and hence generate free energy in the form of intense, complex, evolving magnetic fields. Whatever the source of energy, the observations at radio and X-ray wavelengths demonstrate that electrons are accelerated to high energies (mildly relativistic and, ultrarelativistic). Observed or inferred radio brightness temperatures range up to 10 to the 15th power K or more, implying coherent emission for sources brighter than 10 billion K.

  18. BINARIES AMONG DEBRIS DISK STARS

    SciTech Connect

    Rodriguez, David R.; Zuckerman, B.

    2012-02-01

    We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.

  19. The Michigan Binary Star Program

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2007-07-01

    At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.

  20. Binary Stars in SBS Survey

    NASA Astrophysics Data System (ADS)

    Erastova, L. K.

    2016-06-01

    Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.

  1. Binary stars in moving groups

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.

    Precise determination of dynamical masses of pre-main-sequence (PMS) stars is necessary to calibrate PMS stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M_sun. Binary stars in young, nearby loose associations are particularly good candidates, since all members share a common age. We present phase-reference EVN observations of the binary system HD 160934 A/c, that belongs to the AB Doradus moving group, from which we have measured both the relative and absolute orbital motion. Accordingly, we obtained precise estimates of the mass of the components of this binary. Also we report on other PMS binary systems as EK Dra and AB Dor B.

  2. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  3. Binary stars in loose associations

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.

    2013-05-01

    Precise determinations of dynamical masses of pre-main-sequence (PMS) stars are necessary to calibrate PMS stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M_{⊙}. Binary stars in young, nearby loose associations (moving groups) are particularly good candidates, primarily because all members share a common age. Belonging to the AB Doradus moving group, we have observed the binary AB Dor Ba/Bb, 0.06" separation, with the Australian Long Baseline Array at 8.4 GHz. We have detected the two components Ba/Bb, which facilitates (i) a measurement of the relative orbital motion through subsequent radio maps, and (ii) an estimate of the orbital parameters, once combined the radio information with infrared relative astrometry. Our preliminary analysis shows that best-fit orbit corresponds to that with a period of 1.1 yr and semi major axis of 0.068". The sum of the masses AB Dor Ba/Bb is 0.3±0.1 M_{⊙}. The study of this binary, along with other stars of the same association, will constitute a benchmark for testing PMS models of low-mass stars.

  4. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  5. Instabilities in Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  6. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  7. Measuring Close Binary Stars with Speckle Interferometry

    DTIC Science & Technology

    2014-09-01

    Measuring Close Binary Stars with Speckle Interferometry Keith T. Knox Air Force Research Laboratory ABSTRACT Speckle interferometry...Labeyrie, 1970) is a well-tested and still used method for detecting and measuring binary stars that are closer together than the width of the...orientation of the binary star system (Horch, 1996, Tokovinin, 2010). In this talk, a method for analyzing the fringes in the power spectrum will be

  8. Mass transfer between binary stars

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.; Kondo, Y.

    1980-01-01

    The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.

  9. Close binary neutron star systems

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro

    1999-12-01

    We present a method to calculate solutions to the initial value problem in (3 + 1) general relativity corresponding to binary neutron-star systems (BNS) in irrotational quasi-equilibrium orbits. The initial value equations are solved using a conformally flat spatial metric tensor. The stellar fluid dynamics corresponds to that of systems with zero vorticity in the inertial reference frame. Irrotational systems like the ones analyzed in the present work are likely to resemble the final stages of the evolution of neutron-star binaries, thus providing insights on the inspiral process. The fluid velocity is derived from the gradient of a scalar potential. A numerical program was developed to solve the elliptic equations for the metric fields and the fluid velocity potential. We discuss the different numerical techniques employed to achieve high resolution across the stellar volume, as well as the methods used to find solutions to the Poisson-like equations with their corresponding boundary conditions. We present sequences of quasi-stable circular orbits which conserve baryonic mass. These sequences mimic the time evolution of the inspiral and are obtained without solving the complex evolution equations. They also provide sets of initial value data for future time evolution codes, which should be valid very close to the final merger. We evaluate the emission of gravitational radiation during the evolution through multipole expansions methods.

  10. Visual binary stars: data to investigate formation of binaries

    NASA Astrophysics Data System (ADS)

    Kovaleva,, D.; Malkov,, O.; Yungelson, L.; Chulkov, D.

    Statistics of orbital parameters of binary stars as well as statistics of their physical characteristics bear traces of star formation history. However, statistical investigations of binaries are complicated by incomplete or missing observational data and by a number of observational selection effects. Visual binaries are the most common type of observed binary stars, with the number of pairs exceeding 130 000. The most complete list of presently known visual binary stars was compiled by cross-matching objects and combining data of the three largest catalogues of visual binaries. This list was supplemented by the data on parallaxes, multicolor photometry, and spectral characteristics taken from other catalogues. This allowed us to compensate partly for the lack of observational data for these objects. The combined data allowed us to check the validity of observational values and to investigate statistics of the orbital and physical parameters of visual binaries. Corrections for incompleteness of observational data are discussed. The datasets obtained, together with modern distributions of binary parameters, will be used to reconstruct the initial distributions and parameters of the function of star formation for binary systems.

  11. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  12. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  13. Cool Star Binaries with ALEXIS

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).

  14. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  15. Terrestrial Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Lissauer, Jack J.

    More than half of all main sequence stars, and an even larger fraction of pre-main sequence stars, reside in binary or multiple systems (Duquennoy and Mayor 1991; Mathieu et al. 2000). The presence of planet-forming material has been indirectly observed around one or both components of some young binaries, and (Mathieu et al. 2000) numerical simulations of the formation of binary stars suggest that disks form within these systems, as well (Bodenheimer et al. 2000). Terrestrial planets and the cores of giant planets are thought to form by an accretion process within a disk of dust and gas (Safronov 1969; Lissauer 1993), and therefore may be common in binary star systems. In this chapter, we present the results from numerical simulations of the final stages of terrestrial planet formation around one or both stars of a binary.

  16. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  17. Observational Types of Binaries in the Binary Star Database

    NASA Astrophysics Data System (ADS)

    Malkov, O.; Kovaleva, D.; Kaygorodov, P.

    2017-06-01

    In the present paper we describe observational types of binaries, included in BDB, the Binary star database, which presently contains data on physical and positional parameters for about 260 000 components of 120 000 stellar systems of multiplicity 2 to more than 20, taken from a large variety of published catalogues and databases.

  18. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  19. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  20. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  1. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  2. Periodicity of Eclipsing Binary Star GK Cepheus

    NASA Astrophysics Data System (ADS)

    2001-10-01

    Eclipsing Binary stars are stars in which there is some mass exchange taking place between two main bodies. This mass exchange produces a change in the magnitude or “brightness” of the star. The star known as GK Cephius has been listed as an eclipsing binary in number of publications, journal articles, and data tables. If the light curve is examined carefully, it exhibits some behavior that is not typical of simple eclipsing binary stars. A study of this light curve is underway to examine the possibility of another gravitational influence being at work in the region of this star. In this paper we will report on the predictions concerning an additional candidate that may be influencing the light curves of the GK Cephius system.

  3. Numerical Relativity Simulations of Black Holes Binaries, Neutron Star Binaries, and Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Rosofsky, Shawn; Gold, Roman; Chirenti, Cecilia; Miller, Cole

    2017-01-01

    We present the results of numerical relativity simulations, using the Einstein Toolkit, of black hole binaries, neutron star binaries, and neutron star oscillations. The black hole binary simulations represent the source of LIGO's first gravitational wave detection, GW150914. We compare the gravitational wave output of this simulation with the LIGO data LIGO on GW150914. The neutron star binaries we simulated have different mass ratios and equations of state. These simulations were compared with each other to illustrate the effect of different mass ratios and equations of state on binary evolution and gravitational wave emission. To perform the neutron star oscillation simulations, we applied pressure and density perturbations to the star using specific eigenmodes. These evolutions of the stars were then compared to the expected oscillation frequencies of those excited eigemodes and contrasted with simulations of unperturbed neutron stars.

  4. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  5. Terrestrial planet formation surrounding close binary stars

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2006-11-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around 'close' binary star systems with stellar separations 0.05 AU⩽a⩽0.4 AU and binary eccentricities 0⩽e⩽0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances Q≡a(1+e)≲0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.

  6. Eclipsing Binary B-Star Mass Determinations

    NASA Astrophysics Data System (ADS)

    Townsend, Amanda; Eikenberry, Stephen S.

    2016-01-01

    B-stars in binary pairs provide a laboratory for key astrophysical measurements of massive stars, including key insights for the formation of compact objects (neutron stars and black holes). In their paper, Martayan et al (2004) find 23 Be binary star pairs in NGC2004 in the Large Magellanic Cloud, five of which are both eclipsing and spectroscopic binaries with archival data from VLT-Giraffe and photometric data from MACHO. By using the Wilson eclipsing binary code (e.g., Wilson, 1971), we can determine preliminary stellar masses of the binary components. We present the first results from this analysis. This study also serves as proof-of-concept for future observations with the Photonic Synthesis Telescope Array (Eikenberry et al., in prep) that we are currently building for low-cost, precision spectroscopic observations. With higher resolution and dedicated time for observations, we can follow-up observations of these Be stars as well as Be/X-ray binaries, for improved mass measurements of neutron stars and black holes and better constraints on their origin/formation.

  7. TOPICAL REVIEW: Coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1999-06-01

    Coalescing compact binaries with neutron star or black hole components provide the most promising sources of gravitational radiation for detection by the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact has motivated several different theoretical studies of the inspiral and hydrodynamic merging of compact binaries. Analytic analyses of the inspiral waveforms have been performed in the post-Newtonian approximation. Analytic and numerical treatments of the coalescence waveforms from binary neutron stars have been performed using Newtonian hydrodynamics and the quadrupole radiation approximation. Numerical simulations of coalescing black hole and neutron star binaries are also underway in full general relativity. Recent results from each of these approaches will be described and their virtues and limitations summarized.

  8. Binaries among AP and AM stars

    NASA Astrophysics Data System (ADS)

    North, P.; Ginestet, N.; Carquillat, J.-M.; Carrier, F.; Udry, S.

    1998-04-01

    The results of long-term surveys of radial velocities of cool Ap and Am stars are presented. There are two samples, one of about 100 Ap stars and the other of 86 Am stars. Both have been observed with the CORAVEL scanner from Observatoire de Haute-Provence (CNRS), France. The conspicuous lack of short-period binaries among cool Ap stars seems confirmed, although this may be the result of an observational bias; one system has a period as short as 1.6 days. A dozen new orbits could be determined, including that of one SB2 system. Considering the mass functions of 68 binaries from the literature and from our work, we conclude that the distribution of the mass ratios is the same for the Bp-Ap stars than for normal G dwarfs. Among the Am stars, we found 52 binaries, i.e. 60%; an orbit could be computed for 29 of them. Among these 29, there are 7 SB2 systems, one triple and one quadruple system. The 21 stars with an apparently constant radial velocity may show up later as long-period binaries with a high eccentricity. The mass functions of the SB1 systems are compatible with cool main-sequence companions, also suggested by ongoing spectral observations.

  9. Radio Emission from Binary Stars

    NASA Astrophysics Data System (ADS)

    Hjellming, R.; Murdin, P.

    2000-11-01

    Stellar radio emission is most common in double star systems where each star provides something essential in producing the large amounts of radio radiation needed for it to be detectable by RADIO TELESCOPES. They transfer mass, supply energy or, when one of the stars is a NEUTRON STAR or BLACK HOLE, have the strong gravitational fields needed for the energetic particles and magnetic fields needed...

  10. Shaping the Outflows of Binary AGB Stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Vlemmings, W. H. T.; Mohamed, S.

    2015-08-01

    The required conditions for stars to evolve into planetary nebulae (PNe) continue to puzzle. Since PNe are found in a wide variety of shapes, processes that could sculpt circumstellar envelopes (CSEs) are being investigated. A binary companion will have a strong gravitational effect, but known binary AGB stars are rare. We have observed the CO emission from a small sample of known binary AGB stars (R Aqr, Mira, W Aql, and π1 Gru) with ALMA. The stars cover a decisive range in binary separation, necessary to provide essential constraints for 3-D models of the binary interaction. They have previously been observed with Herschel/PACS and VLTI/MIDI allowing the circumstellar morphology to be studied from the very inner CSE out to the very largest scales. The circumstellar gas distribution will strongly depend on how the mass is initially lost from the primary. These observations will therefore not only help us understand the important processes for the binary interaction, but will also provide crucial information needed to understand the mass-loss mechanisms of the primary. The first set of observations has been delivered and preliminary results are presented.

  11. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  12. Kepler as a Binary Star Mission

    NASA Astrophysics Data System (ADS)

    di Stefano, Rosanne

    2010-12-01

    The Kepler observatory was designed to discover transits by Earth-like planets orbiting Sun-like stars. Its first major discoveries, however, are hot objects in close orbits around main-sequence stars. These are likely to be white-dwarf remnants of stars that have transferred mass to the present-day main sequence stars. These particular main-sequence stars are among the Kepler targets because they are bright. The question is: how many of the other Kepler target stars are also orbited by white dwarfs? We have shown that several hundred white dwarfs are likely to transit the Kepler target stars during the mission. In some cases, the signature will be dominated by gravitational lensing, producing distinctive ``antitransits''. Neutron stars and black holes may also be discovered this way. The lensing signature provides a measurement of the gravitational mass of the compact object. Through the discovery of both transits and antitransits caused by white dwarfs, Kepler will discover and study binaries that have already experienced a phase of mass transfer or a common envelope phase. Thus, Kepler will become a premier tool for the study of interacting binaries. During the next phase of interaction, some of the Kepler binaries may become nuclear-burning white dwarfs, and may be candidates for Type Ia supernovae or accretion-induced collapse.

  13. Exploring the Birth of Binary Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better

  14. Last orbits of binary strange quark stars

    SciTech Connect

    Limousin, Francois; Gourgoulhon, Eric; Gondek-Rosinska, Dorota

    2005-03-15

    We present the first relativistic calculations of the final phase of inspiral of a binary system consisting of two stars built predominantly of strange quark matter (strange quark stars). We study the precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational, taking into account the finite density at the stellar surface--a distinctive feature with respect to the neutron star case. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasiequilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability both for synchronized and irrotational systems. This contrasts with neutron stars for which the ISCO is given by the mass-shedding limit in the irrotational case. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be {approx}1400 Hz for two irrotational 1.35 M{sub {center_dot}} strange stars and for the MIT bag model of strange matter with massless quarks and a bag constant B=60 MeV fm{sup -3}. Detailed comparisons with binary neutrons star models, as well as with third order post-Newtonian point-mass binaries are given.

  15. Binary AGB stars observed with Herschel

    NASA Astrophysics Data System (ADS)

    Kornfeld, Klaus

    2012-03-01

    Asymptotic Giant Branch stars are stars at the end of their lifetime with low to intermediate masses. They are important in the Galactic context, since they contribute a lot of dust to the interstellar medium (ISM) and influence the chemical evolution of the Galaxy. Many AGB stars show peculiar outflow morphologies depending on their mass-loss rates. The outflowing wind of these stars collides with the surrounding interstellar medium (ISM). The collisions with the ISM result in the formation of bow shocks or rings, well visible in the latest Herschel Space Observatory images made with the on-board PACS instrument. Kelvin-Helmholtz and Rayleight-Taylor instabilities were found in the bow shock regions. With the help of Herschel and within the framework of the MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program it was tried to distinguish between the different morphologies. The outflow morphologies were categorized in 4 main classes: "fermata", "eye", "ring", and "irregular"; also point sources showing no resolved circumstellar envelopes (CSEs) were found. Some of the AGB stars in the MESS sample are known binary stars and the binary state of some other objects is still in discussion. A new attempt to clarify the binarity of the objects can be made by checking their outflow morphology and to compare the results with known morphological (a-)symmetries in binary systems. This Thesis discusses 14 binary AGB candidates from the MESS sample, the previous findings and the Herschel results. Herschel observes at infrared wavelengths. Light at this wavelengths can be seen through the dust, which is formed in the surrounding environment of these stars. For the unknown cases it is difficult to determine the binary state, because AGB stars can have very strong wind outflows, making the detection of a companion difficult. Photo- and spectroscopy, CO line outflow measurements or composite spectra can be used to identify features caused directly o! r indirectly by the

  16. The Outflows of Binary AGB Stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Vlemmings, W. H. T.; Mohamed, S.

    2015-12-01

    The required conditions for stars to evolve into planetary nebulae (PNs) continues to puzzle. Since PNs are found in a wide variety of shapes, processes that could sculpt circumstellar envelopes (CSEs) are being investigated. A binary companion will have a strong gravitational effect, but known binary AGB stars are rare. Using ALMA in Cycle 1 and 2, we have observed a small sample of well-studied, binary AGB stars, covering a decisive range in separation, in order to determine the influence of a companion on the circumstellar morphology of the AGB primary. The first steps toward interpreting and analyzing the data have been taken, and the results will be compared to 3D Smoothed Particle Hydrodynamics (SPH) models of the gravitational interaction.

  17. Interrupted Binary Mass Transfer in Star Clusters

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Geller, Aaron M.; Toonen, Silvia

    2016-02-01

    Binary mass transfer (MT) is at the forefront of some of the most exciting puzzles of modern astrophysics, including SNe Ia, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this timescale to the mean time for stable MT to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing MT that are expected to be disrupted as a function of the host cluster properties. We find that for lower-mass clusters (≲ {10}4 {M}⊙ ), on the order of a few to a few tens of percent of binaries undergoing MT are expected to be interrupted by an interloping single, or more often binary, star, over the course of the cluster lifetime, whereas in more massive globular clusters we expect \\ll 1% to be interrupted. Furthermore, using numerical scattering experiments performed with the FEWBODY code, we show that the probability of interruption increases if perturbative fly-bys are considered as well, by a factor ˜2.

  18. Commission 42: Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo

    2012-04-01

    The present report covers the main developments in the field of close binaries during the triennium 2009-2012. In addition to scientific publications, there have been several opportunities for direct interaction of researchers working on close binaries. A number of meetings focused on more or less specific topics have taken place during this past years but the highlight for Commission 42 is arguably IAU Symposium 282 held in 2011 in Slovakia. The meeting exploited a strong connection in the methodology and tools used by close binary studies and the rapidly advancing field of exoplanet research. After all, exoplanetary systems are mostly discovered and studied using techniques employed by analyses of close binaries for decades. Modelling of exoplanet radial velocity curves and transiting planet light curves are just particular cases of single-lined and eclipsing binary systems, respectively, with very unequal component properties. As shown by IAU Symposium 282, the synergies between the two fields are strong and potentially very useful. Found below is a summary of the main scientific topics and conclusions from this very successful Symposium.

  19. White dwarfs in Be star binary systems

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1991-01-01

    An evaluation is made of possible reasons for the persistent inability to identify white dwarf stars in the Be binary systems. It is noted that many Be stars exhibiting large optical enhancements may be Be + WD and Be + He systems, and that observations of pulsations in the H-alpha emission, as well as observation of time delays between enhancements of optical line and continuum, can identify such systems.

  20. Binary star database: binaries discovered in non-optical bands

    NASA Astrophysics Data System (ADS)

    Malkov, Oleg Yu.; Tessema, Solomon B.; Kniazev, Alexei Yu.

    The Binary star Database (BDB) is the world's principal database of binary and multiple systems of all observational types. In particular, it should contain data on binaries discovered in non-optical bands, X-ray binaries (XRBs) and radio pulsars in binaries. The goal of the present study was to compile complete lists of such objects. Due to the lack of a unified identification system for XRBs, we had to select them from five principal catalogues of X-ray sources. After cross-identification and positional cross-matching, a general catalogue of 373 XRBs was constructed for the first time. It contains coordinates, indication of photometric and spectroscopic binarity, and extensive cross-identification. In the preparation of the catalogue, a number of XRB classification disagreements were resolved, some catalogued identifiers and coordinates were corrected, and duplicated entries in the original catalogues were found. We have also compiled a general list of 239 radio pulsars in binary systems. The list is supplied with indication of photometric, spectroscopic or X-ray binarity, and with cross-identification data.

  1. Speckle Interferometry of Binary Star HIP 4849

    NASA Astrophysics Data System (ADS)

    Kehrli, Matthew; David, Heather; Drake, Evan; Gonzalez, Corina; Zuchegno, Joe; Genet, Russell

    2017-01-01

    Binary star HIP 4849 was observed on October 18, 2013 UT, using an EMCCD camera on the 2.1-Meter telescope at Kitt Peak National Observatory. HIP 4849 had a separation, rho, of 0.725" and a position angle, theta, of 79.32°. This observation did not deviate significantly from the predicted orbit.

  2. Division G Commission 42: Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Richards, Mercedes T.; Pribulla, Theodor; Ribas, Ignasi; Bradstreet, David H.; Dreschsel, Horst; Maceroni, Carla; Mikolajewska, Joanna; Munari, Ulisse; Prsa, Andrej; Scharfe, Colin; Southworth, John; Trimble, Virginia

    2016-04-01

    Commission 42 began life as Photometric Double Stars in 1948 at the 7th General Assembly in Zurich, under the presidency of Zdenek Kopal. As early as 1961, then General Secretary Lukas Plaut recommended a merger between C42 and C26, Double Stars, one of the original 32 commissions going back to 1919-22 (first president Aitken, assistant director at Lick). C42 became Close Binary Stars in 1970, at the 14th GA in Brighton (the first one I attended). Table 1 shows the presidents of C42, and vice presidents, from when the office started, through the history of the Commission.

  3. Nonparametric statistical modeling of binary star separations

    NASA Technical Reports Server (NTRS)

    Heacox, William D.; Gathright, John

    1994-01-01

    We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.

  4. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  5. Tidal resonances in binary star systems. II - Slowly rotating stars

    NASA Astrophysics Data System (ADS)

    Alexander, M. E.

    1988-12-01

    The potential energy of tidal interactions in a binary system with rotating components is formulated as a perturbation Hamiltonian which self-consistently couples the dynamics of the rotating stars' oscillations and orbital motion. The action-angle formalism used to discuss tidal resonances in the nonrotating case (Alexander, 1987) is extended to rotating stars. The behavior of a two-mode system and the procedure for treating an arbitrary number of modes are discussed.

  6. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  7. The impact of IUE on binary star studies

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The use of IUE observations in the investigation of binary stars is discussed. The results of data analysis of several classes of binary systems are briefly reviewed including zeta Aurigae and VV Cephei stars, mu Sagittarii, epsilon Aurigae, beta Lyrae and the W Serpentis stars, symbiotic stars, and the Algols.

  8. Fission: A Mechanism for Forming Binary Stars

    NASA Astrophysics Data System (ADS)

    Tohline, J. E.; Cazes, J. E.

    2000-05-01

    We demonstrate that it is possible for short period binary star systems to form from a single, rapidly rotating, equilibrium protostellar gas cloud via a natural fission process. This is analogous to the process by which rapidly spinning drops of fluid have been observed to break in two during drop dynamics experiments onboard the space shuttle. In order to demonstrate that fission works in the context of binary star formation, we have used a three-dimensional, computational fluid dynamics technique to, first, construct a rapidly rotating, self-gravitating, equilibrium barlike structure that, by all accounts, appears to be a compressible analog of an incompressible Riemann ellipsoid. Then by slowly cooling this configuration and following its cooling evolution in a fully self-consistent fashion, we have demonstrated that the system contracts along an ellipsoid-dumbbell-binary sequence. Although the hypothesis that binary stars may form via a process of fission has been around for more than 100 years, it has been a difficult hypothesis to test because of the nonlinear dynamical processes involved. This is the first demonstration that fission works in the context of realistic protostellar gas clouds. This work has been supported by the U.S. National Science Foundation through grant AST-9528424, by NASA through grant NAG5-8497, and by a grant of high-performance-computing time through NPACI on machines at the San Diego Supercomputing Center.

  9. Simulations of binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta

    2017-01-01

    The merger of a binary composed of a neutron star and/or a black hole is one of the most promising sources of gravitational waves. If we detected gravitational waves from them, it could tell us a validity of the general relativity in a strong gravitational field and the equation of state of neutron star matter. Furthermore, if gravitational waves from a compact binary merger and a short-hard gamma-ray burst are observed simultaneously, a long-standing puzzle on the central engine of short gamma-ray bursts could be resolved. In addition, compact binary mergers are a theoretical candidate of the rapid process nucleosynthesis site. Motivated by these facts, it is mandatory to build a physically reliable model of compact binary mergers and numerical relativity is a unique approach for this purpose. We are tackling this problem from several directions; the magneto-hydrodynamics, the neutrino radiation transfer, and a comprehensive study with simplified models. I will talk a current status of Kyoto Numerical Relativity group and future prospect on the compact binary mergers.

  10. Transit Timing Variations In Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Sansone, Eric; Haghighipour, N.

    2012-01-01

    We present the results of a study of the effect of a stellar companion on the transit timing variations (TTV) of a planetary system. The purpose of our study is to determine the ranges of the orbital elements of a secondary star for which the amplitude of a currently existing TTV is enhanced. We chose the system of Kepler 9 as this system represents the first planetary system detected by the transit timing variation method, and studied its TTVs by considering a hypothetical secondary star in this system. By varying the mass, semi-major axis, and eccentricity of the fictitious binary companion, we tested the stability of the known planets Kepler-9c and Kepler-9b and identified the region of the parameter-space for which the binary planetary system would be stable. We calculated TTVs for the two planets of the system for different values of the orbital elements of the secondary star and calculated its difference with the system's already existing TTVs. Results of our study indicate that the effect of the binary companion is significant only when the secondary star is in a highly eccentric orbit and/or the planets of the system are within the range of Super-Earth or terrestrial sizes. This work was funded by the National Science Foundation in the form of a Research Experience for Undergraduates program at the University of Hawaii at Manoa.

  11. Binary stars: Mass transfer and chemical composition

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  12. Multi-Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, Elke; Haghighipour, Nader; Bazso, Akos

    2017-06-01

    Space missions like Cheops, Tess or Plato will explore the solar neighborhood when searching for other Earth-like worlds. Moreover, observations have shown that many stars build binary or multi-stellar systems which might influence the dynamical behavior of planets moving in such systems where gravitational interactions play an important role. Phenomena like mean motion resonances and secular resonances can be sources of both stability and instability and influence therefore the architecture of a planetary system significantly. In our solar system the two giant planets Jupiter and Saturn also influence the inner part of the planetary system. In this presentation we will show the dynamics of Jupiter-Saturn like configurations in binary stars and we analyse the changes in the dynamical behavior of the planets.

  13. Determining Binary Star Orbits Using Kepler's Equation

    NASA Astrophysics Data System (ADS)

    Boule, Cory; Andrews, Kaitlyn; Penfield, Andrew; Puckette, Ian; Goodale, Keith; Harfenist, Steven

    2017-04-01

    Students calculated ephemerides and generated orbits of four well-known binary systems. Using an iterative technique in Microsoft® Excel® to solve Kepler's equation, separation and position angle values were generated as well as plots of the apparent orbits. Current position angle and separation values were measured in the field and compared well to the calculated values for the stars: STF1196AB,C, STF296AB, STF296AB and STF60AB.

  14. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  15. B-type stars in eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Ratajczak, Milena; Pigulski, Andrzej

    2016-07-01

    B-type stars in eclipsing binary systems are unique astrophysical tools to test several aspects of stellar evolution. Such objects can be used e.g. to determine the masses of Beta Cephei variable stars, as well as help to place tighter constraints on the value of the convective core overshooting parameter α. Both precise photometry and high-resolution spectroscopy with high SNR are required to achieve these goals, but since many of the targets are bright enough, the challenge is fair. Following this assumption, we shall explain how we plan to examine both the aforementioned aspects of stellar evolution using observations of B-type stars obtained with a wide range of spectrographs, as well as BRITE-Constellation satellites.

  16. The Unusual S Star Binary HD 191589

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.; Wahlgren, Glenn M.; Jorissen, Alain

    1996-01-01

    Recently, we discovered with International Ultraviolet Explorer (IUE) an F0-F2 IV-V companion to the T(sub c)-deficient S star HD 191589. If the magnitude difference is (delta)V=3.7, as indicated by several arguments, and E(B-V) = 0.0, we obtain a value of M(sub v)= - 1.5 +/- 0.4 for the Peculiar Red Giant (PRG), too faint for it to be a thermally-pulsing asymptotic giant branch star. According to the binary mass-transfer hypothesis for T(sub c)-deficient PRG's, a white dwarf must be the source of the s-process enhancement of the current primary star, but it cannot be seen because of the presence of the secondary. If such is the case, the F-star companion may also have been contaminated by s-process material. High-dispersion IUE observations indicate an enhancement of Zr II in the photosphere of the F-star as well. Thus, HD 191589 is likely a triple system, where what was once the most massive component of the system has polluted both of its companions with s-process material. One of these is the current S star, while the other is the companion still near the main sequence.

  17. Binary frequency and origin of the OB runaway stars

    SciTech Connect

    Gies, D.R.; Bolton, C.T.

    1986-06-01

    A radial velocity survey of the bright northern OB runaway stars has been undertaken to determine the frequency of binary stars in this high-velocity group. A total of 634 high-dispersion spectrograms of 36 proposed runaway stars were obtained over a two year period. Approximately half of the stars are velocity-variable; these include seven spectroscopic binaries, one possible beta-Cephei variable, and 10 stars with emission lines in their spectra. The latter group contains seven of the eight Be stars observed and three luminous O stars, and it is argued that their variability is caused by nonradial pulsation. Fifteen of the program stars have a peculiar radial velocity greater than 30 km/s; five others are probable runaways on the basis of distance from the galactic plane and proper motion. Only two of the confirmed and probable runaways, HD 3950 and HD 198846 (Y Cyg), are binaries, and both are double-lines systems. New orbital elements are presented for HD 3950 and the five new binary systems found among the low-velocity stars. The statisical methods used to assess velocity variability and periodic signals are described in detail. The higher fractional abundance of runaways among more massive stars, their binary frequency, and the properties of the runaway binaries suggest that they obtained their high velocities through single-binary, binary-binary, or n-body close encounters during the early dynamical evolution of associations. 208 references.

  18. Stellar and Binary Evolution in Star Clusters

    NASA Technical Reports Server (NTRS)

    McMillan, Stephen L. W.

    2001-01-01

    This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.

  19. High temperature structure in cool binary stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Brickhouse, Nancy S.; Hanson, G. J.

    1995-01-01

    Strong high temperature emission lines in the EUVE spectra of binary stars containing cool components (Alpha Aur (Capella), 44 iota Boo, Lambda And, and VY Ari) provide the basis to define reliably the differential emission measure of hot plasma. The emission measure distributions for the short-period (P less than or equal to 13 d) binary systems show a high temperature enhancement over a relatively narrow temperature region similar to that originally found in Capella (Dupree et al. 1993). The emission measure distributions of rapidly rotating single stars 31 Com and AB Dor also contain a local enhancement of the emission measure although at different temperatures and width from Capella, suggesting that the enhancement in these objects may be characteristic of rapid rotation of a stellar corona. This feature might be identified with a (polar) active region, although its density and absolute size are unknown; in the binaries Capella and VY Ari, the feature is narrow and it may arise from an interaction region between the components.

  20. Numerical relativity simulations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Thierfelder, Marcus; Bernuzzi, Sebastiano; Brügmann, Bernd

    2011-08-01

    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasiequilibrium equal-mass irrotational binary neutron star configurations in quasicircular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error bars on the numerically generated waveforms in the inspiral phase.

  1. Binary star formation and the outflows from their discs

    NASA Astrophysics Data System (ADS)

    Kuruwita, Rajika L.; Federrath, Christoph; Ireland, Michael

    2017-09-01

    We carry out magnetohydrodynamical simulations with flash of the formation of a single, a tight binary (a ∼ 2.5 au) and a wide binary star (a ∼ 45 au). We study the outflows and jets from these systems to understand the contributions the circumstellar and circumbinary discs have on the efficiency and morphology of the outflow. In the single star and tight binary case, we obtain a single pair of jets launched from the system, while in the wide binary case, two pairs of jets are observed. This implies that in the tight binary case, the contribution of the circumbinary disc on the outflow is greater than that in the wide binary case. We also find that the single star case is the most efficient at transporting mass, linear and angular momentum from the system, while the wide binary case is less efficient ( ∼ 50 per cent, ∼ 33 per cent, ∼ 42 per cent of the respective quantities in the single star case). The tight binary's efficiency falls between the other two cases ( ∼ 71 per cent, ∼66 per cent, ∼87 per cent of the respective quantities in the single star case). By studying the magnetic field structure, we deduce that the outflows in the single star and tight binary star case are magnetocentrifugally driven, whereas in the wide binary star case, the outflows are driven by a magnetic pressure gradient.

  2. Automatic Spectral Classification of Unresolved Binary Stars

    NASA Astrophysics Data System (ADS)

    Weaver, W. B.

    2000-12-01

    An artificial neural network (ANN) technique has been developed to perform two-dimensional classification of the components of binary stars of any temperature or luminosity classifications. Using 15 Angstrom-resolution spectra, a single ANN can classify the unresolved components with an average accuracy of 2.5 subclasses in temperature and about 0.45 classes in luminostiy for up to 3 magnitudes difference in luminosity. The use of two ANNs, the first providing coarse classification while the second provides specialist classification, reduces the mean absolute errors to about 0.5 subclasses in temperature and 0.33 classes in luminosity. The system operates with no human intervention except initial wavelength registration and can classify about 20 binaries per second on a Pentium-class computer. This research was supported by the Friends of MIRA.

  3. Observations of mass accretion in binary stars

    NASA Technical Reports Server (NTRS)

    Polidan, R. S.; Peters, G. J.

    1982-01-01

    Results from high resolution observations of eight close binary stars (TX UMa, U CrB, CX Dra, TT Hya, AU Mon, KX And, HR 2142, and phi Per) are presented. Variable absorption lines, indicative of mass flow, are observed in all systems expect phi Per. Emission lines are seen in KX And and phi Per. Variable high ionization features (NV, SiIV, and CIV) are seen in TX UMa, UCrB, CX Dra, and AU Mon. The observations are modeled using the calculations of Lubow and Shu.

  4. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  5. Eclipsing Binary Star Detection Using Kepler

    NASA Astrophysics Data System (ADS)

    Vydra, Ekaterina; Buzasi, Derek L.

    2017-01-01

    Eclipsing binaries (EBs) are laboratories for precision astrophysics, because use of the orbital information of the system allows the determination of the physical parameters of the stars to a much higher degree of precision than is possible for single stars. The Kepler Space Telescope, while designed to hunt for planets, has also been a valuable tool in detecting and characterizing EBs and has already observed over 2200 specimens. Kepler suffered a failure in 2013 that affected its pointing ability, but some ingenious engineering adjustments have allowed it to continue collecting photometric data from new fields of view. Our goals were to develop an algorithm for EB detection using Kepler data, and then with the help of FGCU's K2 Aperture Photometry Pipeline to extend that algorithm to discover new EBs in the K2 fields. Here we report on our progess to date as well as future plans.

  6. Synchronization of magnetic stars in binary systems

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Aly, J.-J.; Cook, M. C.; Lamb, D. Q.

    1983-01-01

    Asynchronous rotation of magnetic stars in close binary systems drives substantial field-aligned electrical currents between the magnetic star and its companion. The resulting magnetohydrodynamic torque is able to account for the heretofore unexplained synchronous rotation of the strongly magnetic degenerate dwarf component in systems like AM Her, VV Pup, AN UMa, and EF Eri as well as the magnetic A type component in systems like HD 98088 and 41 Tauri. The electric fields produced by even a small asynchronism are large and may accelerate some electrons to high energies, producing radio emission. The total energy dissipation rate in systems with degenerate dwarf spin periods as short as 1 minute may reach 10 to the 33rd ergs/s. Total luminosities of this order may be a characteristic feature of such systems.

  7. Interacting binary stars - Freaks or rosetta stones

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1983-01-01

    Attention is given to semidetached binaries of the Algol type and to related interacting systems, such as Beta Lyrae and the W Serpentis stars. A brief description is given of observational problems. The basic properties of the Algol variables are satisfactorily explained by means of evolutionary models that assume considerable mass transfer between the components. It is pointed out that ultraviolet spectra obtained with the IUE satellite corroborate the view that the present subgiant secondary component was initially the more massive star and that it has been stripped of a large fraction of its mass so that the deep layers affected by CNO processing are now denuded. It is believed that the present-day 'classical' Algols must have undergone a phase of rapid mass transfer in the past and that Beta Lyrae and the W Serpentis stars are probably closer to that stage than ordinary Algols. Around the accreting star a complex structure is formed, and an induced stellar wind may blow a large part of the transferred matter out of the system.

  8. PAGB stars in binary stellar population synthesis model

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, F. C.; Bruzual, G.; Magris, G.

    2017-07-01

    Post Asymptotic Giant Branch (PAGB) stars are luminous objects (103 - 104L⊙) in final stages of their evolution before reaching the white dwarf cooling sequence. They are an important key to understand galaxy evolution since they are hot enough to contribute to the UV excess in old stellar systems. Binary interactions may change the evolutionary path over the HR diagram and the total number of PAGB stars may also change. In this contribution we remark that rare Yellow PAGB stars are formed through mass transfer in a binary system, however the probability of formation is low. We use a recent implementation of the BC03 stellar population synthesis model that allows a stochastic sampling of the initial mass function to evolve single stars. We select, assemble and evolve binary systems using our binary code. We run ten realizations of simulated clusters for a Z=0.0005, M=106M_⊙, BF=0.9. One evolved stars formed in a binary system appears near the region of observed yellow PAGB stars. To demonstrate that these rare stars may be form through binary interaction, we select binary pairs with period less than critical to ensure mass transfer. The yellow PAGB star is formed by binary interaction. Binary and stochastic effects on the formation of yellow PAGB and the influence on spectral and photometric properties of the stellar systems will be studied in future work.

  9. Light Curve Modeling of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Milone, E. F.

    In the two decades since the development of the first eclipsing-binary modeling code, new analytic techniques and the availability of powerful, sometimes dedicated computing facilities have made possible vastly improved determinations of fundamental and even transient stellar parameters. The scale of these developments, of course, raises questions about modeling tools, techniques, and philosophies, such as: Who will maintain and upgrade the codes? Will the codes be open to improvement by outsiders, and if so, how? And, indeed, what should be the goals of a modeling program? Such questions had not been aired for a long time and, for this reason alone, deserved to be discussed in as general a forum as the community provides. This volume contains material presented by Commission 42 (Close Binary Stars) during the International Astronomical Union's XXI General Assembly in Argentina, July 1991, and during IAU Colloquium 151, Cordoba, Argentina, August 1991. The techniques discussed include simulations of stellar bright and dark spots, streams, partial and complete stellar disks, prominences, and other features characterizing active stars; modeling of polarization parameters; models that use radial velocities as well as line profile simulations to model velocity field variation across stellar disks; the weighted effects of brightness asymmetries; and models for translucent eclipsing agents such as stellar winds.

  10. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  11. Circumstellar disks around binary stars in Taurus

    SciTech Connect

    Akeson, R. L.

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  12. Planetesimal Accretion in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Marzari, F.; Scholl, H.

    2000-11-01

    Planetesimal accretion in close binary systems is a complex process for the gravitational perturbations of the companion star on the planetesimal orbits. These perturbations excite high eccentricities that can halt the accumulation process of planetesimals into planets also in those regions around the star where stable planetary orbits would eventually be possible. However, the evolution of a planetesimal swarm is also affected by collisions and gas drag. In particular, gas drag combined with the secular perturbations of the secondary star forces a strong alignment of all the planetesimal periastra. Since periastra are also coupled to eccentricities via the secular perturbations of the companion, the orbits of the planetesimals, besides all being aligned, also have very close values of eccentricity. This orbital ``phasing'' strongly reduces the contribution of the eccentricity to the relative velocities between planetesimals, and the impact speeds are dominated by the Keplerian shear: accretion becomes possible. This behavior is not limited to small planetesimals but also affects bodies as large as 100 km in diameter. The effects of gas drag are in fact enhanced by the presence of the constant forced component in the orbital eccentricity of the planetesimals. We describe analytically the periastron alignment by using the secular equations developed by Heppenheimer, and we test the prediction of the theory with a numerical code that integrates the orbits of a swarm of planetesimals perturbed by gas drag and collisions. The gas density is assumed to decrease outward, and the collisions are modeled as inelastic. Our computations are focused on the α Centauri system, which is a good candidate for terrestrial planets as we will show. The impact velocities between planetesimals of different sizes are computed at progressively increasing distances from the primary star and are compared with estimates for the maximum velocity for accretion. According to our simulations in

  13. Mergers of Black Hole -- Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela

    Motivated by the scenario that black hole-neutron star (BH-NS) mergers are viable progenitors of observed short Gamma-ray Bursts, we have used a 3D relativistic SPH (smoothed particle hydrodynamics) code to study mergers of such binary systems (with relatively low mass ratios). We have investigated a wide range of parameters for those binaries: mass ratio, Equation of State (EOS) for the NS, compactness of the NS. Most importantly, the BH's spin was varied in our simulations (from non-spinning to maximally spinning BHs), and so was the orbital inclination of the NS. We have found that the outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter a and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ˜60° lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger. Furthermore, we have investigated and we are presenting the gravitational waveforms and gravitational wave energy spectra from some representative cases. Despite using simply the quadrupole formula with post-Newtonian extensions (up to 3.5 terms) for radiation reaction, we were able to clearly see the impact of the BH's spin and NS's orbital inclination on the spectra and waveforms produced in our simulations.

  14. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  15. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  16. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2016-12-01

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  17. Planetary system disruption by Galactic perturbations to wide binary stars.

    PubMed

    Kaib, Nathan A; Raymond, Sean N; Duncan, Martin

    2013-01-17

    Nearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation. Contrary to previous understanding, wide binary companions may often strongly perturb planetary systems, triggering planetary ejections and increasing the orbital eccentricities of surviving planets. Although hitherto not recognized, orbits of giant exoplanets within wide binaries are statistically more eccentric than those around isolated stars. Both eccentricity distributions are well reproduced when we assume that isolated stars and wide binaries host similar planetary systems whose outermost giant planets are scattered beyond about 10 AU from their parent stars by early internal instabilities. Consequently, our results suggest that although wide binaries eventually remove the most distant planets from many planetary systems, most isolated giant exoplanet systems harbour additional distant, still undetected planets.

  18. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin i, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin i of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin i and the filling factor have been found.

  19. Classical Observations of Visual Binary and Multiple Stars

    DTIC Science & Technology

    2006-01-01

    Binary Stars as Critical Tools & Tests in Contemporary Astrophysics Proceedings IAU Symposium No. 240, 2006 W.I. Hartkopf, E.F. Guinan & P. Harmanec...eds. c© 2007 International Astronomical Union doi:10.1017/S1743921307003857 Classical Observations of Visual Binary and Multiple Stars Brian D. Mason...Changes in the double star database are highlighted, describing various methods of observation (both historically and those of the past few years) and

  20. Ultraviolet observations of interacting binary Be stars

    NASA Technical Reports Server (NTRS)

    Peters, G. J.; Polidan, R. S.

    1982-01-01

    Initial results from the analysis of a series of timed, high resolution IUE observations of HR 2142, phi Per, CX Dra, KX An, AU Mon, and TT Hya are presented. The data base for HR 2142 also includes Copernicus U1 and U2 observations. Variable absorption lines, indicative of mass flow in the system, are observed in all objects except phi Per. Evidence was also found of mass outflow in the form of winds and/or discrete components. Variable N V absorption was observed in CX Dra and AU Mon and emission features in KX And and phi Per (C IV only). U1 data reveals the presence of complex structure in the gas stream in HR 2142. These observations are compared with those of Be stars which are not thought to be interacting binaries.

  1. Neutron Stars in Binaries and in Isolation

    NASA Astrophysics Data System (ADS)

    Yancopoulos, Sophia

    1996-01-01

    This thesis is a study of neutron stars in three distinct classes. After a brief overview of neutron stars in Chapter 1, the three systems are discussed in order of decreasing luminosity. In Chapter 2, we present a new model for the normal branch of a class of low mass X-ray binaries which show quasiperiodic oscillations: a quasi -periodic modulation in the intensity of their X-ray signal. Chapter 3 discusses a particular radio pulsar which we observed in X-rays with the ROSAT PSPC. Chapter 4 rounds out the thesis with a discussion of a class of neutron stars which have not, to date, been definitively shown to exist. We describe a search for these isolated old neutron stars in the Einstein database, and present the results of our finds. As part of a search for thermal surface radiation from nearby neutron stars, we have carried out a 45,000 s observation of the nearby radio pulsar PSR 1929+10 with the ROSAT PSPC. After background subtraction, a net of 420+/-25 photons in the 0.1-2.0 keV band were detected at the position of the pulsar, corresponding to a luminosity of position of the pulsar, corresponding to a luminosity of 1.2 times 1030 erg/s for a source distance of 250 pc, or {~}3 times 10^{-4} of the pulsar's spin-down luminosity. We find coherent pulsations from PSR 1929+10 at the radio period of 0.2265 s. The folded light curve is well fit by a sinusoidal oscillation with a pulsed fraction of about 30%. The total spectrum is fit by a blackbody with a temperature T_ infty~3.2times10^6 K; the implied emitting area has a radius of less than 50 meters. The maximum of the X-ray light curve coincides with the radio pulse, suggesting we are detecting the hot magnetic polar cap of the star. We discuss the implications of our results for the temperature distribution over the surface of the star, and use this detection to constrain various heating mechanisms for rotation-powered neutron stars. We also use a simple model of general relativistic light bending near the

  2. Can binary stars test solar models?

    NASA Technical Reports Server (NTRS)

    Popper, D. M.; Ulrich, R. K.

    1986-01-01

    The position in the H-R diagram of the approximately solar-mass component of the Hyades eclipsing binary, HD 27130, is compared with the predictions of stellar structure theory. The stellar models are calibrated by matching a model with the solar heavy element composition and age to the solar radius and luminosity. The comparison to the Hyades binary then is a test of the prediction that the initial solar luminosity was only about 0.7 times the present solar luminosity. The agreement is satisfactory, lending a measure of confidence to the solar model employed, provided that the initial helium abundance of the Hyades stars is not greater than that of the sun and is not less by more than about 0.03 in Y. Unless the model is grossly incorrect, the inference of Stromgren, Olsen, and Gustafsson (1982) from the 'Hyades anomaly' in intermediate-band photometry that Y(Hyades) is less than Y(solar) by 0.1 or 0.15 is rejected by the observed properties of HD 27130.

  3. Can binary stars test solar models?

    NASA Technical Reports Server (NTRS)

    Popper, D. M.; Ulrich, R. K.

    1986-01-01

    The position in the H-R diagram of the approximately solar-mass component of the Hyades eclipsing binary, HD 27130, is compared with the predictions of stellar structure theory. The stellar models are calibrated by matching a model with the solar heavy element composition and age to the solar radius and luminosity. The comparison to the Hyades binary then is a test of the prediction that the initial solar luminosity was only about 0.7 times the present solar luminosity. The agreement is satisfactory, lending a measure of confidence to the solar model employed, provided that the initial helium abundance of the Hyades stars is not greater than that of the sun and is not less by more than about 0.03 in Y. Unless the model is grossly incorrect, the inference of Stromgren, Olsen, and Gustafsson (1982) from the 'Hyades anomaly' in intermediate-band photometry that Y(Hyades) is less than Y(solar) by 0.1 or 0.15 is rejected by the observed properties of HD 27130.

  4. The Fate of Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Giacomazzo, Bruno; Perna, Rosalba

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ˜60%-70% of SGRBs to be from NS-BH mergers rather than just binary NSs.

  5. The evolution of highly compact binary stellar systems in globular clusters

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Meiksin, A.; Joss, P. C.

    1984-01-01

    A highly compact binary represents a system which is composed of a collapsed object (degenerate dwarf, neutron star, or black hole) in orbit with a low-mass (equal to or less than 0.5 solar mass) secondary star. Matter may be transferred from the secondary to the collapsed star due to the decay of the orbit resulting from the emission of gravitational radiation. The present investigation has the objective to study quantitatively the evolution of highly compact binaries in globular cluster cores, subject to the interplay of gravitational radiation and collisions with field stars. The investigation is exploratory in nature. The numerical methods employed are based on the techniques developed by Rappaport et al. (1982). It is found that occasional close encounters with field stars strongly dominate the evolution of highly compact binaries in dense globular cluster cores. Attention is given to the applicability of the findings to observations of X-ray sources and cataclysmic variables.

  6. Effective Temperatures for Young Stars in Binaries

    NASA Astrophysics Data System (ADS)

    Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew

    2017-01-01

    We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.

  7. STAR HOPPERS: PLANET INSTABILITY AND CAPTURE IN EVOLVING BINARY SYSTEMS

    SciTech Connect

    Kratter, Kaitlin M.; Perets, Hagai B.

    2012-07-01

    Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here, we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars ('star hoppers'), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible for more massive planets. Such capture could populate the habitable zone around white dwarfs.

  8. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  9. Runaway stars from young star clusters containing initial binaries. I. Equal-mass, equal-energy binaries

    SciTech Connect

    Leonard, P.J.T.; Duncan, M.J.

    1988-07-01

    The production of runaway stars by the dynamical-ejection mechanism in an open star cluster containing 50 percent binaries of equal mass and energy is investigated theoretically by means of numerical simulations using the NBODY5 code of Aarseth (1985). The construction of the models is outlined, and the results are presented graphically and characterized in detail. It is shown that binary-binary collisions capable of producing runaways can occur (via formation and disruption, with some stellar collisions, of hierarchical double binaries) in clusters of relatively low density (e.g., pc-sized clusters of O or B stars). The frequency of binaries in the runaway population is found to vary between 0 and 50 percent, with the majority of runaways being unevolved early-type stars. 38 references.

  10. Hidden Binaries Among Magnetic CP Stars in Two Examples

    NASA Astrophysics Data System (ADS)

    Semenko, E.

    2017-06-01

    Spectropolarimetric surveys of chemically peculiar or CP-stars that aim to the searches of stars hosting the strong and globally-organized magnetic field have increased the number of known magnetic CP's. At the same time, regular observations were carried out only for the limited sample of the stars. Hence, the problem of 'hidden' binary and multiple stellar systems among newly-discovered magnetic CP-stars is existing.

  11. NIP of Stars: early results and new eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Jaque Arancibia, M.; Barba, R.; Morrell, N.; Roman Lopes, A.; Torres Robledo, S.; Gunthardt, G.; Soto, M.; Ferrero, G.; Arias, J. I.; Gamen, R.; Fernadez Lajus, E.

    2014-10-01

    We have performed a near-infrared photometric monitoring of 39 galactic young star clusters and star-forming regions, known as NIP of Stars, between the years 2009-2011, using the Swope telescope at Las Campanas Observatory (Chile) and the RetroCam camera, in H- and Y-bands. This monitoring program is complementary to the Vista Variables in the Via Láctea (VVV), as the brightest sources observed in NIP of Stars are saturated in VVV. The aim of this campaign is to perform a census of photometric variability of such clusters and star-forming regions, with the main goal of discovering massive eclipsing binary stars. In this work, we present a preliminary analysis of this photometric monitoring program with the discovery of tens of candidates for variable stars, among them candidates for massive eclipsing binaries. We included also to the analysis of variability, a small set of images obtained in the Ks with the VISTA telescope in the framework of VVV survey (Minniti et al. 2010). In special, we announce the infrared discovering of four massive eclipsing binaries in the massive young cluster NGC 3603. The stars have been classified spectroscopically as O-type stars, and one of them, MTT 58, has a rare star with a spectral type of O2 If*/WN6, as one of its components. We present a preliminary analysis of the light-curves of these binaries.

  12. Nucleosynthesis of Binary low mass zero-metallicity stars

    NASA Astrophysics Data System (ADS)

    Lau, Ho Bun Herbert; Stancliffe, R. J.; Tout, C. A.

    The Cambridge STARS code is used to model the evolution and nucleosynthesis of binary zero- metallicity low to intermediate mass stars. The surfaces of these stars are enriched in CNO ele- ments after second dredge up. During binary interaction metals can be released from these stars and the secondary enriched in CNO. The observed abundances of HE 0107-5240 can be repro- duced from enhanced wind accretion from a 7 M after second dredge up. HE 1327-2326, richer in nitrogen and Sr, can similarly be formed by wind accretion in a later AGB phase after third dredge up.

  13. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  14. Formation of wide binary stars from adjacent cores

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2017-07-01

    Wide gravitationally bound pairs of stars can be formed from adjacent pre-stellar cores that happen to move slowly enough relative to each other. These binaries are remnants of primordial clustering. It is shown that the expected fraction of wide bound pairs in low-density star formation regions can be larger than the fraction of wide pairs in the field. However, wide binaries do not form or survive in dense clusters. Recent works on the separation distribution of young binaries, summarized here, confirm these expectations. Alternative formation mechanisms of wide binaries, such as cluster dissolution or unfolding of triple stars, cannot explain the large observed fraction of young wide pairs, and therefore are not dominant. The fact that more than half of the wide pairs contain subsystems matches the general multiplicity statistics and does not imply that hierarchical multiplicity and wide binaries are genetically related.

  15. Indoor Astronomy: A Model Eclipsing Binary Star System.

    ERIC Educational Resources Information Center

    Bloomer, Raymond H., Jr.

    1979-01-01

    Describes a two-hour physics laboratory experiment modeling the phenomena of eclipsing binary stars developed by the Air Force Academy as part of a week-long laboratory-oriented experience for visiting high school students. (BT)

  16. Neutron Stars in X-ray Binaries and their Environments

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2017-09-01

    Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.

  17. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  18. BINARY STAR SYNTHETIC PHOTOMETRY AND DISTANCE DETERMINATION USING BINSYN

    SciTech Connect

    Linnell, Albert P.; DeStefano, Paul; Hubeny, Ivan E-mail: pdestefa@uw.edu

    2013-09-15

    This paper extends synthetic photometry to components of binary star systems. The paper demonstrates accurate recovery of single star photometric properties for four photometric standards, Vega, Sirius, GD153, and HD209458, ranging over the HR diagram, when their model synthetic spectra are placed in fictitious binary systems and subjected to synthetic photometry processing. Techniques for photometric distance determination have been validated for all four photometric standards.

  19. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  20. Compact Object Binaries with Spinning Neutron Stars in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nicholas A.

    The inspiral and merger of binary neutron stars (BNS) is one of the most promising potential sources of gravitational waves for ground-based detectors like Advanced LIGO. BNS mergers are also likely a source of counterpart electromagnetic radiation. It is important to perform simulations of BNS to better understand and model their gravitational wave emission as well as their electromagnetic emission. The parameter space of BNS binaries is quite large, and one aspect that has not been well studied in neutron star spin. In this thesis, we focus on investigating spinning neutron stars in compact object binaries. Using the SpEC code, developed by the SXS collaboration, we begin by presenting a new code to create initial data for binary neutron stars with arbitrary spins. We introduce a novel method of measuring neutron star spin, and show that it is accurate and robust. We evolve several spinning binary configurations and show that their properties agree remarkably well with Post-Newtonian predictions. We also show that we are able to control the eccentricity of the binaries to 0.1%. Thereafter, we proceed to extend our code to black hole.neutron star (BHNS) binaries. We create many data sets across the BHNS parameter space, varying neutron star spin magnitude, spin direction, compactness, and black hole mass, spin and spin direction. We are able to create initial data sets with neutron star spins near the mass shedding limit, and nearly extremal black hole spins. Finally, we investigate spurious gravitational radiation in binary black hole systems. We study its parameter space dependence, by introducing three diagnostics, investigating them as a function of black hole spin and black hole separation, and comparing two different methods of constructing initial data.

  1. Phenomenological modelling of eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Tkachenko, M. G.; Chinarova, L. L.

    2016-03-01

    We review the method NAV ("New Algol Variable") first introduced in (2012Ap.....55..536A) which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA (Algol) type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s(2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the period and the initial epoch. We have applied the method to few stars, also in a case of multi-color photometry (2015JASS...32..127A), when it is possible to use the phenomenological parameters from the NAV fit to estimate physical parameters using statistical dependencies. For the one-color observations, one may estimate the ratio of the surface brightnesses of the components. We compiled a catalog of phenomenological characteristics based on published observations. We conclude that the NAV approximation is better than the TP one even for the case of EW-type stars with much wider eclipses. It may also be used to determine timings (see 2005ASPC..335...37A for a review of methods) or to determine parameters in the case of variable period, using a complete light curve modeling the phase variations. The method is illustrated on 2MASS J11080447-6143290 (EA-type), USNO-B1.0 1265-0306001 and USNO-B1.01266-0313413 (EW-type) and compared to various other methods

  2. THE CLOSE BINARY FRACTION OF DWARF M STARS

    SciTech Connect

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  3. Mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-03-01

    Black hole-neutron star binaries are ones of the most promising sources of gravitational waves for upcoming second-generation detectors. To confirm gravitational-wave detection and obtain as much information as possible, it is desirable to observe electromagnetic counterparts simultaneously. It has been pointed out by many authors that various electromagnetic signals are reasonably expected if substantial material is ejected during the binary merger. One plausible mechanism of mass ejection from black hole-neutron star binaries is tidal disruption of neutron stars by the tidal force exerted by black holes. A quantitative study of this dynamical mass ejection requires numerical-relativity simulations. We perform simulations of black hole-neutron star binaries focusing on the dynamical mass ejection for a range of binary parameters including equations of state of neutron star matter. We present important results such as masses and velocities of ejecta obtained by our simulations, and also discuss possible characteristics of electromagnetic counterparts to black hole-neutron star binaries. In particular, we focus on anisotropy and bulk velocity (i.e., the velocity component other than the expansion velocity) of the ejecta, and electromagnetic features resulting from them.

  4. Gravitational radiation from dual neutron star elliptical binaries

    NASA Technical Reports Server (NTRS)

    Hils, Dieter

    1991-01-01

    General expressions are derived for the gravitational radiation incident on earth due to elliptical binary systems in the Galaxy. These results are applied to dual neutron star elliptical binaries. Calculations show that eccentric dual neutron star binaries lead to a moderate increase in gravitational flux density compared with circular systems for frequencies above approximately 0.0001 Hz. Tables of various quantities such as average gravitational luminosity, number of sources per unit bandwidth, energy spectral flux density, and gravitational wave strain density are given.

  5. Binary nature of the HADS stars AN Lyn & BE Lyn

    NASA Astrophysics Data System (ADS)

    Peña, J. H.; Rentería, A.; Villarreal, C.; Pani, A.; Huepa, H.; Huepa, J. L.; Bernal, A.; Arenas, A.; García, C.; León, R.; Ramírez, E.; Trejo, O.; Colorado, E.; Sánchez-Cruces, M.; Rechy-García, J. S.

    2015-04-01

    From newly determined times of maxima from CCD photometry of the HADS stars AN Lyn & BE Lyn and a compilation of previous times of maxima, we are able to determine the binary nature of these stars. We determine their physical parameters by means of uvby-β photometry.

  6. Binary stars can provide the `missing photons' needed for reionization

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison

    2016-07-01

    Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged `effective' escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.

  7. Pro-Am Collaborations on Eclipsing Binary Star Problems

    NASA Astrophysics Data System (ADS)

    Terrell, D.

    2004-05-01

    I discuss the fruits of a decade of amateur-professional collaboration on eclipsing binary stars. Our team consists of a mix of visual, photoelectric and CCD observers that use the strengths of each observing approach to study newly discovered and neglected eclipsing binary systems. We have active programs on time of minimum measurements and high-precision photometry that results in detailed analysis of the binaries to find fundamental parameters such as masses and radii. We have also discovered and/or characterized several unusal binaries that have had an influence on stellar evolution theory.

  8. Binary Black Holes from Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  9. Formation and Evolution of Binary Systems Containing Collapsed Stars

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  10. Formation and Evolution of Binary Systems Containing Collapsed Stars

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  11. Misaligned protoplanetary disks in a young binary star system.

    PubMed

    Jensen, Eric L N; Akeson, Rachel

    2014-07-31

    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process.

  12. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  13. The Pseudosynchronization of Binary Stars Undergoing Strong Tidal Interactions

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mara K.; Thompson, Susan E.; Mullally, Fergal; Fuller, Jim; Shporer, Avi; Hambleton, Kelly

    2017-09-01

    Eccentric binaries known as heartbeat stars experience strong dynamical tides as the stars pass through periastron, providing a laboratory to study tidal interactions. We measure the rotation periods of 24 heartbeat systems, using the Kepler light curves to identify rotation peaks in the Fourier transform. Where possible, we compare the rotation period to the pseudosynchronization period derived by Hut. Few of our heartbeat stars are pseudosynchronized with the orbital period. For four systems, we were able to identify two sets of rotation peaks, which we interpret as the rotation from both stars in the binary. Most stars in our sample have rotation rates larger than the pseudosynchronization period while a single target rotates much faster than this rate. The majority of the systems have a rotation period that is approximately \\tfrac{3}{2} times the pseudosynchronization period, suggesting that other physical mechanisms strongly influence the star’s evolution.

  14. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  15. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    SciTech Connect

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  16. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  17. Axial Rotation and Incidence of Binaries Among BMP Stars

    NASA Astrophysics Data System (ADS)

    Preston, George W.

    1996-04-01

    An echelle survey conducted at Las Campanas Observatory during the past four years has been used to study the chemical heterogeneity, derive axial rotations (V_e sini) and estimate the spectroscopic binary fraction for a sample of blue metal-poor stars (hereafter BMP). Metal abundances estimated from the strength of CaII(K) exceed the BMP photometric lower bound, [Fe/H] < --1, for 25 percent of the sample. Slopes of blanketing vectors, d(U-B)/d(B-V), are used to calculate the blanketed colors, (B-V)bl, that BMPs would have were their Fe abundances increased to the solar value. The mean projected rotational velocity of BMP stars exhibits a decline with increasing (B-V)bl similar to that found for ordinary A- and F- type stars in the solar neighborhood. Examination of radial velocity dispersions suggests that the fraction of BMP stars in binaries with P<1500 days is probably larger ( ~ 0.35) than the corresponding binary fractions ( ~ 0.17) of disk main sequence stars. This difference can arise, if a significant fraction of the BMP stars are blue stragglers among which the binary fraction is sufficiently high.

  18. Stripped red giant cores in eclipsing binary star systems

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Heber, U.; Smalley, B.; Marsh, T. R.

    2013-02-01

    Red giant stars can be stripped of their outer layers by stellar collisions or mass transfer in binary star systems such as low mass X-ray binaries. If the star is stripped on or before its first ascent of the red giant branch it will eventually become a very low mass white dwarf composed almost entirely of helium. Very low mass white dwarfs are well known in binary milli-second pulsars and many have recently been found in surveys such as the Sloan Digital Sky Survey, but the precursor phase during which the remnant evolves to higher effective temperature at nearly constant luminosity has rarely been observed. The cooling timescale for very low mass white dwarfs is very uncertain because they are thought to be born with thick hydrogen envelopes which can sustain weak but stable p-p shell burning, but unstable phases of CNO burning (shell flashes) can remove this hydrogen envelope. The predicted number of shell flashes (if any) is dependent on the mass and composition of the star and other details of the models used. In this talk I present new observations of a bright eclipsing binary star recently discovered in the WASP archive in which a stripped red giant is eclipsed by an A-type dwarf star. These observations were used to derive precise masses and radii for both stars and have be used to test the formation scenario outlined above. In addition, I present the main characteristics of 17 new eclipsing binary stars that are also likely to contain the precursors of very low mass white dwarfs.

  19. Optical and ultraviolet spectroscopy of three F + B binary stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.; Dempsey, Robert C.; Parsons, Sidney B.

    1991-01-01

    Optical and ultraviolet spectroscopy is presented for three F + B objects that are members of the first group of strongly interacting, F II + B systems. The data obtained confirm that HD 59771, HD 242257, and CoD -30 5135 are all binary star systems consisting of a luminous F-type component and a B star. Strong, variable H-alpha emission is seen in all the stars. It is found that the UV spectrum of HD 59771 resembles the spectrum of HD 207739. CoD -30 5135 has the most dramatic mid-UV spectrum seen among the scores of observed cool + hot star systems.

  20. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  1. Reducing orbital eccentricity in initial data of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke

    2014-09-01

    We develop a method to compute low-eccentricity initial data of binary neutron stars required to perform realistic simulations in numerical relativity. The orbital eccentricity is controlled by adjusting the orbital angular velocity of a binary and incorporating an approaching relative velocity of the neutron stars. These modifications improve the solution primarily through the hydrostatic equilibrium equation for the binary initial data. The orbital angular velocity and approaching velocity of initial data are updated iteratively by performing time evolutions over ˜3 orbits. We find that the eccentricity can be reduced by an order of magnitude compared to standard quasicircular initial data, specifically from ˜0.01 to ≲0.001, by three successive iterations for equal-mass binaries leaving ˜10 orbits before the merger.

  2. Eclipse timing variations to detect exoplanets in binary star systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard; Funk, Barbara; Bazso, Akos; Zechner, Renate

    2016-02-01

    This work is devoted to study the circumstances favorable to detect planets in S- or P-Type orbits in close binary star systems by the help of eclipse timing variations (ETVs). A planet in S-Type motion orbits one of the two stars while a planet in P-Type Motion orbits both stars. One can detect ETV signals with the help of former (CoRoT and Kepler) and future space missions Plato, Tess and Cheops). To determine the probability of the detection of such ETV signals with ground based and space telescopes we investigated the dynamics of close binary star systems (stars separated by 0.5 to 3 AU). Therefore we did numerical simulations by using the full three-body problem as dynamical model. The stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter mass). In addition we changed the planets eccentricity. We can conclude that many ETV amplitudes are large enough to detect planets in S- or P-Type orbits in binary star systems.

  3. General Model for Light Curves of Chromospherically Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Henry, G. W.; Lehtinen, J.

    2017-04-01

    The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ({P}{act}) and the orbital period ({P}{orb}). We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars. The CPS results are available electronically at the Vizier database.

  4. A Photometric Study of the Eclipsing Binary Star BN Ari

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2015-12-01

    Presented are a set of multi-band light curves, synthetic light curve solutions, and period study for the eclipsing binary star BN Ari. The orbital period was found to be decreasing the past 8 years (~8,200 orbits). The observed light curves were analyzed with the Wilson-Devinney program. The resulting synthetic light curve solution showed the system to be a contact eclipsing binary with total eclipses.

  5. On the Habitability of Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, E.; Eggl, S.; Gyergyovits, M.

    2012-04-01

    The discovery of more and more extra-solar planets in and around binary star systems cause questions concerning the determination of the classical habitable zone (HZ). We present calculations of the radiative and gravitational perturbations of two stars on a terrestrial planet moving in the HZ in different binary - planet configurations. Two types of planetary motion will be considered, i.e. S-type motion (or circumprimary motion) where the planet orbits one star only and P-type (or circumbinary motion) where the binary revolves inside the planet's orbit. It was found that the HZ in S-type configurations tend to be gravitationally dominated, the radiative input due to the second star is negligible compared to its dynamical influence causing secular changes in the eccentricity of the planets. This alters the amount of incident radiation significantly. In P-type configurations the radiation estimates can be determined on shorter time-scales. The radiation amplitude depends on the eccentricity of the binary in both configurations. Finally we present time independent analytical estimates about the habitability of a terrestrial planet in the HZ of a binary star system as shown by Eggl et al.(2012). This work was financed by the Austrian Science Fonds (FWF) P22603-N16 and AS11608-N16 and S.Eggl was financed by the University of Vienna (Forschungsstipendium 2012). Ref.: Eggl, S., Pilat-Lohinger, E., Gerogakarakos, N., Gyergyovits, M. and Funk, B., "Habitable Zones in S-Type Binary Star Systems", ApJ, submitted.

  6. TRIPLE-STAR CANDIDATES AMONG THE KEPLER BINARIES

    SciTech Connect

    Rappaport, S.; Deck, K.; Sanchis-Ojeda, R.; Levine, A.; Borkovits, T.; Carter, J.; El Mellah, I.; Kalomeni, B. E-mail: kdeck@mit.edu E-mail: aml@space.mit.edu E-mail: jacarter@cfa.harvard.edu

    2013-05-01

    We present the results of a search through the photometric database of Kepler eclipsing binaries looking for evidence of hierarchical triple-star systems. The presence of a third star orbiting the binary can be inferred from eclipse timing variations. We apply a simple algorithm in an automated determination of the eclipse times for all 2157 binaries. The ''calculated'' eclipse times, based on a constant period model, are subtracted from those observed. The resulting O - C (observed minus calculated times) curves are then visually inspected for periodicities in order to find triple-star candidates. After eliminating false positives due to the beat frequency between the {approx}1/2 hr Kepler cadence and the binary period, 39 candidate triple systems were identified. The periodic O - C curves for these candidates were then fit for contributions from both the classical Roemer delay and so-called physical delay, in an attempt to extract a number of the system parameters of the triple. We discuss the limitations of the information that can be inferred from these O - C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the limited range of orbital periods for the triple-star systems to which this search is sensitive, we can extrapolate to estimate that at least 20% of all close binaries have tertiary companions.

  7. The Merger Rate of Neutron Star Binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Bailes, M.

    The major uncertainties in the merger rates of neutron star binaries are discussed, as well as a method of placing an upper limit on the binary neutron star population using simple ratios. We find that the merger rate is most unlikely to be greater than 10-5 yr -1 in our Galaxy, but is almost certainly greater than 10-7 yr-1. The prospects for hardening the merger rate in the near future are relatively bleak, with recent deep surveys failing to discover any systems capable of merging within a Hubble time. Other possible mergers involving black holes are briefly discussed.

  8. The Binary Nature of CH-Like Stars

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Začs, L.; Schuster, W. J.; Deveikis, V.

    2016-07-01

    Yamashita has described a group of early carbon stars with enhanced lines of barium that resemble the CH stars but have low radial velocities. It is not clear whether they represent a class of stars separate from early R stars. Radial-velocity measurements and abundance analyses are applied in order to clarify the evolutionary status of CH-like stars. Radial-velocity monitoring was performed over a time interval of about 10 years. Abundance analysis was carried out using high-resolution spectra and the method of atmospheric models for three CH-like candidate stars. The radial-velocity monitoring confirmed regular variations for all of the classified CH-like stars, except for two, in support of their binary nature. The calculated orbital parameters are similar to those observed for barium stars in the disk of the Galaxy and their counterparts in the halo, that is, the CH stars. The relatively low luminosity of CH-like stars and the overabundance of s-process elements in the atmospheres are in agreement with a mass-transfer scenario from the secondary—an AGB star in the past. The kinematic data and metallicities support the idea that CH-like stars are thin/thick-disk population objects.

  9. Modelling binary rotating stars by new population synthesis code bonnfires

    NASA Astrophysics Data System (ADS)

    Lau, H. H. B.; Izzard, R. G.; Schneider, F. R. N.

    2013-02-01

    bonnfires, a new generation of population synthesis code, can calculate nuclear reaction, various mixing processes and binary interaction in a timely fashion. We use this new population synthesis code to study the interplay between binary mass transfer and rotation. We aim to compare theoretical models with observations, in particular the surface nitrogen abundance and rotational velocity. Preliminary results show binary interactions may explain the formation of nitrogen-rich slow rotators and nitrogen-poor fast rotators, but more work needs to be done to estimate whether the observed frequencies of those stars can be matched.

  10. N-Body Integrators for Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Chambers, John E.

    The discovery of planets orbiting in binary star systems represents an exciting new field of astrophysics. The stability of planetary orbits in binary systems can only be addressed analytically in special cases, so most researchers have studied stability using long-term N-body integrations of test particles, examining binary systems with a range of masses and orbits (e.g. Wiegert and Holman 1997; Haghighipour and Wiegert 1999; Haghighipour 2006). This has led to a good understanding of the likely regions of stability and instability in binary systems. Integrators can also been used to study the more complex problem of several finite-mass planets orbiting in a binary system, where interactions between the planets are significant. However, at the time of writing, this problem has been explored in less detail than the test-particle case, and we still lack a general theory for the stability of these systems.

  11. A Study of Planetary Nebulae Possessing Binary Central Stars

    NASA Astrophysics Data System (ADS)

    Tyndall, Amy A.

    2014-01-01

    In this thesis, detailed studies of three different types of binary central stars within planetary nebulae (bCSPNe) are presented, with the aim of investigating the effects such a range of binary systems has on the morphology and kinematics of the surrounding nebulae, as well as discussing what the implication is for the interaction between the stars themselves. A close binary, an intermediate period binary, and a compact binary system are examined. The close binary PN HaTr 4 is the first system to be studied via detailed spatio-kinematical analysis and modelling, and it is one of few known to contain a post-common envelope (CE) central star system. CE evolution is believed to play an important role in the shaping of PNe, but the exact nature of this role is yet to be understood. High spatial and spectral resolution spectroscopy is presented alongside deep narrow-band imagery to derive the three-dimensional morphology of HaTr 4. The nebula is found to display an extended ovoid morphology with an enhanced equatorial region consistent with a toroidal waist - a feature believed to be typical amongst PNe with post-CE central stars. The nebular symmetry axis is found to lie perpendicular to the orbital plane of the central binary, concordant with the idea that the formation and evolution of HaTr 4 has been strongly influenced by its central binary. Next, PN LoTr 1 is studied using a combination of spectra and photometry, and is thought to contain an intermediate-period binary central star system (P = 100-1500 d). Here, we confirm the binary nature of the central star of LoTr 1, consisting of a K1 III star and a hot white dwarf (WD). The nebula of LoTr 1 presents a very different morphology than that of other seemingly similar bCSPNe possessing barium stars, A70 and WeBo 1 (included in this study for direct comparison), which may be an indication of a difference in their mass-transfer episodes. There is no evidence of barium enhancement in the K1 III companion, but it is

  12. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    SciTech Connect

    Smullen, Rachel A.; Kobulnicky, Henry A.

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars in this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.

  13. Milankovitch cycles of terrestrial planets in binary star systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2016-12-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N-Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular time-scales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P- and S-type binary systems, respectively. In the first case, Earth-like planets would experience rapid Milankovitch cycles (of order 1000 yr) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter time-scale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15 000 yr time-scales. This produces climate oscillations of similar strength to the variation on the orbital time-scale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100 000 yr in duration, which are further modulated by neighbouring planets.

  14. Tugboat model for OB binaries, X-ray stars and pulsars.

    PubMed

    Helfand, D J; Tademaru, E

    1977-05-12

    An examination of the kinematical properties of binary OB stars, binary X-ray sources and pulsars suggests an evolutionary sequence linking an apparent low-velocity class of pulsars to the binary nature of their extreme Population I progenitors.

  15. Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.

    1993-01-01

    We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.

  16. Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.

    1993-01-01

    We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.

  17. Relating binary-star planetary systems to central configurations

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  18. Quasiequilibrium black hole-neutron star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2007-04-15

    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a {gamma}=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M{sub irr}{sup BH}/M{sub ADM,0}{sup NS}=1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M{sub B}{sup NS}/M{sub B}{sup max}=83% and 56%, where M{sub B}{sup max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.

  19. CCD Photometry of Five Neglected Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Cook, Stephen P.

    Differential V-magnitude CCD photometric data are presented for five neglected eclipsing binary stars with shallow eclipses. An improved period is derived for SV Equ, past O-C trends are confirmed for AN And and DL Vir, and an unexpectedly large O-C values are found for BW DEL nad CS Lac.

  20. Visual Astrometry Observations of the Binary Star Beta Lyrae

    NASA Astrophysics Data System (ADS)

    Collins, S. Jananne; Berlin, Kyle; Cardoza, Clare; Jordano, Chris; Waymire, Tatum; Shore, Doug; Baxter, John; Johnson, Robert; Carro, Joseph; Genet, Russell M.

    2012-04-01

    Students from Arroyo Grande High School and Cuesta College observed the separation and position angle of the binary star Beta Lyrae (WDS 18501+3322 ). The separation and position angle were found to be 46.7 arc seconds and 149.6° respectively. These values compared favorably to past observations.

  1. Elucidating the True Binary Fraction of VLM Stars and Brown Dwarfs with Spectral Binaries

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Gelino, Christopher R.; SAHLMANN, JOHANNES; Schmidt, Sarah J.; Gagne, Jonathan; Skrzypek, Nathalie

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs are found in abundance in nearly all Galactic environments, yet their formation mechanism(s) remain an open question. One means of testing current formation theories is to use multiplicity statistics. The majority of VLM binaries have been discovered through direct imaging, and current angular resolution limits (0.05”-0.1") are coincident with the 1-4 AU peak in the projected separation distribution of known systems, suggesting an observational bias. I have developed a separation-independent method to detect T dwarf companions to late-M/early-L dwarfs by identifying methane absorption in their unresolved, low-resolution, near-infrared spectra using spectral indices and template fitting. Over 60 spectral binary candidates have been identified with this and comparable methods. I discuss follow-up observations, including laser-guide star adaptive optics imaging with Keck/NIRC2, which have confirmed 9 systems; and radial velocity and astrometric monitoring observations that have confirmed 7 others. The direct imaging results indicate a resolved binary fraction of 18%, coincident with current estimates of the VLM binary fraction; however, our sample contained 5 previously confirmed binaries, raising its true binary fraction to 47%. To more accurately measure the true VLM binary fraction, I describe the construction of an unbiased, volume-limited, near-infrared spectral sample of M7-L5 dwarfs within 25 pc, of which 4 (1%) are found to be spectral binary candidates. I model the complex selection biases of this method through a population simulation, set constraints on the true binary fraction as traced by these systems, and compare to the predictions of current formation theories. I also describe how this method may be applied to conduct a separation-unbiased search for giant exoplanets orbiting young VLM stars and brown dwarfs.

  2. Modeling of debris disks in Single and Binary stars

    NASA Astrophysics Data System (ADS)

    García, L.; Gómez, M.

    2016-10-01

    Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.

  3. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-08-09

    The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy.

  4. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, P.

    2015-09-01

    A Binary Evolution Pulsator (BEP) is a low-mass (0.26 M_⊙) member of a binary system, which pulsates as a result of a former mass transfer to its companion. The BEP mimics RR~Lyrae-type pulsations, but has completely different internal structure and evolution history. Although there is only one known BEP (OGLE-BLG-RRLYR-02792), it has been estimated that approximately 0.2% of objects classified as RR Lyrae stars can be undetected Binary Evolution Pulsators. In the present work, this contamination value is re-evaluated using the population synthesis method. The output falls inside a range of values dependent on tuning the parameters in the StarTrack code, and varies from 0.06% to 0.43%.

  5. Surface imaging of eclipsing binary stars. 1: Techniques

    NASA Astrophysics Data System (ADS)

    Vincent, A.; Piskunov, N. E.; Tuominen, I.

    1993-11-01

    Surface (Doppler) imaging techniques for mapping the temperature distribution of a single star are generalized to the case of an eclipsing spectroscopic binary. In this paper we study three main questions, crucial for further application of the techniques. We found that the method described in this paper can be successfully used for imaging eclipsing binary systems. The resulting map is more sensitive to the errors in the parameters of the system than is the case of a single star. Characteristic distortions of the map can be used as indicators for fine tuning of some of the parameters. We also found that a good phase coverage of the observations is most important for reducing the artificial equatorial symmetry, typical for the line profile inversion when used for high inclination binary systems.

  6. Cool and luminous transients from mass-losing binary stars

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo

    2016-07-01

    Motivated by the recently established link between luminous red novae (LRN) and catastrophic phases of binary star evolution, we perform smoothed particle hydrodynamic calculations of outflows from binary stars with realistic equation of state and opacities. We focus on the case of mass loss from the outer Lagrangian point (L2), where the resulting spiral stream experiences tidal torques from the binary and becomes unbound. As the individual spiral arms merge and collide near the binary, the outflow thermalizes about 5% of its kinetic energy. For reasonable binary parameters, the outflow can produce luminosities up to 106 L ⨀ with effective temperatures between 500 and 6000 K, depending on the optical depth through the outflow. This is compatible with many examples of the LRN such as V838 Mon and V1309 Sco. The luminosity and the expansion velocity are correlated, as is roughly observed in the known LRN. The outflow readily forms dust, leading to great variations of the appearance of the transient as a function of the viewing angle. Our results are relevant for a more general class of equatorial outflows with asymptotic velocity and heating rate near the binary proportional to its orbital speed.

  7. A quintuple star system containing two eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Rappaport, S.; Lehmann, H.; Kalomeni, B.; Borkovits, T.; Latham, D.; Bieryla, A.; Ngo, H.; Mawet, D.; Howell, S.; Horch, E.; Jacobs, T. L.; LaCourse, D.; Sódor, Á.; Vanderburg, A.; Pavlovski, K.

    2016-10-01

    We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 arcsec on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclipsing binaries which are resolved within that image at 0.09 arcsec, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The `A' binary is circular with a 5.1-d period, while the `B' binary is eccentric with a 13.1-d period. The γ velocities of the A and B binaries are different by ˜10 km s-1. That, coupled with their resolved projected separation of 0.09 arcsec, indicates that the orbital period and separation of the `C' binary (consisting of A orbiting B) are ≃65 yr and ≃25 au, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e. 212651213) has an RV and proper motion that differ from that of 212651234 by only ˜1.4 km s-1 and ˜3 mas yr-1. This set of similar space velocities in three dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system.

  8. Orbital evolution of eccentric interacting binary star systems

    NASA Astrophysics Data System (ADS)

    Sepinsky, Jeremy Francis

    2009-06-01

    We provide a comprehensive description of the long-term (secular) orbital evolution of eccentric interacting binary systems. The evolution of circular interacting binary systems is a well studied phenomenon, but observations have shown the existence of a small but significant number of eccentric interacting binary systems. We begin by extending the commonly accepted Roche formalism for binary interacting to include eccentric orbits and asynchronously rotating stars. Using this, we calculate orbital trajectories for particles ejected from a Roche lobe-filling donor star at the periastron of the eccentric orbit. These particles admit of three possible trajectories: direct impact onto the secondary star, self accretion back onto the donor star, and the formation of a disk about the accretor. We provide a proscription for determining a priorithe trajectory of the particle given the initial system parameters, as well as describe the secular evolution of the system for each of the three cases described above. We find that these orbital evolution timescales are comparable to the mass transfer timescale which can be significantly longer than expected from the literature. Furthermore, while it is commonly assumed that any mass transfer interactions will act to circularize the orbit, we find that there are regimes of parameter space where mass transfer can cause an increase in eccentricity, and can do so at a timescale comparable to the circularization timescale created by tidal interactions. The formalism presented here can be incorporated into binary evolution and population synthesis models to create a self-consistent treatment of mass transfer in eccentric binaries.

  9. Resolving the Birth of High-Mass Binary Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    New observations may help us to learn more about the birth of high-mass star systems. For the first time, scientists have imaged a very young, high-mass binary system and resolved the individual disks that surround each star and the binary.Massive MultiplesIts unusually common for high-mass stars to be discovered in multiple-star systems. More than 80% of all O-type stars which have masses greater than 16 times that of the Sun are in close multiple systems, compared with a multiplicity fraction of only 20% for stars of 3 solar masses, for instance.Reconstructed VLTI observations of the two components of the high-mass binary IRAS17216-3801. [Adapted from Kraus et al. 2017]Why do more massive stars preferentially form in multiple-star systems? Many different models of high-mass star formation have been invoked to explain this observation, but before we can better understand the process, we need better observations. In particular, past observations have placed few constraints on the architecture and disk structure of early high-mass stars.Conveniently, a team of scientists led by Stefan Kraus (University of Exeter) may have found exactly what we need: a high-mass protobinary that is still in the process of forming. Using ESOs Very Large Telescope Interferometer (VLTI), Kraus and collaborators have captured the first observations of a very young, high-mass binary system in which the circumbinary disk and the two circumstellar dust disks could all be spatially resolved.Clues from Resolved DisksThe VLTI near-infrared observations reveal that IRAS17216-3801, originally thought to be a single high-mass star, is instead a close binary separated by only 170 AU. Its two components are both surrounded by disks from which the protostars are actively accreting mass, and both of these circumstellar disks are strongly misaligned with respect to the separation vector of the binary. This confirms that the system is very young, as tidal forces havent yet had time to align the disks

  10. Δ μ binaries among stars with large proper motions

    NASA Astrophysics Data System (ADS)

    Khovritchev, M. Yu.; Kulikova, A. M.

    2015-12-01

    Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas yr-1 down to magnitude 17. The main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of ≈50 yr) and quasi-instantaneous (2МASS, SDSS, WISE, Pulkovo; an epoch difference of ≈10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a Δ μ-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry of stellar images on sky-survey CCD frames. Analysis of the highly accurate SDSS photometric data for four stars (J0656+3827, J0838+3940, J1229+5332, J2330+4639) allows us to reach a conclusion about the probability that these Δ μ binaries are white dwarf +Mdwarf pairs.

  11. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  12. s-Process Abundances in Binary Stars With White Dwarfs

    NASA Astrophysics Data System (ADS)

    Merle, T.; Jorissen, A.; Van Eck, S.; Masseron, T.; van Winckel, H.

    2015-12-01

    The enrichment of barium stars in s-process elements is known to be due to pollution by mass transfer from an asymptotic giant branch (AGB) companion star, now an extincted C-O white-dwarf (McClure et al. [4]; Gray et al. [1]). We investigate the relationship between the level of enrichment in s-process elements in the barium star and the mass of its white dwarf (WD) companion. It is expected that helium WDs, which have masses smaller than about 0.5 M⊙ and whose progenitor never reached the AGB phase, should not pollute with s-process elements their giant companion. That companion should thus never turn into a barium star. Our results conform to the expectation that binary systems with WD companions less massive than 0.5 M⊙ do not host barium stars.

  13. A radio-pulsing white dwarf binary star

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  14. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10(7)-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  15. Merger of binary neutron stars in numerical relativity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2014-09-01

    The merger of binary neutron stars is one of most promising sources of gravitational waves. It is also a promising candidate for the central engine of short-hard gamma-ray bursts and a source of the strong transient electromagnetic signal that could be the counterpart of gravitational-wave signals. Numerical relativity is probably the unique tool for theoretically exploring the merger process, and now, it is powerful enough to provide us a wide variety of aspects of the binary-neutron-star merger. In this talk, I will summarize our current understanding of the entire merger event that is obtained by a large-scale numerical-relativity simulations. In particular, I focus on the relation between the neutron-star equation of state and gravitational waves emitted during the late inspiral and merger phase, and observable electromagnetic signal that is likely to be emitted by the dynamical ejecta through r-process nucleosynthesis.

  16. Viscosity in accretion discs. [for binary stars

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  17. Binary Star Research Using Micro-Telescopes

    NASA Astrophysics Data System (ADS)

    Zejda, M.; Mikulášek, Z.; Liška, J.; Svoboda, P.; de Villiers, S. N.

    2011-12-01

    Nowadays most observatories have replaced photoelectric photometers with CCD cameras. This makes it difficult to obtain new photometric observations of bright stars. We offer a simple solution using micro-telescopes equipped with CCD cameras. Several examples of results are given.

  18. Magnetised winds in single and binary star systems

    NASA Astrophysics Data System (ADS)

    Johnstone, Colin

    2016-07-01

    Stellar winds are fundamentally important for the stellar magnetic activity evolution and for the immediate environment surrounding their host stars. Ionised winds travel at hundreds of km/s, impacting planets and clearing out large regions around the stars called astropheres. Winds influence planets in many ways: for example, by compressing the magnetosphere and picking up atmospheric particles, they can cause significant erosion of a planetary atmosphere. By removing angular momentum, winds cause the rotation rates of stars to decrease as they age. This causes the star's magnetic dynamo to decay, leading to a significant decay in the star's levels of X-ray and extreme ultraviolet emission. Despite their importance, little is currently known about the winds of other Sun-like stars. Their small mass fluxes have meant that no direct detections have so far been possible. What is currently known has either been learned indirectly or through analogies with the solar wind. In this talk, I will review what is known about the properties and evolution of the winds of other Sun-like stars. I will also review wind dynamics in binary star systems, where the winds from both stars impact each other, leading to shocks and compression regions.

  19. Ba STARS AND OTHER BINARIES IN FIRST AND SECOND GENERATION STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    D'Orazi, Valentina; Gratton, Raffaele; Lucatello, Sara; Carretta, Eugenio; Bragaglia, Angela; Marino, Anna F.

    2010-08-20

    The determination of the Ba abundance in globular cluster (GC) stars is a very powerful test to address several issues in the framework of multiple population scenarios. We measured the Ba content for a sample of more than 1200 stars in 15 Galactic GCs, using high-resolution FLAMES/Giraffe spectra. We found no variation in [Ba/Fe] ratios for different stellar populations within each cluster; this means that low-mass asymptotic giant branch stars do not significantly contribute to the intracluster pollution. Very interestingly, we found that the fraction of Ba stars in first generation (FG) stars is close to the values derived for field stars ({approx}2%); on the other hand, second generation (SG) stars present a significantly lower fraction. An independent and successful test, based on radial velocity variations among giant stars in NGC 6121, confirms our finding: the binary fraction among FG stars is about {approx}12%, to be compared with {approx}1% of SG stars. This is an evidence that SG stars formed in a denser environment, where infant mortality of binary systems was particularly efficient.

  20. ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD

    SciTech Connect

    Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co

    2010-07-10

    The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the

  1. Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan

    2015-08-01

    Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.

  2. Dynamical mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2015-08-01

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10°-20° and often sweeps out only a half of the plane. The ejecta mass can be as large as ˜0.1 M⊙, and the velocity is subrelativistic with ˜0.2 - 0.3 c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O (100 ) km s-1 due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  3. The First Stars: Binary and Small Multiple Formation

    NASA Astrophysics Data System (ADS)

    Stacy, A.; Greif, T. H.; Bromm, V.

    2010-10-01

    We investigate the formation of metal-free, Population III (Pop III), stars within a minihalo at z˜eq 20 with a smoothed particle hydrodynamics (SPH) simulation, starting from cosmological initial conditions. Employing a hierarchical, zoom-in procedure, we achieve sufficient numerical resolution to follow the collapsing gas in the center of the minihalo up to number densities of 1012 cm-3. This allows us to study the protostellar accretion onto the initial hydrostatic core, which we represent as a growing sink particle, in improved physical detail. The accretion process, and in particular its termination, governs the final masses that were reached by the first stars. The primordial initial mass function (IMF), in turn, played an important role in determining to what extent the first stars drove early cosmic evolution. We continue our simulation for 5000 yr after the first sink particle has formed. During this time period, a disk-like configuration is assembled around the first protostar. The disk is gravitationally unstable, develops a pronounced spiral structure, and fragments into several other protostellar seeds. At the end of the simulation, a small multiple system has formed, dominated by a binary with masses ˜ 40 Msun and ˜ 10 Msun. If Pop III stars were to form typically in binaries or small multiples, the standard model of primordial star formation, where single, isolated stars are predicted to form in minihaloes, would have to be modified. This would have crucial consequences for the observational signature of the first stars, such as their nucleosynthetic pattern, and the gravitational-wave emission from possible Pop III black-hole binaries.

  4. AFTERGLOW OF A BINARY NEUTRON STAR MERGER

    SciTech Connect

    Shibata, Masaru; Suwa, Yudai; Kiuchi, Kenta; Ioka, Kunihito

    2011-06-20

    The merger of two neutron stars often results in a rapidly and differentially rotating hypermassive neutron star (HMNS). We show by numerical-relativity simulation that the magnetic-field profile around such HMNS is dynamically varied during its subsequent evolution, and as a result, electromagnetic radiation with a large luminosity {approx}0.1B {sup 2} R {sup 3}{Omega} is emitted with baryons (B, R, and {Omega} are poloidal magnetic-field strength at stellar surface, stellar radius, and angular velocity of an HMNS). The predicted luminosity of electromagnetic radiation, which is primarily emitted along the magnetic-dipole direction, is {approx}10{sup 47}(B/10{sup 13} G){sup 2}(R/10 km){sup 3}({Omega}/10{sup 4} rad s{sup -1}) erg s{sup -1}, which is comparable to the luminosity of quasars.

  5. DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY

    SciTech Connect

    Matijevic, G.; Zwitter, T.; Munari, U.; Siviero, A.; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Steinmetz, M.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Watson, F. G.

    2010-07-15

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover {approx}80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  6. The MACHO Project LMC variable star inventory. V. Classification and orbits of 611 eclipsing binary stars

    SciTech Connect

    The MACHO Collaboration

    1997-07-01

    We report the characteristics of 611 eclipsing binary stars in the Large Megallanic Cloud found by using the MACHO Project photometry database. The sample is magnitude limited, and extends down the main sequence to about spectral type A0. Many evolved binaries are also included. Each eclipsing binary is classified according to the traditional scheme of the {ital General Catalogue of Variable Stars} (EA and EB), and also according to a new decimal classification scheme defined in this paper. The new scheme is sensitive to the two major sources of variance in eclipsing binary star light curves{emdash}the sum of radii, and the surface-brightness ratio, and allow greater precision in characterizing the light curves. Examples of each type of light curve and their variations are given. Sixty-four of the eclipsing binaries have eccentric, rather than circular, orbits. The ephemeris and principal photometric characteristics of each eclipsing binary are listed in a table. Photometric orbits based on the Nelson{endash}Davis{endash}Etzel model have been fitted to all light curves. These data will be useful for planning future observations of these binaries. Plots of all data and fitted orbits and a table of the fitted orbital parameters are available on the AAS CD-ROM series, Vol. 9, 1997. These data are also available at the MACHO home page (http://wwwmacho.mcmaster.ca/). {copyright} {ital 1997 American Astronomical Society.}

  7. Unification of binary star ephemeris solutions

    SciTech Connect

    Wilson, R. E.; Van Hamme, W. E-mail: vanhamme@fiu.edu

    2014-01-10

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  8. A Study of the Low Mass Binary Star Ross 614

    NASA Astrophysics Data System (ADS)

    Gatewood, G.; Han, I.; Tangren, W.

    2001-12-01

    We have combined photograph, MAP, interferometric, and spectroscopic data to determine the orbital characteristics and masses of the Ross 614 binary star system. Attention was first drawn to the star by Frank E. Ross (1927, AJ 37, 193) who noticed its high proper motion in a comparison of new plates with those taken at the Yerkes Observatory by E.E. Barnard. The Binary nature of the star was recognized from accelerations in the star's proper motion (D. Reuyl 1936, AJ 55, 236) and the mass of the companion was first estimated by combining measurements of McCormick and Sproul plates with a separation measured by Walter Baade at the Hale 5-m reflector (S.L. Lippincott 1955, AJ 60, 379). In her paper Lippincott notes the companion's significance as defining the lower end of the observational main sequence. Fifty six years later the star still holds that honor. With a wealth of new data spanning more than 3 additional orbits, we find her value of 0.08 solar masses to be within our error of our value.

  9. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  10. MHD instabilities in accretion mounds on neutron star binaries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea

    We have numerically solved the Grad-Shafranov equation for axisymmetric static MHD equilibria of matter confined to the polar cap of neutron stars. From the equilibrium solutions we explore the stability of the accretion mounds using the PLUTO MHD code. We find that pressure driven modes disrupt the equilibria beyond a threshold mound mass, forming dynamic structures, as matter spreads over the neutron star surface. Our results show that local variation of magnetic field will significantly affect the shape and nature of the cyclotron features observed in the spectra of High Mass X-ray Binaries.

  11. Observing Mass Transfer in a Neglected Interacting Binary Star

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2011-05-01

    The eclipsing and interacting binary star R Arae is a very interesting system that has unfortunately been neglected. The few spectroscopic studies of the system report badly blended absorption lines that indicate mass transfer, but until now there has been no orbital period study to conclusively show a real period change resulting from mass transfer. In this study, new data are combined with those found in the available literature and in the database of the American Association of Variable Star Observers to construct the first ephemeris curve for R Ara, which spans more than a century since its discovery in 1894. Average orbital period change and conservative mass transfer rates are presented.

  12. Binary neutron stars: Equilibrium models beyond spatial conformal flatness.

    PubMed

    Uryū, Kōji; Limousin, François; Friedman, John L; Gourgoulhon, Eric; Shibata, Masaru

    2006-10-27

    Equilibria of binary neutron stars in close circular orbits are computed numerically in a waveless formulation: the full Einstein-relativistic-Euler system is solved on an initial hypersurface to obtain an asymptotically flat form of the 4-metric and an extrinsic curvature whose time derivative vanishes in a comoving frame. Two independent numerical codes are developed, and solution sequences that model inspiraling binary neutron stars during the final several orbits are successfully computed. The binding energy of the system near its final orbit deviates from earlier results of third post-Newtonian and of spatially conformally flat calculations. The new solutions may serve as initial data for merger simulations and as members of quasiequilibrium sequences to generate gravitational-wave templates, and may improve estimates of the gravitational-wave cutoff frequency set by the last inspiral orbit.

  13. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei

    2017-07-01

    Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should

  14. Binary Star Systems and Extrasolar Planets: The PHASES Search for Planets in Binaries

    NASA Astrophysics Data System (ADS)

    Muterspaugh, M. W.; PTI: Palomar Testbed Interferometer Collaboration; PHASES Team

    2005-12-01

    A new observing method has been developed to perform very high precision differential astrometry on bright binary stars with separations in the range of 0.1-1.0 arcseconds. Typical measurement precisions over an hour of integration are on the order of 10 micro-arcseconds, enabling one to look for perturbations to the Keplerian orbit that would indicate the presence of additional components to the system. This is used as the basis for a new program to find extrasolar planets. The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) is a search for giant planets orbiting either star in 50 binary systems. The goal of this search is to detect or rule out planets in the systems observed and thus place limits on any enhancements of planet formation in binaries. It is also used to measure fundamental properties of the stars comprising the binary, such as masses and distances, useful for constraining stellar models at the 10-3 level. This work is funded in part by a Michelson Graduate Fellowship, the California Institute of Technology Astronomy Department, and the National Aeronautics and Space Administration under Grant No. NNG05GJ58G issued through the Terrestrial Planet Finder Foundation Science Program.

  15. Disruption of light He companions in accreting neutron star binaries

    NASA Astrophysics Data System (ADS)

    Ruderman, M. A.; Shaham, J.

    1985-02-01

    An old neutron star, being spun up to become a radio pulsar by accretion from a very low-mass He secondary, will ultimately tidally disrupt the secondary before the latter's mass reaches 4×10-3M_sun;. Even if angular momentum loss from the binary is carried away only by gravitational radiation, the formation of an isolated, rapidly spinning pulsar in this way will take less than 1010yr.

  16. Cool and luminous transients from mass-losing binary stars

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo

    2016-02-01

    We study transients produced by equatorial disc-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity vesc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0.06 ≲ q ≲ 0.8. For synchronous binaries with non-degenerate components, the spiral-stream arms merge at a radius of ˜10a, where a is the binary semi-major axis, and the accompanying shock thermalizes about 10 per cent of the kinetic power of the outflow. The mass-losing binary outflows produce luminosities reaching up to ˜106 L⊙ and effective temperatures spanning 500 ≲ Teff ≲ 6000 K, which is compatible with many of the class of recently discovered red transients such as V838 Mon and V1309 Sco. Dust readily forms in the outflow, potentially in a catastrophic global cooling transition. The appearance of the transient is viewing angle-dependent due to vastly different optical depths parallel and perpendicular to the binary plane. We predict a correlation between the peak luminosity and the outflow velocity, which is roughly obeyed by the known red transients. Outflows from mass-losing binaries can produce luminous (105 L⊙) and cool (Teff ≲ 1500 K) transients lasting a year or longer, as has potentially been detected by Spitzer surveys of nearby galaxies.

  17. N-body Simulation of Binary Star Mass Transfer

    NASA Astrophysics Data System (ADS)

    Hutyra, Taylor; Sumpter, William

    2017-01-01

    Over 70% of the stars in our galaxy are multiple star systems, many of which are two stars that orbit around a common center of mass. The masses of the individual stars can be found using Newton’s and Kepler’s Laws. This allows astronomers to use these systems as astrophysical laboratories to study properties and processes of stars and galaxies. Among the many types observed, the dynamics of contact systems are the most interesting because they exhibit mass transfer, which changes the composition and function of both stars. The process by which this mass exchange takes place is not well understood. The lack of extensive mass transfer analysis, inadequate theoretical models, and the large time scale of this process are reasons for our limited understanding. In this work, a model was made to give astronomers a method for gaining a deeper knowledge and visual intuition of how the mass transfer between binary stars takes place. We have built the foundations for a simulation of arbitrary systems, which we plan to elaborate on in the future to include thermodynamics and nuclear processes.

  18. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  19. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  20. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  1. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  2. Predicting the fate of binary red giants using the observed sequence E star population: binary planetary nebula nuclei and post-RGB stars

    NASA Astrophysics Data System (ADS)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2012-07-01

    Sequence E variables are close binary red giants that show ellipsoidal light variations. They are likely the immediate precursors of planetary nebulae (PNe) with close binary central stars as well as other binary post-asymptotic giant branch (post-AGB) and binary post-red giant branch (post-RGB) stars. We have made a Monte Carlo simulation to determine the fraction of red giant binaries that go through a common envelope event leading to the production of a close binary system or a merged star. The novel aspect of this simulation is that we use the observed frequency of sequence E binaries in the Large Magellanic Cloud (LMC) to normalize our calculations. This normalization allows us to produce predictions that are relatively independent of model assumptions. In our standard model, and assuming that the relative numbers of PNe of various types are proportional to their birth rates, we find that in the LMC today the fraction of PNe with close binary central stars is 7-9 per cent, the fraction of PNe with intermediate period binary central stars having separations capable of influencing the nebula shape (orbital periods less than 500 yr) is 23-27 per cent, the fraction of PNe containing wide binaries that are unable to influence the nebula shape (orbital period greater than 500 yr) is 46-55 per cent, the fraction of PNe derived from single stars is 3-19 per cent, and 5-6 per cent of PNe are produced by previously merged stars. We also predict that the birth rate of post-RGB stars is ˜4 per cent of the total PN birth rate, equivalent to ˜50 per cent of the production rate of PNe with close binary central stars. These post-RGB stars most likely appear initially as luminous low-mass helium white dwarf binaries. The average lifetime of sequence E ellipsoidal variability with amplitude more than 0.02 mag is predicted to be ˜0.95 Myr. We use our model and the observed number of red giant stars in the top one magnitude of the RGB in the LMC to predict the number of PNe in

  3. Determination of Low-Mass Star Multiplicity. Detection of Star J1158+4239 Binary Nature

    NASA Astrophysics Data System (ADS)

    Kulikova, A. M.; Khovritchev, M. Yu.; Sokov, E. N.; Dyachenko, V. V.; Rastegaev, D. A.; Beskakotov, A. S.; Balega, Yu. Yu.; Safonov, B. S.; Dodin, A. V.; Vozyakova, O. V.

    2017-06-01

    The search for binaries among low-massive stars is one of the main goals of the Pulkovo program of investigation of stars with large proper motions. The motions of 1308 stars with proper motions larger than 300 mas·yr-1 down to magnitude 17 were studied. While analysing, we used Pulkovo Normal Astrograph observations in 2008-2015 and different digital surveys (DSS, 2MASS, SDSS DR12, and WISE). The main idea of the search for binary stars is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of ≍50 yr) and quasi-instantaneous (2MASS, SDSS, WISE, Pulkovo; an epoch difference of ≍ 10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a Δμ -binary candidate. As a result, 121 stars have been qualified as astrometric binary candidates. The brightest of them (12 stars) have been included in the program of speckle observations with the BTA (SAO RAS) and the 2.5-m telescope of CMO (SAI MSU). The binarity of the brightest of these stars, J1158+4239 (GJ 3697), has been confirmed. The weighted mean estimates of the pair parameters are ρ=286.5±1.2 mas and θ=230.24±0.16° at the epoch B2015.88248. The magnitude difference between the pair stars is Δ m=0.55±0.03 (the filter with a central wavelength of 800 nm and a FWHM of 100 nm) and Δ m=0.9±0.1 (the R filter).

  4. Neutrino flavor evolution in binary neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Frensel, Maik; Wu, Meng-Ru; Volpe, Cristina; Perego, Albino

    2017-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti)neutrino absorption rates on free nucleons and may thus impact the r -process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  5. Possible binary star progenitor for SN1987A

    NASA Astrophysics Data System (ADS)

    White, Graeme L.; Malin, D. F.

    1987-05-01

    Accurate optical astrometry gives a position (B1950.0) for the Large Magellanic Cloud supernova, SN 1987A, relative to the FK 4 system as right ascension, RA = 05h 35min 49.95 s±0.039 s, declination δ = -69°17arcmin57.9arcsec±0.27arcsec. Differential astrometry carried out on prime-focus plates taken with the AAT indicates that the component, star 1, of Sanduleak's star Sk -69202 is within 0.05±0.13 arc s of the supernova. The authors conclude that the progenitor of SN 1987A was star 1 or a fainter binary companion.

  6. Ultrarelativistic electromagnetic counterpart to binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-01-01

    We propose a possibility of ultrarelativistic electromagnetic counterparts to gravitational waves from binary neutron star mergers at nearly all the viewing angles. Our proposed mechanism relies on the merger-shock propagation accelerating a smaller mass in the outer parts of the neutron star crust to a larger Lorentz factor Γ with smaller energy ˜1047Γ-1 erg. This mechanism is difficult to resolve by current 3D numerical simulations. The outflows emit synchrotron flares for seconds to days by shocking the ambient medium. Ultrarelativistic flares shine at an early time and in high-energy bands, potentially detectable by current X-ray to radio instruments, such as Swift XRT and Pan-STARRS, and even in low ambient density ˜10-2 cm-3 by EVLA. The flares probe the merger position and time, and the merger types as black hole-neutron star outflows would be non-/mildly relativistic.

  7. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  8. Observed rotational properties of the O-type stars in 30 Doradus: single stars and binaries

    NASA Astrophysics Data System (ADS)

    Hernan Ramirez Agudelo, Oscar; Sana, Hugues; de Koter, Alex; Tramper, Frank; de Mink, Selma; Vlt-Flames Tarantula Survey

    2015-01-01

    The initial distribution of the spin rates of massive stars is a fingerprint of their formation process. The stellar spin rate is also one of the main properties that control the evolution and ultimate fate of these objects.Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT/FLAMES Tarantula Survey we established the projected rotational velocities, vsini, of a sample of ~330 O-type objects located in the 30 Doradus (30 Dor) region in the Large Magellanic Cloud. The sample is composed by ~200 spectroscopic single stars and ~110 stars in binary systems (~110 primaries and ~30 secondaries). The vsini values are derived from the most commonly used methods, i.e. full-width at half-maximum, Fourier transform, and line profile fitting, applied to a set of spectral lines.The most distinctive feature of the vsini distributions of the presumed-single stars, primaries, and secondaries in 30 Dor is a low-velocity peak at around 100 km/s. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak of presumed-single stars is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km/s, primaries and secondaries do not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of spectroscopic-single stars. Systems displaying large radial velocity variations, typical for short period

  9. Generalized Solution for Binary Star Ephemerides and Apsidal Motion

    NASA Astrophysics Data System (ADS)

    van Hamme, W. V.; Wilson, R. E.

    1998-12-01

    We demonstrate generalized determination of apsidal motion rates (domega /dt's), orbital periods (P's), and period changes (dP/dt's) in binary stars. Our method can use eclipses but is not restricted to eclipse data. A general binary star program solves for domega /dt and/or ephemeris parameters together with other binary star quantities, and combines radial velocities and light curves within a coherent analysis. We can use data that may have large timewise gaps and may be far less than optimally distributed over time. The method is particularly useful when the apsidal period is long and eclipse timings cover only a small part of the cycle. We show apsidal motion results for AS Cam and find a domega /dt of 18.20+/-0.66 arcdeg /100;yr. This result compares to a domega /dt of 13.2+/-1.8 arcdeg /100;yr obtained from a traditional weighted least squares fit to almost 100 years of times of minima, which is 3.3 times smaller than predicted by theory. Other published estimates for the apsidal motion rate are 15.0+/-5.3 arcdeg /100;yr by Maloney, Guinan & Mukherjee (1991, AJ, 102, 256), and 18.3+/-2.6 arcdeg /100;yr by Wolf, \\u{S}arounova & Diethelm (1996, A&AS, 116, 463). Apsidal motion determined from times of minima depends on the value of the eccentricity e. Our result is for e = 0.1633, obtained from the light and velocity solution. The new domega /dt from the general analysis is 2.4 times smaller than theory, with a standard error 3 times smaller than in the traditional method. Our apsidal period of 1978+/-71 year is based on only 30 years of light and velocity curves, or 1.5% of the cycle. The method also works well in measuring period changes in long period giant binaries (such as symbiotics), considering that these stars are typically observed in fragments and that very few show eclipses that are useful as timing ticks. Our dP/dt results for the symbiotic binary AG Peg have implications for its future evolution. Natural extensions of the idea can include other

  10. Winds of Binary AGB Stars as Observed by Herschel

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Mečina, M.; Paladini, C.; Cox, N. L. J.; Nowotny, W.; Aringer, B.; Pourbaix, D.; Mohamed, S.; Siopis, C.; Groenewegen, M. A. T.

    2015-08-01

    We present Herschel/PACS observations of the large-scale environments of binary AGB stars as part of the Mass-loss of Evolved StarS (MESS) sample. From the literature we found 18 of the objects to be members of physically bound multiple systems. Several show a large-scale far-IR emission which differs significantly from spherical symmetry. A probable cause is the gravitational force of the companion on the stellar AGB wind and the mass-losing star itself. A spiral pattern is thereby imprinted in the dusty stellar wind. The most remarkable structures are found around o Ceti, W Aquilæ, R Aquarii, and π1 Gruis. The environments of o Cet and W Aql show a spiral pattern while the symbiotic nature of R Aqr is revealed as two opposing arms which reflect a nova outburst. The emission around π1 Gru is dominated by two structures, a disk and an arc, which are presumably not caused by the same companion. We found evidence that π1 Gru is a hierarchical triple system in which a close companion attracts the AGB wind onto the orbital plane and the outer companion forms a spiral arm. These far-IR observations underline the role of a companion as a major external influence in creating asymmetric winds in the AGB phase, even before the star becomes a planetary nebula (PN).

  11. Phenomenological Modelling of a Group of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, Ivan L.; Tkachenko, Mariia G.; Chinarova, Lidia L.

    2016-03-01

    Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.

  12. CHARACTERIZATION OF THE MOST LUMINOUS STAR IN M33: A SUPER SYMBIOTIC BINARY

    SciTech Connect

    Mikołajewska, Joanna; Iłkiewicz, Krystian; Caldwell, Nelson; Shara, Michael M.

    2015-01-30

    We present the first spectrum of the most luminous infrared star in M33, and use it to demonstrate that the object is almost certainly a binary composed of a massive O star and a dust-enshrouded red hypergiant. This is the most luminous symbiotic binary ever discovered. Its radial velocity is an excellent match to that of the hydrogen gas in the disk of M33, supporting our interpretation that it is a very young and massive binary star.

  13. Determination of Individual Temperatures and Luminosities in Eclipsing Binary Star Systems.

    DTIC Science & Technology

    1983-06-20

    REPORT 1NO. W DETERMINATION OF INDIVIDUAL TEMPERATURES AND LUMINOSITIES IN ECLIPSING BINARY STAR SYSTEMS UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND...U.S.N.A. - Trident Scholar project report; no. 122 (1983) DETERMINATION OF INDIVIDUAL TEMPERATURES AND LUMINOSITIES IN ECLIPSING BINARY STAR SYSTEMS A...the temperatures and luminosities of the individual components of eclipsing binary star systems. -’r. Richard L. Walker of the U.S. Naval Observatory

  14. Binary stars in the AB Doradus moving group

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.

    2017-03-01

    We present a study of the radio emission and kinematics of a sample of stars belonging to the AB Doradus moving group through VLBI observations. The main aim of our study is to obtain precise estimates of the dynamical mass of young, low-mass stars, which in combination with photometric measurements provide precise benchmarks for calibrating pre-main-sequence (PMS) stellar evolutionary models. Previous studies show that model predictions are in disagreement with experimental results for masses below 1.2 M_{⊙}. Among the stars included in our study, we emphasize the results obtained in two of them: AB Dor B and HD 160934, from which we have measured both the relative and absolute orbital motion. Accordingly, we obtained precise estimates of the mass of the components of these binaries (ranging from 0.25 to 0.7 M_{⊙}). Comparisons of the dynamical masses with the prediction of PMS evolutionary models show that the models underpredict the dynamical masses of the binary components by 10-40%.

  15. Life and Death of Binaries Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hills, J. G.

    2002-09-01

    On any astronomical timescale, binaries near the Galactic Center are strongly affected by interactions with their environment. We shall consider these processes. The high density of stars and possibly WIMPS (weakly interacting, massive particles) cause interactions that change the semimajor axes and eccentricities of the binaries. Interactions with more massive stars may, through exchange collisions, lead to a progressive increase in the masses of the binary components. Some binaries are destroyed through the coalescence of their components due to the high eccentricity that they attain. Others will be destroyed by encounters with energetic intruders that are capable of dissociating the binaries. The binaries that most easily surivive in this hostile environment have small semimajor axes and only white dwarf, neutron star, or black hole components,as such objects have little chance of coalescence under normal circumstances. These compact objects are also massive enough compared to the mass of the average star near the Galactic center that there is much less danger of their binary being disrupted in an encounter. Even binaries with compact companions have short lifetimes if their semimajor axes are less than 2 A.U. because they are forced into coalescence by the emission of gravitational radiation. The tidal field of the central black hole will distrupt binaries that pass close enough to it. If WIMPS make up any sizeable fraction of the mass density at the Galactic Center, they will cause a steady contraction of the semimajor axes of the binaries that may be measurable if one binary component is a pulsar.

  16. The Relativitic Evolution of Black Hole-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Faber, J. A.; Baumgarte, T. W.; Shapiro, S. L.; Taniguchi, K.

    2004-12-01

    We report results from our new relativistic evolution calculations of black hole-neutron star (BH-NS) binaries. The evolution equations of general relativity are treated in the conformally flat (CF) approximation. Assuming that the BH mass is significantly larger than that of the NS allows us to simplify the field equations for the NS, which we solve self-consistently in a fixed BH background spacetime. This approach guarantees that self-gravity is fully included. The NS fluid, assumed here to follow a gamma-law equation of state (EOS), is evolved using a Lagrangian SPH method. The field equations are solved by spectral methods in spheroidal coordinates. The code has been tested by comparing our results to previously computed quasi-equilibrium sequences, showing good agreement. Our results are a crucial first step in evaluating the stability of mass transfer in extremely close BH-NS binaries. They will allow us to describe quantitatively the dynamical tidal disruption of the NS, and to determine the dependence on the initial binary parameters, including the mass ratio and assumed NS EOS. We will also discuss the implications for detecting gravitational waves from the merger of these systems, about which, in contrast to NS-NS binaries, little is currently known for systems with components of comparable mass. JAF is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401533.

  17. Catalogue and properties of δ Scuti stars in binaries

    NASA Astrophysics Data System (ADS)

    Liakos, Alexios; Niarchos, Panagiotis

    2017-02-01

    The catalogue contains 199 confirmed cases of binary systems containing at least one pulsating component of δ Sct type. The sample is divided into subgroups in order to describe the properties and characteristics of the δ Sct-type stars in binaries according to their Roche geometry. Demographics describing quantitatively our knowledge for these systems as well as the distributions of their pulsating components in the mass-radius, colour-magnitude, and evolutionary status-temperature diagrams are presented and discussed. It is shown that a threshold of ∼13 d of the orbital period regarding the influence of binarity on the pulsations is established. Finally, the correlations between the pulsation periods and the orbital periods, evolutionary status, and companion's gravity influence are updated based on the largest sample to date.

  18. EL CVn-type binaries - discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Bloemen, S.; Heber, U.; Geier, S.; Wheatley, P. J.; Marsh, T. R.; Breedt, E.; Sebastian, D.; Faillace, G.; Owen, C.; Pulley, D.; Smith, D.; Kolb, U.; Haswell, C. A.; Southworth, J.; Anderson, D. R.; Smalley, B.; Collier Cameron, A.; Hebb, L.; Simpson, E. K.; West, R. G.; Bochinski, J.; Busuttil, R.; Hadigal, S.

    2014-01-01

    The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from the Wide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses ({≈ } 0.2{ M_{⊙}}). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B.

  19. The frequency of binary star interlopers amongst transitional discs

    NASA Astrophysics Data System (ADS)

    Ruíz-Rodríguez, D.; Ireland, M.; Cieza, L.; Kraus, A.

    2016-12-01

    Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as transitional discs (TD). These objects are thought to be an evolutionary stage between an optically thick disc and optically thin disc. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these discs, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. For our detection limits, we implement a new method of completeness correction using a combination of randomly sampled binary orbits and Bayesian inference. The selected sample of 24 TDs belongs to the nearby and young star-forming regions: Ophiuchus (˜130 pc), Taurus-Auriga (˜140 pc) and IC348 (˜220 pc). These regions are suitable to resolve faint stellar companions with moderate to high confidence levels at distances as low as 2 au from the central star. With a total of 31 objects, including 11 known TDs and circumbinary discs from the literature, we have found that a fraction of 0.38 ± 0.09 of the SEDs of these objects are likely due to the tidal interaction between a close binary and its disc, while the remaining SEDs are likely the result of other internal processes such as photoevaporation, grain growth, planet-disc interactions. In addition, we detected four companions orbiting outside the area of the truncation radii and propose that the IR excesses of these systems are due to a disc orbiting a secondary companion.

  20. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    NASA Astrophysics Data System (ADS)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  1. Accretion-induced Collapse from Helium Star + White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill

    2017-07-01

    Accretion-induced collapse (AIC) occurs when an O/Ne white dwarf (WD) grows to nearly the Chandrasekhar mass ({M}{Ch}), reaching central densities that trigger electron captures in the core. Using Modules for Experiments in Stellar Astrophysics (MESA), we present the first true binary simulations of He star + O/Ne WD binaries, focusing on a 1.5 {M}⊙ He star in a 3 hr orbital period with 1.1{--}1.3 {M}⊙ O/Ne WDs. The helium star fills its Roche lobe after core helium burning is completed and donates helium on its thermal timescale to the WD, \\dot{M}≈ 3× {10}-6 {M}⊙ {{yr}}-1, which is a rate high enough that the accreting helium burns stably on the WD. The accumulated carbon/oxygen ashes from the helium burning undergo an unstable shell flash that initiates an inwardly moving, carbon burning flame. This flame is only quenched when it runs out of carbon at the surface of the original O/Ne core. Subsequent accumulation of fresh carbon/oxygen layers also undergo thermal instabilities, but no mass loss is triggered, which allows {M}{WD}\\to {M}{Ch}, and then triggers the onset of AIC. We also discuss the scenario of accreting C/O WDs that experience shell carbon ignitions to become O/Ne WDs, and then, under continuing mass transfer, lead to AIC. Studies of the AIC event rate using binary population synthesis should include all of these channels, especially this latter channel, which has been previously neglected but might dominate the rate.

  2. Observational Investigations on Contact Binaries in Multiple-star Systems and Star Clusters

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2013-01-01

    The W UMa-type contact binaries are strongly interacting systems whose components both fill their critical Roche lobes and share a convective common envelope. The models of contact binaries are bottlenecked due to too many uncertain parameters. In the 1960s and 1970s, the common convective envelope model was accepted after several fierce controversies. And then, the thermal relaxation oscillation (TRO) model, the discontinuity model, and the angular momentum loss (AML) model appeared. However, in the past forty years, there lacked remarkable advance. The coexistence of many unknown parameters blocks the theoretical development of contact binaries. A study on the contact binaries in multiple star systems and star clusters, which could provide lots of information for their formation and evolution, may be a potential growing point for understanding these objects. More and more evidence shows that many of contact binaries are located in multiple star systems and star clusters. In this thesis, we observed and analyzed contact binaries in the forementioned systems. The observational and theoretical studies for contact binary are also summarized briefly. The results obtained are as follows: (1) Three contact binaries V1128 Tau, GZ And, VW Boo which possess visual companions show periodic oscillations. The period ranges from 16.7 years to 46.5 years. These oscillations probably come from the orbital movement of a close third body. (2) Four contact binaries GSC 02393-00680, V396 Mon, FU Dra, SS Ari which do not have visual companions also present periodic oscillations. Whether they are real members of multiple star systems needs further investigations. These oscillations probably result from the orbital movement of a close M-type companion. (3) The periods of three contact binaries EQ Cep, ER Cep and V371 Cep in the old open cluster NGC 188 show a long-term increase. There is a cyclic period oscillation in ER Cep, with a period of 5.4 years. We find that the total mass of

  3. Quasiequilibrium sequences of binary neutron stars undergoing dynamical scalarization

    NASA Astrophysics Data System (ADS)

    Taniguchi, Keisuke; Shibata, Masaru; Buonanno, Alessandra

    2015-01-01

    We calculate quasiequilibrium sequences of equal-mass, irrotational binary neutron stars in a scalar-tensor theory of gravity that admits dynamical scalarization. We model neutron stars with realistic equations of state (notably through piecewise polytropic equations of state). Using these quasiequilibrium sequences we compute the binary's scalar charge and binding energy versus orbital angular frequency. We find that the absolute value of the binding energy is smaller than in general relativity, differing at most by ˜14 % at high frequencies for the cases considered. We use the newly computed binding energy and the balance equation to estimate the number of gravitational-wave (GW) cycles during the adiabatic, quasicircular inspiral stage up to the end of the sequence, which is the last stable orbit or the mass-shedding point, depending on which comes first. We find that, depending on the scalar-tensor parameters, the number of GW cycles can be substantially smaller than in general relativity. In particular, we obtain that when dynamical scalarization sets in around a GW frequency of ˜130 Hz , the sole inclusion of the scalar-tensor binding energy causes a reduction of GW cycles from ˜120 Hz up to the end of the sequence (˜1200 Hz ) of ˜11 % with respect to the general-relativity case. (The number of GW cycles from ˜120 Hz to the end of the sequence in general relativity is ˜270 .) We estimate that when the scalar-tensor energy flux is also included the reduction in GW cycles becomes of ˜24 %. Quite interestingly, dynamical scalarization can produce a difference in the number of GW cycles with respect to the general-relativity point-particle case that is much larger than the effect due to tidal interactions, which is on the order of only a few GW cycles. These results further clarify and confirm recent studies that have evolved binary neutron stars either in full numerical relativity or in post-Newtonian theory, and point out the importance of developing

  4. Analytical estimates of secular frequencies for binary star systems

    NASA Astrophysics Data System (ADS)

    Bazsó, Á.; Pilat-Lohinger, E.

    2017-03-01

    Binary and multiple star systems are extreme environments for the formation and long-term presence of extrasolar planets. Circumstellar planets are subject to gravitational perturbations from the distant companion star, and this interaction leads to a long-period precession of their orbits. We investigate analytical models that allow to quantify these perturbations and calculate the secular precession frequency in the dynamical model of the restricted three-body problem. These models are applied to test cases and we discuss some of their shortcomings. In addition, we introduce a modified Laplace-Lagrange model which allows to obtain better frequency estimates than the traditional model for large eccentricities of the perturber. We then generalize this model to any number of perturbers, and present an application to the four-body problem.

  5. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  6. Systematic parameter errors in inspiraling neutron star binaries.

    PubMed

    Favata, Marc

    2014-03-14

    The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (NS) spin, tidal deformation, or orbital eccentricity. All of these effects can yield systematic errors that exceed statistical errors for plausible parameter values. In particular, neglecting spin, eccentricity, or high-order PN terms causes a significant bias in the NS Love number. Tidal effects will not be measurable with PN inspiral waveforms if these systematic errors are not controlled.

  7. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR V335 SERPENTIS

    SciTech Connect

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Claret, Antonio E-mail: fekel@evans.tsuniv.edu

    2012-08-15

    V335 Ser is now known to be an eccentric double-lined A1+A3 binary star with fairly deep (0.5 mag) partial eclipses. Previous studies of the system are improved with 7456 differential photometric observations from the URSA WebScope and 5666 from the NFO WebScope, and 67 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope. From dates of minima, the apsidal period is about 880 years. Accurate (better than 2%) masses and radii are determined from analysis of the two new light curves and the radial velocity curve. Theoretical models match the absolute properties of the stars at an age of about 380 Myr, though the age agreement for the two components is poor. Tidal theory correctly confirms that the orbit should still be eccentric, but we find that standard tidal theory is unable to match the observed asynchronous rotation rates of the components' surface layers.

  8. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR HY VIRGINIS

    SciTech Connect

    Sandberg Lacy, Claud H.; Fekel, Francis C. E-mail: fekel@evans.tsuniv.edu

    2011-12-15

    HY Vir is found to be a double-lined F0m+F5 binary star with relatively shallow (0.3 mag) partial eclipses. Previous studies of the system are improved with 7509 differential photometric observations from the URSA WebScope and 8862 from the NFO WebScope, and 68 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope, and the 1 m coude-feed spectrometer at Kitt Peak National Observatory. Very accurate (better than 0.5%) masses and radii are determined from analysis of the new light curves and radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 1.35 Gy.

  9. Binary dynamics on star networks under external perturbations

    NASA Astrophysics Data System (ADS)

    Moreira, Carolina A.; Schneider, David M.; de Aguiar, Marcus A. M.

    2015-10-01

    We study a binary dynamical process that is a representation of the voter model with two candidates and opinion makers. The voters are represented by nodes of a network of social contacts with internal states labeled 0 or 1 and nodes that are connected can influence each other. The network is also perturbed by opinion makers, a set of external nodes whose states are frozen in 0 or 1 and that can influence all nodes of the network. The quantity of interest is the probability of finding m nodes in state 1 at time t . Here we study this process on star networks, which are simple representations of hubs found in complex systems, and compare the results with those obtained for networks that are fully connected. In both cases a transition from disordered to ordered equilibrium states is observed as the number of external nodes becomes small. For fully connected networks the probability distribution becomes uniform at the critical point. For star networks, on the other hand, we show that the equilibrium distribution splits in two peaks, reflecting the two possible states of the central node. We obtain approximate analytical solutions for the equilibrium distribution that clarify the role of the central node in the process. We show that the network topology also affects the time scale of oscillations in single realizations of the dynamics, which are much faster for the star network. Finally, extending the analysis to two stars we compare our results with simulations in simple scale-free networks.

  10. Absolute properties of the eclipsing binary star V501 Herculis

    SciTech Connect

    Lacy, Claud H. Sandberg; Fekel, Francis C. E-mail: fekel@evans.tsuniv.edu

    2014-10-01

    V501 Her is a well detached G3 eclipsing binary star with a period of 8.597687 days for which we have determined very accurate light and radial-velocity curves using robotic telescopes. Results of these data indicate that the component stars have masses of 1.269 ± 0.004 and 1.211 ± 0.003 solar masses, radii of 2.001 ± 0.003 and 1.511 ± 0.003 solar radii, and temperatures of 5683 ± 100 K and 5720 ± 100 K, respectively. Comparison with the Yonsei-Yale series of evolutionary models results in good agreement at an age of about 5.1 Gyr for a somewhat metal-rich composition. Those models indicate that the more massive, larger, slightly cooler star is just beyond core hydrogen exhaustion while the less massive, smaller, slightly hotter star has not quite reached core hydrogen exhaustion. The orbit is not yet circularized, and the components are rotating at or near their pseudosynchronous velocities. The distance to the system is 420 ± 30 pc.

  11. Rotating and binary relativistic stars with magnetic field

    NASA Astrophysics Data System (ADS)

    Markakis, Charalampos

    We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry

  12. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  13. KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE

    SciTech Connect

    Slawson, Robert W.; Doyle, Laurance R.; Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Coughlin, Jared; Welsh, William F.; Orosz, Jerome A.; Gregg, Trevor A.; Fetherolf, Tara; Short, Donald R.; Windmiller, Gur; Rucker, Michael; Batalha, Natalie; Fabrycky, Daniel C.; Jenkins, Jon M.; Mullally, F.; Seader, Shawn E.

    2011-11-15

    The Kepler Mission provides nearly continuous monitoring of {approx}156,000 objects with unprecedented photometric precision. Coincident with the first data release, we presented a catalog of 1879 eclipsing binary systems identified within the 115 deg{sup 2} Kepler field of view (FOV). Here, we provide an updated catalog augmented with the second Kepler data release which increases the baseline nearly fourfold to 125 days. Three hundred and eighty-six new systems have been added, ephemerides and principal parameters have been recomputed. We have removed 42 previously cataloged systems that are now clearly recognized as short-period pulsating variables and another 58 blended systems where we have determined that the Kepler target object is not itself the eclipsing binary. A number of interesting objects are identified. We present several exemplary cases: four eclipsing binaries that exhibit extra (tertiary) eclipse events; and eight systems that show clear eclipse timing variations indicative of the presence of additional bodies bound in the system. We have updated the period and galactic latitude distribution diagrams. With these changes, the total number of identified eclipsing binary systems in the Kepler FOV has increased to 2165, 1.4% of the Kepler target stars. An online version of this catalog is maintained at http://keplerEBs.villanova.edu.

  14. New systemic radial velocities of suspected RR Lyrae binary stars

    NASA Astrophysics Data System (ADS)

    Guggenberger, E.; Barnes, T. G.; Kolenberg, K.

    2016-05-01

    Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with the 2.1m telescope at McDonald observatory. From these we derive systemic RVs which we will compare to previous measurements in order to find changes induced by orbital motions. We also construct templates of the RV curves that can facilitate future studies. We also observed the most promising RR Lyrae binary candidate, TU UMa, as no recent spectroscopic measurements were available. We present a densely covered pulsational RV curve, which will be used to test the predictions of the orbit models that are based on the O - C variations.

  15. Approximate universal relations among tidal parameters for neutron star binaries

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2017-01-01

    One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars, a novel way to probe nuclear physics in the high-density regime. Previous studies have shown that only a certain combination of the individual (quadrupolar) deformabilities of each body (the so-called chirp tidal deformability) can be measured with second-generation, gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (i.e. approximately equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combination of the individual tidal deformabilities that is equation-of-state-insensitive to 20 % for binaries with masses less than 1.7{{M}⊙} . We show that these relations can be used to eliminate a combination of the tidal parameters from the list of model parameters, thus breaking degeneracies and improving the accuracy in parameter estimation. A simple (Fisher) study shows that the universal binary Love relations can improve the accuracy in the extraction of the symmetric combination of tidal parameters by as much as an order of magnitude, making the overall accuracy in the extraction of this parameter slightly better than that of the chirp tidal deformability. These new universal relations and the improved measurement accuracy on tidal parameters not only are important to astrophysics and nuclear physics, but also impact our ability to probe

  16. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  17. Tidal formation of Hot Jupiters in binary star systems

    NASA Astrophysics Data System (ADS)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  18. Dynamical mass ejection from binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Radice, David; Galeazzi, Filippo; Lippuner, Jonas; Roberts, Luke F.; Ott, Christian D.; Rezzolla, Luciano

    2016-08-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ˜60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.

  19. Evolution of Intermediate Mass and Massive Binary Stars: Physics, Mass Loss, and Rotation

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Mennekens, N.

    2017-02-01

    In the present review we discuss the past and present status of the interacting OB-type binary frequency. We critically examine the popular idea that Be-stars and supergiant sgB[e] stars are binary evolutionary products. The effects of rotation on stellar evolution in general, stellar population studies in particular, and the link with binaries will be evaluated. Finally a discussion is presented of massive double compact star binary mergers as possible major sites of chemical enrichment of r-process elements and as the origin of recent aLIGO GW events.

  20. Bowen-York-type initial data for binaries with neutron stars

    NASA Astrophysics Data System (ADS)

    Clark, Michael; Laguna, Pablo

    2016-09-01

    A new approach to construct initial data for binary systems with neutron star components is introduced. The approach is a generalization of the puncture initial data method for binary black holes based on Bowen-York solutions to the momentum constraint. As with binary black holes, the method allows setting orbital configurations with direct input from post-Newtonian approximations and involves solving only the Hamiltonian constraint. The effectiveness of the method is demonstrated with evolutions of double neutron star and black hole-neutron star binaries in quasicircular orbits.

  1. The VLT Unravels the Nature of the Fastest Binary Star

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Two Hot White Dwarfs Perform a Tight Dance Summary Observations with ESO's Very Large Telescope (VLT) in Chile and the Italian Telescopio Nazionale Galileo (TNG) on the Canary Islands during the past two years have enabled an international group of astronomers [1] to unravel the true nature of an exceptional binary stellar system. This system, designated RX J0806.3+1527 , was first discovered as an X-ray source of variable brightness - once every five minutes, it "switches off" for a short moment. The new observations have shown beyond doubt that this period reflects the orbital motion of two "white dwarf" stars that revolve around each other at a distance of only 80,000 km . Each of the stars is about as large as the Earth and this is the shortest orbital period known for any binary stellar system. The VLT spectrum displays lines of ionized helium, indicating that the presence of an exceedingly hot area on one of the stars - a "hot spot" with a temperature of approx. 250,000 degrees. The system is currently in a rarely seen, transitory evolutionary state . PR Photo 10a/02 : U- and R-band images of RX J0806.3+1527. PR Photo 10b/02 : Spectrum of RX J0806.3+1527 An amazing stellar binary system ESO PR Photo 10a/02 ESO PR Photo 10a/02 [Preview - JPEG: 800 x 400 pix - 440k] [Normal - JPEG: 1600 x 800 pix - 1.1M] Caption : PR Photo 10a/02 shows U and R filter images of the sky field around RX J0806.3+1527 (at centre of circle), obtained with the FORS2 multi-mode instrument on VLT KUEYEN. The object is brightest at the shorter wavelength (U-band) - reflecting its very high temperature. Technical information about the photo is available below. One year is the time it takes the Earth to move once around the Sun, our central star. This may seem quite fast when measured on the scale of the Universe, but this is a snail's motion compared to the the speed of two recently discovered stars. They revolve around each other 100,000 times faster; one full revolution takes only 321

  2. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  3. Wind accretion in binary stars. II. Angular momentum loss

    NASA Astrophysics Data System (ADS)

    Jahanara, B.; Mitsumoto, M.; Oka, K.; Matsuda, T.; Hachisu, I.; Boffin, H. M. J.

    2005-10-01

    We present three-dimensional hydrodynamic calculations of mass transfer in an interacting binary system in which one component undergoes mass loss through a wind, and does so for various values of the mass ratio. The radius of the mass-losing star is taken to be half the size of its Roche lobe. Calculations are performed for gases with a ratio of specific heats γ=5/3. Mass loss is assumed to be mechanically, thermally, or radiatively driven. We compute the specific angular momentum of gas escaping the system (l_w) for these various cases. We show that lw does not reach a value higher than ˜ 1.2 for very low wind velocities and that it reaches the limiting case of a spherically symmetric wind for large wind velocities, for mass ratio smaller or equal to 1. For larger mass ratio, however, lw is larger than the expected limiting value. The value of lw depends slightly on the wind mechanism which modifies the relation between the wind velocity at the surface of the star and the velocity at the Roche lobe surface. The specific angular momentum, l_w, is large enough in a wide range of velocities to imply a shrinking of the system. This makes the symbiotic channel for Type Ia supernovae a plausible one and could also help explain the existence of Barium stars and other Peculiar Red Giants with orbital periods below, say, 1000 days.

  4. Interferometry of binary stars using polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Arregui, L.; Illarramendi, M. A.; Zubia, J.; Hueso, R.; Sánchez-Lavega, A.

    2017-07-01

    We show a laboratory experiment in which students can learn the use of interferometry as a valuable tool in astronomy. We detail experiments based on the use of the classic Michelson stellar interferometer able to reproduce the size of single stars and to characterize double star systems. Stellar sources, single and double, are reproduced by a laser light emerging from the circular end faces of one or two step-index polymer optical fibres. Light coming from the fibre end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference fringes. The measurement of the fringe visibilities allows us to estimate both the diameters of the simulated stars and the separation between them, with errors lower than 18% for a range of light sources that can recreate the apparent size of the outer Solar System planets Uranus and Neptune and the binary properties of the Alpha Centauri system. The exercises here described illustrate the optical principles of spatial interferometry and can be integrated into courses on astronomy, optics or space science, with close interaction between theory and experiment.

  5. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Zrake, Jonathan; MacFadyen, Andrew I.

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  6. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  7. Binaries in star clusters and the origin of the field stellar population.

    PubMed

    Goodwin, Simon P

    2010-02-28

    Many, possibly most, stars form in binary and higher order multiple systems. Therefore, the properties and frequency of binary systems provide strong clues to the star-formation process, and constraints on star-formation models. However, the majority of stars also form in star clusters in which the birth binary properties and frequency can be altered rapidly by dynamical processing. Thus, we almost never see the birth population, which makes it very difficult to know whether star formation (as traced by binaries, at least) is universal or whether it depends on the environment. In addition, the field population consists of a mixture of systems from different clusters that have all been processed in different ways.

  8. The dynamical importance of binary systems in young massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Geller, Aaron M.

    2017-03-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than 0.5M ⊙ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope observations, combined with sophisticated N-body simulations, we investigate the radial distributions of the main-sequence binary fractions in massive young Large Magellanic Cloud star clusters. We show that binary disruption may play an important role on very short timescales, depending on the environmental conditions in the cluster cores. This may lead to radial binary fractions that initially decline in the cluster centers, which is contrary to the effects expected from dynamical mass segregation.

  9. Optical microflaring on the nearby flare star binary UV Ceti

    NASA Astrophysics Data System (ADS)

    Schmitt, J. H. M. M.; Kanbach, G.; Rau, A.; Steinle, H.

    2016-05-01

    We present extremely high time resolution observations of the visual flare star binary UV Cet obtained with the Optical Pulsar Timing Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that uses Single Photon Avalanche Diodes to measure the arrival times of individual optical photons. The time resolution of the observations presented here was 4 μs, allowing to resolve the typical millisecond variability time scales associated with stellar flares. We report the detection of very short impulsive bursts in the blue band with well resolved rise and decay time scales of about 2 s. The overall energetics put these flares at the lower end of the known flare distribution of UV Cet.

  10. Binary neutron star mergers: a review of Einstein's richest laboratory.

    PubMed

    Baiotti, Luca; Rezzolla, Luciano

    2017-09-01

    In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  11. Analytic orbit propagation of planets in binary star systems

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Georgakarakos, Nikolaos

    2015-08-01

    We present an analytical framework that accurately describes the motion of co-planar planets in binary star systems on orbital as well as secular timescales. The method builds upon analytic solutions of the differential equations governing the behavior of the system's perturbed Laplace-Runge-Lenz vectors. Multiple time-scale analysis is used to derive the short period evolutions of the system, while octupole secular theory is applied to describe its long term behavior. A post Newtonian correction on the stellar orbit is included for circumbinary planets. Our model is tested against results from numerical integrations of the full equations of motion. An application to circumbinary planetary systems discovered by NASA's Kepler satellite reveals that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from the one of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, as the former systems are not compatible with the assumption of almost circular initial planetary orbits.

  12. Absolute properties of the eclipsing binary star IM Persei

    SciTech Connect

    Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Muterspaugh, Matthew W.; Southworth, John E-mail: gtorres@cfa.harvard.edu E-mail: matthew1@coe.tsuniv.edu

    2015-01-01

    IM Per is a detached A7 eccentric eclipsing binary star. We have obtained extensive measurements of the light curve (28,225 differential magnitude observations) and radial velocity curve (81 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.7831 ± 0.0094 and 1.7741 ± 0.0097 solar masses, and radii of 2.409 ± 0.018 and 2.366 ± 0.017 solar radii. The orbital period is 2.25422694(15) days and the eccentricity is 0.0473(26). A faint third component was detected in the analysis of the light curves, and also directly observed in the spectra. The observed rate of apsidal motion is consistent with theory (U = 151.4 ± 8.4 year). We determine a distance to the system of 566 ± 46 pc.

  13. Binary Star Orbits. 4. Orbits of 18 Southern Interferometric Pairs

    DTIC Science & Technology

    2010-09-01

    Printed in the U.S.A. BINARY STAR ORBITS. IV. ORBITS OF 18 SOUTHERN INTERFEROMETRIC PAIRS Brian D. Mason1,3, William I. Hartkopf1,3, and Andrei...et al. (2006) 2.2 ( 3d ) HD 204236 ±4.9 ±0.018 ±3.9 ±12.0 ±2.6 ±0.25 ±14.0 4.1 21.0 22535−1137 MCA 73 18.71 0.0793 66.9 110.3 1991.52 0.061 277.0 2 4.7...They then described the detection by lunar occultation of three more components: E and F (both components of C) and G (a close component of B). While

  14. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2017-01-01

    We study the resonant tidal excitation of g modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave (GW) signal of the inspiral. Previous studies of this type treated the NS core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g modes is fundamentally different in the two cases: in a normal fluid core, the buoyancy is due to gradients in the proton-to-neutron fraction, whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid NS therefore has a denser spectrum of g modes with frequencies above 10 Hz. As a result, many more g modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of GW detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and a normal fluid NS (˜10-3-10-2rad). A phase error of this magnitude is too small to be measured from a single event with the current generation of GW detectors.

  15. Lessons from Darwin: Breeding the Best-fit Binary Star

    NASA Astrophysics Data System (ADS)

    Metcalfe, T. S.

    1998-12-01

    I have developed a procedure utilizing a Genetic-Algorithm-based optimization scheme to fit the observed light curves of an eclipsing binary star with a model produced by the Wilson-Devinney code. The principal advantages of this approach are the objectivity and the uniqueness of the final result. Although this method is more efficient than other comparably global search techniques, the computational requirements of the code are still considerable. I have applied this fitting procedure to my observations of the W UMa type eclipsing binary BH Cassiopeiae. An analysis of V--band CCD data obtained in 1994/95 from Steward Observatory and U-- and B--band photoelectric data obtained in 1996 from McDonald Observatory provided three complete light curves to constrain the fit. In addition, radial velocity curves obtained in 1997 from McDonald Observatory provided a direct measurement of the system mass ratio to restrict the search. The results of the GA-based fit are in excellent agreement with the final orbital solution obtained with the standard differential corrections procedure in the Wilson-Devinney code.

  16. First period investigation of detached binary star AM Tau

    NASA Astrophysics Data System (ADS)

    Wang, Z.-H.; Zhu, L.-Y.

    2016-11-01

    AM Tau is a detached eclipsing binary with the secondary component more evolved than the primary one. The period changes of this neglected eclipsing binary are analyzed based on four times of primary minimum obtained between 2007 and 2016 together with those collected from the literature. It is detected that the general trend of the O-C curve shows a downward parabolic variation, which reveals a continuous period decrease at a rate of dP / dt = - 9.0 ×10-7(± 0.2) d yr-1 , meanwhile, the system undergoes two cyclic oscillations with periods of 24.1 and 8.8 years. The continuous decrease in the orbital period may be caused by angular momentum loss (AML) via an enhanced stellar wind of the evolved secondary star. The two cyclic variations in the O-C diagram are interpreted by the light travel-time effect via the presence of two additional stellar companions with masses estimated as M3sin i3 ∼ 1.36 M⊙ and M4sin i4 ∼ 0.33 M⊙. Their orbital separations are about 14 and 8 AU, respectively, and the orbital periods are almost in 3 : 1 resonance orbits.

  17. Heartbeat Stars: A Class Of Tidally Excited Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Thompson, S. E.; Mullally, F.; Everett, M.; Howell, S. B.; Still, M.; Christiansen, J. L.; Rowe, J.; Kurtz, D. W.; Hambleton, K.

    2012-01-01

    We have discovered a class of eccentric binary systems undergoing dynamic tidal distortions and tidally induced pulsations in the Kepler data. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days which is frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with changing tidal forces that occur in close, eccentric binary systems. In this case the large variety of light curve shapes arises from viewing systems at different angles. A hypothesis that is confirmed with radial velocity measurements that show an eccentric orbit. Prior to the discovery of these 17 new systems, KOI-54 was the only system with direct detection of these dynamic tides and tidally induced oscillations. While significant work remains to include all the physics required to accurately model these systems and begin to understand how tidal effects influence the system, in this presentation we present preliminary fits to the light curves and describe the properties of this class of stars as a whole.

  18. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    SciTech Connect

    Parkin, E. R.; Sim, S. A. E-mail: s.sim@qub.ac.uk

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  19. THE HOT R CORONAE BOREALIS STAR DY CENTAURI IS A BINARY

    SciTech Connect

    Kameswara Rao, N.; Lambert, David L.; McArthur, Barbara; Garcia-Hernandez, D. A.; Woolf, Vincent M. E-mail: dll@astro.as.utexas.edu

    2012-11-20

    The remarkable hot R Coronae Borealis (RCB) star DY Cen is revealed to be the first and only binary system to be found among the RCB stars and their likely relatives, including the extreme helium stars and the hydrogen-deficient carbon stars. Radial velocity determinations from 1982 to 2010 have shown that DY Cen is a single-lined spectroscopic binary in an eccentric orbit with a period of 39.67 days. It is also one of the hottest and most H-rich member of the class of RCB stars. The system may have evolved from a common envelope to its current form.

  20. Modeling mergers of known galactic systems of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Feo, Alessandra; De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2017-02-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906  +  0746, B1534  +  12, J0453  +  1559 and B1913  +  16. We follow the dynamics of the merger from the late stage of the inspiral process up to  ∼20ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems (q  =  0.75, J0453  +  1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.

  1. ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY STAR BF DRACONIS

    SciTech Connect

    Sandberg Lacy, Claud H.; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio E-mail: gtorres@cfa.harvard.edu E-mail: jsabby@siue.edu

    2012-06-15

    BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coude-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 H{sub p}. We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.

  2. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  3. Very wide binary stars as the primary source of stellar collisions in the galaxy

    SciTech Connect

    Kaib, Nathan A.; Raymond, Sean N.

    2014-02-20

    We present numerical simulations modeling the orbital evolution of very wide binaries, pairs of stars separated by over ∼10{sup 3} AU. Due to perturbations from other passing stars and the Milky Way's tide, the orbits of very wide binary stars occasionally become extremely eccentric, which forces close encounters between the companion stars. We show that this process causes a stellar collision between very wide binary companion stars once every 1000-7500 yr on average in the Milky Way. One of the main uncertainties in this collision rate is the amount of energy dissipated by dynamic tides during close (but not collisional) periastron passages. This dissipation presents a dynamical barrier to stellar collisions and can instead transform very wide binaries into close or contact binaries. However, for any plausible tidal dissipation model, very wide binary stars are an unrealized, and potentially the dominant, source of stellar collisions in our Galaxy. Such collisions should occur throughout the thin disk of the Milky Way. Stellar collisions within very wide binaries should yield a small population of single, Li-depleted, rapidly rotating massive stars.

  4. THE Be STAR HD 215227: A CANDIDATE GAMMA-RAY BINARY

    SciTech Connect

    Williams, S. J.; Gies, D. R.; Matson, R. A.; Touhami, Y.; Grundstrom, E. D.; Huang, W.; McSwain, M. V. E-mail: gies@chara.gsu.ed E-mail: yamina@chara.gsu.ed E-mail: hwenjin@astro.washington.ed

    2010-11-01

    The emission-line Be star HD 215227 lies within the positional error circle of the newly identified gamma-ray source AGL J2241+4454. We present new blue spectra of the star, and we point out the morphological and variability similarities to other Be binaries. An analysis of the available optical photometry indicates a variation with a period of 60.37 {+-} 0.04 days, which may correspond to an orbital modulation of the flux from the disk surrounding the Be star. The distance to the star of 2.6 kpc and its relatively large Galactic latitude suggest that the binary was ejected from the plane by a supernova explosion that created the neutron star or black hole companion. The binary and runaway properties of HD 215227 make it an attractive candidate as the optical counterpart of AGL J2241+4454 and as a new member of the small class of gamma-ray emitting binaries.

  5. A model-free estimate of binary fraction in the field FGK stars

    NASA Astrophysics Data System (ADS)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Chen, Bingqiu

    2015-08-01

    Binaries play a key role in understanding star formation and evolution and in the studies of the stellar population synthesis. Using the recently re-calibrated (to a precision of a few mmag) Stripe 82 photometry, we demonstrate that the intrinsic widths of metallicity-dependent stellar loci of main-sequence stars are essentially zero. Based on this fact, we propose a Stellar Locus OuTlier (SLOT) method to determine binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass-ratio distributions of binaries, and applicable to large survey volumes that contain different stellar populations. Applying the method to Stripe 82, we find an average binary fraction for field FGK stars of 41 per cent. The fraction decreases toward stars of redder colors and probably higher metallicities.

  6. Binary star formation: gravitational fragmentation followed by capture

    NASA Astrophysics Data System (ADS)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  7. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  8. Formation, Evolution, and Population Synthesis of Binary Systems Containing Collapsed Stars

    NASA Technical Reports Server (NTRS)

    West, Donald (Technical Monitor); Rappaport, Saul

    2004-01-01

    During the period September 1, 2002 through August 31, 2003 we have been supported in part by a small NASA 'bridge" grant NAG5-12522 to continue our theoretical investigations of the "Formation, Evolution, and Population Synthesis of Binary Systems Containing Collapsed Stars". This research includes theoretical studies of the formation and evolution of several different types of interacting binary systems containing collapsed stars. Four papers were completed under the auspices of this grant: 1. Theoretical Consideration on the Properties of Accreting Millisecond Pulsars. 2. Accretion Onto Fast X-Ray Pulsars. 3. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron-Star.

  9. Life and light: exotic photosynthesis in binary and multiple-star systems.

    PubMed

    O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S

    2012-02-01

    The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.

  10. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  11. Formation of the widest binary stars from dynamical unfolding of triple systems.

    PubMed

    Reipurth, Bo; Mikkola, Seppo

    2012-12-13

    The formation of very wide binary systems, such as the α Centauri system with Proxima (also known as α Centauri C) separated from α Centauri (which itself is a close binary A/B) by 15,000 astronomical units (1 AU is the distance from Earth to the Sun), challenges current theories of star formation, because their separation can exceed the typical size of a collapsing cloud core. Various hypotheses have been proposed to overcome this problem, including the suggestion that ultrawide binaries result from the dissolution of a star cluster--when a cluster star gravitationally captures another, distant, cluster star. Recent observations have shown that very wide binaries are frequently members of triple systems and that close binaries often have a distant third companion. Here we report N-body simulations of the dynamical evolution of newborn triple systems still embedded in their nascent cloud cores that match observations of very wide systems. We find that although the triple systems are born very compact--and therefore initially are more protected against disruption by passing stars--they can develop extreme hierarchical architectures on timescales of millions of years as one component is dynamically scattered into a very distant orbit. The energy of ejection comes from shrinking the orbits of the other two stars, often making them look from a distance like a single star. Such loosely bound triple systems will therefore appear to be very wide binaries.

  12. A Survey for Young Spectroscopic Binary K7-M4 Stars in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Prato, L.

    2007-03-01

    This paper describes a high-resolution, infrared spectroscopic survey of young, low-mass stars that is designed to identify and characterize pre-main-sequence spectroscopic binaries. This is the first large infrared radial velocity survey of very young stars to date. The frequency and mass ratio distribution of the closest, low-mass binaries bear directly on models of stellar, brown dwarf, and planetary mass companion formation. Furthermore, spectroscopic binaries can provide mass ratios and ultimately masses, independent of assumptions, needed to calibrate models of young star evolution. I present the initial results from observations of a uniform sample of 33 T Tauri M stars in the Ophiuchus molecular cloud. The average mass of this sample is less than that of other young star radial velocity surveys of similar scope by a factor of ~2. Almost every star was observed at 3-4 epochs over 3 yr with the 10 m Keck II telescope and the facility infrared spectrometer NIRSPEC. An internal precision of 0.43 km s-1 was obtained with standard cross-correlation calibration techniques. Four of the targets are newly discovered spectroscopic binaries, one of which is located in a subarcsecond, hierarchical quadruple system. Three other subarcsecond visual binaries were also serendipitously identified during target acquisition. The spectroscopic multiplicity of the sample is comparable to that of earlier type, pre-main-sequence objects. Therefore, there is no dearth of young, low-mass spectroscopic binary stars, at least in the Ophiuchus region.

  13. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  14. Constraining the Variability and Binary Fraction of Galactic Center Young Stars

    NASA Astrophysics Data System (ADS)

    Gautam, Abhimat K.; Do, Tuan; Ghez, Andrea M.; Lu, Jessica R.; Morris, Mark R.; Sakai, Shoko; Witzel, Gunther; Sitarski, Breann N.; Chappell, Samantha

    2017-01-01

    We present constraints on the variability and binarity of young stars in the central 10 arcseconds (~ 0.4 pc) of the Milky Way Galactic Center (GC) using Keck Adaptive Optics data over a 12 year baseline. Given our experiment's photometric uncertainties, at least 36% of our sample's known early-type stars are variable. We identified eclipsing binary systems by searching for periodic variability. In our sample of spectroscopically confirmed and likely early-type stars, we detected the two previously discovered GC eclipsing binary systems. We derived the likely binary fraction of main sequence, early-type stars at the GC via Monte Carlo simulations of eclipsing binary systems, and find that it is at least 32% with 90% confidence.

  15. VizieR Online Data Catalog: Binary star discoveries in the URAT1 catalog (Nicholson, 2015)

    NASA Astrophysics Data System (ADS)

    Nicholson, M. P.

    2015-05-01

    Astrometric and photometric data are presented for 9450 common proper motion binary star system using results from the first U.S. Naval Observatory Astrometric Robotic Telescope Catalog (URAT1) (1 data file).

  16. Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

    NASA Astrophysics Data System (ADS)

    Rahoma, Walid A.

    2016-12-01

    A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

  17. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    SciTech Connect

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W. E-mail: gies@chara.gsu.edu E-mail: mcswain@lehigh.edu

    2013-02-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD-16 Degree-Sign 4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  18. Variability of the decretion disc of Be stars in binary systems

    NASA Astrophysics Data System (ADS)

    Panoglou, D.; Faes, D. M.; Carciofi, A. C.

    2017-07-01

    Be stars are highly variable B stars surrounded by an outflowing circumstellar structure, called the decretion disc. It has been suggested in the past and is hereby shown that small-scale variability in the observables can be attributed to the tidal effect on the disc from a binary companion. In particular, V/R variations locked to the orbital phase are presented for coplanar circular Be binaries.

  19. Wolf-Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D.

    2016-06-01

    Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi ≳ 20 M⊙) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims: By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods: The spectral analysis is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results: Significant hydrogen mass fractions (0.1 stars in our sample are not chemically homogeneous. The WR component in the binary AB 6 is found to be very luminous (log L ≈ 6.3 [L⊙]) given its orbital mass (≈10 M⊙), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (≳60 M⊙) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions: Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at

  20. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  1. AM CVn Stars: Structure and Evolution of Ultra-Short Period Interacting Binaries

    NASA Technical Reports Server (NTRS)

    Froning, Cynthia

    2005-01-01

    This is the final report of a FUSE program to study the physics of accretion and outflows in ultra-compact, helium dominated, disk-accreting binaries. With FUSE, we observed the AM CVn binary V803 Cen, which is one of only two AM CVn systems observed by FUSE to date. V803 Cen is a short-period interacting binary in which a hydrogen-deficient white dwarf transfers mass to another white dwarf via a hot, steady-state accretion disk. Unlike other cataclysmic variables (CVs), AM CVn stars have undergone double common envelope evolution (one for each white dwarf in the binary) and so probe an alternate route of evolution in binary stars. Our goals in this project were to investigate how the structure of the accretion disk and the link between the disk and wind outflows are affected by the absence of hydrogen in the system and by the compact size of the binary and the accretion disk.

  2. AM CVn Stars: Structure and Evolution of Ultra-Short Period Interacting Binaries

    NASA Technical Reports Server (NTRS)

    Froning, Cynthia

    2005-01-01

    This is the final report of a FUSE program to study the physics of accretion and outflows in ultra-compact, helium dominated, disk-accreting binaries. With FUSE, we observed the AM CVn binary V803 Cen, which is one of only two AM CVn systems observed by FUSE to date. V803 Cen is a short-period interacting binary in which a hydrogen-deficient white dwarf transfers mass to another white dwarf via a hot, steady-state accretion disk. Unlike other cataclysmic variables (CVs), AM CVn stars have undergone double common envelope evolution (one for each white dwarf in the binary) and so probe an alternate route of evolution in binary stars. Our goals in this project were to investigate how the structure of the accretion disk and the link between the disk and wind outflows are affected by the absence of hydrogen in the system and by the compact size of the binary and the accretion disk.

  3. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin

    2017-01-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies treated the NS core as a normal fluid and did not account for its superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron (or hyperon) fraction. The latter yields a stronger stratification and a superfluid NS has a denser spectrum of g-modes. As a result, many more g-modes undergo resonant tidal excitation during the inspiral. We find that = 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid NS ( 10-3 -10-2rad). A phase error of this magnitude is too small to be measured with the current generation of gravitational wave detectors.

  4. Absolute properties of the eclipsing binary star AP Andromedae

    SciTech Connect

    Sandberg Lacy, Claud H.; Torres, Guillermo; Fekel, Francis C.; Muterspaugh, Matthew W. E-mail: gtorres@cfa.harvard.edu E-mail: matthew1@coe.tsuniv.edu

    2014-06-01

    AP And is a well-detached F5 eclipsing binary star for which only a very limited amount of information was available before this publication. We have obtained very extensive measurements of the light curve (19,097 differential V magnitude observations) and a radial velocity curve (83 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.277 ± 0.004 and 1.251 ± 0.004 M {sub ☉}, radii of 1.233 ± 0.006 and 1.1953 ± 0.005 R {sub ☉}, and temperatures of 6565 ± 150 K and 6495 ± 150 K. The distance to the system is about 400 ± 30 pc. Comparison with the theoretical properties of the stellar evolutionary models of the Yonsei-Yale series of Yi et al. shows good agreement between the observations and the theory at an age of about 500 Myr and a slightly sub-solar metallicity.

  5. DPI: Symplectic mapping for binary star systems for the Mercury software package

    NASA Astrophysics Data System (ADS)

    Turrini, D.

    2015-04-01

    DPI is a FORTRAN77 library that supplies the symplectic mapping method for binary star systems for the Mercury N-Body software package (ascl:1201.008). The binary symplectic mapping is implemented as a hybrid symplectic method that allows close encounters and collisions between massive bodies and is therefore suitable for planetary accretion simulations.

  6. A search for binary candidates among the fundamental mode RR Lyrae stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Steixner, Jakob

    2015-09-01

    Although roughly half of all stars are considered to be part of binary or multiple systems, there are only two confirmed cases of RR Lyrae pulsators with companions. One of them is TU Uma [1] - a classical RR Lyrae star in a very eccentric orbit - and the other is OGLE-BLG-RRLYR-02792 [2]. Considering the wealth of well-studied RR Lyrae stars, this number is astoundingly low. Having more RR Lyrae stars in binary systems at hand would be extremely valuable to get independent measurements of the masses. The data from the Kepler mission with their unprecedented precision and the long time span of about four years offer a unique possibility to systematically search for the signatures of binarity in RR Lyrae stars. Using the pulsation as a clock, we studied the variations in the timing of maximum light to hunt for possible binary systems in the sample.

  7. Workshop on Colliding Winds in Binary Stars to Honor Jorge Sahade

    NASA Astrophysics Data System (ADS)

    Niemela, Virpi; Morrell, Nidia; Pismis, Paris; Torres-Peimbert, Silvia

    1996-12-01

    Topics considered include: the beginning of the story; mass flow in and out of close binaries; winds of massive, main sequence close binaries; chromospheric activity, stellar winds and red stragglers; uv observations of mass transfer in algols; the circumstellar matter in pre-supernovae of type Ia; observations of colliding winds in O-type binaries; colliding winds in massive binaries involving Wolf-Rayet stars; episodic dust formation by Wolf-Rayet stars: smoke signals from colliding winds; x-ray emission from colliding wind binaries; colliding stellar winds: a new method of determining mass-loss rates via x-ray spectroscopy; sudden radiative braking in colliding hot-star winds; optical observations of colliding winds in gamma2 velorum; left overs for dinner; HD 5980: the Wolf-Rayet binary that became a luminous blue variable; the erupting Wolf-Rayet binary HD 5980 in the small magellanic cloud: spectral transition from B1.5Ia(+) to WN6 and the accompanying light curve; the elliptic orbit of the WR binary system CV serpentis; evidence for colliding winds in WR 146; is there wind-wind collision in WR 141 (HD 193928)?; search for interacting winds in the WN7 + O binary; line formation in CH Cyg: a symbiotic binary; period analysis of radial velocity of pleione; H(alpha) detection of colliding winds in O-type binaries; HD 5980 in the infrared; photometric and polarimetric observations of the Wolf-Rayet eclipsing binary HD 5980 in the small magellanic cloud, and analysis of linear polarization in two Wolf-Rayet binary systems.

  8. Wide Binaries among High-Velocity and Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Allen, C.; Herrera, M. A.; Poveda, A.

    The properties of old disk and halo binaries are of interest for the understanding of the processes of formation and early dynamical evolution of the Galaxy. The luminosity function of the components of wide binaries and multiples, their mass function, the fraction of halo or old disk stars that are members of wide binaries, and the distribution of its separations are some of the basic properties that are poorly understood, mainly because of the paucity of known wide binaries among halo and old disk stars. The present work is an attempt to ameliorate this situation. We have elaborated a list of 130 halo and old disk wide binaries by searching for common proper motion companions to the high-velocity and metal-poor stars studied by Schuster and Nissen (1988, 1993). Based on Stromgren photometry, these authors have derived distances, metallicities and ages for their stars. Since each star has a large and well determined proper motion it was possible to compare this value with that of NLTT stars of its vicinity. In this way we were able to identify 130 high-velocity and metal-poor common proper motion binary systems. Each system was carefully checked to avoid misidentifications, and when possible, distances were updated using the Hipparcos trigonometric parallaxes. We have determined the distribution of angular separations for our wide binaries. Reliable distances are available for all of our systems, so this distribution can be converted into a separation distribution in AU. We find that 12 systems have separations in excess of 10000 AU, and their existence poses interesting dynamical problems. Since many systems also have known radial velocities, space velocities for them can be determined, and galactic orbits have been computed and characterized. The secondaries of these wide binaries are interesting in themselves, since they represent a sampling of the faint end of the main sequence of old disk and halo stars.

  9. An interacting binary system powers precessing outflows of an evolved star.

    PubMed

    Boffin, Henri M J; Miszalski, Brent; Rauch, Thomas; Jones, David; Corradi, Romano L M; Napiwotzki, Ralf; Day-Jones, Avril C; Köppen, Joachim

    2012-11-09

    Stars are generally spherical, yet their gaseous envelopes often appear nonspherical when ejected near the end of their lives. This quirk is most notable during the planetary nebula phase, when these envelopes become ionized. Interactions among stars in a binary system are suspected to cause the asymmetry. In particular, a precessing accretion disk around a companion is believed to launch point-symmetric jets, as seen in the prototype Fleming 1. Our finding of a post-common-envelope binary nucleus in Fleming 1 confirms that this scenario is highly favorable. Similar binary interactions are therefore likely to explain these kinds of outflows in a large variety of systems.

  10. Contact binary stars of the W UMa-type as distance tracers

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.

    2004-07-01

    Contact binaries can be used for distance determinations of stellar systems. They are easy to discover and identify and are very abundant among solar-type stars, particularly for MV>+3. The period-luminosity-colour (PLC) relations have similar properties to those for pulsating stars and can currently predict individual values of MV to about ±0.25 mag.

  11. Gravitational wave background from binary systems

    SciTech Connect

    Rosado, Pablo A.

    2011-10-15

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  12. VizieR Online Data Catalog: Catalog of binary UV Ceti stars (Tamazian+, 2014)

    NASA Astrophysics Data System (ADS)

    Tamazian, V.; Malkov, O.

    2015-01-01

    A catalogue of nearby UV Ceti type flare stars in (137) visual binary systems is presented in the form of two separate tables of information. The catalogue has developed from Catalogue and Bibliography of UV Cet stars (Gershberg et al., 1999, Cat. J/A+AS/139/555) and the list of nearby flare stars (Pettersen, 1991MmSAI..62..217P) by including more recent and additional information from catalogues of binary stars (WDS, Mason et al., 2001-2014, Cat. B/wds; ORB6, Hartkopf et al. 2006-2014; DM3, Mason+ 2006-2014) and data from the Catalog of Nearby Stars, Preliminary 3rd Version (Gliese et al., 1991, Cat. V/70), from Hipparcos, the New Reduction (van Leeuwen 2007, Cat. I/311) and from SIMBAD. Some issues relating to the mass, luminosity and spectrum relations of flare stars are also discussed. (2 data files).

  13. Comparison of the Hα circumstellar disks in Be/X-ray binaries and Be stars

    NASA Astrophysics Data System (ADS)

    Zamanov, R. K.; Reig, P.; Martí, J.; Coe, M. J.; Fabregat, J.; Tomov, N. A.; Valchev, T.

    2001-03-01

    We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the Hα emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the Be/X-ray binaries and the Be stars seen in the full width half maximum versus peak separation diagram indicates that the disks in Be/X-ray binaries have on average a smaller size, probably truncated by the compact object.

  14. γ-ray Binaries : A Bridge Between Be Stars and High Energy Astrophysics Invited Review

    NASA Astrophysics Data System (ADS)

    Lamberts, A.

    2016-11-01

    Advances in X-ray and gamma-ray astronomy have opened a new window on our universe and revealed a wide variety of binaries composed of a compact object and a Be star. In Be X-ray binaries, a neutron star accretes the Be disk and truncates it through tidal interactions. Such systems have important X-ray outbursts, some related to the disk structure. In other systems, strong gamma-ray emission is observed. In γ-ray binaries, the neutron star is not accreting but driving a highly relativistic wind. The wind collision region presents similarities to colliding wind binaries composed of massive stars. The high energy emission is coming from particles being accelerated at the relativistic shock. I will review the physics of X-ray and gamma-ray binaries, focusing particularly on the recent developments on gamma-ray binaries. I will describe physical mechanisms such as relativistic hydrodynamics, tidal forces and non thermal emission. I will highlight how high energy astrophysics can shed a new light on Be star physics and vice-versa.

  15. Binary star influence on post-main-sequence multi-planet stability

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Gänsicke, Boris T.

    2017-02-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures which are conducive to generating observable metal pollution in white dwarf atmospheres.

  16. A search technique for planets in nearby binary stars using a ground-based interferometer

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Carleton, N. P.; Porro, I. L.

    1996-04-01

    A search for Jovian-type planets in 100 nearby binary stars could be carried out with the existing ground-based infrared-optical telescope array (IOTA) interferometer. We would study binaries with sufficiently great separation (25-50 AU; typical separation around 0.4 arcsec) that such a planet could be in a stable orbit about one member of the pair. The method is to measure the angular separation of stars in each binary, with a single-measurement accuracy sufficient to detect the amplitude of a Uranus orbiting one of the stars. The technique is based on an auxiliary device, the pupil-splitting interferometer (PSI), which substantially reduces systematic and random errors by converting a measurement of angular separation into a measurement of the differential optical delay between the two components of the binary. The program would be relatively economical, and could begin soon.

  17. Quasi-equilibrium sequences of binary strange quark stars in general relativity

    NASA Astrophysics Data System (ADS)

    Limousin, Francois; Gondek-Rosińska, Dorota; Gourgoulhon, Eric

    2004-12-01

    Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational. In each of those cases, we show the differences in the gravitational waves signal from neutron stars described by polytropic equation of state.

  18. THE OCCURRENCE OF WIDE-ORBIT PLANETS IN BINARY STAR SYSTEMS

    SciTech Connect

    Zuckerman, B.

    2014-08-20

    The occurrence of planets in binary star systems has been investigated via a variety of techniques that sample a wide range of semi-major axes, but with a preponderance of such results applicable to planets with semi-major axes less than a few astronomical units. We utilize a new method—the presence or absence of heavy elements in the atmospheres of white dwarf stars—to elucidate the frequency in main sequence binary star systems of planets with semi-major axes greater than a few astronomical units. We consider only binaries where a putative planetary system orbits one member (no circumbinary planets). For main sequence binaries where the primary star is of spectral type A or F, data in the published literature suggests that the existence of a secondary star with a semi-major axis less than about 1000 AU suppresses the formation and/or long-term stability of an extended planetary system around the primary. For these spectral types and initial semi-major axis ≥1000 AU, extended planetary systems appear to be as common around stars in binary systems as they are around single stars.

  19. Estimating the binary fraction of central stars of planetary nebulae using the infrared excess method

    NASA Astrophysics Data System (ADS)

    Douchin, D.; De Marco, O.; Frew, D. J.; Jacoby, G. H.; Fitzgerald, M.; Jasniewicz, G.; Moe, M.; Passy, J. C.; Hillwig, T.; Harmer, D.

    2014-04-01

    There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape nebulae whose shapes are not spherical or mildly elliptical, implying that many single post-AGB stars do not make a PN at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with that of the main sequence population. Preliminary results from the infrared excess technique indicate that the binary fraction of central stars of planetary nebula is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. I will present new results from a search of red and infrared flux excess in an extended sample of central stars of planetary nebula and compare the improved estimate of the PN binary fraction with that of main sequence stars.

  20. Fluorine in carbon-enhanced metal-poor stars: a binary scenario

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; de Mink, S. E.; Izzard, R. G.; Campbell, S. W.; Karakas, A. I.; Cristallo, S.; Pols, O. R.; Lattanzio, J. C.; Straniero, O.; Gallino, R.; Beers, T. C.

    2008-06-01

    Aims: A super-solar fluorine abundance was observed in the carbon-enhanced metal-poor (CEMP) star HE 1305+0132 ([F/Fe] = +2.90, [Fe/H] = -2.5). We propose that this observation can be explained using a binary model that involve mass transfer from an asymptotic giant branch (AGB) star companion and, based on this model, we predict F abundances in CEMP stars in general. We discuss wether F can be used to discriminate between the formation histories of most CEMP stars: via binary mass transfer or from the ejecta of fast-rotating massive stars. Methods: We compute AGB yields using different stellar evolution and nucleosynthesis codes to evaluate stellar model uncertainties. We use a simple dilution model to determine the factor by which the AGB yields should be diluted to match the abundances observed in HE 1305+0132. We further employ a binary population synthesis tool to estimate the probability of F-rich CEMP stars. Results: The abundances observed in HE 1305+0132 can be explained if this star accreted 3-11% of the mass lost by its former AGB companion. The primary AGB star should have dredged-up at least 0.2 {M}⊙ of material from its He-rich region into the convective envelope via third dredge-up, which corresponds to AGB models of Z ≃ 0.0001 and mass ≃2 {M}⊙. Many AGB model uncertainties, such as the treatment of convective borders and mass loss, require further investigation. We find that in the binary scenario most CEMP stars should also be FEMP stars, that is, have [F/Fe] > +1, while fast-rotating massive stars do not appear to produce fluorine. We conclude that fluorine is a signature of low-mass AGB pollution in CEMP stars, together with elements associated with the slow neutron-capture process.

  1. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    NASA Astrophysics Data System (ADS)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  2. Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2013-08-01

    The merger of black hole-neutron star binaries can eject substantial material with the mass ˜0.01-0.1M⊙ when the neutron star is disrupted prior to the merger. The ejecta shows significant anisotropy, and travels in a particular direction with the bulk velocity ˜0.2c. This is drastically different from the binary neutron star merger, for which ejecta is nearly isotropic. Anisotropic ejecta brings electromagnetic-counterpart diversity which is unique to black hole-neutron star binaries, such as viewing-angle dependence, polarization, and proper motion. The kick velocity of the black hole, gravitational-wave memory emission, and cosmic-ray acceleration are also discussed.

  3. Stellar Loci II. A Model-free Estimate of the Binary Fraction for Field FGK Stars

    NASA Astrophysics Data System (ADS)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Chen, Bingqiu; Wu, Yue; Hou, Yonghui; Zhang, Yong

    2015-02-01

    We propose a stellar locus outlier (SLOT) method to determine the binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass ratio distributions of binaries and is able to provide model-free estimates of binary fraction for large numbers of stars of different populations in large survey volumes. We have applied the SLOT method to two samples of stars from the Sloan Digital Sky Survey (SDSS) Stripe 82, constructed by combining the recalibrated SDSS photometric data with the spectroscopic information from the SDSS and LAMOST surveys. For the SDSS spectroscopic sample, we find an average binary fraction for field FGK stars of 41% ± 2%. The fractions decrease toward late spectral types and are 44% ± 5%, 43% ± 3%, 35% ± 5%, and 28% ± 6% for stars with g - i colors in the range 0.3-0.6 mag, 0.6-0.9 mag, 0.9-1.2 mag, and 1.2-1.6 mag, respectively. A modest metallicity dependence is also found. The fraction decreases with increasing metallicity. For stars with [Fe/H] between -0.5 and 0.0 dex, -1.0 and -0.5 dex, -1.5 and -1.0 dex, and -2.0 and -1.5 dex, the inferred binary fractions are 37% ± 3%, 39% ± 3%, 50% ± 9%, and 53% ± 20%, respectively. We have further divided the sample into stars from the thin disk, the thick disk, the transition zone between them, and the halo. The results suggest that the Galactic thin and thick disks have comparable binary fractions, whereas the Galactic halo contains a significantly larger fraction of binaries. Applying the method to the LAMOST spectroscopic sample yields consistent results. Finally, other potential applications and future work with the method are discussed.

  4. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    SciTech Connect

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Batalha, Natalie; Rucker, Michael; Mjaseth, Kimberly; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Jenkins, Jon; Caldwell, Douglas

    2011-03-15

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  5. Multiyear measurements of Position Angle and Separation of selected binary stars from the Washington Double Star Catalog

    NASA Astrophysics Data System (ADS)

    Muller, Rafael J.; Cersosimo, Juan C.; Lopez, Andy J.; Vergara, Nelson; Torres, Brian; Mendoza, Lizyan; Ortiz, Deliris; Del Valle, Yashira; Espinosa, Gabriela; Reyes, Marjory

    2016-01-01

    We present here the multiyear data sets on separation and position angle of binary stars obtained at the NURO telescope, located east of Flagstaff Arizona at an elevation of 7200 feet. The data was analyzed at the Humacao University Observatory of the University of Puerto Rico and will be submitted for publication at the Journal of Double Star Observations. We describe the methodology for the analysis of the images we obtained.

  6. Binary Blue Metal-poor Stars: Evidence for Asymptotic Giant Branch Mass Transfer

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Preston, George W.; Cowan, John J.

    2003-07-01

    We present new abundance analyses of six blue metal-poor (BMP) stars with very low iron abundances ([Fe/H]<-2), based on new high-resolution echelle spectra. Three are spectroscopic binaries, and three have constant radial velocities. The chemical compositions of these two groups are very different, as the binary BMP stars have large enhancements of carbon and neutron-capture elements that are products of s-process nucleosynthesis. One star, CS 29497-030, has an extreme enhancement of lead, [Pb/Fe]=+3.7, the largest abundance in any star yet discovered. It probably also has an oxygen overabundance compared to the other BMP stars of our sample. The binary BMP stars must have attained their status via mass transfer during the asymptotic giant branch (AGB) evolutions of their companion stars, which are now unseen and most likely are compact objects. We have not found any examples of AGB mass transfer among BMP binaries with [Fe/H]>-2.

  7. Binary Central Stars of Planetary Nebulae Discovered through Photometric Variability. IV. The Central Stars of HaTr 4 and Hf 2-2

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Bond, Howard E.; Frew, David J.; Schaub, S. C.; Bodman, Eva H. L.

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  8. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    SciTech Connect

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J. E-mail: wih@usno.navy.mi E-mail: maciej@ncac.torun.p

    2010-12-15

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-{alpha} Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  9. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  10. Measuring Ejecta from Inspiralling Binary Neutron Stars using Smoothed-particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; O'Shaughnessy, Richard; Faber, Joshua

    2017-01-01

    Gravitational waves, detectable perturbations in spacetime, can arise from astrophysical systems such as inspiralling binary neutron stars, the remnants of the core collapse of massive stars. In the inspiral process, neutron stars, composed of highly dense nuclear matter, are torn apart by each others gravity and eject matter. Using both gravitational waves and direct observations of ejected matter, we may gain valuable new information about the composition of neutron stars. Using several previously studied test cases, we seek to determine how the amount of ejected matter depends on the physical parameters of these systems. To do this, we use a particle-based hydrodynamics code which can accurately simulate binary neutron star systems with variable equation of state, spin, mass ratio, and eccentricity, and includes the lowest-order effects from gravitational wave emission. I would like to thank RIT's College of Science as well as the Center for Computational Relativity and Gravitation for support and funding.

  11. The binary nature of s-process enriched stars.

    NASA Astrophysics Data System (ADS)

    Frantsman, J. L.

    The theoretical populations of s-process enriched stars on the main sequence and on the giant branch are generated using the "population simulation" technique. Barium star abundance syndrome may occur among the main-sequence stars from the spectral class near G0 to early B type stars. Maximum overabundances of s-process elements reach factor ≡10 between A0 and F2. Among the giant branch, barium stars occur between Mbol≡-6.0 with a strongly pronounced peak between 0.4 and 0.8 and typical maximum overabundance of s-process elements ≡8.

  12. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  13. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi E-mail: takuma.suda@nao.ac.jp E-mail: honda@nhao.jp

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  14. Coalescence of binary neutron stars in a scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Taniguchi, Keisuke; Okawa, Hirotada; Buonanno, Alessandra

    2014-04-01

    We carry out numerical-relativity simulations of coalescing binary neutron stars in a scalar-tensor theory that admits spontaneous scalarization. We model neutron stars with realistic equations of state. We choose the free parameters of the theory taking into account the constraints imposed by the latest observations of neutron-star-white-dwarf binaries with pulsar timing. We show that even within those severe constraints, scalarization can still affect the evolution of the binary neutron stars, not only during the late inspiral but also during the merger stage. We also confirm that even when both neutron stars have quite small scalar charge at large separations, they can be strongly scalarized dynamically during the final stages of the inspiral. In particular, we identify the binary parameters for which scalarization occurs either during the late inspiral or only after the onset of the merger when a remnant, supramassive, or hypermassive neutron star is formed. We also discuss how those results can impact the extraction of physical information on gravitational waves once they are detected.

  15. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Harmanec, Petr; Hartkopf, William

    2007-08-01

    The new and exciting developments in the studies of binary and multiple stars are discussed. An overview is given of the major topics and themes of IAU Symposium 240. These include new observing techniques and reduction methods for the study of binary and multiple star systems as well as the important astrophysical quantities that can be uncovered from such observations. Emphasis is given to new developments that include results from high resolution interferometry and high precision photometry and spectroscopy as well as results from multi-wavelength and panoramic photometry programs of binaries both inside and outside the Galaxy. Also discussed are the uses of binary and multiple star systems as critical tools for the study and tests of many important aspects of modern astrophysics. To give a few examples, binary and multiple stars are playing major roles in (1) testing stellar evolution theory (by providing fundamental stellar quantities), (2) cosmology (standard candles for improving the cosmic distance scale), (3) probes of galactic structure (e.g. from fragile binaries), as well as (4) providing tests of stellar structure and General Relativity (apsidal motion studies). Also binary systems with accreting degenerate components (like CVs and XBs) provide miniature laboratories of the study of accretion processes found in AGN galaxies. These are but a few out a very large number of exciting topics discussed at the symposium. Also discussed are the new classes of binary stars that include binary systems with planetary and brown dwarf components. The future of the study of binary stars also will be briefly addressed and discussions of new opportunities and the challenges with upcoming new instrumentation, telescopes and space missions will be be noted. For example, one major (but very exciting) problem will be how get the most scientific rewards from the huge number (millions) of additional binaries expected to be discovered from wide field synoptic surveys both

  16. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  17. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    NASA Astrophysics Data System (ADS)

    Vanbeveren, Dany

    2005-10-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  18. Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    NASA Astrophysics Data System (ADS)

    Getley, A. K.; Carter, B.; King, R.; O'Toole, S.

    2017-07-01

    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.

  19. Masses of Pre-Main Sequence Binary Stars-Part 2

    NASA Astrophysics Data System (ADS)

    Simon, Michal

    1991-07-01

    There are still no pre-main sequence stars with reliably known masses. This represents a serious gap in our understanding of low-mass star formation. The goal of this long-term program is to measure the masses of pre-main sequence binaries selected from our survey (ref. 3) of the Taurus star forming region by IR lunar occultation and imaging. We propose to use the Fine Guide Sensors in the Transfer Function Mode to determine the apparent orbits of the binaries. Since the distance to the region is known, the apparent orbits will yield the total masses of the binaries. THIS PROPOSAL CONTAINS ONE FOLLOW-UP VISIT TO HV-TAU-C ONLY. THE REST OF THE EXPOSURES ARE IN 3842.

  20. Eclipsing binary stars in the Large and Small Magellanic Clouds from the MACHO project: The Sample

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K; Prochter, G; Protopapas, P; Syphers, D

    2007-03-29

    We present a new sample of 4634 eclipsing binary stars in the Large Magellanic Cloud (LMC), expanding on a previous sample of 611 objects and a new sample of 1509 eclipsing binary stars in the Small Magellanic Cloud (SMC), that were identified in the light curve database of the MACHO project. We perform a cross correlation with the OGLE-II LMC sample, finding 1236 matches. A cross correlation with the OGLE-II SMC sample finds 698 matches. We then compare the LMC subsamples corresponding to center and the periphery of the LMC and find only minor differences between the two populations. These samples are sufficiently large and complete that statistical studies of the binary star populations are possible.

  1. Dark matter in dwarf galaxies: Correcting inferred galaxy masses for the orbital motion of binary stars

    NASA Astrophysics Data System (ADS)

    Minor, Quinn Eliot

    We introduce a Bayesian methodology for determining the velocity dispersions of dwarf galaxies which takes into account both binarity and contamination by nonmember stars in a self-consistent way. This method can be readily extended to determine masses and related quantities such as the dark matter annihilation cross-section of dwarf galaxies. In addition we show that measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km/s are unlikely to be inflated by more than 30% due to the orbital motion of binary stars, and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using multi-epoch observations with 1-2 years as the optimal time interval. This methodology also constrains properties of binary populations (e.g. binary fraction, period distribution) from multi-epoch velocity measurements, and can be applied to both dwarf galaxies as well as star clusters.

  2. Binary stars in loose associations: AB Dor B and HD 160934

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.

    2015-05-01

    Precise determination of dynamical masses of pre-main- sequence (PMS) stars is necessary to calibrate PMS stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M_{⊙}. Binary stars in young, nearby loose associations are particularly good candidates, since all members share a common age. We present phase-reference VLBI observations of two binary systems that belong to the AB Doradus moving, HD 160934 A/c and AB Dor Ba/Bb, from which we have measured both the relative and absolute orbital motion. Accordingly, we obtained precise estimates of the mass of the components of these binaries (ranging from 0.25 to 0.7 M_{⊙}). We will show how these measurements provide precise calibration points for testing PMS models of low-mass stars.

  3. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    SciTech Connect

    Oks, E.

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  4. Radiation-driven Warping of Circumbinary Disks around Eccentric Young Star Binaries

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-12-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ⊙, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  5. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ☉}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  6. Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2006-08-15

    We construct quasiequilibrium sequences of black-hole-neutron-star binaries for arbitrary mass ratios by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition. We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics and account for the black hole by imposing equilibrium boundary conditions on the surface of an excised sphere (the apparent horizon). In this paper we focus on irrotational configurations, meaning that both the neutron star and the black hole are approximately nonspinning in an inertial frame. We present results for a binary with polytropic index n=1, mass ratio M{sub irr}{sup BH}/M{sub B}{sup NS}=5, and neutron star compaction M{sub ADM,0}{sup NS}/R{sub 0}=0.0879, where M{sub irr}{sup BH} is the irreducible mass of the black hole, M{sub B}{sup NS} the neutron star baryon rest mass, and M{sub ADM,0}{sup NS} and R{sub 0} the neutron star Arnowitt-Deser-Misner mass and areal radius in isolation, respectively. Our models represent valid solutions to Einstein's constraint equations and may therefore be employed as initial data for dynamical simulations of black-hole-neutron-star binaries.

  7. Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Simón-Díaz, S.; de Mink, S. E.; Tramper, F.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2015-01-01

    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

  8. The Effect of Micro-lensing in Eclipsing Binary-star Systems

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Rowe, J.; Hansen, B.

    2013-04-01

    Using photometric observations from the Kepler Space Telescope of eclipsing binary star systems where one component is a white dwarf we have investigated the strength of the micro-lensing effect. We have examined the stellar binary KOI-81 from the Kepler mission. KOI-81 is composed of a white dwarf and a A-type main-sequence star in a 24 day circular orbit and have found that micro-lensing is detectable. We use our lightcurve models to measure the strength of the micro-lensing signal and refine the radius of the eclipsing white dwarf.

  9. TIDAL DISRUPTIONS IN CIRCUMBINARY DISKS. I. STAR FORMATION, DYNAMICS, AND BINARY EVOLUTION

    SciTech Connect

    Amaro-Seoane, Pau; Brem, Patrick; Cuadra, Jorge E-mail: Patrick.Brem@aei.mpg.de

    2013-02-10

    In our current interpretation of the hierarchical structure of the universe, it is well established that galaxies collide and merge with each other during their lifetimes. If massive black holes (MBHs) reside in galactic centers, we expect them to form binaries in galactic nuclei surrounded by a circumbinary disk. If cooling is efficient enough, the gas in the disk will clump and trigger stellar formation in situ. In this first paper we address the evolution of the binary under the influence of the newly formed stars, which form individually and also clustered. We use smoothed particle hydrodynamics techniques to evolve the gas in the circumbinary disk and to study the phase of star formation. When the amount of gas in the disk is negligible, we further evolve the system with a high-accurate direct-summation N-body code to follow the evolution of the stars, the innermost binary and tidal disruption events (TDEs). For this, we modify the direct N-body code to include (1) treatment of TDEs and (2) 'gas cloud particles' that mimic the gas, so that the stellar clusters do not dissolve when we follow their infall on to the MBHs. We find that the amount of stars disrupted by either infalling stellar clusters or individual stars is as large as 10{sup -4} yr{sup -1} per binary, higher than expected for typical galaxies.

  10. Teachers doing Binary Star Observations for the United States Naval Observatory

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.

    2003-12-01

    During the summer of 2002 seven science teachers made observations of visual binary stars listed as "neglected" in the Washington Double Star Catalog (WDS) maintained at the United States Naval Observatory (USNO). In the "Binary Star Project" these teachers took CCD images of binary stars with a B&C 16 inch telescope at Georgia State University's Hard Labor Creek Observatory. Updated position angles and angular separations were measured and submitted to USNO. These data are now included as part of the WDS and the teachers written manuscripts are now archived at the USNO library. The purpose of this project was to give science teachers an opportunity to do some real science. The National Science Education Standards are encouraging science teachers to to use scientific inquiry as part of their pedagogy. However, most science teachers have never actually done any scientific research. One goal of this project was to provide science teachers with the opportunity to do some basic astronomy research that would make an authentic contribution to scientific knowledge. Thus, giving them some needed experience doing a scientific investigation. A second purpose was to couple this research with historical astronomy to do explicit instruction on the nature of science and scientific inquiy. By doing this, additional astronomy content was covered, which included Kepler's Laws, the Sun, and Stellar Evolution. The experiences of these teachers and their binary star results will be presented.

  11. Simulating the onset of grazing envelope evolution of binary stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Kashi, Amit; Soker, Noam

    2017-02-01

    We present the first three-dimensional gas-dynamical simulations of the grazing envelope evolution (GEE) of stars, with the goal of exploring the basic flow properties and the role of jets at the onset of the GEE. In the simulated runs, a secondary main-sequence star grazes the envelope of the primary asymptotic giant branch (AGB) star. The orbit is circular at the radius of the AGB primary star on its equator. We inject two opposite jets perpendicular to the equatorial plane from the location of the secondary star, and follow the evolution for several orbital periods. We explore the flow pattern by which the jets eject the outskirts of the AGB envelope. After one orbit, the jets start to interact with gas ejected in previous orbits and inflate hot low-density bubbles.

  12. Does Planet Formation Influence Whether Binary Stars Are Identical or Fraternal “Twins”?

    NASA Astrophysics Data System (ADS)

    Teske, Johanna

    2015-12-01

    Disentangling how an individual star’s atmospheric composition is affected by the chemistry and transport of disk material, the formation of planets, and its broader position in/motion through the Galaxy during its evolution is difficult. While initially suggested as a sign of accretion of H-depleted material onto the star, the giant planet-metallicity correlation is now established as a mostly primordial effect -- stellar composition affects planet formation. But is it still possible that planet formation may also alter host star composition? Previous studies hinted at a few cases of compositional differences between stars in binary systems, and now high-precision abundance analyses are exploring this possibility in systems known to host planets. I will discuss the important role binary host stars have to play in extending correlations between stellar composition and the presence/type of planets that form, including brand new (not yet published!) results.

  13. Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions

    NASA Astrophysics Data System (ADS)

    Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; Lan, N. Q.

    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here we review the status of the original formulation of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasi-circular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasi-circular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect the emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.

  14. Iron K photons from weakly magnetized neutron stars in X-ray binaries

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1980-01-01

    The emission of iron K photons by the continuum X-ray source and the neutron star surface is considered. It is shown that the continuum sources of X-ray binaries produce negligible amounts of iron K photons because nearly all iron atoms in the continuum source are fully stripped due to the intense X-ray fluxes. In contrast, the atmosphere of the neutron star in an X-ray binary might be an important source of iron K photons (photon energy about 6.5 keV) because it is bombarded by a large number of hard X-rays capable of photo-ejecting K-shell electrons from iron atoms. Information is discussed concerning the magnetic field strength, the gravitational potential at the neutron star surface, and the direction of the magnetic dipole axis which are obtainable from the observations of K photons of the neutron star atmosphere.

  15. High resolution numerical relativity simulations for the merger of binary magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Wada, Tomohide

    2014-08-01

    We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS) formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded by an accretion torus which is strongly magnetized at birth.

  16. Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions

    DOE PAGES

    Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...

    2017-01-09

    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less

  17. Dynamical determination of the innermost stable circular orbit of binary neutron stars.

    PubMed

    Marronetti, Pedro; Duez, Matthew D; Shapiro, Stuart L; Baumgarte, Thomas W

    2004-04-09

    We determine the innermost stable circular orbit (ISCO) of binary neutron stars (BNSs) by performing dynamical simulations in full general relativity. Evolving quasiequilibrium (QE) binaries that begin at different separations, we bracket the location of the ISCO by distinguishing stable circular orbits from unstable plunges. We study Gamma=2 polytropes of varying compactions in both corotational and irrotational equal-mass binaries. For corotational binaries, we find an ISCO orbital angular frequency somewhat smaller than that determined by applying turning-point methods to QE initial data. For the irrotational binaries, the initial data sequences terminate before reaching a turning point, but we find that the ISCO frequency is reached prior to the termination point. Our findings suggest that the ISCO frequency varies with compaction but does not depend strongly on the stellar spin.

  18. Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; de Freitas Pacheco, J. A.

    2006-05-01

    In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027

  19. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the stars' rotation

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Tichy, Wolfgang

    2017-02-01

    We present new (3 +1 )-dimensional numerical relativity simulations of the binary neutron star (BNS) mergers that take into account the NS spins. We consider different spin configurations, aligned or antialigned to the orbital angular momentum, for equal- and unequal-mass BNSs and for two equations of state. All the simulations employ quasiequilibrium circular initial data in the constant rotational velocity approach, i.e. they are consistent with the Einstein equations and in hydrodynamical equilibrium. We study the NS rotation effect on the energetics, the gravitational waves (GWs) and on the possible electromagnetic (EM) emission associated to dynamical mass ejecta. For dimensionless spin magnitudes of χ ˜0.1 we find that both spin-orbit interactions and spin-induced quadrupole deformations affect the late-inspiral merger dynamics. The latter is, however, dominated by finite-size effects. Spin (tidal) effects contribute to GW phase differences up to ˜5 (20) radians accumulated during the last eight orbits to merger. Similarly, after merger the collapse time of the remnant and the GW spectrogram are affected by the NSs rotation. Spin effects in dynamical ejecta are clearly observed in unequal-mass systems in which mass ejection originates from the tidal tail of the companion. Consequently kilonovae and other EM counterparts are affected by spins. We find that spin aligned to the orbital angular momentum leads to brighter EM counterparts than antialigned spin with luminosities up to a factor of 2 higher.

  20. Effects of Hardness of Primordial Binaries on Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Tanikawa, A.; Fukushige, T.

    2008-05-01

    We performed N-body simulations of star clusters with primordial binaries using a new code, GORILLA. It is based on Makino and Aarseth (1992)'s integration scheme on GRAPE, and includes a special treatment for relatively isolated binaries. Using the new code, we investigated effects of hardness of primordial binaries on whole evolution of the clusters. We simulated seven N=16384 equal-mass clusters containing 10% (in mass) primordial binaries whose binding energies are 1, 3, 10, 30, 100, 300, and 1000kT, respectively. Additionally, we also simulated a cluster without primordial binaries and that in which all binaries are replaced by stars with double mass, as references of soft and hard limits, respectively. We found that, in both soft (≤ 3kT) and hard (≥ 1000kT) limits, clusters experiences deep core collapse and shows gravothermal oscillations. On the other hands, in the intermediate hardness (10-300kT), the core collapses halt halfway due an energy releases of the primordial binaries.

  1. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  2. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  3. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  4. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  5. High-velocity stars as a result of encounters between stars and massive binary black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Zhuiko, S. V.; Orlov, V. V.; Shirokova, K. S.

    2017-01-01

    Numerical simulations of the motions of stars in the gravitational fields of binary black holes with various component mass ratios have been carried out. Two models are considered: (1) the two-body problem with two fixed centers; (2) the general three-body problem. The first model is applicable only over short times Δ t ≫ T, where T is the period of the binary system. The second model is applicable at all times except for during close encounters of stars with one of the binary components, r ≤ 0.00002 pc, where r is the distance from the star to the nearer black hole. In very close passages, relativistic corrections must be taken into account. Estimates of the probability of formation of high-velocity stars as a result of such interactions are obtained. It is shown that this mechanism is not suitable for the nucleus of our Galaxy due to the probable absence of a second massive black hole in the central region of the Galaxy.

  6. Wide Binaries among High-Velocity and Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Allen, C.; Herrera, M. A.; Poveda, A.

    1998-11-01

    The properties of old disk and halo binaries are of interest for the understanding of the processes of formation and early dynamical evolution of the Galaxy. The luminosity function of the components of wide binaries and multiples, their mass function, the fraction of halo or old disk stars that are members of wide binaries, and the distribution of their separations are some of the basic properties that are poorly understood, mainly because of the paucity of known wide binaries among halo and old disk stars. The present work is an attempt to ameliorate this situation. We have elaborated a list of 133 wide binaries mostly belonging to the halo or high-velocity disk, by searching for common proper motion companions to the high-velocity and metal-poor stars studied by Schuster and collaborators (1988, 1993). Based on Stromgren photometry, these authors have derived distances, metallicities and ages for their stars. Since each star has a large and well determined proper motion, it was possible to compare this value with that of NLTT stars of its vicinity. In this way we were able to identify over 100 high-velocity and metal-poor common proper motion binary systems. Each system was carefully checked to avoid misidentifications; in most of the cases, distances were improved using the Hipparcos trigonometric parallaxes. We have determined the distribution of angular separations for our wide binaries. Reliable distances are available for all of our systems, so this distribution can be converted into a separation distribution in AU. We find 11 systems that have projected semiaxes in excess of 10000 AU, or 16 systems with expected semiaxes larger than 10000 AU, their existence poses interesting dynamical problems. Since many systems also have known radial velocities, space velocities for them can be determined, and galactic orbits have been computed and characterized. The secondaries of these wide binaries are interesting by themselves, since they represent a sampling of the

  7. The composite-spectrum binary hypothesis does not explain the λ Bootis stars

    NASA Astrophysics Data System (ADS)

    Griffin, R. E.; Gray, R. O.; Corbally, C. J.

    2012-11-01

    The existence of the λ Boo type as a class of chemically-peculiar stars in its own right has taxed numerous researchers, and has challenged spectroscopists to produce a model which is plausible, comprehensive and predictive. Stars which are recognized as members of the λ Boo class have late-B to early-F spectral types, and exhibit (often substantially) low abundances of Fe-peak elements although elements such as C, N, O and S may have more nearly solar abundances. Since less than 2% of objects within the relevant spectral-type domain appear to be λ Boo stars their existence has demanded rather special conditions, and has triggered opinion that this group may not in fact exist but that each case can be explained as an unrecognized binary. In this paper we examine those claims by monitoring 10 stars, listed in the literature as possible λ Boo stars but said to be "likely candidates" for composite-spectrum binaries, by employing high-dispersion spectroscopy in an intermittent observing programme designed to reveal the sort of line-profile changes that should be detectable if each object were really a pair of similar stars in an SB2 system. We also monitor two other stars: HR 7903, said to be a binary (but is more like an Ap star), and λ Boo itself. The sample includes 1 possible, 1 marginal and 4 definite λ Boo classifications. In addition, we derive the physical properties of the 12 stars by photometric and spectroscopic synthesis, and measure their radial velocities. Three of the sample show small line-profile variations, but not of the sort that can be attributed to the presence of a companion star; they are the suspected Ap star HR 7903, HR 6878 (which exhibits spectrum peculiarities very similar to those of HR 7903 but has not previously been classified as Bp or Ap), and λ Aql, whose rapid spectrum variations resemble those observed in spotted or CP stars. None of the stars shows any evidence to suggest that it could be a composite-spectrum binary.

  8. Formation and Evolution of Planets in and Around Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.

    2015-07-01

    The discovery of planets in and around binary stars (also known as circumprimary and circumbinary planets) has opened a new chapter in the studies of the formation and dynamical evolution of planetary systems. Computational simulations indicate that in binaries with separations smaller than ˜50 au, the perturbation of the secondary star can have profound effects on the dynamics of solid bodies around the primary, prohibiting their collisions to result in coalescence and growth to larger objects. However, several circumprimary planets are known to exist in binaries with separations of ˜20 au raising questions about how these planets formed and acquired their final orbital architecture. Also, a survey of the currently known circumbinary planets (CBPs) points to several interesting characteristics of these bodies. The detection of multiple transits in these systems points to the (almost) co-planarity of the planet-binary orbits, giving strong support to the idea that these planets formed in circumbinary protoplanetary disks. The proximity of some of these planets to the boundary of orbital instability around the binary suggests an evolutionary scenario in which planets form at large distances and either migrate to their present orbits, or are scattered to their current locations. Surprisingly, all currently known CBPs are Neptune-sized or smaller, and no CBP seems to exist around very short-period binaries. These specific characteristics of binary-planetary systems have raised many questions regarding the formation, dynamical evolution, and orbital architecture of these objects. I will review the current state of research on the formation of planets in and around binary stars, and discuss the new developments on the understanding of their dynamical evolution.

  9. Investigating the Properties of Low-Mass Stars Using Spectra of Wide Binaries

    NASA Astrophysics Data System (ADS)

    Schluns, Kyle; West, A. A.; Dhital, S.; Massey, A. P.

    2013-01-01

    We present results from a study designed to characterize wide, low-mass (< 0.5 M_Sun) binaries identified in the Sloan Digital Sky Survey (SDSS). We examine the SDSS database level completeness (for identifying visual binaries) and analyze the pairs that both have individual SDSS spectra. A comprehensive by-eye examination reveals that a significant fraction of the sources within 1" of the primary stellar source are misclassified as duplicate detections and, hence, are omitted from the photometric primary catalog in the SDSS database. This discrepancy has a noticeable effect on estimates of the binary fraction, mass function, luminosity function, and other studies that rely on large, photometric samples of low-mass stars. Due to their coeval nature, binaries with at least one low-mass component are important for calibrating the age-activity relation and the relative metallicity scales. Better defined stellar ages and metallicities allow for a proper analysis of stellar and Galactic evolution using ubiquitous low-mass stars. We constructed a spectroscopic sample of wide binaries, for which there is at least one low-mass component and an individual spectrum for each star. Each binary was verified using measurements of their common proper motions and a chance alignment probability calculated from a six-dimensional model of the Milky Way. The orbital separation of the binary components provides an extra age constraint due to mechanisms that destroy wide binaries during thin-disk dynamical heating. We evaluate the behavior of the magnetic activity in coeval systems, with a specific focus on the dependence of activity on orbital separation and location in the Galactic disk. The preliminary results of our analysis will help calibrate the age-activity relation in M dwarfs. In addition, we calibrate the relative metallicity scale for metal poor K and M dwarfs using a modified index based on TiO and CaH molecular band features.

  10. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  11. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    SciTech Connect

    Jiang, Long; Li, Xiang-Dong; Dey, Jishnu; Dey, Mira

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  12. Binaries in Star Clusters: A Photometric Approach with Application to the Hyades

    NASA Astrophysics Data System (ADS)

    El-Bassuny Alawy, A.; et al.

    The incidence and methods of identification of binaries in star clusters have been reviewed. A photometric approach is proposed in which stars are assumed to behave as black bodies and standard stellar multi-band photometric data are employed. The method is applicable to binaries of main sequence components but neither so wide as to be resolved nor very close so that mutual interaction is appreciable. The effects of stellar rotation on the colours were not considered. A theoretical Colour-Magnitude diagram is synthethised as well as tracks of binaries of different components and curves of iso-temperature ratio. The synthetic photometry has been adapted for and combined with photometry of the Hyades cluster to identify the cluster binaries. The agreement between the present results and those found by others is, within the limits of applicability of the method, almost exact. Moreover, it has been feasible to assign the spectral types of the components of a binary seen as a single star. The results obtained and discussions presented show that the approach proposed is, within the assumptions, extremely simple and highly reliable.

  13. A Search for X-ray Emitting Binary Stars in the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Deveny, Sarah; Gallien, Michael; Rickards Vaught, Ryan; Waters, Miranda; Cool, Adrienne; Bellini, Andrea; Anderson, Jay; Henleywillis, Simon; Haggard, Daryl; Heinke, Craig O.

    2016-06-01

    Omega Centauri is one of the most widely studied globular clusters, and is expected to harbor a significant population of binary stars. Binaries play a crucial role in determining the progression of stellar dynamics within globular clusters, and as such are relevant to questions concerning the possible formation of intermediate black holes at their centers. One effective way to identify certain classes of binary systems is to first locate X-ray sources in the cluster and then to search for their optical counterparts. Using Chandra X-ray Observatory's ACIS-I instrument we have identified 275 X-ray sources in and toward Omega Cen, more than 50 of which lie within the cluster's core radius. Here we present a search for the optical counterparts of these core sources using an extensive database of archival Hubble Space Telescope images. Using WFC3/UVIS data from 11 different filters, we construct color-magnitude diagrams that reveal a diverse array of objects, including (in addition to background and foreground objects) cataclysmic variables, coronally active binaries, and, interestingly, stars that lie on Omega Cen's anomalous giant branch. We discuss the significance of these results in the context of studies of the formation and evolution of binary stars in globular clusters.

  14. Chemical abundances of the secondary star in the neutron star X-ray binary Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; González Hernández, J. I.; Israelian, G.; Casares, J.; Rebolo, R.

    2015-03-01

    We present Utrecht Echelle Spectrograph@William Herschel Telescope high-resolution spectra of the low-mass X-ray binary (LMXB) Cygnus X-2. We have derived the stellar parameters of the secondary star using χ2 minimization procedure, and taking into account any possible veiling from the accretion disc. We determine a metallicity higher than solar ([Fe/H] = 0.27 ± 0.19), as seen also in the neutron star X-ray binary Centaurus X-4. The high quality of the secondary's spectrum allow us to determine the chemical abundances of O, Mg, Si, Ca, S, Ti, Fe, and Ni. We found that some α-elements (Mg, Si, S, Ti) are enhanced, consistent with a scenario of contamination of the secondary star during the supernova event. Surprisingly oxygen appears to be underabundant, whereas enhanced abundances of Fe and Ni are measured. Assuming that these abundances come from matter that has been processed in the SN and then captured by the secondary star, we explore different SN explosion scenarios with diverse geometries. A non-spherically symmetric SN explosion, with a low mass cut, seems to reproduce better the observed abundance pattern of the secondary star compared to the spherical case.

  15. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  16. Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During the five-year period, our study of "Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries" has been focused on the following aspects: observations, data analysis, Monte-Carlo simulations, numerical calculations, and theoretical modeling. Most of the results of our study have been published in refereed journals and conference presentations.

  17. Tomographic separation of composite spectra - The components of the O-star spectroscopic binary AO Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Bagnuolo, William G., Jr.; Gies, Douglas R.

    1991-01-01

    The UV photospheric lines of the short-period, double-lined O-star spectroscopic binary AO Cas are analyzed. Archival data from IUE (16 spectra uniformly distributed in orbital phase) were analyzed with a tomography algorithm to produce the separate spectra of the two stars in six spectral regions. The spectral classifications of the primary and secondary, O9.5 III and O8 V, respectively, were estimated through a comparison of UV line ratios with those in spectral standard stars. An intensity ratio of 0.5-0.7 (primary brighter) at 1600 A is compatible with the data.

  18. Gamma-ray bursts as the death throes of massive binary stars

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh; Paczynski, Bohdan; Piran, Tsvi

    1992-01-01

    We propose that gamma-ray bursts are created in the mergers of double neutron star binaries and black hole neutron star binaries at cosmological distances. Two different processes provide the electromagnetic energy for the bursts: neutrino-antineutrino annihilation into electron-position pairs during the merger, and magnetic flares generated by the Parker instability in a postmerger differentially rotating disk. In both cases, an optically thick fireball of size less than or approximately equal to 100 km is initially created, which expands ultrarelativistically to large radii before radiating. The scenario is only qualitative at this time, but it eliminates many previous objections to the cosmological merger model. The strongest bursts should be found close to, but not at the centers of, galaxies at redshifts of order 0.1, and should be accompanied by bursts of gravitational radiation from the spiraling-in binary which could be detected by LIGO.

  19. The spectral classification of chromospherically active binary stars with composite spectra

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Fekel, F. C.

    1990-01-01

    This paper presents and analyzes blue and red-wavelength high-resolution spectra of twelve chromospherically active binary or triple systems with composite spectra. Spectral classifications for the individual stellar components are derived by means of the 'spectrum-synthesis' technique and are compared to stellar evolutionary models and observed masses and/or mass ratios. Also presented is a carefully selected set of MK reference stars of luminosity class III, IV, and V, and spectral type A9-K5, and v sin i less than 10 km/s, to cover the spectral range of the components of chromospherically active binary systems of the RS CVn-type. New values of v sin i are determined for some of the reference and program stars. Two spectroscopic binaries have been discovered.

  20. Gamma-ray bursts as the death throes of massive binary stars

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh; Paczynski, Bohdan; Piran, Tsvi

    1992-01-01

    We propose that gamma-ray bursts are created in the mergers of double neutron star binaries and black hole neutron star binaries at cosmological distances. Two different processes provide the electromagnetic energy for the bursts: neutrino-antineutrino annihilation into electron-position pairs during the merger, and magnetic flares generated by the Parker instability in a postmerger differentially rotating disk. In both cases, an optically thick fireball of size less than or approximately equal to 100 km is initially created, which expands ultrarelativistically to large radii before radiating. The scenario is only qualitative at this time, but it eliminates many previous objections to the cosmological merger model. The strongest bursts should be found close to, but not at the centers of, galaxies at redshifts of order 0.1, and should be accompanied by bursts of gravitational radiation from the spiraling-in binary which could be detected by LIGO.

  1. STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS

    SciTech Connect

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Chen, Bingqiu; Wu, Yue; Hou, Yonghui; Zhang, Yong E-mail: x.liu@pku.edu.cn

    2015-02-01

    We propose a stellar locus outlier (SLOT) method to determine the binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass ratio distributions of binaries and is able to provide model-free estimates of binary fraction for large numbers of stars of different populations in large survey volumes. We have applied the SLOT method to two samples of stars from the Sloan Digital Sky Survey (SDSS) Stripe 82, constructed by combining the recalibrated SDSS photometric data with the spectroscopic information from the SDSS and LAMOST surveys. For the SDSS spectroscopic sample, we find an average binary fraction for field FGK stars of 41% ± 2%. The fractions decrease toward late spectral types and are 44% ± 5%, 43% ± 3%, 35% ± 5%, and 28% ± 6% for stars with g – i colors in the range 0.3-0.6 mag, 0.6-0.9 mag, 0.9-1.2 mag, and 1.2-1.6 mag, respectively. A modest metallicity dependence is also found. The fraction decreases with increasing metallicity. For stars with [Fe/H] between –0.5 and 0.0 dex, –1.0 and –0.5 dex, –1.5 and –1.0 dex, and –2.0 and –1.5 dex, the inferred binary fractions are 37% ± 3%, 39% ± 3%, 50% ± 9%, and 53% ± 20%, respectively. We have further divided the sample into stars from the thin disk, the thick disk, the transition zone between them, and the halo. The results suggest that the Galactic thin and thick disks have comparable binary fractions, whereas the Galactic halo contains a significantly larger fraction of binaries. Applying the method to the LAMOST spectroscopic sample yields consistent results. Finally, other potential applications and future work with the method are discussed.

  2. High Mass X-ray Binaries and Star Clusters in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, Andrea H.; Chandar, R.; Rangelov, B.; Jackson, F.

    2011-09-01

    High Mass X-ray Binaries (HMXB) are formed in copious numbers in starburst galaxies. Is there any relationship between HMXBs and young star clusters? Do HMXBs form preferentially in star clusters? What can star clusters tell us about nearby HMXBs, even if they are not directly related? We have studied a variety of nearby starburst galaxies -- including the Antennae, NGC 4449 (a star-bursting dwarf) and NGC 922 (a collisional ring galaxy). In all these systems, we find evidence that a large fraction of (but not all) HMXBs are spatially coincident with (or very close to) a star cluster. Approximately 50 percent of the clusters hosting bright HMXBs are extremely young -- less than 6 Myr. Stellar evolutionary models predict that all stars with initial masses higher than ≈ 30 M⊙ will have completed their main-sequence lifetime after 6 Myr. While still somewhat uncertain, models predict that stars this massive will end their lives as black holes. We therefore conclude that HMXBs coincident with these very young clusters are most likely black hole binaries. We also find evidence for a population of young (30-50 Myr) and intermediate age X-ray sources (100-300 Myr) that are associated with older clusters. The implications of these results for models of HMXB formation and evolution will be briefly discussed.

  3. MINING PLANET SEARCH DATA FOR BINARY STARS: THE ψ{sup 1} DRACONIS SYSTEM

    SciTech Connect

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-10

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ{sup 1} Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ{sup 1} Draconis C as M{sub 2} = 0.70 ± 0.07M{sub ⊙}, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  4. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2017-07-01

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1-103 ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.

  5. Mining Planet Search Data for Binary Stars: The ψ1 Draconis system

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  6. Characterization of High-Energy Emissions of GKM Stars using Wide Binaries with White Dwarfs

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Garcés, A.; Ribas, I.

    2011-12-01

    The definition of an age calibration for main-sequence late-type stars has multiple applications, e.g., in the fields of galactic evolution, stellar dynamos, theories of angular momentum loss and planetary atmospheres. In the latter, the characterization of the time-evolution of stellar high-energy emissions can help us understand the influence on planetary atmospheres and their potential habitability. A key element for this characterization is a reliable age determination. For this purpose we have studied a sample of late G, K, and M stars. To cover the age window up to 0.7 Gyr we have used stars belonging to open clusters, while for ages above this limit we use wide binaries containing white dwarfs. Since the evolution of white dwarfs can be understood as a cooling process, which is relatively well known at the moment, we can use them as age calibrators. Wide binary members are supposed to have been born simultaneously and with the same chemical composition. Since they are well separated (100-1000 AU aprox.) we can assume that no interaction has occurred between them in the past and they have evolved as single stars. So, from the white dwarf age we can infer the age of the system. We present our current results based in a sample of 30 binaries from the NLTT catalogue comprised by a DA white dwarf (showing only H absorption lines) and a G, K or M star.

  7. NuSTAR observations of black hole binary candidates in the Galactic Center and its environs

    NASA Astrophysics Data System (ADS)

    Hailey, Charles James; Mori, Kaya

    2017-08-01

    The recent discovery of a diffuse, hard X-ray emission in the central 10 pc (Perez et al. 2015) interpreted as magnetic cataclysmic variables (Hailey et al. 2017) leaves open the question of whether a sub-dominant population of sources could exist much closer to the supermassive black hole (SMBH), which NuSTAR could not resolve. Here we report the recent NuSTAR observations of two new transient hard X-ray sources within ~ 1 pc of the Galactic Center, which were discovered by Swift. These sources have no known counterparts at other energies. The spectral properties of these sources rule out NS-HMXBs. Continuous monitoring of the Galactic Center by Swift, combined with the known short (<~ 5 year) recurrence time of neutron star LMXBs, strongly suggest that these new transients are black hole binary candidates (BHC). We will present 3-79 keV NuSTAR spectra of these sources that further support a black hole binary interpretation. These new BHCs, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potential substantive black hole population in the vicinity of the SMBH, and we present an estimate of their numbers, given knowledge of the black hole binary giant outburst recurrence times. We also report recent results from the NuSTAR Galactic Legacy Survey of a larger region, ~ 0.7 square degrees, focusing on the search for more BHCs.

  8. The Life Cycles of Stars: An Information and Activity Booklet, Grades 9-12, 1997-1998. Imagine the Universe! Probing the Structure & Evaluation of the Cosmos.

    ERIC Educational Resources Information Center

    Whitlock, Laura A.; Granger, Kara C.

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for grade 9 through grade 12 classrooms. Background information about star birth and life, black dwarfs, supernovae, white dwarfs, neutron stars, black holes, and the electromagnetic spectrum is included. The seven activities focus on star mass,…

  9. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  10. Separating Binary Stars and Supernova Remnants at Three Sigma

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.

    2002-12-01

    High spatial resolution X-ray observations are revealing a population of point-like nonvariable sources in a host of nearby galaxies. These are normally identified as supernova remnants or X-ray binaries. However, in general these detections do not have enough counts to fully populate a spectrum, leaving identifications extremely speculative. I will present simulated spectra from models and data from well studied Galactic remnants and binary systems in order to demonstrate the uncertainty inherent in identifying sources with only few hundred counts. I will also explore the efficacy of using a hardness ratio to distinguish between source types and the role of optical and radio observations in clearing up ambiguities.

  11. Separating Binary Stars and Supernova Remnants at Three Sigma

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.

    2003-03-01

    High spatial resolution X-ray observations are revealing a population of point-like nonvariable sources in a host of nearby galaxies. These are normally identified as supernova remnants or X-ray binaries. However, in general these detections do not have enough counts to fully populate a spectrum, leaving identifications extremely speculative. I will present simulated spectra from models and data from well studied Galactic remnants and binary systems in order to demonstrate the uncertainty inherent in identifying sources with only few hundred counts. I will also explore the efficacy of using a hardness ratio to distinguish between source types and the role of optical and radio observations in clearing up ambiguities.

  12. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.

  13. The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II

    NASA Astrophysics Data System (ADS)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.; Olszewski, Edward W.; McConnachie, Alan W.; Kirby, Evan N.; Koch, Andreas

    2017-06-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determine that the binary fraction for Leo II ranges from {0.30}-0.10+0.09 to {0.34}-0.11+0.11, depending on the distributions of binary orbital parameters assumed. This value is smaller than what has been found for the solar neighborhood (˜0.4-0.6) but falls within the wide range of values that have been inferred for other dwarf spheroidals (0.14-0.69). The distribution of orbital periods has the greatest impact on the binary fraction results. If the fraction we find in Leo II is present in low-mass ultra-faints, it can artificially inflate the velocity dispersion of those systems and cause them to appear more dark matter rich than in actuality. For a galaxy with an intrinsic dispersion of 1 km s-1 and an observational sample of 100 stars, the dispersion can be increased by a factor of 1.5-2 for Leo II-like binary fractions or by a factor of three for binary fractions on the higher end of what has been seen in other dwarf spheroidals.

  14. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    PubMed

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  15. On the anomaly of Balmer line profiles of A-type stars. Fundamental binary systems

    NASA Astrophysics Data System (ADS)

    Smalley, B.; Gardiner, R. B.; Kupka, F.; Bessell, M. S.

    2002-11-01

    In previous work, Gardiner et al. (\\cite{GKS99}) found evidence for a discrepancy between the Teff obtained from Balmer lines with that from photometry and fundamental values for A-type stars. An investigation into this anomaly is presented using Balmer line profiles of stars in binary system with fundamental values of both Teff and log g. A revision of the fundamental parameters for binary systems given by Smalley & Dworetsky (\\cite{SD95}) is also presented. The Teff obtained by fitting Hα and Hβ line profiles is compared to the fundamental values and those obtained from uvby photometry. We find that the discrepancy found by Gardiner et al. (\\cite{GKS99}) for stars in the range 7000 K <~ Teff <~ 9000 K is no longer evident. Partly based on DENIS data obtained at the European Southern Observatory.

  16. Parameter Estimation of Binary Neutron Stars using an Effective One Body Model including Tidal Interaction

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; O'Shaughnessy, Richard; Bernuzzi, Sebastiano; Lackey, Benjamin

    2016-03-01

    Ground gravitational wave detectors, built to detect perturbations in spacetime, can pick up signals produced by inspiraling binary neutron stars, the remnants of the core collapse of massive stars. A new EOB model (Bernuzzi et al. 2015) simulates the inspiral and merger of binary neutron star systems, including how they are deformed due to tides. We used a Bayesian parameter estimation algorithm to infer how well a plausible gravitational wave detection would allow us to constrain this tidal deformability. We then compared our results to prior investigations (Wade et al. 2014) which employed a post-Newtonian-based approximation for the inspiral. I would like to thank the RIT Department of Physics and Astronomy, and the RIT Center for Computational Relativity and Gravitation.

  17. On the Binary Origin of FS CMa Stars: Young Massive Clusters as Test Beds

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Garcia, M.

    2017-02-01

    FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary origin is yet to be unraveled. Various binary-related hypotheses have been recently proposed, two of them involving a spiral-in evolution of the binary orbit. The latter occurs more often in dense stellar environments, such as young massive clusters (YMCs). Hence, a systematic study of FS CMa stars in YMCs would be crucial to find out how these objects are created. Two FS CMa stars have been confirmed and three candidates have been found in YMCs through a search method based on narrow-band photometry at Paschen-α and the neighboring continuum. We apply this method to archival data from the Paschen-α survey of the Galactic Center region, yielding a new candidate in the Quintuplet cluster. Limitations of this method and other alternatives are briefly discussed.

  18. Hunting for continuous gravitational waves from unknown neutron stars in binary systems in Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    Goetz, Evan; LIGO Scientific Collaboration; Virgo Collaboration

    2017-01-01

    Non-axisymmetric, rapidly rotating neutron stars are predicted to emit quasi-monochromatic gravitational waves. Accretion from a companion star may drive asymmetries of the neutron star causing it to emit gravitational waves, perhaps even after accretion has subsided. Searching for unknown sources in binary systems is a significant computational challenge. In this talk, I will describe a search method, called TwoSpect, that has been developed to search for unknown sources in binary systems; show results from the TwoSpect search of initial LIGO/Virgo data; describe recent improvements to TwoSpect and other semi-coherent methods; and provide an outlook on TwoSpect searches in the advanced detector era.

  19. A Young Eclipsing Binary and Its Luminous Neighbors in the Embedded Star Cluster Sh 2-252E

    NASA Astrophysics Data System (ADS)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  20. Searching Kepler Variable Stars with the Eclipsing Binary Factory Pipeline

    NASA Astrophysics Data System (ADS)

    Parvizi, Mahmoud; Paegert, M.

    2014-01-01

    Repositories of large survey data, such as the Mikulski Archive for Space Telescopes, provide an ideally sized sample from which to identify astrophysically interesting eclipsing binary systems (EBs). However, constraints on the rate of human analysis in solving for the characteristic parameters make mining this data using classical techniques prohibitive. The Kepler data set provides both the high precision simple aperture photometry necessary to detect EBs and a corresponding Kepler Eclipsing Binary Catalog - V3 (KEBC3) of 2,406 EBs in the Kepler filed of view (FoV) as a benchmark. We developed a fully automated end-to-end computational pipeline known as the Eclipsing Binary Factory (EBF) that employs pre-classification data processing modules, a feed-forward single layer perception neural network classifier (NNC), and a subsequent neural network solution estimator (NNSE). This paper focuses on the EBF component modules to include NNC, but excludes the NNSE, as a precursor to a fully automated pipeline that uses solution estimates of characteristic parameters to identify astrophysically interesting EBs. The EBF was found to recover ~94% of KEBC3 EBs contained in the Kepler “Q3” data release where the period is less than thirty days.

  1. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  2. Polarimetric Variations of Binary Stars. V. Pre-Main-Sequence Spectroscopic Binaries Located in Ophiuchus and Scorpius

    NASA Astrophysics Data System (ADS)

    Manset, N.; Bastien, P.

    2003-06-01

    We present polarimetric observations of seven pre-main-sequence (PMS) spectroscopic binaries located in the ρ Ophiuchus and Upper Scorpius star-forming regions (SFRs). The average observed polarizations at 7660 Å are between 0.5% and 3.5%. After estimates of the interstellar polarization are removed, all binaries have an intrinsic polarization above 0.4%, even though most of them do not present other evidences for circumstellar dust. Two binaries, NTTS 162814-2427 and NTTS 162819-2423S, present high levels of intrinsic polarization between 1.5% and 2.1%, in agreement with the fact that other observations (photometry, spectroscopy) indicate the presence of circumstellar dust. Tests reveal that all seven PMS binaries have a statistically variable or possibly variable polarization. Combining these results with our previous sample of binaries located in the Taurus, Auriga, and Orion SFRs, 68% of the binaries have an intrinsic polarization above 0.5%, and 90% of the binaries are polarimetrically variable or possibly variable. NTTS 160814-1857, 162814-2427, and 162819-2423S are clearly polarimetrically variable. The first two also exhibit phase-locked variations over ~10 and ~40 orbits, respectively. Statistically, NTTS 160905-1859 is possibly variable, but it shows periodic variations not detected by the statistical tests; those variations are not phased locked and only present for short intervals of time. The amplitudes of the variations reach a few tenths of a percent, greater than for the previously studied PMS binaries located in the Taurus, Orion, and Auriga SFRs. The high-eccentricity system NTTS 162814-2427 shows single-periodic variations, in agreement with our previous numerical simulations. We compare the observations with some of our numerical simulations and also show that an analysis of the periodic polarimetric variations with the Brown, McLean, & Emslie (BME) formalism to find the orbital inclination is for the moment premature: nonperiodic events

  3. Transformation of a star into a planet in a millisecond pulsar binary.

    PubMed

    Bailes, M; Bates, S D; Bhalerao, V; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Kulkarni, S R; Levin, L; Lyne, A G; Milia, S; Possenti, A; Spitler, L; Stappers, B; van Straten, W

    2011-09-23

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

  4. Effective-one-body waveforms for binary neutron stars using surrogate models

    NASA Astrophysics Data System (ADS)

    Lackey, Benjamin D.; Bernuzzi, Sebastiano; Galley, Chad R.; Meidam, Jeroen; Van Den Broeck, Chris

    2017-05-01

    Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take ≲1 s to evaluate for use in Bayesian parameter estimation codes that perform 1 07- 1 08 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with ℓ=2 , 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10 Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100 M before merger) and 0.043 rad in phase. This leads to typical mismatches of 10-5-10-4 for Advanced LIGO depending on the component masses, with a worst case match of 7 ×10-4 when both stars have masses ≥2 M⊙. The version implemented in the LIGO Algorithm Library takes ˜0.07 s to evaluate for a starting frequency of 30 Hz and ˜0.8 s for a starting frequency of 10 Hz, resulting in a speed-up factor of O (1 03) relative to the original matlab code. This allows parameter estimation codes to run in days to weeks rather than years, and we demonstrate this with a nested sampling run that recovers the masses and tidal parameters of a simulated binary neutron star system.

  5. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  6. THE RADIUS DISCREPANCY IN LOW-MASS STARS: SINGLE VERSUS BINARIES

    SciTech Connect

    Spada, F.; Demarque, P.; Kim, Y.-C.; Sills, A.

    2013-10-20

    A long-standing issue in the theory of low-mass stars is the discrepancy between predicted and observed radii and effective temperatures. In spite of the increasing availability of very precise radius determinations from eclipsing binaries and interferometric measurements of radii of single stars, there is no unanimous consensus on the extent (or even the existence) of the discrepancy and on its connection with other stellar properties (e.g., metallicity, magnetic activity). We investigate the radius discrepancy phenomenon using the best data currently available (accuracy ∼< 5%). We have constructed a grid of stellar models covering the entire range of low-mass stars (0.1-1.25 M{sub ☉}) and various choices of the metallicity and mixing length parameter, α. We used an improved version of the Yale Rotational stellar Evolution Code, implementing surface boundary conditions based on the most up-to-date PHOENIX atmosphere models. Our models are in good agreement with others in the literature and improve and extend the low mass end of the Yale-Yonsei isochrones. Our calculations include rotation-related quantities, such as moments of inertia and convective turnover timescales, useful in studies of magnetic activity and rotational evolution of solar-like stars. Consistent with previous works, we find that both binaries and single stars have radii inflated by about 3% with respect to the theoretical models; among binaries, the components of short orbital period systems are found to be the most deviant. We conclude that both binaries and single stars are comparably affected by the radius discrepancy phenomenon.

  7. Interstellar medium perturbations on transport-dominated debris discs in binary star systems

    NASA Astrophysics Data System (ADS)

    Marzari, F.

    2012-04-01

    I explore the dynamics of small dust particles in transport-dominated circumstellar debris discs in binary star systems. In these tenuous discs the effects of mutual collisions are negligible and their morphology is determined by Poynting-Robertson drag and, possibly, by the strong perturbations induced by the interaction with the interstellar medium (ISM) flux of neutral atoms. The force due to the ISM flux can significantly affect the dynamical behaviour of the dust grains, causing a fast inward drift and a large periodic oscillation of both eccentricity and inclination. If the disc is around a star in a binary system, the gravity of the companion star competes with the ISM force and the dynamics is complex. The balance between the two forces depends strongly on the binary semimajor axis aB and eccentricity eB. In a scenario with an ISM flux similar to that observed in the Solar system neighbourhood, the binary secular perturbations, assuming a mass ratio of 0.5, dominate over the ISM force when aB < 600 au and eB= 0.2. This occurs when the dust disc is generated by a parent body ring encompassed between 50 and 60 aufrom the primary star. For a larger binary eccentricity eB= 0.6, the limit moves to aB < 700 au. Within these values of aB, the time-scale of the binary secular perturbations is much shorter than the period of the ISM-induced orbital variations, and the disc shape and density distribution are dominated by the companion gravity. It appears slightly eccentric and, if the binary is coplanar with the disc, only a limited warping due to the ISM perturbations is observed. In this scenario, the strong ISM perturbations, which may significantly affect debris discs around single stars embedded in strong ISM winds, are almost completely silenced. For larger semimajor axes, the scenario is reversed with the ISM perturbations ruling the dynamics of the dust. The disc develops a large clump oriented at 90° with respect to the direction of the ISM flux and it

  8. Star cluster evolution with primordial binaries. 3: Effect of the Galactic tidal field

    NASA Technical Reports Server (NTRS)

    Mcmillan, Steve; Hut, Piet

    1994-01-01

    We present the results of N-body simulations of tidally limited star clusters with an initial population of 0%-20% binaries. We find that (1) if enough binaries are initially present, the binary fraction may fall to a minimum value, then increase at late times; (2) the cluster evaporation timescale is quite insensitive to the details of the initial binary distribution; (3) the cluster core radius stabilizes at a few percent of the half-mass radius when binaries are present, just as in the case of isolated clusters; and (4) there may be a marked difference between the spatial distribution of low-energy and high-energy binaries as the cluster evolves. Specifically, the spatial distribution of the lower energy systems is often substantially more extended than that of the more tightly bound pairs. At no time are our simulated clusters well described by simple dynamical models that neglect the close coupling between the binding energies and the center-of-mass energies of the binaries they contain.

  9. Star cluster evolution with primordial binaries. 3: Effect of the Galactic tidal field

    NASA Technical Reports Server (NTRS)

    Mcmillan, Steve; Hut, Piet

    1994-01-01

    We present the results of N-body simulations of tidally limited star clusters with an initial population of 0%-20% binaries. We find that (1) if enough binaries are initially present, the binary fraction may fall to a minimum value, then increase at late times; (2) the cluster evaporation timescale is quite insensitive to the details of the initial binary distribution; (3) the cluster core radius stabilizes at a few percent of the half-mass radius when binaries are present, just as in the case of isolated clusters; and (4) there may be a marked difference between the spatial distribution of low-energy and high-energy binaries as the cluster evolves. Specifically, the spatial distribution of the lower energy systems is often substantially more extended than that of the more tightly bound pairs. At no time are our simulated clusters well described by simple dynamical models that neglect the close coupling between the binding energies and the center-of-mass energies of the binaries they contain.

  10. On the formation of low-mass black holes in massive binary stars

    SciTech Connect

    Brown, G.E.; Weingartner, J.C.; Wijers, R.A. |

    1996-05-01

    Recently, Brown & Bethe suggested that most stars with main-sequence mass in the range of {approximately}18{minus}30 {ital M}{sub {circle_dot}} explode, returning matter to the Galaxy, and then go into low-mass ({ge}1.5 {ital M}{sub {circle_dot}}) black holes. Even more massive main-sequence stars would chiefly go into high-mass ({approximately}10 {ital M}{sub {circle_dot}}) black holes. The Brown-Bethe estimates gave {approximately}5{times}10{sup 8} low-mass black holes in the Galaxy. We here address why none of these have been seen, with the possible exception of the compact objects in SN 1987A and 4U 1700-37. Our main point is that the primary star in a binary loses its hydrogen envelope by transfer of matter to the secondary and loss into space, and the resulting {open_quote}{open_quote}naked{close_quote}{close_quote} helium star evolves differently than a helium core, which is at least initially covered by the hydrogen envelope in a massive main-sequence star. We show that primary stars in binaries can end up as neutron stars even if their initial mass substantially exceeds the mass limit for neutron star formation from single stars ({approximately}18 {ital M}{sub {circle_dot}}). An example is 4U 1223{endash}62, in which we suggest that the initial primary mass exceeded 35 {ital M}{sub {circle_dot}}, yet X-ray pulsations show a neutron star to be present. We also discuss some individual systems and argue that 4U 1700{endash}37, the only example of a well-studied high-mass X-ray binary that does not pulse, could well contain a low-mass black hole. The statistical composition of the X-ray binary population is consistent with our scenario, but due to the paucity of systems it is consistent with more traditional models as well. {copyright} {ital 1996 The American Astronomical Society.}

  11. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

  12. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE-NEUTRON-STAR BINARIES

    SciTech Connect

    McWilliams, Sean T.; Levin, Janna

    2011-12-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  13. Learning about Parallax and Proper Motion by Searching for Binary Stars

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Hamper, R.; Morris, F.

    2010-01-01

    A new web-based, instructional module allows students to explore the Hipparcos catalog of stellar parallaxes and proper motions to determine whether close double stars are physical binaries or chance superpositions. Because the Hipparcos catalog spans the entire sky, the module guides students to manageable regions of sky. Students navigate to a constellation and grid within the constellation to search for possible binary stars systems. Students can then compare and assess proper motions, in terms of both speed and direction, as well as the distances of both stars, to determine whether the potential close pairs are true binary systems. Students must recognize that multiple lines of evidence (apparent proximity, similar distances, and similar proper motions) must converge to establish the reality of a binary pair. The module gives undergraduate students an opportunity to experience scientific research and discovery, engaging their critical thinking skills in the scientific process. The new module has been developed as part of a collaborative program between the University of Alaska at Anchorage and Indiana University to develop and study the effectiveness of research-based, educational (RBSE) curricula in astronomy for entry-level undergraduate courses. The program is funded through a CCLI award from the National Science Foundation. Further information and access to the web-based RBSE modules is available at www.astro.indiana.edu/catyp/rbseu.

  14. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    NASA Astrophysics Data System (ADS)

    Patricelli, B.; Razzano, M.; Cella, G.; Fidecaro, F.; Pian, E.; Branchesi, M.; Stamerra, A.

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016-2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ~ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  15. SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY

    SciTech Connect

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Watson, F. G.; Bland-Hawthorn, J.; Parker, Q. A.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Siviero, A.; Navarro, J. F.; Reid, W.; Seabroke, G. M.; Steinmetz, M.; Williams, M.; Wyse, R. F. G.

    2011-06-15

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of {approx}20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s{sup -1}. There are 26 matches between the catalog of spectroscopic binary orbits (S{sub B}{sup 9}) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  16. Single-lined Spectroscopic Binary Star Candidates in the RAVE Survey

    NASA Astrophysics Data System (ADS)

    Matijevič, G.; Zwitter, T.; Bienaymé, O.; Bland-Hawthorn, J.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Wyse, R. F. G.

    2011-06-01

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s-1. There are 26 matches between the catalog of spectroscopic binary orbits (S_{B^9}) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  17. Hot subdwarf stars in close-up view. II. Rotational properties of single and wide binary subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Geier, S.; Heber, U.

    2012-07-01

    Subluminous B stars (sdBs) form the extremely hot end of the horizontal branch and are therefore related to the blue horizontal branch (BHB) stars. While the rotational properties of BHB stars have been investigated extensively, studies of sdB stars have concentrated on close binaries that are influenced by tidal interactions between their components. Here we present a study of 105 sdB stars, which are either single stars or in wide binaries where tidal effects become negligible. The projected rotational velocities have been determined by measuring the broadening of metal lines using high-resolution optical spectra. All stars in our sample are slow rotators (vrotsini < 10 km s-1). Furthermore, the vrotsini-distributions of single sdBs are similar to those of hot subdwarfs in wide binaries with main-sequence companions as well as close binary systems with unseen companions and periods exceeding ≃1.2 d. We show that blue horizontal and extreme horizontal branch stars are also related in terms of surface rotation and angular momentum. Hot BHB stars (Teff > 11 500 K) with diffusion-dominated atmospheres are slow rotators like the hot subdwarf stars located on the extreme horizontal branch, which lost more envelope and therefore angular momentum in the red-giant phase. The uniform rotation distributions of single and wide binary sdBs pose a challenge to our understanding of hot subdwarf formation. Especially the high fraction of helium white dwarf mergers predicted by theory seems to be inconsistent with the results presented here. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes number 165.H-0588(A), 167.D-0407(A), 071.D-0380(A) and 072.D-0487(A). Based on observations at the La Silla Observatory of the European Southern Observatory for programmes number 073.D-0495(A), 074.B-0455(A), 076.D-0355(A), 077.D-0515(A) and 078.D-0098(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at

  18. Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics

    SciTech Connect

    Siegler, N; Close, L; Burgasser, A; Cruz, K; Marois, C; Macintosh, B; Barman, T

    2007-02-02

    We present the discovery of 2MASS J21321145+1341584AB as a closely separated (0.066'') very low-mass field dwarf binary resolved in the near-infrared by the Keck II Telescope using laser guide star adaptive optics. Physical association is deduced from the angular proximity of the components and constraints on their common proper motion. We have obtained a near-infrared spectrum of the binary and find that it is best described by an L5{+-}0.5 primary and an L7.5{+-}0.5 secondary. Model-dependent masses predict that the two components straddle the hydrogen burning limit threshold with the primary likely stellar and the secondary likely substellar. The properties of this sytem - close projected separation (1.8{+-}0.3AU) and near unity mass ratio - are consistent with previous results for very low-mass field binaries. The relatively short estimated orbital period of this system ({approx}7-12 yr) makes it a good target for dynamical mass measurements. Interestingly, the system's angular separation is the tightest yet for any very low-mass binary published from a ground-based telescope and is the tightest binary discovered with laser guide star adaptive optics to date.

  19. Double-lined Spectroscopic Binary Stars in the Radial Velocity Experiment Survey

    NASA Astrophysics Data System (ADS)

    Matijevič, G.; Zwitter, T.; Munari, U.; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Wyse, R. F. G.

    2010-07-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ~80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  20. M-dwarf binaries as tracers of star and brown dwarf formation

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Janson, Markus; Kroupa, Pavel; Leigh, Nathan; Thies, Ingo

    2015-09-01

    The separation distribution for M-dwarf binaries in the AstraLux survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here, a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which `star-like' binaries with late-type primaries (≲1.5 M⊙) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate `BD-like' population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late AstraLux sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-dwarfs in Multiples (MinMS) data. We note that the latter survey is potentially in tension with the early AstraLux data. Concluding, the AstraLux and MinMS data are unable to unambiguously distinguish whether or not BDs are a continuous extension of the stellar IMF. Future observational efforts are needed to fully answer this interesting question. The DPS model predicts that binaries outside the sensitivity range of the AstraLux survey remain to be detected. For application to future data, we present a means to observationally measure the overlap of the putative BD-like branch and the stellar branch. We discuss the meaning of universal star formation and distribution functions.

  1. Spatial Resolution of the Silicate Feature in T Tauri Binary Stars

    NASA Astrophysics Data System (ADS)

    Van Cleve, J. E.; Hayward, T. L.; Houck, J. R.; Miles, J.

    1994-05-01

    We took low resolution spectra from 7.9 to 13.0 microns of the T Tauri binary systems T Tau and Haro 6-10, as well as images of these systems and UY Aur, FV Tau, and FX Tau at 7.9 or 8.8, 10.3, and 12.5 microns, using the Cornell SpectroCam-10 imaging spectrometer on the 5-m Hale telescope. These binaries resemble planetary systems in that the projected separation of the components (100 to 180 AU) is roughly the diameter of our Solar System. For the images, the observed flux distribution along the axis of the binary was deconvolved by the flux distribution perpendicular to that axis. The resulting visibility function was then fitted to a two point-source model to obtain the relative flux of the components. The spectra were deconvolved by calibrator star spectra, and the model was fit to each wavelength of the visibility function spectrum to obtain the relative flux. Images and spectra agree and show that in binaries which contain an infrared companion -- such as T Tau and Haro 6-10 -- the IR companion has a deep silicate absorption feature, while the other component is featureless or shows a weak emission feature. In Haro 6-10, for example, the optical depth of the silicate absorption in the IR companion (Haro 6-10 N) is ~ 1 near its maximum at 9.7 microns. These results suggest that the components (including dust shells or disks around each star) of an IR companion system are not both coplanar and coeval. For a giant planet and a single star, however, we'd expect a circumplanetary disk to lie in the plane of the circumstellar disk, and be about the same age. At least for the IR companion systems, the analogy of binary stars and planetary systems is not a good one in this respect.

  2. The secular effect of gravitational radiation damping on the periastron advance of binary stars in second order perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Lin-Sen

    2017-08-01

    The second order perturbation effect of gravitational radiation damping on the periastron advance of binary stars is studied. The second order analytic solution is obtained based on the first order theory in the 2014 article by Li. Theoretical results show that secular variation exists in the periastron advance of binary stars in the second order theory, but secular variation does not exist in the first order perturbation theory. Numerical results for two compact binary stars (PSR J0737-3039 and M33 X-7) are given, demonstrating the theoretical significance even though the effect is very small.

  3. A binary star fraction of 76 per cent and unusual orbit parameters for the blue stragglers of NGC 188.

    PubMed

    Mathieu, Robert D; Geller, Aaron M

    2009-12-24

    Blue straggler stars lie on or near the main sequences of star clusters (all members of which formed around the same time), but typically are more luminous than the turn-off stars and therefore long ago should have evolved off the main sequence to become giants and white dwarfs. They are thought to derive from normal main-sequence stars that have undergone a recent increase in mass. Statistical evidence indicates that in globular star clusters the blue stragglers probably form from binary stars. The specific formation processes, such as mass transfer, mergers or stellar collisions during dynamical encounters of binary stars, remain unresolved. Here we report that 16 of the 21 blue stragglers (76 per cent) in the old (7-Gyr; ref. 2) open cluster NGC 188 are currently in binary systems, a frequency three times that found among normal solar-type main-sequence stars. These blue straggler binaries have a remarkable period-eccentricity distribution, with all but three having orbital periods of approximately 1,000 days. Moreover, these stars are rotating faster than normal main-sequence stars of the same surface temperatures. These data show that most, and possibly all, blue stragglers derive from multiple-star systems, and indicate that the several formation processes operate simultaneously. We suggest that rapid rotation of blue stragglers may place upper limits on their ages.

  4. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  5. Model for the explosion of a critical-mass neutron star in a binary system

    NASA Astrophysics Data System (ADS)

    Manukovskii, K. V.

    2010-03-01

    A series of numerical models has been constructed for the three-dimensional explosion dynamics of a low-mass neutron star in a binary system that results from the collapse of the rotating iron core of a massive supernova. The numerical solution has been obtained by the particle method with an adaptive time step that allows the computational accuracy to be controlled automatically. The constructed numerical models include the proper motion of the massive component in the binary system of neutron stars, their finite sizes, the graduality of energy release during the explosive disruption of a critical-mass neutron star, and the nonuniform expansion velocity distribution of iron ejecta. The extent to which each of the listed parameters affects the explosion characteristics has been determined. The total explosion energy and the pulsar escape velocity have been estimated. A sizable fraction of the material of the exploded neutron star has been found to remain gravitationally bound to the massive component of the binary system. A further study of its dynamics is of interest in its own right, because the captured material can be considered as an additional source of muon neutrinos.

  6. Precise analysis of two Kepler detached eclipsing binary stars KIC 3327980 and KIC 10156064

    NASA Astrophysics Data System (ADS)

    Aliçavuş, Fahri; Soydugan, Faruk

    2017-02-01

    Stars are one of the most important objects to understand how the galaxies are formed, shaped and evolved. Hence, the determination of the absolute parameters of stars plays a crucial role. The absolute parameters (e.g. mass and radii) of the detached eclipsing binary stars could be determined with well accuracy. These accurate parameters could be used for understanding of the evolutional status of single stars in detailed. In this study, we carried out light curve solutions of two well-detached binaries KIC 3327980 and KIC 10156064 which were observed by Kepler space telescope. As a result, mass and radii of primary and secondary components were derived as M1 = 1.64M⊙, M2 = 1.42M⊙, R1 = 2.08R⊙, R2 = 1.66R⊙ for KIC 3327980 and M1 = 1.67M⊙, M2 = 1.05M⊙, R1 = 1.92R⊙, R2 = 1.06R⊙ for KIC 10156064. Additionally, the evolutionary status of the components of the systems were discussed and compared with the evolutional status of the other detached eclipsing binaries.

  7. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    SciTech Connect

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  8. An Apparent Precessing Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.; Morris, M. R.; Mills, E. A. C.; Ressler, M. E.

    2016-02-01

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (˜180 K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τp ˜ 1.4 × 104 yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  9. Exploring tidal effects of coalescing binary neutron stars in numerical relativity. II. Long-term simulations

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru

    2015-03-01

    We perform new long-term (15-16 orbits) simulations of coalescing binary neutron stars in numerical relativity using an updated Einstein equation solver, employing low-eccentricity initial data, and modeling the neutron stars by a piecewise polytropic equation of state. A convergence study shows that our new results converge more rapidly than the third order, and using the determined convergence order, we construct an extrapolated waveform for which the estimated total phase error should be less than one radian. We then compare the extrapolated waveforms with those calculated by the latest effective-one-body (EOB) formalism in which the so-called tidal deformability, higher post-Newtonian corrections, and gravitational self-force effects are taken into account. We show that for a binary of compact neutron stars with their radius 11.1 km, the waveform by the EOB formalism agrees quite well with the numerical waveform so that the total phase error is smaller than one radian for the total phase of ˜200 radian up to the merger. By contrast, for a binary of less compact neutron stars with their radius 13.6 km, the EOB and numerical waveforms disagree with each other in the last few wave cycles, resulting in the total phase error of approximately three radian.

  10. A LONG-PERIOD TOTALLY ECLIPSING BINARY STAR AT THE TURNOFF OF THE OPEN CLUSTER NGC 6819 DISCOVERED WITH KEPLER

    SciTech Connect

    Sandquist, Eric L.; Orosz, Jerome A.; Jeffries, Mark W. Jr.; Brewer, Lauren N. E-mail: orosz@sciences.sdsu.edu; and others

    2013-01-01

    We present the discovery of the totally eclipsing long-period (P = 771.8 days) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 M {sub Sun }) star. This system was previously known to be a single-lined spectroscopic binary, but the discovery of an eclipse near apastron using data from the Kepler space telescope makes it clear that the system has an inclination that is very close to 90 Degree-Sign . Although the secondary star has not been identified in spectra, the mass of the primary star can be constrained using other eclipsing binaries in the cluster. The combination of the total eclipses and a mass constraint for the primary star allows us to determine a reliable mass for the secondary star and radii for both stars, and to constrain the cluster age. Unlike well-measured stars of similar mass in field binaries, the low-mass secondary is not significantly inflated in radius compared to model predictions. The primary star characteristics, in combination with cluster photometry and masses from other cluster binaries, indicate a best age of 2.62 {+-} 0.25 Gyr, although stellar model physics may introduce systematic uncertainties at the {approx}10% level. We find preliminary evidence that the asteroseismic predictions for red giant masses in this cluster are systematically too high by as much as 8%.

  11. The Chromospheric Activity-Age Relation for M Dwarf Stars in Wide Binary Systems

    NASA Astrophysics Data System (ADS)

    Silvestri, N. M.

    2002-12-01

    We present new chromospheric activity-age relations for M dwarf stars in wide binary systems with white dwarf companions. This study is unique in that we use the cooling age of the white dwarf to determine the age of the M dwarf star in the binary system. Assuming that the members of the gravitationally bound system are coeval, the age of the white dwarf is therefore the age of the M dwarf companion. The colors and magnitudes at which chromospheric activity becomes pervasive (at the ``Hα limit") in M stars have been shown to correlate linearly with log(age) in young (<= 4 Gyr) cluster M dwarfs. We find that M dwarfs in wide binaries older than 4 Gyr depart from this linear relation and are found to have activity at colors and magnitudes both bluer and brighter than predicted by M dwarf cluster relations. Also, activity is present in nearly all cluster M dwarfs above the ``Hα limit", whereas not all binary M dwarfs are found to be active above this limit. These relations differ considerably from the rotationally driven dynamo relation for F, G, and K stars that suggests a different magnetic heating mechanism for M dwarf stars. The new relations extend to ages beyond the oldest ages provided by cluster M dwarf activity-age estimates. However, more work is necessary to decrease the uncertainties in these new relations and extend them to later (>= M5.5) spectral types. This work was supported by the NASA Graduate Researchers Program Grant NGT 200415; A Grant-in-Aid of Research from the National Academy of Sciences administered by Sigma Xi, The Scientific Research Society; NASA Grant Y701296; and NSF Grant AST 0206115.

  12. Cosmological inference using only gravitational wave observations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Li, Tjonnie G. F.; Messenger, Chris

    2017-02-01

    Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such, they can provide a direct measurement of the luminosity distance to a source without the need for a cross-calibrated cosmic distance-scale ladder. In general, however, the corresponding redshift measurement needs to be obtained via electromagnetic observations since it is totally degenerate with the total mass of the system. Nevertheless, Fisher matrix studies have shown that, if information about the equation of state of the neutron stars is available, it is possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational-wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein Telescope is a conceptual study for a third generation gravitational wave detector which is designed to yield 1 03- 1 07 detections of binary neutron star systems per year. This study presents the first Bayesian investigation of the accuracy with which the cosmological parameters can be measured using information coming only from the gravitational wave observations of binary neutron star systems by the Einstein Telescope. We find, by direct simulation of 1 03 detections of binary neutron stars, that, within our simplifying assumptions, H0 , Ωm , ΩΛ , w0 and w1 can be measured at the 95% level with an accuracy of ˜8 % , 65%, 39%, 80% and 90%, respectively. We also find, by extrapolation, that a measurement accuracy comparable with current measurements by Planck is possible if the number of gravitational wave events observed is O (1 06 - 7) . We conclude that, while not competitive with electromagnetic missions in terms of significant digits, gravitational waves alone are capable of providing a

  13. Three methods of determining magnitudes of individual stars in resolved binary systems

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.

    1998-12-01

    The only way to measure the mass of star is by analyzing its orbit with Kepler's laws. Knowing the luminosity of a star in addition to its mass is very useful in theoretical astrophysics. For single stars with known distances, it is straightforward to calculate the luminosity. For binary stars determining the luminosity is often difficult, as most techniques measure the blended light from both and not that of the individual components. Three methods for measuring the differential magnitudes of resolved binary stars are investigated: adaptive optics (AO), aperture masking and bispectrum analysis. Of the three techniques used here adaptive optics performed the best, producing differential magnitudes in Johnson I, R, V and B filters for 36 stars. The observational technique was to take many exposures of the same object in an effort to increase the signal-to-noise ratio. It was discovered that AO frames show frame-to- frame intensity variations. These inter-frame variations. showed up in AO data from both the 1.5-m telescope at the Starfire Optical Range and the 100-inch telescope at Mt. Wilson Observatory. These variations are most likely caused by the failure of the AO system to fully compensate for the atmospheric distortions. Aperture masking consists of dividing the telescope's aperture into several subapertures. The light from each subaperture interferes and creates fringes. The brightness ratio of the binary can be determined from the resulting fringe pattern. The technique was hampered by the Intensified CCD (ICCD) detector used in these experiments and performed rather poorly, producing only one differential magnitude measurement. The main thrust of the bispectrum. technique was to derive differential magnitudes from archival speckle data. The standard bispectrum technique is used to reconstruct images from speckle data, but it requires the observation of calibration stars, which are not needed in the standard speckle method. Instead, the method used here fits

  14. Neutron star high-mass binaries as the origin of SGR/AXP

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2016-03-01

    A close high-mass binary system consisting of a neutron star (NS) and a massive OB supergiant companion is expected to lead to a Thorne-Żytkow object (TZO) structure, which consists of a NS core and a stellar envelope. We use the scenario machine program to calculate the formation tracks of TZOs in close high-mass NS binaries and their subsequent evolution. We propose and demonstrate that the explosion and instant contraction of a TZO structure leave its stellar remnant as a soft gamma-ray repeater and an anomalous X-ray pulsar respectively.

  15. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  16. Numerical calculations of mass transfer flow in semi-detached binary systems. [of stars

    NASA Technical Reports Server (NTRS)

    Edwards, D. A.; Pringle, J. E.

    1987-01-01

    The details of the mass transfer flow near the inner Lagrangian point in a semidetached binary system are numerically calculated. A polytropic equation of state with n = 3/2 is used. The dependence of the mass transfer rate on the degree to which the star overfills its Roche lobe is calculated, and good agreement with previous analytic estimates is found. The variation of mass transfer rate which occurs if the binary system has a small eccentricity is calculated and is used to cast doubt on the model for superhumps in dwarf novae proposed by Papaloizou and Pringle (1979).

  17. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  18. Southern RS CVn systems - Candidate list. [spectral catalog of variable binary stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Stencel, R. E.

    1979-01-01

    A list of 43 candidate RS CVn binary systems in the far southern hemisphere of the sky (south of -40 deg declination) is presented. The candidate systems were selected from the first two volumes of the Michigan Spectral Catalog (1975, 1978), which provides MK classifications for southern HD stars and identifies any unusual characteristics noted for individual stellar spectra. The selection criteria used were: (1) the occurrence of Ca II H and K emission; (2) known or suspected binary nature; (3) regular light variations of zero to one magnitude; and (4) spectral type between F0 and K2 and luminosity less than bright giant (II).

  19. Enhancement of dark matter capture by neutron stars in binary systems.

    PubMed

    Brayeur, Lionel; Tinyakov, Peter

    2012-08-10

    We study the capture of dark matter particles by neutron stars in close binary systems. By performing a direct numerical simulation, we find that there is a sizable amplification of the rate of dark matter capture by each of the companions. In the case of the binary pulsar PSR J1906+0746 with the orbital period of 4 hours the amplification factor is approximately equal to 3.5. This amplification can be attributed to the energy loss by dark matter particles resulting from their gravitational scattering off moving companions.

  20. Southern RS CVn systems - Candidate list. [spectral catalog of variable binary stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Stencel, R. E.

    1979-01-01

    A list of 43 candidate RS CVn binary systems in the far southern hemisphere of the sky (south of -40 deg declination) is presented. The candidate systems were selected from the first two volumes of the Michigan Spectral Catalog (1975, 1978), which provides MK classifications for southern HD stars and identifies any unusual characteristics noted for individual stellar spectra. The selection criteria used were: (1) the occurrence of Ca II H and K emission; (2) known or suspected binary nature; (3) regular light variations of zero to one magnitude; and (4) spectral type between F0 and K2 and luminosity less than bright giant (II).

  1. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  2. Exploring the Tidal Effects of Close Binaries on Be Star Disks

    NASA Astrophysics Data System (ADS)

    Panoglou, D.; Carciofi, A. C.; Okazaki, A.; Rivinius, T.

    2016-11-01

    As the majority of massive stars, Be stars are often members of a binary system. The companion star might be a compact star emitting X-rays, a hot subdwarf O or B star that emits in the UV range or a low-mass main sequence star, which is a case difficult to detect. Whatever the nature of the companion, it interacts in multiple ways with the Be decretion disk: as a source of high energy particles, through radiative interaction, or via tidal interaction. In this work we focus in the study of the tidal effects between the two stars. In the past, a smoothed particle hydrodynamics code has been used to explore the effect of the value of viscosity, assuming that the disk is isothermal and the two stars have co-planar and aligned or slightly misaligned orbits. We are going to use the same smoothed particle hydrodynamics code, in order to explore the evolution of the system more thoroughly, not only expanding to further ranges of the parameter space, but also in the cases of counter-aligned and misaligned orbits. With our simulations we expect to give an insight on the conditions that maximize the tidal interaction, and more specifically the effect of the viscosity parameter, the orbital period, the eccentricity, and the tilt of the stellar rotational axis with respect to the orbital plane.

  3. Dark matter dynamical friction versus gravitational wave emission in the evolution of compact-star binaries

    NASA Astrophysics Data System (ADS)

    Gómez, L. Gabriel; Rueda, J. A.

    2017-09-01

    The measured orbital period decay of relativistic compact-star binaries, with characteristic orbital periods ˜0.1 days , is explained with very high precision by the gravitational wave (GW) emission of an inspiraling binary in a vacuum predicted by general relativity. However, the binary gravitational binding energy is also affected by an usually neglected phenomenon, namely the dark matter dynamical friction (DMDF) produced by the interaction of the binary components with their respective DM gravitational wakes. Therefore, the inclusion of the DMDF might lead to a binary evolution which is different from a purely GW-driven one. The entity of this effect depends on the orbital period and on the local value of the DM density, hence on the position of the binary in the Galaxy. We evaluate the DMDF produced by three different DM profiles: the Navarro-Frenk-White (NFW) profile, the nonsingular-isothermal-sphere (NSIS) and the Ruffini-Argüelles-Rueda (RAR) DM profile based on self-gravitating keV fermions. We first show that indeed, due to their Galactic position, the GW emission dominates over the DMDF in the Neutron star (NS)-NS, NS-(White Dwarf) WD and WD-WD binaries for which measurements of the orbital decay exist. Then, we evaluate the conditions (i.e. orbital period and Galactic location) under which the effect of DMDF on the binary evolution becomes comparable to, or overcomes, the one of the GW emission. We find that, for instance for 1.3 - 0.2 M⊙ NS-WD, 1.3 - 1.3 M⊙ NS-NS, and 0.25 - 0.50 M⊙ WD-WD, located at 0.1 kpc, this occurs at orbital periods around 20-30 days in a NFW profile while, in a RAR profile, it occurs at about 100 days. For closer distances to the Galactic center, the DMDF effect increases and the above critical orbital periods become interestingly shorter. Finally, we also analyze the system parameters (for all the DM profiles) for which DMDF leads to an orbital widening instead of orbital decay. All the above imply that a direct

  4. The Henize sample of S stars --- III. Uncovering the binary intruders

    NASA Astrophysics Data System (ADS)

    Van Eck, S.; Jorissen, A.

    2000-08-01

    The properties of S stars are investigated thanks to a large observing program devoted to the well-defined Henize sample (205 S stars south of δ = -25̂ and brighter than R = 10.5, covering all galactic latitudes), in order to derive the respective properties of the intrinsic S stars (genuine thermally-pulsing AGB stars) and of the extrinsic S stars (post mass-transfer binaries). The stellar sample is first cleaned from a few stars misclassified as S thanks to UBV Geneva photometry and low-resolution spectroscopy. These low-resolution spectra also allow to successfully distinguish subclasses within the S star family. Dedicated Geneva photometry and high-resolution spectroscopy have led to the discovery of two symbiotic S stars. The more stringent difference between extrinsic and intrinsic stars is their technetium content, but several other observational parameters are shown to be efficient to some extent in segregating intrinsic S stars from their extrinsic masqueraders (UBV , JHKL and IRAS photometry, radial-velocity standard deviation, shape of the CORAVEL cross-correlation dip, combination of band strength indices derived from low-resolution spectra). Multivariate classification has been performed on the Henize data sample in order to guarantee a classification as objective as possible and handling at the same time a large number of parameters. The resulting clusters separate efficiently extrinsic and intrinsic S stars, allowing to derive the respective properties of these two distinct stellar classes. The population difference between intrinsic and extrinsic S stars is for the first time clearly demonstrated, since intrinsic S stars are far more concentrated towards the galactic plane than extrinsic S stars (zint = 200 ∓ 100 pc and zext = 600 ∓ 100 pc), and are therefore believed to belong to a younger, more massive population. The frequency of extrinsic and intrinsic S stars in the magnitude-limited Henize sample amounts to 33% and 67%, respectively. In

  5. Explosions triggered by violent binary-star collisions: application to Eta Carinae and other eruptive transients

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2011-08-01

    This paper discusses a scenario where a violent periastron collision of stars in an eccentric binary system induces an eruption or explosion seen as a brief transient source, attributed to luminous blue variables (LBVs), supernova (SN) impostors or other transients. The key ingredient is that an evolved primary increases its photospheric radius on relatively short (year to decade) time-scales, to a point where the radius is comparable to or larger than the periastron separation in an eccentric binary. In such a configuration, a violent and sudden collision would ensue, possibly leading to substantial mass ejection instead of a merger. Sudden energy deposition during the encounter could drive expansion of the optically thick envelope, causing a luminous transient source. Repeated periastral grazings in an eccentric system could quickly escalate to a catastrophic encounter. Outbursts triggered by tidal disturbances or powered by secondary accretion of the primary star's wind have been suggested previously. Instead, this paper proposes a much more violent encounter where the companion star plunges deep inside the photosphere of a bloated primary during periastron, as a result of the primary star increasing its own radius. This is motivated by the case of Eta Carinae, where such a collision must have occurred if conventional estimates of the present-day orbit are correct and where peaks in the light curve coincide with times of periastron. Stellar collisions may explain brief recurring LBV outbursts, such as SN 2000ch and SN 2009ip, and perhaps outbursts from intermediate-mass progenitor stars (i.e. collisions are not necessarily the exclusive domain of very luminous stars), but they cannot explain all non-SN transients. Finally, mass ejections induced repeatedly at periastron cause orbital evolution; this may explain the origin of eccentric Wolf-Rayet binaries such as WR 140.

  6. Star formation history and X-ray binary populations: the case of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Antoniou, V.; Zezas, A.

    2016-06-01

    In this work we investigate the link between high-mass X-ray binaries (HMXBs) and star formation in the Large Magellanic Cloud (LMC), our nearest star-forming galaxy. Using optical photometric data, we identify the most likely counterpart of 44 X-ray sources. Among the 40 HMXBs classified in this work, we find 33 Be/X-ray binaries (Be-XRBs), and 4 supergiant XRBs. Using this census and the published spatially resolved star formation history map of the LMC, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star formation bursts ∼6-25 Myr ago, in contrast to the Small Magellanic Cloud (SMC), for which this population peaks at later ages (∼25-60 Myr ago). We also estimate the HMXB production rate to be equal to one system per ∼43.5× 10-3 M⊙ yr-1 or one system per ∼143M⊙ of stars formed during the associated star formation episode. Therefore, the formation efficiency of HMXBs in the LMC is ∼17 times lower than that in the SMC. We attribute this difference primarily in the different ages and metallicity of the HMXB populations in the two galaxies. We also set limits on the kicks imparted on the neutron star during the supernova explosion. We find that the time elapsed since the supernova kick is ∼3 times shorter in the LMC than the SMC. This in combination with the average offsets of the HMXBs from their nearest star clusters results in ∼4 times faster transverse velocities for HMXBs in the LMC than in the SMC.

  7. A Class Exercise: Studying the Eclipsing Binary Star RZ Cas Through Visual Observations

    NASA Astrophysics Data System (ADS)

    Balonek, T. J.; Davis, S. M.

    2000-05-01

    As part of the sophomore-junior level "Astronomical Techniques" course at Colgate University, students learn just how much science they can do with simple tools: a pair of binoculars, a clock, and pencil and paper. The students study the Algol type visual eclipsing binary star system RZ Cassiopeiae: observing and making a light curve for the primary minimum, determining the time of minimum using several techniques, calculating the binary star system's orbital period, and determining changes in the system's period over a thirty year interval by constructing an O-C curve. Through a series of preparatory exercises, the students learn how to read star maps and use the unaided eye, binoculars and telescopes to locate star fields and make visual magnitude measurements. By making multiple measurements of stars in the field of RZ Cas on several nights, the students determine the accuracy they can achieve in estimating the visual magnitude of a star -- typically 0.2 magnitude. (Some students even accidentally discover that one of the stars in the field is a variable star!) With this experience, the students use binoculars to observe the four hour primary eclipse of RZ Cas (magnitude 6.2 - 7.7), making magnitude measurements every five minutes. A light curve is then plotted. Several methods are used to determine the time of minimum, which is then converted to heliocentric Julian day. Using times of minima determined by former students (and the instructor) in previous years dating from 1968 to the present, the students determine the average period to a tenth of a second second. By constructing an O-C curve from the class's data and that obtained by the AAVSO, changes in the period of RZ Cas are noticeable -- possibly due to mass transfer in the system. It will be interesting for future classes to build on this knowledge using the primitive tools of our not so distant past.

  8. A survey of the Local Group of galaxies for symbiotic binary stars - I. First detection of symbiotic stars in M33

    NASA Astrophysics Data System (ADS)

    Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David

    2017-02-01

    We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.

  9. The impact of non-ideal magnetohydrodynamics on binary star formation

    NASA Astrophysics Data System (ADS)

    Wurster, James; Price, Daniel J.; Bate, Matthew R.

    2017-04-01

    We investigate the effect of non-ideal magnetohydrodynamics (MHD) on the formation of binary stars using a suite of three-dimensional smoothed particle magnetohydrodynamics simulations of the gravitational collapse of 1 M⊙, rotating, perturbed molecular-cloud cores. Alongside the role of Ohmic resistivity, ambipolar diffusion and the Hall effect, we also examine the effects of magnetic field strength, orientation and amplitude of the density perturbation. When modelling sub-critical cores, ideal MHD models do not collapse whereas non-ideal MHD models collapse to form single protostars. In supercritical ideal MHD models, increasing the magnetic field strength or decreasing the initial-density perturbation amplitude decreases the initial binary separation. Strong magnetic fields initially perpendicular to the rotation axis suppress the formation of binaries and yield discs with magnetic fields ∼10 times stronger than if the magnetic field was initially aligned with the rotation axis. When non-ideal MHD is included, the resulting discs are larger and more massive, and the binary forms on a wider orbit. Small differences in the supercritical cores caused by non-ideal MHD effects are amplified by the binary interaction near periastron. Overall, the non-ideal effects have only a small impact on binary formation and early evolution, with the initial conditions playing the dominant role.

  10. Determination of individual temperatures and luminosities in eclipsing binary star systems

    NASA Astrophysics Data System (ADS)

    Campbell, R. M.

    1983-06-01

    The purpose of this project was to determine the temperatures and luminosities of the individual components of eclipsing binary star systems. The information was gained by UBV photometry of a system at total eclipse and at a time outside eclipse. The light at totality is due entirely to the occulting star, and outside eclipse, both stars contribute fully. A method is derived for subtracting out the light of the occulting star to obtain measurements of the occulted. Systems for which a complete solution (temperature and luminosity of both components) was reached include: TU Camelopardi, TW Draconis, AK Herculis, V566 Ophiuchi, W Ursae Majoris, and AG Virginis. Systems observed only during totality, thus solving only the occulting star, include alpha Corona Borealis and AM Leonis. RS Canes Venatici and TZ Bootes were observed only out of eclipse, and must await further study. Once a solution for a system was obtained, it was presented graphically on a Hertzsprung-Russell diagram, and was examined from the viewpoint of binary evolution.

  11. The Size And Shape Of The Mass Transfer Nozzle In Eccentric Interacting Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Mancini, Alyssa; Haggerty, C.; Sepinsky, J.

    2012-01-01

    In order to determine the amount of mass lost from a star which just fills its Roche Lobe, it is imperative to accurately calculate the size of the nozzle -- the area through which the mass flows. This is normally bounded by the equipotential surface where the density of the exponential atmosphere drops by one scale height. When the stars are in an eccentric orbit, Sepinsky et al. (2007) found that the equipotential surfaces defining the peanut-shaped shell ordinarily enclosing the two stars can "open up", no longer enclosing both stars. Furthermore, when attempting to calculate the orbit-variable mass transfer rate for eccentric systems, Haggerty and Sepinsky (2011) discovered that the equipotential surface defining the outer edge of the nozzle may "open up” -- and that this can occur closer to the donor star than its inner Lagrangian point (L1). In such a case, the nozzle is undefined at L1. Here, we develop a method for calculating the effective area of mass transfer by finding the area of the rings bounded at small radii by the Roche Lobe of the donor and at large radii by the equipotential surface. We calculate the area of the ring and its proximity to the L1 point as a function of eccentricity and the binary parameters. We then compare the mass transfer rate calculated for this area to other recent calculations of the mass transfer rate in eccentric binaries.

  12. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  13. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  14. The massive binary companion star to the progenitor of supernova 1993J.

    PubMed

    Maund, Justyn R; Smartt, Stephen J; Kudritzki, Rolf P; Podsiadlowski, Philipp; Gilmore, Gerard F

    2004-01-08

    The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib. The spectral and photometric peculiarities were best explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion, producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.

  15. VizieR Online Data Catalog: 1992-1997 binary star speckle measurements (Balega+, 1999)

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Shkhagosheva, Z. U.; Vasyuk, V. A.

    2000-11-01

    We present the results of speckle interferometric measurements of binary stars made with the television photon-counting camera at the 6-m Big Azimuthal Telescope (BTA) and 1-m telescope of the Special Astrophysical Observatory (SAO) between August 1992 and May 1997. The data contain 89 observations of 62 star systems on the large telescope and 21 on the smaller one. For the 6-m aperture 18 systems remained unresolved. The measured angular separation ranged from 39 mas, two times above the BTA diffraction limit, to 1593 mas. (3 data files).

  16. Accurate Parameters for the Most Massive Stars in the Local Universe: the Brightest Eclipsing Binaries in M33

    NASA Astrophysics Data System (ADS)

    Prieto, José L.; Bonanos, Alceste; Stanek, Krzysztof

    2007-08-01

    Eclipsing binaries are the only systems that provide accurate fundamental parameters of distant stars. Currently, only a handful of accurate measurements of stars with masses between 40-80 Msun have been made. We propose to make accurate measurements of the masses, radii and luminosities of the most massive eclipsing binaries in M33. The results of this study will provide much needed constraints on theories that model the formation and evolution of massive stars and binary systems. Furthermore, it will provide vital statistics on the occurrence of massive binary twins, like the 80+80 solar masses WR 20a system and the 30+30 solar masses detached eclipsing binary in M33.

  17. The Algol-like binary TT Hydrae - The stars, circumstellar matter, and superionized plasma

    NASA Technical Reports Server (NTRS)

    Plavec, Mirek J.

    1988-01-01

    This paper reports on superionized UV emission lines discovered in TT Hydrae (HD 97528), a semidetached eclipsing binary system in the Southern-Hemisphere sky. The list of emission lines observed is typical for interacting nondegenerate binaries of the Algol type, but with system-specific relative-intensity characteristics. The primary component of the system is a B9.5 V main-sequence star with effective temperature of 9800 K. Its mass equals 2.25 solar masses; the radius is 1.9 solar radii; and surface gravity log g equals 4.23. The secondary star has a mass of 0.41 solar mass and fills its critical Roche lobe. Evidence obtained on mass interaction supports the conclusion that HD 97528 is a normal semidetached system.

  18. Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds.

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K

    2007-11-20

    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.

  19. Binary stars observed with adaptive optics at the starfire optical range

    SciTech Connect

    Drummond, Jack D.

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  20. Speckle Interferometry and Speckle Photometry of Binary Stars at Telescopes of Observatorio Astronomico Nacional

    NASA Astrophysics Data System (ADS)

    Orlov, V.

    The Observatorio Astronomico Nacional (OAN) is a facility of the Instituto de Astronomía of the Universidad Nacional Autónoma de México (IA-UNAM). There are two astronomical sites where the four telescopes are mounted: one site is located at San Pedro Mártir (OAN-SPM), Baja California, and the second one at Tonantzintla (OAN-T), near Puebla, Mexico. These telescopes can be effectively used for speckle interferometric and for speckle photometric measurements of binary and multiple stars with the Rayleigh resolution limit R = 1.22 λ/D. Regular speckle interferometric measurements of binary stars have been made with telescopes of the OAN since 2008. In 2011 we start speckle photometric measurements in three colors (V,R,I). In 2012 two more spectral bands (U,B) were added.

  1. Radio Emission from Binary Stars in the AB Doradus Moving Group

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.

    2016-01-01

    Precise determination of dynamical masses of pre-main-sequence stars is essential for calibrating stellar evolution models, that are widely used to derive theoretical masses of young low-mass objects. We have determined the individual masses of the pair AB Dor Ba/Bb using Australian Long Baseline Array observations and archive infrared data, as part of a larger program directed to monitor binary systems in the AB Doradus moving group. We have detected, for the first time, compact radio emission from both stars. This has allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28+/-0.05 M⊙ and 0.25+/-0.05 M⊙. Comparisons of the dynamical masses with the prediction of pre-main-sequence (PMS) evolutionary models show that the models underpredict the dynamical masses of the binary components Ba and Bb by 10-30% and 10-40%, respectively.

  2. A search for spectroscopic binaries among the runaway O type stars

    NASA Technical Reports Server (NTRS)

    Stone, R. C.

    1982-01-01

    Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.

  3. A three-dimensional orbit for the binary star Alpha Andromedae

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    2017-01-01

    Stars that are both spectroscopic and optical binaries present a means to determine simultaneously the masses of the components and the distance of the system independent of trigonometric parallax. Alpha Andromedae (Alpheratz) represents such a system and, moreover, the primary is the brightest of the mercury-manganese stars. An orbit, based on 42 interferometric observations and 378 radial velocities, is calculated to solve for 10 parameters: the six coefficients of the apparent ellipse, the constant of areal velocity, the systemic velocity, and the semi-amplitudes. From these, one calculates the orbit of the binary, its period and time of periastron passage, the masses of the components, and the distance of the system. The dynamical parallax does not differ greatly from the trigonometric parallax found from Hipparcos.

  4. Measurements of 208 Aitken Visual Binary Stars with a 280 mm Reflector

    NASA Astrophysics Data System (ADS)

    Serot, J.

    2017-07-01

    This paper presents the measurements of 208 visual binary stars discovered by R.G. Aitken and listed in the WDS catalog. These measurements were obtained between November 2016 and January 2017 with an 11" reflector telescope and an ASI 290MM CMOS-based camera. Binaries with a secondary component up to magnitude 15 and separation between 0.6 and 5 arcsec have been measured. Measurements were carried out on auto-correlograms computed on sequences of a thousand images. This approach allowed us to obtain reliable measurements for pairs with very large difference of magnitude (up to 6). A significant part of the observed pairs had not been observed in the previous decades and show significant movement compared to their last measurement. We also report the discovery of a yet unobserved component for the star A 2455 (WDS 06426+1937).

  5. Determining the Separation and Position Angles of Orbiting Binary Stars: Comparison of Three Methods

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Boule, Cory; Andrews, Katelyn; Penfield, Andrew; Ross, Ian; Lucas, Gaylon; Braught, Trisha; Harfenist, Steven; Goodale, Keith

    2015-07-01

    To initiate a long term binary star research program, undergraduate students compared the accuracy and ease of measuring the separations and position angles of three long period binary pairs using three different measurement techniques. It was found that digital image capture using BackyardEOS software and subsequent analysis in Adobe Photoshop was the most accurate and easiest to use of our three methods. The systems WDS J17419+7209 (STF 2241AB), WDS 19418+5032 (STFA 46AB), and WDS 16362+5255 (STF 2087AB) were found to have separations and position angles of: 30", 16°; 39.7", 133°; and 3.1", 104°, respectively. This method produced separation values within 1.3" and position angle values within 1.3° of the most recently observed values found in the Washington Double Star Catalog.

  6. Flare Activity and Polarization States of White Dwarfs in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Boneva, D.; Filipov, L.

    2017-03-01

    We investigate flare activity and emission properties of white dwarf binary stars. We apply the polarization as a mechanism to probe the flares and the released resulting radiation. The polarization could appear as patterns in these cases, as it depends mainly on the properties of radiation and geometry of the source. The observational data of MV Lyr and CH Cyg are analysed. A repeated variability in the brightness could affect the degree of polarization. Detectable variations in the polarization parameters of selected binaries for the flares activity period are shown in the result. The analysis may help us to establish more evidence of the close correlation between flares, flow structure transformation around the primary star and polarization parameter variability.

  7. The near-contact binary star RZ Dra revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Zola, S.; Winiarski, M.

    2011-01-01

    This paper presents the absolute parameters of RZ Dra. New CCD observations were made at the Mt. Suhora Observatory in 2007. Two photometric data sets (1990 BV and 2007 BVRI) were analysed using modern light-curve synthesis methods. Large asymmetries in the light curves may be explained in terms of a dark starspot on the primary component, an A6 type star. Due to this magnetic activity, the primary component would appear to belong to the class of Ap-stars and would show small amplitude with δ Scuti-type pulsations. With this in mind, a time-series analysis of the residual light curves was made. However, we found no evidence of pulsation behaviour in RZ Dra. Combining the solutions of our light curves and Rucinski et al. (2000)'s radial velocity curves, the following absolute parameters of the components were determined: M1 = 1.63 ± 0.03 M ⊙, M2 = 0.70 ± 0.02 M ⊙, R1 = 1.65 ± 0.02R ⊙, R2 = 1.15 ± 0.02 R ⊙, L1 = 9.72 ± 0.30 L ⊙ and L2 = 0.74 ± 0.10 L ⊙. The distance to RZ Dra was calculated as 400 ± 25 pc, taking into account interstellar extinction. The orbital period of the system was studied using updated O- C information. It was found that the orbital period varied in its long-period sinusoidal form, superimposed on a downward parabola. The parabolic term shows a secular period decrease at a slow rate of 0.06 ± 0.02 s per century and is explained by the mass loss via magnetized wind of the Ap-star primary. The tilted sinusoidal form of the period variation may be considered as an apparent change and may be interpreted in terms of the light-time effect due to the presence of a third body.

  8. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  9. Tidal evolution of close binary stars. I - Revisiting the theory of the equilibrium tide

    NASA Technical Reports Server (NTRS)

    Zahn, J.-P.

    1989-01-01

    The theory of the equilibrium tide in stars that possess a convective envelope is reexamined critically, taking recent developments into account and treating thermal convection in the most consistent way within the mixing-length approach. The weak points are identified and discussed, in particular, the reduction of the turbulent viscosity when the tidal period becomes shorter than the convective turnover time. An improved version is derived for the secular equations governing the dynamical evolution of close binaries of such type.

  10. Precision Narrow-Angle Astrometry of Binary Stars with the Navy Prototype Optical Interferometer

    DTIC Science & Technology

    2004-01-01

    precision into accuracy. Keywords: Optical interferometry, interferometric imaging, NPOI, binary stars, extrasolar planets 1. MOTIVATION As Michelson realized...interferometry, are equivalent to using ≈ 0.5(d/r0)2 baselines, where d is the telescope diameter and r0 is the Fried parameter. Extrasolar planet searches of...Dubarry Ave., Lanham, MD 20706, USA; ABSTRACT The Navy Prototype Optical Interferometry (NPOI) group has started an astrometric search for planets in

  11. Effects of Hardness of Primordial Binaries on the Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Fukushige, Toshiyuki

    2009-08-01

    We have investigated the effects of the hardness of primordial binaries on the whole evolution of star clusters by means of N-body simulations. Using a newly developed code, GORILLA, we simulated eleven N = 16384 clusters with primordial binaries whose binding energies are equal in each cluster in the range of 1--300kT0, where 1.5kT0 is the average stellar kinetic energy at the initial time. We found that, in both the soft (≤3kT0) and hard (≥300kT0) limits, clusters experience deep core collapse. For intermediate hardness (10--100kT0), the core collapses halt halfway due to an energy releases of the primordial binaries. The core radii at the halt can be explained by their energy budget.

  12. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  13. Binary Black Holes in Dense Star Clusters: Exploring the Theoretical Uncertainties

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2017-01-01

    Recent N-body simulations predict that large numbers of stellar black holes (BHs) could at present remain bound to globular clusters (GCs), and merging BH–BH binaries are produced dynamically in significant numbers. We systematically vary “standard” assumptions made by numerical simulations related to, e.g., BH formation, stellar winds, binary properties of high-mass stars, and IMF within existing uncertainties, and study the effects on the evolution of the structural properties of GCs, and the BHs in GCs. We find that variations in initial assumptions can set otherwise identical initial clusters on completely different evolutionary paths, significantly affecting their present observable properties, or even affecting the cluster’s very survival to the present. However, these changes usually do not affect the numbers or properties of local BH–BH mergers. The only exception is that variations in the assumed winds and IMF can change the masses and numbers of local BH–BH mergers, respectively. All other variations (e.g., in initial binary properties and binary fraction) leave the masses and numbers of locally merging BH–BH binaries largely unchanged. This is in contrast to binary population synthesis models for the field, where results are very sensitive to many uncertain parameters in the initial binary properties and binary stellar-evolution physics. Weak winds are required for producing GW150914-like mergers from GCs at low redshifts. LVT151012 can be produced in GCs modeled both with strong and weak winds. GW151226 is lower-mass than typical mergers from GCs modeled with weak winds, but is similar to mergers from GCs modeled with strong winds.

  14. The Masses of the B Stars in the High Galactic Latitude Eclipsing Binary IT Librae

    NASA Astrophysics Data System (ADS)

    Martin, John C.

    2003-01-01

    A number of blue stars that appear to be similar to Population I B stars in the star-forming regions of the Galactic disk are found more than 1 kpc from the Galactic plane. Uncertainties about the true distances and masses of these high-latitude B stars have fueled a debate as to their origin and evolutionary status. The eclipsing binary IT Lib is composed of two B stars, is approximately 1 kpc above the Galactic plane, and is moving back toward the plane. Observations of the light and velocity curves presented here lead to the conclusion that the B stars in this system are massive young main-sequence stars. While there are several possible explanations, it appears most plausible that the IT Lib system formed in the disk about 30 million years ago and was ejected on a trajectory taking it to its present position. Based on observations made at the 2.1 m Otto Struve Telescope of McDonald Observatory operated by the University of Texas at Austin and also at the 2.1 m telescope at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  15. Absolute Properties of the Upper Main-Sequence Eclipsing Binary Star MU Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Lacy, Claud H. Sandberg; Claret, Antonio; Sabby, Jeffrey A.

    2004-10-01

    We present 6151 differential observations in the V filter measured by a robotic telescope, as well as 29 pairs of radial velocities from high-resolution spectroscopic observations, of the detached, EA-type, 9.65 day period double-lined eclipsing binary star MU Cas. Absolute dimensions of the components are determined with good precision (better than 2% in the masses and radii) for the purpose of testing various aspects of theoretical modeling. We obtain 4.57+/-0.09 Msolar and 3.67+/-0.04 Rsolar for the hotter, but smaller, less massive and less luminous photometric primary (star A), and 4.66+/-0.10 Msolar and 4.19+/-0.05 Rsolar for the cooler, larger, more massive and more luminous photometric secondary (star B). The effective temperatures and interstellar reddening of the stars are accurately determined from uvbyβ photometry: 15,100+/-500 K for the primary, 14,750+/-500 K for the secondary-corresponding to spectral types of B5 and B5-and 0.356 mag for Eb-y. The stars are located at a distance of about 1.7 kpc near the plane of the Galactic disk. The orbits of the stars are eccentric, and spectral line widths give observed rotational velocities that are synchronous with the mean orbital motion for both components. The components of MU Cas are upper main-sequence stars with an age of about 65 Myr according to models.

  16. Interacting Binary Star Research at the Kutztown University Observatory

    NASA Astrophysics Data System (ADS)

    Reed, Phillip A.

    2012-05-01

    The Kutztown University Observatory (KUO) is undergoing a transformation as is being used, once again, for quality photometric research. Built in 1968, KUO originally housed a 0.46-meter modified Cassegrain optical telescope, manufactured by Tinsley Laboratories and equipped with an EMI 6256 SA photomultiplier and a strip-chart recorder. This equipment produced professional results throughout the 1970s and 1980s. In 2010, KUO added a research-grade CCD camera (3072 x 2048, 9-micron pixels) and UBVRI filters for use with the Tinsley telescope. Discussed here are several projects, ranging from the photoelectric work done in the 1970s to the new CCD light curves for the interacting Algol-type binaries Y Piscium, BO Monocerotis, and RW Geminorum. The latter works represent some of the first CCD investigations at KUO, but they also represent the last research using the aged Tinsley instrument. In 2012, KUO is replacing the original telescope with a new 0.61-meter Ritchey-Cretein optical telescope and is renewing and expanding its capabilities in photometric research.

  17. Photometric Modelling of Close Binary Star CN And

    NASA Astrophysics Data System (ADS)

    Jassur, D. M. Z.; Khodadadi, A.

    2006-03-01

    The results of two color photometry of active close binary CN And are presented and analyzed. The light curves of the system are obviously asymmetric, with the primary maximum brighter than the sec-ondary maximum, which is known as the O'Conell effect. The most plau-sible explanation of the asymmetry is expected to be due to spot activity of the primary component. For the determination of physical and geometrical parameters, the most new version of W--D code was used, but the presence of asymmetry prevented the convergence of the method when the whole light curves were used. The solutions were obtained by applying mode 3 of W--D code to the first half of the light curves, assuming synchronous rota-tion and zero eccentricity. Absolute parameters of the system were obtained from combining the photometric solution with spectroscopic data obtained from radial velocity curve analysis. The results indicate the poor thermal contact of the components and transit primary minimum. Finally the O--C diagram was analyzed. It was found that the orbital period of the system is changing with a rate of dP/dt =-2 2 6-10??? 10 which corresponds to mass transfer from more massive component to less massive with the rate of dM/dt ?4 82-10??? 8 M sun year.

  18. Timing of Eclipses of Binary Stars from the ASAS Catalog

    NASA Astrophysics Data System (ADS)

    Kozlowski, S. K.; Konacki, M.; Sybilski, P.

    2011-09-01

    Light was thought of as something infinite and transcendent till 1676 when Olaus Roemer carried out precise measurements of the times of eclipses of Jovian moons. Roemer's scrupulous observations led him to a qualitative conclusion that light travels at a finite speed, at the same time providing scientists with the basics of the Light-Time Effect (LTE). LTE is observed whenever the distance between the observer and any kind of periodic event changes in time. The usual cause of this distance change is the reflex motion about the system's barycenter due to the gravitational influence of one or more additional bodies. We present results of the analysis of 5032 eclipsing contact and detached binaries from the All Sky Automated Survey (ASAS) catalogue for variations in the times of eclipses. We use an approach known from the radio pulsar timing where a template radio pulse of a pulsar is used as a reference to measure the times of arrivals of the collected pulses. Most of the variations we detect in O--Cs correspond to a linear period change, but three show evidence of more than one complete LTE-orbit. For these objects we present preliminary orbital solutions. Our results demonstrate that the timing analysis employed in radio pulsar timing can be effectively used to study large data sets from photometric surveys. This is the prelude to the analysis of data gathered by the Solaris Project which aims at the search for circumbinary planets.

  19. The triple binary star EQ Tau with an active component

    SciTech Connect

    Li, K.; Hu, S.-M.; Qian, S.-B.; He, J.-J. E-mail: likai@ynao.ac.cn

    2014-05-01

    New photometric data of EQ Tau observed in 2010 and 2013 are presented. Light curves obtained in 2000 and 2004 by Yuan and Qian and 2001 by Yang and Liu, together with our two newly determined sets of light curves, were analyzed using the Wilson-Devinney code. The five sets of light curves exhibit very obvious variations, implying that the light curves of EQ Tau show a strong O'Connell effect. We found that EQ Tau is an A-type shallow contact binary with a contact degree of f = 11.8%; variable dark spots on the primary component of EQ Tau were also observed. Using 10 new times of minimum light, together with those collected from the literature, the orbital period change of EQ Tau was analyzed. We found that its orbital period includes a secular decrease (dP/dt = –3.63 × 10{sup –8} days yr{sup –1}) and a cyclic oscillation (A {sub 3} = 0.0058 days and P {sub 3} = 22.7 yr). The secular increase of the period can be explained by mass transfer from the more massive component to the less massive one or/and angular momentum loss due to a magnetic stellar wind. The Applegate mechanism cannot explain the cyclic orbital period change. A probable transit-like event was observed in 2010. Therefore, the cyclic orbital period change of EQ Tau may be due to the light time effect of a third body.

  20. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  1. Greatly Enhanced Merger Rates of Compact-object Binaries in Non-spherical Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Petrovich, Cristobal; Antonini, Fabio

    2017-09-01

    The Milky Way and a significant fraction of galaxies are observed to host a central massive black hole (MBH) embedded in a non-spherical nuclear star cluster. We study the secular orbital evolution of compact-object binaries in these environments and characterize the excitation of extremely large eccentricities that can lead to mergers by gravitational radiation. We find that the eccentricity excitation occurs most efficiently when the nodal precession timescale of the binary’s orbit around the MBH due to the non-spherical cluster becomes comparable (within a factor of ∼10) to the timescale on which the binary is torqued by the MBH due to the Lidov–Kozai (LK) mechanism. We show that in this regime the perturbations due to the cluster increase the fraction of systems that reach extreme eccentricities (1{--}e∼ {10}-4{--}{10}-6) by a factor of ∼10–100 compared to the idealized case of a spherical cluster, increasing the merger rates of compact objects by a similar factor. We identify two main channels that lead to this extreme eccentricity excitation: (i) chaotic diffusion of the eccentricities due to resonance overlap; (ii) cluster-driven variations of the mutual inclinations between the binary orbit and its center-of-mass orbit around the MBH, which can intensify the LK oscillations. We estimate that our mechanism can produce BH–BH and BH–neutron star binary merger rates of up to ≈ 15 {{Gpc}}-3 {{yr}}-1 and ≈ 0.4 {{Gpc}}-3 {{yr}}-1, respectively. Thus, we propose the cluster-enhanced LK mechanism as a new channel for the merger of compact-object binaries, competing with scenarios that invoke isolated binary evolution or dynamical formation in globular clusters.

  2. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger.

    PubMed

    Bernuzzi, Sebastiano; Nagar, Alessandro; Dietrich, Tim; Damour, Thibault

    2015-04-24

    The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to the merger. Our effective-one-body model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multiorbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semianalytical model that captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

  3. A New Method Based on Artificial Neural Network Techniques for Determining the Fraction of Binaries in Star Clusters

    NASA Astrophysics Data System (ADS)

    Serra-Ricart, Miquel; Aparicio, Antonio; Garrido, Lluis; Gaitan, Vicens

    1996-05-01

    We present a new method based on artificial neural networks techniques aimed at determining the fraction of binary systems populating star clusters. We address the problem from a statistical point of view, avoiding the important biases induced by individual binary identification. The idea is to evaluate the percentage of binaries by comparing the distribution of main-sequence stars along the cluster's H-R diagram with the corresponding distribution in a set of synthetic H-R diagrams, in which the percentage of binaries has been changed, and applying the χ2 minimization method. The χ2 test is performed using a novel artificial neural network technique published by Garrido, Gaitan, & Serra-Ricart in 1994, which transforms a complicated test in the multidimensional input space to a simple test in a one-dimensional space without losing sensitivity. In this paper, the reliability of the method is analyzed. To this end, observational data were substituted by a sample of synthetic data for which the correct values of model parameters are known in advance. The good behavior of the results presented here suggests that the frequency of binary stars in clusters can be calculated to a precision of about 10% for a typical cluster of a few hundred stars with a relatively large percentage of binaries (around 40%). Therefore, the application of this method to the analysis of real clusters promises to yield accurate information on their global binary star content.

  4. The donor star winds in High-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2014-10-01

    High-mass X-ray binaries (HMXBs) are essential astrophysical laboratories. These objects represent an advanced stage in the evolution of massive binary systems, after the initially more massive star has already collapsed in a supernova explosion, but its remnant, a neutron star or black hole, remains gravitationally bound. The stellar wind from the OB-type donor is partially accreted onto its compact companion powering its relatively high X-ray luminosity. Since HMXBs accrete from the stellar wind, parameters such as the donor's mass-loss rate, the velocity of the wind, and its clumpiness are of fundamental importance.This proposal takes advantage of the unique capabilities of HST/STIS for UV spectroscopy. We focus on the most populous in the Galaxy class of those HMXBs where the stellar wind of the OB donor is directly accreted onto a neutron star. Recently, a new sub-class of HMXBs - "supergiant fast X-ray transients" - was discovered. It has been proposed that these enigmatic objects can be explained by the specific properties of their donor-star winds. The only way to validate or disprove this hypothesis is by a studying the wind diagnostics lines in the UV spectra of donor stars. The observations proposed here will, for the first time, provide the UV spectra of this important new type of accreting binaries. Our state-of-the art non-LTE expanding stellar atmospheres and 3-D stellar wind simulations allow thorough exploitation of the STIS spectra. As a result we will obtain the wind parameters for a representative sample of six Galactic HMXBs, thus heightening our knowledge thereof considerably.

  5. Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Sekiguchi, Yu-ichiro; Shibata, Masaru

    2016-03-01

    Combining new gravitational waveforms derived by long-term (14 to 16 orbit) numerical-relativity simulations with waveforms by an effective-one-body (EOB) formalism for coalescing binary neutron stars, we construct hybrid waveforms and estimate the measurability for the dimensionless tidal deformability of the neutron stars, Λ , by advanced gravitational-wave detectors. We focus on the equal-mass case with the total mass 2.7 M⊙. We find that for an event at a hypothetical effective distance of Deff=200 Mpc , the distinguishable difference in the dimensionless tidal deformability will be ≈100 , 400, and 800 at 1 σ , 2 σ , and 3 σ levels, respectively, for Advanced LIGO. If the true equation of state is stiff and the typical neutron-star radius is R ≳13 km , our analysis suggests that the radius will be constrained within ≈1 km at 2 σ level for an event at Deff=200 Mpc . On the other hand, if the true equation of state is soft and the typical neutron-star radius is R ≲12 km , it will be difficult to narrow down the equation of state among many soft ones, although it is still possible to discriminate the true one from stiff equations of state with R ≳13 km . We also find that gravitational waves from binary neutron stars will be distinguished from those from spinless binary black holes at more than 2 σ level for an event at Deff=200 Mpc . The validity of the EOB formalism, Taylor-T4, and Taylor-F2 approximants as the inspiral waveform model is also examined.

  6. CCD photometry in the globular cluster NGC 288. I - Blue stragglers and main-sequence binary stars

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1992-01-01

    Photometry based on a mosaic of CCD images in B and V is presented for the globular cluster NGC 288. The spatial coverage ranges from the cluster core to about 6 core radii, and stars have been measured over the absolute visual magnitude range -1.2 to 8.4. The cluster is shown to contain a significant number of blue straggler stars in the central regions, and there is an excess of objects brighter and redder than the single-star main-sequence in the color-magnitude plane. These objects are interpreted as a population of main-sequence binary stars. With this interpretation, the explicity measured fraction of binary stars is 10 percent, which sets a lower limit for the total binary population.

  7. Application of binary interaction theory to linear and nonlinear rheology of star-branched polymers

    NASA Astrophysics Data System (ADS)

    Chen, Han-Wen

    2001-12-01

    The binary interaction (BI) theory recently developed by David W. Mead, Ronald G. Larson, and Masao Doi (1998) is based on two fundamental postulates strongly supported by experimental data: (1)stress-optic rule, (2)binary interaction principle. The BI theory is general and in principle applies to all entangled flexible polymers regardless of molecular architecture. Three parameters are required in the BI theory to establish the length and time scales for the system: the plateau modulus, the entanglement molecular weight, and the Rouse relaxation time scale. This thesis focuses on the first application of the BI theory to polymers with long-chain branches (LCB): star polymers. A mathematically simplified star model is derived analytically by performing a boundary layer analysis on the full BI model, resulting in an entanglement flux balance between star tip fluctuational penetration inward and convective constraint release (CCR)/convection outward from the star core. The simplified BI star theory for small deformations is compared with the well-established Ball-McLeish model. Juxtaposition of both simulations shows essentially quantitative equivalence. The empirical Cox-Merz viscosity rule for star-branched polymers is analytically derived from the simplified BI star model. The underlying physical basis of the validity of the Cox-Merz relationship for fast, nonlinear flows is a direct consequence of the combined effect of CCR and convection. Simulations from the simplified BI star model agree well with experimental dynamic moduli and flow curves of melts/concentrated solutions of various polymer species from literature data with no adjustable parameters. Flow curve crossover phenomena and subsequent merger reported for matched star and linear polymers are quantitatively predicted by the BI theory. The flow curve crossover of a matched set of star and linear polymers represents a transition of material response from Brownian-motion- governed linear viscoelasticity

  8. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  9. Double White Dwarfs as Probes of Single and Binary Star Evolution

    NASA Astrophysics Data System (ADS)

    Andrews, Jeffrey John

    2016-01-01

    As the endpoints of stars less massive than roughly eight solar masses, the population of Galactic white dwarfs (WD) contain information about complex stellar evolution processes. Associated pairs of WDs add an extra degree of leverage; both WDs must have formed and evolved together. The work presented in this dissertation uses various populations of double WDs (DWD) to constrain evolution of both single and binary stars. One example is the set of low-mass WDs with unseen WD companions, which are formed through a dynamically-unstable mass loss process called the common envelope. To work toward a quantitative understanding of the common envelope, we develop and apply a Bayesian statistical technique to identify the masses of the unseen WD companions. We provide results which can be compared to evolutionary models and hence a deeper understanding of how binary stars evolve through a common envelope. The statistical technique we develop can be applied to any population of single-line spectroscopic binaries. Binaries widely separated enough that they avoid any significant interaction independently evolve into separate WDs that can be identified in photometric and astrometric surveys. We discuss techniques for finding these objects, known as wide DWDs. We present a catalog of 142 candidate wide DWDs, combining both previously detected systems and systems we identify in our searches in the Sloan Digital Sky Survey. Having been born at the same time, the masses and cooling ages of the WDs in wide DWDs, obtained with our spectroscopic follow-up campaign can be used to constrain the initial-final mass relation, which relates a main sequence star to the mass of the WD into which it will evolve. We develop a novel Bayesian technique to interpret our data and present our resulting constraints on this relation which are particularly strong for initial masses between two and four solar masses. During this process, we identified one wide DWD, HS 2220+2146, that was peculiar since

  10. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  11. High energy neutrino absorption and its effects on stars in close X-ray binaries

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stecker, F. W.

    1986-01-01

    The physics and astrophysics of high energy neutrino production and interactions in close X-ray binary systems are studied. These studies were stimulated by recent observations of ultrahigh energy gamma-rays and possibly other ultrahigh energy particles coming from the directions of Cygnus X-3 and other binary systems and possessing the periodicity characteristics of these systems. Systems in which a compact object, such as a neutron star, is a strong source of high energy particles which, in turn, produce photons, neutronos and other secondary particles by interactions in the atmosphere of the companion star were considered. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to effect its structure or lead to its ultimate disruption. This neutrino heating was evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over an astronomically small timescale of the order of 10,000 years. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially, perhaps leading to quenching of high energy signals from the source. Given the cosmic ray luminosities required to produce the observed gamma rays from cygnus X-3 and LMX X-4, such a situation may occur in these sources.

  12. X-RAY BINARIES AND STAR CLUSTERS IN THE ANTENNAE: OPTICAL CLUSTER COUNTERPARTS

    SciTech Connect

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea; Whitmore, Bradley C.

    2012-10-20

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2{sigma} positional uncertainty of Almost-Equal-To 0.''8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, H{alpha} colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident XRBs (64%) are hosted by star clusters with ages of Almost-Equal-To 6 Myr or less. All of the very young host clusters are fairly massive and have M {approx}> 3 Multiplication-Sign 10{sup 4} M {sub Sun }, with many having masses M Almost-Equal-To 10{sup 5} M {sub Sun }. Five of the XRBs are hosted by young clusters with ages {tau} Almost-Equal-To 10-100 Myr, while three are hosted by intermediate-age clusters with {tau} Almost-Equal-To 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.

  13. The post-common-envelope, binary central star of the planetary nebula Hen 2-11

    NASA Astrophysics Data System (ADS)

    Jones, D.; Boffin, H. M. J.; Miszalski, B.; Wesson, R.; Corradi, R. L. M.; Tyndall, A. A.

    2014-02-01

    We present a detailed photometric study of the central star system of the planetary nebula Hen 2-11, selected for study because of its low-ionisation filaments and bipolar morphology - traits which have been strongly linked with central star binarity. Photometric monitoring with NTT-EFOSC2 reveals a highly irradiated, double-eclipsing, post-common-envelope system with a period of 0.609 d. Modelling of the lightcurve indicates that the nebular progenitor is extremely hot, while the secondary in the system is probably a K-type main sequence star. The chemical composition of the nebula is analysed, showing Hen 2-11 to be a medium-excitation non-Type i nebula. A simple photoionisation model is constructed determining abundance ratios of C/O and N/O which would be consistent with the common-envelope cutting short the AGB evolution of the nebular progenitor. The detection of a post-common-envelope binary system at the heart of Hen 2-11 further strengthens the link between binary progeny and the formation of axisymmetric planetary nebulae with patterns of low-ionisation filaments, clearly demonstrating their use as morphological indicators of central star binarity. Extracted 1D spectra, reduced 2D spectra, and table of photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A89

  14. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    SciTech Connect

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-08-15

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey {approx}20,000 deg{sup 2} of the southern sky during a period of 10 years in six photometric passbands to r {approx} 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of {approx}24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, {approx}28% or 6.7 million can be fully characterized by the pipeline. Of those, {approx}25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  15. Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-09-01

    In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses ( M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass ( M com) to the NS mass ( M NS). For NS-NS binaries, the fractional errors (σ/ M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio ( M com/ M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.

  16. Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Chamaeleontis

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Zima, W.; Catala, C.; Alecian, E.; Pollard, K.; Wright, D.

    2009-04-01

    Context: To understand the origin of stellar activity in pre-main-sequence Herbig Ae/Be stars and to get a deeper insight into the interior of these enigmatic stars, the pulsational instability strip of Palla and Marconi is investigated. In this article we present a first discovery of non radial pulsations in the Herbig Ae spectroscopic binary star RS Cha. Aims: The goal of the present work is to detect non-radial pulsations in a Herbig Ae star for the first time directly by spectrographic means and to identify the largest amplitude pulsation modes. Methods: The spectroscopic binary Herbig Ae star RS Cha was monitored in quasi-continuous observations during 14 observing nights (Jan. 2006) at the 1 m Mt. John (New Zealand) telescope with the Hercules high-resolution echelle spectrograph. The cumulative exposure time on the star was 44 h, corresponding to 255 individual high-resolution echelle spectra with R = 45 000. Least-square deconvolved spectra (LSD) were obtained for each spectrum, representing the effective photospheric absorption profile modified by pulsations. Difference spectra were calculated by subtracting rotationally broadened artificial profiles, these residual spectra were analysed and non-radial pulsations detected. A subsequent analysis with two complementary methods, namely Fourier Parameter Fit (FPF) and Fourier 2D (F2D) has been performed and first constraints on the pulsation modes derived. Results: For the very first time, we discovered by direct observational means using high-resolution echelle spectroscopy, non-radial oscillations in a Herbig Ae star. In fact, both components of the spectroscopic binary are Herbig Ae stars and both show NRPs. The FPF method identified 2 modes for the primary component with (degree ℓ, azimuthal order m) couples ordered by decreasing probability: f1 = 21.11 d-1 with (ℓ, m) = (11, 11), (11, 9) or (10, 6) and f2 = 30.38 d-1 with (ℓ, m) = ( 10, 6) or (9, 5). The F2D analysis indicates for f1 a degree

  17. γ Doradus Pulsations in the Eclipsing Binary Star KIC 6048106

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo

    2016-12-01

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six (f 2-f 6 and f 10) can be identified as high-order (17 ≤ n ≤ 25) low-degree (ℓ = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352-0.506 days and 0.232-0.333 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  18. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  19. LSS 2018: A double-lined spectroscopic binary central star with an extremely large reflection effect

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.

    1985-01-01

    LSS 2018, the central star of the planetry nebulae DS1, was found to be a double-lined spectroscopic binary with a period of 8.571 hours. Light variations with the same period were observed in U, B, and V; in the wavelength regions defined by the two IUE cameras; and in the strength of the CIII 4647 emission line. The light variations can be accurately predicted by a simple reflection effect, and an analysis of the light curves yields the angular diameter and effective temperature of the primary, the radii of the two stars in terms of their separation, and the inclination of the system. Analysis of the radial velocities then yields the masses of the two stars, their separation, the distance of the system, the absolute magnitude of the primary, and the size of the nebula.

  20. A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Cardena, Brett

    2011-05-01

    The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.

  1. LSS 2018 - A double-lined spectroscopic binary central star with an extremely large reflection effect

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.

    1985-01-01

    LSS 2018, the central star of the planetary nebulae DS1, was found to be a double-lined spectroscopic binary with a period of 8.571 hours. Light variations with the same period were observed in U, B, and V; in the wavelength regions defined by the two IUE cameras; and in the strength of the CIII 4647 emission line. The light variations can be accurately predicted by a simple reflection effect, and an analysis of the light curves yields the angular diameter and effective temperature of the primary, the radii of the two stars in terms of their separation, and the inclination of the system. Analysis of the radial velocities then yields the masses of the two stars, their separation, the distance of the system, the absolute magnitude of the primary, and the size of the nebula.

  2. Properties and nature of Be stars. XX. Binary nature and orbital elements of gamma Cas

    NASA Astrophysics Data System (ADS)

    Harmanec, P.; Habuda, P.; Štefl, S.; Hadrava, P.; Korčáková, D.; Koubský, P.; Krtička, J.; Kubát, J.; Škoda, P.; Šlechta, M.; Wolf, M.

    2000-12-01

    An analysis of accurate radial velocities (RVs) of the Be star gamma Cas from 295 Reticon spectrograms secured between October 1993 and May 2000 allowed us to prewhiten the RVs for the long-term changes and to obtain the first orbital RV curve of this star. The orbital period is 203 Delta59 and the orbit has an eccentricity of 0.26. The orbital motion is detectable even in the published velocities, based on photographic spectra. This implies that gamma Cas is a primary component of a spectroscopic binary. The secondary has a mass of about 1 \\ms, appropriate for a white dwarf or a neutron star, but it could also be a normal late-type dwarf. The ultimate solution of the dispute whether the observed X-ray emission is associated with the secondary or with the primary will need further dedicated studies.

  3. Analysis of gravitational waves from binary neutron star merger by Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Kaneyama, Masato; Oohara, Ken-ichi; Takahashi, Hirotaka; Sekiguchi, Yuichiro; Tagoshi, Hideyuki; Shibata, Masaru

    2016-06-01

    Using the Hilbert-Huang transform (HHT), we analyze gravitational waves from late inspiral, merger, and post-merger phases of binary neutron stars coalescence, computed by a general relativistic numerical simulation. The HHT analysis has been developed as a method for time series analysis of nonlinear and nonstationary data, and it enables us to perform a high resolution time frequency analysis of signals with strong frequency modulation by evaluating the instantaneous variation of amplitude and frequency of data. We find that we can clearly observe the time evolution of the instantaneous frequency of the post-merger waveforms. It is found that temporal variation of frequency of post-merger waveforms can be evaluated within 5% error if BNS coalescences occur within 10 Mpc. This accuracy allows us to constrain the equation of state of neutron stars and to evaluate the radius of a fiducial neutron star of 1.8 M⊙ with a few hundred meters accuracy.

  4. Binary Neutron Star Mergers: A Jet Engine for Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ruiz, Milton; Lang, Ryan N.; Paschalidis, Vasileios; Shapiro, Stuart L.

    2016-06-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, n = 1 polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter a/M BH ˜ 0.74) immersed in a magnetized accretion disk. About 4000M ˜ 60(M NS/1.625 M ⊙) ms following merger, the region above the black hole poles becomes strongly magnetized, and a collimated, mildly relativistic outflow—an incipient jet—is launched. The lifetime of the accretion disk, which likely equals the lifetime of the jet, is Δ t ˜ 0.1 (M NS/1.625 M ⊙) s. In contrast to black hole-neutron star mergers, we find that incipient jets are launched even when the initial magnetic field is confined to the interior of the stars.

  5. A survey study of energy distribution in component stars of Algol-type binary systems

    NASA Astrophysics Data System (ADS)

    Dobias, Jan Joseph

    A study survey of Algol-type binary systems was undertaken in order to investigate radiative flux distributions of their component stars. For hot primaries low-dispersion ultraviolet spectra, made with the International Ultraviolet Explorer (IUD) satellite, are combined at comparable phases with optical spectrophotometric scans, made at Lick Observatory, and then matched with a least-square method to Kurucz model atmospheres. Cooler secondaries are classified by matching their optical flux distributions, observed at totality, to standard stars. Results show that the U Sagittae system consists of a B7.5V-IV star while the secondary is matched by a G4III IV standard. The RW Tauri system consists of a B8V primary, while the secondary is matched by a KOIII standard. The UV spectrum of the primary in RY Geminorum matches that of an AOV standard. The secondary in RY GEM is KOIV. The system of RS Cephei consists of B9.7Ve and G8III-IV stars. The system of RW Persei consists of B9.6e and K2(+ or - 2)IV-III stars. The system of RX Geminorum consists of AOV or AOIII and K2(+ or - 2) stars. Finally, in Beta Lyrae the primary appears to be a B8.5-B9II-Ib object.

  6. The Masses of the Most Massive Stars: Resolving the ``Mass Discrepancy" with Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Morrell, Nidia; Eastwood, Kathy; Gies, Douglas; Penny, Laura

    2007-02-01

    The physics of massive stars is complicated, and although great strides have been made both in massive star evolution (interior) modeling, and in stellar atmosphere modeling, the two methods produce large disagreements (factors of two) in the derived masses for some massive stars. Thus our knowledge of the mass-luminosity relation for massive stars, and our ability to measure the initial mass function at the upper end, is cast into doubt. We have set out to resolve this ``mass discrepancy" by using a third method, one that relies only on Newtonian physics, namely obtaining masses from orbit solutions for eclipsing massive binaries. We have completed six months of photometric monitoring of Galactic OB associations, and have identified a dozen promising systems that show eclipses. For some of these, we have only the brightness and promixity to the cluster's center to believe the star is interesting, and we now need spectra to determine if these systems are truly early O stars or not. In addition, we are asking for additional queue photometry time on the 1.3-m (or 1.0-m) to determine the period accurately. These are both necessarily preludes to the time- intensive spectroscoic radial velocity observations we plan to propose next year.

  7. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    SciTech Connect

    De Mink, S. E.; Langer, N.; Izzard, R. G.; Sana, H.; De Koter, A.

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  8. Discovery of a Stripped Red-giant Core in a Bright Eclipsing Binary Star

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Anderson, D. R.; Burleigh, M. R.; Collier Cameron, A.; Heber, U.; Gänsicke, B. T.; Geier, S.; Kupfer, T.; Marsh, T. R.; Nelemans, G.; O'Toole, S. J.; Østensen, R. H.; Smalley, B.; West, R. G.; Bloemen, S.

    2012-03-01

    We report the serendipitous discovery from WASP archive photometry of a binary star in which an apparently normal A-type star (J0247-25 A) eclipses a smaller, hotter subdwarf star (J0247-25 B). The kinematics of J0247-25 A show that it is a blue-straggler member of the Galactic thick-disk. We present fol