Sample records for dwpf viscosity model

  1. DWPF STARTUP FRIT VISCOSITY MEASUREMENT ROUND ROBIN RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Edwards, Tommy B.; Russell, Renee L.

    2012-07-31

    A viscosity standard is needed to replace the National Institute of Standards and Technology (NIST) glasses currently being used to calibrate viscosity measurement equipment. The current NIST glasses are either unavailable or less than ideal for calibrating equipment to measure the viscosity of high-level waste glasses. This report documents the results of a viscosity round robin study conducted on the Defense Waste Processing Facility (DWPF) startup frit. DWPF startup frit was selected because its viscosity-temperature relationship is similar to most DWPF and Hanford high-level waste glass compositions. The glass underwent grinding and blending to homogenize the large (100 lb) batch.more » Portions of the batch were supplied to the laboratories (named A through H) for viscosity measurements following a specified temperature schedule with a temperature range of 1150 C to 950 C and with an option to measure viscosity at lower temperatures if their equipment was capable of measuring at the higher viscosities. Results were used to fit the Vogel-Tamman-Fulcher and Arrhenius equations to viscosity as a function of temperature for the entire temperature range of 460 C through 1250 C as well as the limited temperature interval of approximately 950 C through 1250 C. The standard errors for confidence and prediction were determined for the fitted models.« less

  2. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  3. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a sulfur salt layer is not formed on top of the melt pool while allowing higher sulfur based feeds to be processed through DWPF.« less

  4. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides amore » review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation sites for spinel crystallization.« less

  5. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less

  6. SME Acceptability Determination For DWPF Process Control (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successfulmore » operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.« less

  7. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D; Tommy Edwards, T; Kevin Fox, K

    The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that themore » combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.« less

  9. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Skidmore, T. E.

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reportedmore » corrosion rates and degradation characteristics have shown the following for the materials of construction.« less

  10. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  11. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  12. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.; Fowley, M. D.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previouslymore » to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.« less

  14. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas datamore » were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were taken as directly applicable to the DWPF melter and thus used to set all the parameters of the original model. Based on these results of the CEF Phase 1 off-gas and thermal data analyses, it is concluded that: (1) The thermal characteristics of the CEF vapor space are prototypic thanks to its prototypic design; and (2) The CEF off-gas data are scalable in terms of predicting the flammability potential of the DWPF melter off-gas. These results also show that the existing DWPF safety controls on the TOC and antifoam as a function of nitrate are conservative by the same order of magnitude shown by the Phase 1 data at T{sub gas} < ~350°C, since they were set at T{sub gas} = 294°C, which falls into the region of excessive conservatism for the current DWPF model in terms of predicting the TOC-to-H{sub 2} conversion. In order to remedy the overly-conservative antifoam decomposition scheme used in the current DWPF model, the data from two recent tests will be analyzed in detail in order to gain additional insights into the antifoam decomposition chemistry in the cold cap. The first test was run in a temperature-programmed furnace using both normal and spiked feeds with fresh antifoam under inert and slightly oxidizing vapor space conditions. Phase 2 of the CEF test was run with the baseline nitric-glycolic acid flowsheet feeds that contained the “processed antifoam” and those spiked with fresh antifoam in order to study the effects of antifoam concentration as well as processing history on its decomposition chemistry under actual melter conditions. The goal is to develop an improved antifoam decomposition model from the analysis of these test data and incorporate it into a new multistage cold cap model to be developed concurrently for the nitric-glycolic acid flowsheet feeds. These activities will be documented in the Phase 2 report. Finally, it is recommended that some of the conservatism in the existing DWPF safety controls be removed by improving the existing measured-vs.-true gas temperature correlation used in the melter vapor space combustion calculations. The basis for this recommendation comes from the fact that the existing correlation was developed by linearly extrapolating the SGM data taken over a relatively narrow temperature range down to the safety basis minimum of 460°C, thereby under predicting the true gas temperature considerably, as documented in this report. Specifically, the task of improving the current temperature correlation will involve; (1) performing a similar heat/mass balance analysis used in this study on actual DWPF data, (2) validating the measured-vs.-true gas temperature correlation for the CEF developed in this study against the DWPF melter heat/mass balance results, and (3) making adjustments to the CEF correlation, if necessary, before incorporating it into the DWPF safety basis calculations. The steps described here can be completed with relatively minimum efforts.« less

  15. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was anmore » investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.« less

  16. Characterization of DWPF recycle condensate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.« less

  17. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less

  18. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and datamore » interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.« less

  19. SCIX IMPACT ON DWPF CPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheetmore » includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less

  1. Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2013-11-18

    In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

  2. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Pareizs, J.; Coleman, C.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt ormore » SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.« less

  3. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  4. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Click, D.; Jones, M.; Edwards, T.

    2010-06-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion methodmore » was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U data, which is also discussed. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element without support from XRD analysis or used to estimate ratios of compounds in the sludge.« less

  5. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate.« less

  6. Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.

    DTIC Science & Technology

    1992-06-17

    gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report

  7. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  8. Infrasound Detection of Rocket Launches

    DTIC Science & Technology

    2000-09-01

    infrasound pressure, and λ and µ are the Lame and shear modulii. Seismic data was available from the IRIS data center for the seismic station DWPF ...the bandwidth of interest. Figure 4 shows a recording of STS-93 (07/24/99 04:31:00GMT) at DWPF (97 km). The largest seismic amplitudes are consistent...lasts ~400 seconds. The dominant frequency (~4 Hz) at DWPF is consistent with the long-range infrasound signals observed at DLIAR. Figure 3. Seismic

  9. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  10. DWPF simulant CPC studies for SB8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain themore » Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing recommendations for DWPF along with some data related to Safety Class documentation at DWPF. Some significant observations regarding SB8 follow: Reduced washing in Tank 51 led to an increase in the wt.% soluble solids of the DWPF feed. If wt.% total solids for the SRAT and SME product weren’t adjusted upward to maintain insoluble solids levels similar to past sludge batches, then the rheological properties of the slurry went below the low end of the DWPF design bases for the SRAT and SME. Much higher levels of dissolved manganese were found in the SRAT and SME products than in recent sludge batches. Closed crucible melts were more reduced than expected. The working hypothesis is that the soluble Mn is less oxidizing than assumed in the REDOX calculations. A change in the coefficient for Mn in the REDOX equation was recommended in a separate report. The DWPF (Hsu) stoichiometric acid equation was examined in detail to better evaluate how to control acid in DWPF. The existing DWPF equation can likely be improved without changing the required sample analyses through a paper study using existing data. The recommended acid stoichiometry for initial SB8 SRAT batches is 115-120% stoichiometry until some processing experience is gained. The conservative range (based on feed properties) of stoichiometric factors derived in this study was from 110-147%, but SRNL recommends using only the lower half of this range, 110-126% even after initial batches provide processing experience. The stoichiometric range for sludge-only processing appears to be suitable for coupled operation based on results from the run in the middle of the range. Catalytic hydrogen was detectable (>0.005 vol%) in all SRAT and SME cycles. Hydrogen reached 30-35% of the SRAT and SME limits at the mid-point of the stoichiometry window (bounding noble metals and acid demand).« less

  11. DWPF SIMULANT CPC STUDIES FOR SB7B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-11-01

    Lab-scale DWPF simulations of Sludge Batch 7b (SB7b) processing were performed. Testing was performed at the Savannah River National Laboratory - Aiken County Technology Laboratory (SRNL-ACTL). The primary goal of the simulations was to define a likely operating window for acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT). In addition, the testing established conditions for the SRNL Shielded Cells qualification simulation of SB7b-Tank 40 blend, supported validation of the current glass redox model, and validated the coupled process flowsheet at the nominal acid stoichiometry. An acid window of 105-140% by the Koopman minimum acid (KMA) equation (107-142%more » DWPF Hsu equation) worked for the sludge-only flowsheet. Nitrite was present in the SRAT product for the 105% KMA run at 366 mg/kg, while SME cycle hydrogen reached 94% of the DWPF Slurry Mix Evaporator (SME) cycle limit in the 140% KMA run. The window was determined for sludge with added caustic (0.28M additional base, or roughly 12,000 gallons 50% NaOH to 820,000 gallons waste slurry). A suitable processing window appears to be 107-130% DWPF acid equation for sludge-only processing allowing some conservatism for the mapping of lab-scale simulant data to full-scale real waste processing including potentially non-conservative noble metal and mercury concentrations. This window should be usable with or without the addition of up to 7,000 gallons of caustic to the batch. The window could potentially be wider if caustic is not added to SB7b. It is recommended that DWPF begin processing SB7b at 115% stoichiometry using the current DWPF equation. The factor could be increased if necessary, but changes should be made with caution and in small increments. DWPF should not concentrate past 48 wt.% total solids in the SME cycle if moderate hydrogen generation is occurring simultaneously. The coupled flowsheet simulation made more hydrogen in the SRAT and SME cycles than the sludge-only run with the same acid stoichiometric factor. The slow acid addition in MCU seemed to alter the reactions that consumed the small excess acid present such that hydrogen generation was promoted relative to sludge-only processing. The coupled test reached higher wt.% total solids, and this likely contributed to the SME cycle hydrogen limit being exceeded at 110% KMA. It is clear from the trends in the SME processing GC data, however, that the frit slurry formic acid contributed to driving the hydrogen generation rate above the SME cycle limit. Hydrogen generation rates after the second frit addition generally exceeded those after the first frit addition. SRAT formate loss increased with increasing acid stoichiometry (15% to 35%). A substantial nitrate gain which was observed to have occurred after acid addition (and nitrite destruction) was reversed to a net nitrate loss in runs with higher acid stoichiometry (nitrate in SRAT product less than sum of sludge nitrate and added nitric acid). Increased ammonium ion formation was also indicated in the runs with nitrate loss. Oxalate loss on the order 20% was indicated in three of the four acid stoichiometry runs and in the coupled flowsheet run. The minimum acid stoichiometry run had no indicated loss. The losses were of the same order as the official analytical uncertainty of the oxalate concentration measurement, but were not randomly distributed about zero loss, so some actual loss was likely occurring. Based on the entire set of SB7b test data, it is recommended that DWPF avoid concentrating additional sludge solids in single SRAT batches to limit the concentrations of noble metals to SB7a processing levels (on a grams noble metal per SRAT batch basis). It is also recommended that DWPF drop the formic acid addition that accompanies the process frit 418 additions, since SME cycle data showed considerable catalytic activity for hydrogen generation from this additional acid (about 5% increase in stoichiometry occurred from the frit formic acid). Frit 418 also does not appear to need formic acid addition to prevent gel formation in the frit slurry. Simulant processing was successful using 100 ppm of 747 antifoam added prior to nitric acid instead of 200 ppm. This is a potential area for DWPF to cut antifoam usage in any future test program. An additional 100 ppm was added before formic acid addition. Foaming during formic acid addition was not observed. No build-up of oily or waxy material was observed in the off-gas equipment. Lab-scale mercury stripping behavior was similar to SB6 and SB7a. More mercury was unaccounted for as the acid stoichiometry increased.« less

  12. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  13. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  14. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Newell, D.; Martino, C.

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL thenmore » demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.« less

  15. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPFmore » site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).« less

  16. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less

  17. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  18. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Edwards, T.

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a resultmore » of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over which a glass system (i.e., a projected sludge composition with a candidate frit) is predicted to be acceptable can be defined (i.e., the projected operating window) which will provide insight into the ability to meet future contractual WL obligations. In this study, future contractual WL obligations are assumed to be 40%, which is the goal after all flowsheet enhancements have been implemented to support DWPF operations. For a system to be considered acceptable, candidate frits must be identified that provide access to at least 40% WL while accounting for potential variation in the sludge resulting from differences in batch-to-batch transfers into the Sludge Receipt and Adjustment Tank (SRAT) and/or analytical uncertainties. In more general terms, this study will assess whether or not the current glass formulation strategy (based on the use of the Nominal and Variation Stage assessments) and current PCCS models will allow access to compositional regions required to targeted higher WLs for future operations. Some of the key questions to be considered in this study include: (1) If higher WLs are attainable with current process control models, are the models valid in these compositional regions? If the higher WL glass regions are outside current model development or validation ranges, is there existing data that could be used to demonstrate model applicability (or lack thereof)? If not, experimental data may be required to revise current models or serve as validation data with the existing models. (2) Are there compositional trends in frit space that are required by the PCCS models to obtain access to these higher WLs? If so, are there potential issues with the compositions of the associated frits (e.g., limitations on the B{sub 2}O{sub 3} and/or Li{sub 2}O concentrations) as they are compared to model development/validation ranges or to the term 'borosilicate' glass? If limitations on the frit compositional range are realized, what is the impact of these restrictions on other glass properties such as the ability to suppress nepheline formation or influence melt rate? The model based assessments being performed make the assumption that the process control models are applicable over the glass compositional regions being evaluated. Although the glass compositional region of interest is ultimately defined by the specific frit, sludge, and WL interval used, there is no prescreening of these compositional regions with respect to the model development or validation ranges which is consistent with current DWPF operations.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prod'homme, A.; Drouvot, O.; Gregory, J.

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less

  1. Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,

    DTIC Science & Technology

    processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10

  2. Urban Fire Simulation. Version 2

    DTIC Science & Technology

    1993-02-01

    of the building. In this case the distribution of windows in the tract per floor ( DWPF (FLOORHT)) is calculated under the assumption that the number of...given urban area. The probability that no room on the subject floor will flash over is calculated at label (V) from PNRFOF DWPF (FLOORHT) (1 - FFORF

  3. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality ofmore » S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).« less

  4. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  5. Characterization of DWPF recycle condensate tank materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-01-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to undertand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here. The composition of the Sludge Batch 8 (SB8) RCT material is largely a low base solution of 0.2M NaNO 2 and 0.1M NaNO 3 with a small amount of formate present. Insoluble solids comprise only 0.05 wt.% of the slurry. The solids appear to be largely sludge-like solids based on elemental composition and SEM-EDS analysis. The sample contains an elevated concentration of I-129 (38x) and substantial 59% fraction of Tc-99, as compared to the incoming SB8 Tank 40 feed material. The Hg concentration is 5x, when compared to Fe, of that expected based on sludge carryover. The total U and Pu concentrations are reduced significantly, 0.536 wt.% TS and 2.42E-03 wt.% TS, respectively, with the fissile components, U-233, U-235, Pu-239, and Pu-241, an order of magnitude lower in concentration than those in the SB8 Tank 40 DWPF feed material. This report will be revised to include the foaming study requested in the TTR and outlined in the TTQAP when that work is concluded.« less

  6. DWPF Simulant CPC Studies For SB8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51more » heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected during SME processing. Mercury behavior was consistent with that seen in previous SRAT runs. Mercury was stripped below the DWPF limit on 0.8 wt% for all runs. Rheology yield stress fell within or below the design basis of 1-5 Pa. The low acid Tank 40 run (106% acid stoichiometry) had the highest yield stress at 3.78 Pa.« less

  7. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less

  8. RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F.; Edwards, T.

    2010-06-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less

  9. DWPF Safely Dispositioning Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  10. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during themore » DWPF March outage. Based on the results of the preliminary assessment issued by the Savannah River National Laboratory (SRNL), the Liquid Waste Organization (LWO) issued a Technical Task Request (TTR) for SRNL to (1) perform a more detailed evaluation using updated SB4 compositional information and (2) assess the viability of Frit 510 and determine any potential impacts on the SB4 system. As defined in the TTR, LWO requested that SRNL validate the sludge--only SB4 flowsheet and the coupled operations flowsheet using the 100K gallon decant volume as well as the addition of 3 wt% sodium on a calcined oxide basis. Approximately 12 historical glasses were identified during a search of the ComProTM database that are located within at least one of the five glass regions defined by the proposed SB4 flowsheet options. While these glasses meet the requirements of a variability study there was some concern that the compositional coverage did not adequately bound all cases. Therefore, SRNL recommended that a supplemental experimental variability study be performed to support the various SB4 flowsheet options that may be implemented for future SB4 operations in DWPF. Eighteen glasses were selected based on nominal sludge projections representing the current as well as the proposed flowsheets over a WL interval of interest to DWPF (32-42%). The intent of the experimental portion of the variability study is to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Cases No.1-5) are both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current DWPF process control models for durability. Frit 510 is a viable option for the processing of SB4 after a Tank 40 decant and the addition of products from the Actinide Removal Process (ARP). The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. The results of the variability study indicate that all of the study glasses (both quenched and centerline canister cooled (ccc)) have normalized releases for boron that are well below the reference EA glass (16.695 g/L). The durabilities of all of the study glasses are predictable using the current Product Composition Control System (PCCS) durability models with the exception of SB4VAR24ccc (Case No.2 at 41%). PCCS is not applicable to non-homogeneous glasses (i.e. glasses containing crystals such as acmite and nepheline), thus SB4VAR24ccc should not be predictable as it contains nepheline. The presence of nepheline has been confirmed in both SB4VAR13ccc and SB4VAR24ccc by X-ray diffraction (XRD). These two glasses are the first results which indicate that the current nepheline discriminator value of 0.62 is not conservative. The nepheline discriminator was implemented into PCCS for SB4 based on the fact that all of the historical glasses evaluated with nepheline values of 0.62 or greater did not contain nepheline via XRD analysis. Although these two glasses do cause some concern over the use of the 0.62 nepheline value for future DWPF glass systems, the impact to the current SB4 system is of little concern. More specifically, the formation of nepheline was observed in glasses targeting 41 or 42% WL. Current processing of the Frit 510-SB4 system in DWPF has nominally targeted 34% WL. For the SB4 variability study glasses targeting these lower WLs, nepheline formation was not observed and the minimal difference in PCT response between quenched and ccc versions supported its absence.« less

  12. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2018-06-21

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  13. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Russell Eibling, R; David Koopman, D

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less

  14. Glycolic acid physical properties and impurities assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Pickenheim, B. R.; Bibler, N. E.

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment tomore » meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. However, an irradiation test with a simulated SRAT product supernate containing glycolic acid in an oxygen depleted atmosphere found no evidence of polymerization.« less

  15. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.« less

  16. Short Term Weather Forecasting in Real Time in a Base Weather Station Setting

    DTIC Science & Technology

    1993-10-01

    SMSL DWPF Figure 25. Plot of surface airways observations at 18 UTC, I April 1993. Data is plotted in conventional notation. 35 mu eb 23 -:.-j-32 29292 3...34 38 3 ... .. :......:.. . . O0i-02-93 0600 GMT CLCT TMPF WSYM SMSL DWPF Figure 26. As in Figure 25, except for 06 UTC, 2 April 1993. 36 Figure 27

  17. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Hera, K.; Coleman, C.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1).more » This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.« less

  18. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorablemore » with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.« less

  19. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  20. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, D.; Pareizs, J.; Martino, C.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  1. IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; Koopman, D.; Newell, J.

    2011-09-30

    Antifoam 747 is added to minimize foam produced by process gases and water vapor during chemical processing of sludge in the Defense Waste Processing Facility (DWPF). This allows DWPF to maximize acid addition and evaporation rates to minimize the cycle time in the Chemical Processing Cell (CPC). Improvements in DWPF melt rate due to the addition of bubblers in the melter have resulted in the need for further reductions in cycle time in the CPC. This can only be accomplished with an effective antifoam agent. DWPF production was suspended on March 22, 2011 as the result of a Flammable Gasmore » New Information/(NI) Potential Inadequacy in the Safety Analysis (PISA). The issue was that the DWPF melter offgas flammability strategy did not take into account the H and C in the antifoam, potentially flammable components, in the melter feed. It was also determined the DWPF was using much more antifoam than anticipated due to a combination of longer processing in the CPC due to high Hg, longer processing due to Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) additions, and adding more antifoam than recommended. The resolution to the PISA involved and assessment of the impact of the antifoam on melter flammability and the implementation of a strategy to control additions within acceptable levels. This led to the need to minimize the use of Antifoam 747 in processing beginning in May 2011. DWPF has had limited success in using Antifoam 747 in caustic processing. Since starting up the ARP facility, the ARP product (similar chemically to caustic sludge) is added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and evaporated to maintain a constant SRAT volume. Although there is very little offgas generated during caustic boiling, there is a large volume of water vapor produced which can lead to foaming. High additions and more frequent use of antifoam are used to mitigate the foaming during caustic boiling. The result of these three issues above is that DWPF had three antifoam needs in FY2011: (1) Determine the cause of the poor Antifoam 747 performance during caustic boiling; (2) Determine the decomposition products of Antifoam 747 during CPC processing; and (3) Improve the effectiveness of Antifoam 747, in order to minimize the amount used. Testing was completed by Illinois Institute of Technology (IIT) and Savannah River National Laboratory (SRNL) researchers to address these questions. The testing results reported were funded by both DWPF and DOE/EM 31. Both sets of results are reported in this document for completeness. The results of this research are summarized: (1) The cause for the poor Antifoam 747 performance during caustic boiling was the high hydrolysis rate, cleaving the antifoam molecule in two, leading to poor antifoam performance. In testing with pH solutions from 1 to 13, the antifoam degraded quickly at a pH < 4 and pH > 10. As the antifoam decomposed it lost its spreading ability (wetting agent performance), which is crucial to its antifoaming performance. During testing of a caustic sludge simulants, there was more foam in tests with added Antifoam 747 than in tests without added antifoam. (2) Analyses were completed to determine the composition of the two antifoam components and Antifoam 747. In addition, the decomposition products of Antifoam 747 were determined during CPC processing of sludge simulants. The main decomposition products were identified primarily as Long Chain Siloxanes, boiling point > 400 C. Total antifoam recovery was 33% by mass. In a subsequent study, various compounds potentially related to antifoam were found using semi-volatile organic analysis and volatile organic analysis on the hexane extractions and hexane rinses. These included siloxanes, trimethyl silanol, methoxy trimethyl silane, hexamethyl disiloxane, aliphatic hydrocarbons, dioctyl phthalate, and emulsifiers. Cumulatively, these species amounted to less than 3% of the antifoam mass. The majority of the antifoam was identified using carbon analysis of the SRAT product (40-80% by mass) and silicon analysis (23-83% by mass) of the condensate. Both studies recommended a better solvent for antifoam and more specific tests for antifoam degradation products than the Si and C analyses used. (3) The DWPF Antifoam 747 Purchase Specification was revised in Month, 2011 with a goal of increasing the quality of Antifoam 747. The purchase specification was changed to specify the manufacturer and product for both components that are blended by Siovation to produce Antifoam 747 for DWPF. Testing of Antifoam produced using both the old and new antifoam specifications perform very similarly in testing. Since the change in purchase specification has not improved antifoam performance, an improved antifoam agent is required.« less

  2. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less

  3. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plusmore » adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).« less

  4. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  5. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory aremore » presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.« less

  6. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.

  7. Antifoam degradation testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  8. HLW system plan - revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-14

    The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources frommore » within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.« less

  9. Evaluation of materials and surface treatments for the DWPF melter pour spout bellows protective liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imrich, K.J.; Bickford, D.F.; Wicks, G.G.

    1997-06-27

    A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow`s liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fallmore » into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass.« less

  10. Assessment of the Impact of a New Guanidine Suppressor In NGS on F/H Laboratory Analyses For DWPF and Saltstone MCU Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2013-04-29

    Implementation of the Next Generation Solvent (NGS) in the Modular Caustic-Side Solvent Extraction Unit (MCU) will now proceed with a new suppressor compound, 1,2,3-tris(3,7-dimethyloctyl)guanidine (TiDG), replacing the originally planned suppressor for NGS, 1,3-dicyclohexyl-2-(11-methyldodecyl) guanidine (DCiTG). The Savannah River National Laboratory (SRNL) was tasked with evaluating the potential impact to F/H Laboratory analyses supporting the Defense Waste Processing Facility (DWPF) Waste Acceptance Criteria (WAC) used to qualify transfers of MCU Strip Effluent (SE) into the facility and the Saltstone WAC used to qualify transfers of Tank 50 containing Decontaminated Salt Solution (DSS) from MCU into Saltstone. This assigned scope is coveredmore » by a Task Technical and Quality Assurance Plan (TTQAP). Previous impact evaluations were conducted when the DCiTG suppressor was planned for NGS and concluded that there was no impact to either the determination of MCU SE pH nor the analysis of Isopar® L carryover in the MCU SE and DSS streams. SRNL reported on this series of cross-check studies between the SRNL and F/H Laboratories. The change in suppressor from DCiTG to TiDG in the NGS should not impact the measurement of Isopar® L or pH in SE or DSS necessary to satisfy DWPF and Saltstone WAC (Tank 50) criteria, respectively. A statistical study of the low bias observed in Isopar® L measurements in both SRNL and F/H Laboratories may be necessary now that the final NGS composition is fixed in order to quantify the low bias so that a proper correction can be applied to measurements critical to the DWPF and Saltstone WACs. Depending upon the final DWPF WAC requirement put in place for SE pH, it could become necessary to implement an alternative ICP-AES measurement of boron. The current blended solvent system testing in SRNL should address any impacts to Isopar® L carryover into either the DSS or the SE. It is recommended that SRNL monitor the current blended solvent work underway with simulants in SRNL as well as any DWPF CPC testing done with the new SE stream to ascertain whether any need develops that could result in modification of any currently planned F/H Laboratory testing protocols.« less

  11. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-11-29

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission linesmore » to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The results of this round-robin analytical study are the second subject of this report.« less

  12. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less

  13. Results of Hg speciation testing on DWPF SMECT-8, OGCT-1, AND OGCT-2 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2016-02-22

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The sixteenth shipment of samples was designated to include a Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) sample from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 processing and two Off-Gas Condensate Tank (OGCT) samples, one following Batch 736 and one following Batch 738. The DWPF sample designations for the three samples analyzed are provided. The Batch 738 ‘End ofmore » SME Cycle’ SMECT sample was taken at the conclusion of Slurry Mix Evaporator (SME) operations for this batch and represents the fourth SMECT sample examined from Batch 738. Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SME Cycle’ SMECT-8 sample.« less

  14. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less

  15. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less

  16. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Amoroso, J.; Mcclane, D.

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanningmore » calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF composition using optical microscopy. This research establishes a viable alternative to more traditional techniques for evaluating nepheline crystallization in large numbers of glasses, which are prohibitively time consuming or otherwise impractical. The ultimate objective is to combine the nucleation and growth information obtained from DSC, like that presented in this report, with computer simulations of glass cooling within the canister to accurately predict nepheline crystallization in HLW during processing through WTP.« less

  17. REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F.; Edwards, T.

    2009-12-15

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated muchmore » of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of alkali constraint for future coupled operations processing based on projections from Revision 14 of the High Level Waste (HLW) System Plan. As with the first phase of testing for sludge-only operations, replacement of the homogeneity constraint with the alumina and sum of alkali constraints will ensure acceptable product durability over the compositional region evaluated. Although these study glasses only provide limited data in a large compositional region, the approach and results are consistent with previous studies that challenged the homogeneity constraint for sludge-only operations. That is, minimal benefit is gained by imposing the homogeneity constraint if the other PCCS constraints are satisfied. The normalized boron releases of all of the glasses are well below the Environmental Assessment (EA) glass results, regardless of thermal history. Although one of the glasses had a normalized boron release of approximately 10 g/L and was not predictable, the glass is still considered acceptable. This particular glass has a low Al{sub 2}O{sub 3} concentration, which may have attributed to the anomalous behavior. Given that poor durability has been previously observed in other glasses with low Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations, including the sludge-only reduction of constraints study, further investigations appear to be warranted. Based on the results of this study, it is recommended that the homogeneity constraint (in its entirety with the associated low frit/high frit constraints) be eliminated for coupled operations as defined by Revision 14 of the HLW System Plan with up to 2 wt% TiO{sub 2}. The use of the alumina and sum of alkali constraints should be continued along with the variability study to determine the predictability of the current durability models and/or that the glasses are acceptable with respect to durability. The use of a variability study for each batch is consistent with the glass product control program and it will help to assess new streams or compositional changes. It is also recommended that the influence of alumina and alkali on durability be studied in greater detail. Limited data suggests that there may be a need to adjust the lower Al{sub 2}O{sub 3} limit and/or the upper alkali limit in order to prevent the fabrication of unacceptable glasses. An in-depth evaluation of all previous data as well as any new data would help to better define an alumina and alkali combination that would avoid potential phase separation and ensure glass durability.« less

  18. Winter Severe Weather: A Case Study of the Intense Squall Line of 6-7 January 1995 in the Carolinas

    DTIC Science & Technology

    1996-01-01

    line. 51 U- U- )C nM-,L Cz2r r Zr’.r - -52 cz bi2 0z CPIu Inu leu bts 533 rMPF DWPF 39 36- 30------- - - - - - - - - - - - - PMiL 014- Gusr DARR 10- 6...14u cz lo0 Go0 Go a- Nr, lou 58 ,t, 7!Ch 59 Lr, CC 7 ~ cr cz 60 z u-, II Zn zc z 11 L1X - CL Aar- c- 61 100 CCu ac- Go 62 mm IflIN Z N _ m 63 TMPF DWPF

  19. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.« less

  20. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less

  1. Inhibiting localized corrosion during storage of dilute SRP wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblath, S.B.; Congdon, J.W.

    1986-01-01

    High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less

  2. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are oftenmore » added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.« less

  3. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME)more » limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry, and significant mercury was not accounted for in the highest acid run. Coalescence of elemental mercury droplets in the mercury water wash tank (MWWT) appeared to degrade with increasing stoichiometry. Observations were made of mercury scale formation in the SRAT condenser and MWWT. A tacky mercury amalgam with Rh, Pd, and Cu, plus some Ru and Ca formed on the impeller at 159% acid. It contained a significant fraction of the available Pd, Cu, and Rh as well as about 25% of the total mercury charged. Free (elemental) mercury was found in all of the SME products. Ammonia scrubbers were used during the tests to capture off-gas ammonia for material balance purposes. Significant ammonium ion formation was again observed during the SRAT cycle, and ammonia gas entered the off-gas as the pH rose during boiling. Ammonium ion production was lower than in the SB6 Phase II and the qualification simulant testing. Similar ammonium ion formation was seen in the ARP/MCU simulation as in the 120% flowsheet run. A slightly higher pH caused most of the ammonium to vaporize and collect in the ammonia scrubber reflux solution. Two periods of foaminess were noted. Neither required additional antifoam to control the foam growth. A steady foam layer formed during reflux in the 120% acid run. It was about an inch thick, but was 2-3 times more volume of bubbles than is typically seen during reflux. A similar foam layer also was seen during caustic boiling of the simulant during the ARP addition. While frequently seen with the radioactive sludge, foaminess during caustic boiling with simulants has been relatively rare. Two further flowsheet tests were performed and will be documented separately. One test was to evaluate the impact of process conditions that match current DWPF operation (lower rates). The second test was to evaluate the impact of SRAT/SME processing on the rheology of a modified Phase III simulant that had been made five times more viscous using ultrasonication.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    The Liquid Waste Organization (LWO) has requested that the Savannah River National Laboratory (SRNL) to assess the impact of a 100K gallon decant volume from Tank 40H on the existing sludge-only Sludge Batch 4 (SB4)-Frit 510 flowsheet and the coupled operations flowsheet (SB4 with the Actinide Removal Process (ARP)). Another potential SB4 flowsheet modification of interest includes the addition of 3 wt% sodium (on a calcined oxide basis) to a decanted sludge-only or coupled operations flowsheet. These potential SB4 flowsheet modifications could result in significant compositional shifts to the SB4 system. This paper study provides an assessment of the impactmore » of these compositional changes to the projected glass operating windows and to the variability study for the Frit 510-SB4 system. The influence of the compositional changes on melt rate was not assessed in this study nor was it requested. Nominal Stage paper study assessments were completed using the projected compositions for the various flowsheet options coupled with Frit 510 (i.e., variation was not applied to the sludge and frit compositions). In order to gain insight into the impacts of sludge variation and/or frit variation (due to the procurement specifications) on the projected operating windows, three versions of the Variation Stage assessment were performed: (1) the traditional Variation Stage assessment in which the nominal Frit 510 composition was coupled with the extreme vertices (EVs) of each sludge, (2) an assessment of the impact of possible frit variation (within the accepted frit specification tolerances) on each nominal SB4 option, and (3) an assessment of the impact of possible variation in the Frit 510 composition due to the vendor's acceptance specifications coupled with the EVs of each sludge case. The results of the Nominal Stage assessment indicate very little difference among the various flowsheet options. All of the flowsheets provide DWPF with the possibility of targeting waste loadings (WLs) from the low 30s to the low 40s with Frit 510. In general, the Tank 40H decant has a slight negative impact on the operating window, but DWPF still has the ability to target current WLs (34%) and higher WLs if needed. While the decant does not affect practical WL targets in DWPF, melt rate could be reduced due to the lower Na{sub 2}O content. If true, the addition of 3 wt% Na{sub 2}O to the glass system may regain melt rate, assuming that the source of alkali is independent of the impact on melt rate. Coupled operations with Frit 510 via the addition of ARP to the decanted SB4 flowsheet also appears to be viable based on the projected operating windows. The addition of both ARP and 3 wt% Na{sub 2}O to a decanted Tank 40H sludge may be problematic using Frit 510. Although the Nominal Stage assessments provide reasonable operating windows for the SB4 flowsheets being considered with Frit 510, introduction of potential sludge and/or frit compositional variation does have a negative impact. The magnitude of the impact on the projected operating windows is dependent on the specific flowsheet options as well as the applied variation. The results of the traditional Variation Stage assessments indicate that the three proposed Tank 40H decanted flowsheet options (Case No.2--100K gallon decant, Case No.3--100K gallon decant and 3 wt% Na{sub 2}O addition and Case No.4--100K gallon decant and ARP) demonstrate a relatively high degree of robustness to possible sludge variation over WLs of interest with Frit 510. However, the case where the addition of both ARP and 3 wt% Na{sub 2}O is considered was problematic during the traditional Variation Stage assessment. The impact of coupling the frit specifications with the nominal SB4 flowsheet options on the projected operating windows is highly dependent on whether the upper WLs are low viscosity or liquidus temperature limited in the Nominal Stage assessments. Systems that are liquidus temperature limited exhibit a high degree of robustness to the applied frit and sludge variation, while those that are low viscosity limited show significant reductions (6 percentage points) in the upper WLs that can be obtained. When both frit and sludge variations are applied, the paper study results indicate that DWPF could be severely restricted in terms of projected operating windows for the ARP and Na{sub 2}O addition options. An experimental variability study was not performed using the final SB4 composition and Frit 510 since glasses in the ComPro{trademark} data base were identified that bounded the potential operating window of this system. The bounding ARP case was not considered in that assessment. After the flowsheet cases were identified, an electronic search of ComPro{trademark} identified approximately 12 historical glasses within the compositional regions defined by at least one of the five flowsheet options, but the compositional coverage did not appear adequate to bound all cases.« less

  5. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    NASA Astrophysics Data System (ADS)

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (P<0.01), Can significantly reduce Naoluotong qingnaopian group, high dose group (P<0.01), plasma viscosity decreased qingnaopian plasma viscosity in low dose group (P<0.05). Conclusion: qingnaopian could improve the blood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  6. DWPF DECON FRIT SUPERNATE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Crawford, C.

    2010-09-22

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. This report contains the results of the supernate analyses, while the solids (sump and slurry) results will be reported in a supplemental report. The analytical data from the decon frit supernate indicate that all ofmore » the radionuclide, organic, and inorganic concentrations met the limits in Revision 4 of the Effluent Treatment Plant (ETP) Waste Acceptance Criteria (WAC) with the exception of boron. The ETP WAC limit for boron is 15.0 mg/L while the average measured concentration (based on quadruplicate analysis) was 15.5 mg/L. The measured concentrations of Li, Na, and Si were also relatively high in the supernate analysis. These results are consistent with the relatively high measured value of B given the compositional make-up of Frit 418. Given these results, it was speculated that either (a) Frit 418 was dissolving into the supernate or aqueous fraction and/or (b) fine frit particulates were carried forward to the analytical instrument based on the sampling procedure used (i.e., the supernate samples were not filtered - only settled with the liquid fraction being transferred with a pipette). To address this issue, a filtered supernate sample (using a 0.45 um filter) was prepared and submitted for analysis. The results of the filtered sample were consistent with 'unfiltered or settled' sample - relatively high values of B, Li, Na, and Si were found. This suggests that Frit 418 is dissolving in the liquid phase which could be enhanced by the high surface area of the frit fines or particulates in suspension. Based on the results of this study, it is recommended that DWPF re-evaluate the technical basis for the B WAC limit (the only component that exceeds the ETP WAC limit from the supernate analyses) or assess if a waiver or exception can be obtained for exceeding this limit. Given the possible dissolution of B, Li, Na, and Si into the supernate (due to dissolution of frit), DWPF may need to assess if the release of these frit components into the supernate are a concern for the disposal options being considered. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been amore » limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.« less

  8. An Arrhenius-type viscosity function to model sintering using the Skorohod Olevsky viscous sintering model within a finite element code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.

    2006-02-01

    The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less

  9. GIA models with composite rheology and 3D viscosity: effect on GRACE mass balance in Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa; Schrama, Ernst

    2014-05-01

    Most Glacial Isostatic Adjustment (GIA) models that have been used to correct GRACE data for the influence of GIA assume a radial stratification of viscosity in the Earth's mantle (1D viscosity). Seismic data in Antarctica indicate that there are large viscosity variations in the horizontal direction (3D viscosity). The purpose of this research is to determine the effect of 3D viscosity on GIA model output, and hence mass balance estimates in Antarctica. We use a GIA model with 3D viscosity and composite rheology in combination with ice loading histories ICE-5G and W12a. From comparisons with uplift and sea-level data in Fennoscandia and North America three preferred viscosity models are selected. For two of the 3D viscosity models the maximum gravity rate due to ICE-5G forcing is located over the Ronne-Filchner ice shelf. This is in contrast with the results obtained using a 1D model, in which the maximum gravity rate due to ICE-5G forcing is always located over the Ross ice shelf. This demonstrates that not all 3D viscosity models can be approximated with a 1D viscosity model. Using CSR release 5 GRACE data from February 2003 to June 2013 mass balance estimates for the three preferred viscosity models are -131 to -171 Gt/year for the ICE-5G model, and -48 to -57 Gt/year for the W12a model. The range due to Earth model uncertainty is larger than the error bar for GRACE (10 Gt/year), but smaller than the range resulting from the difference in ice loading histories.

  10. Results of Hg speciation testing on DWPF SMECT-4, SMECT-6, and RCT-2 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-02-04

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The fifteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) samples from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 and a Recycle Condensate Tank (RCT) sample from SRAT Batch 736. The DWPF sample designations for the three samples analyzed are provided in Table 1. The Batch 738 ‘Baseline’ SMECT sample was taken priormore » to Precipitate Reactor Feed Tank (PRFT) addition and concentration and therefore, precedes the SMECT-5 sample reported previously. iii The Batch 738 ‘End of SRAT Cycle’ SMECT sample was taken at the conclusion of SRAT operations for this batch (PRFT addition/concentration, acid additions, initial concentration, MCU addition, and steam stripping). Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SRAT Cycle’ SMECT-6 sample. The Batch 736 ‘After SME’ RCT sample was taken after completion of SMECT transfers at the end of the SME cycle.« less

  11. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Lambert, D.

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. Tomore » address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.« less

  12. Estimation of the Viscosities of Liquid Sn-Based Binary Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Min; Li, Jinquan

    2018-01-01

    The viscosity of a binary Sn-based lead-free solder alloy was calculated by combining the predicted model with the Miedema model. The viscosity factor was proposed and the relationship between the viscosity and surface tension was analyzed as well. The investigation result shows that the viscosity of Sn-based lead-free solders predicted from the predicted model shows excellent agreement with the reported values. The viscosity factor is determined by three physical parameters: atomic volume, electronic density, and electro-negativity. In addition, the apparent correlation between the surface tension and viscosity of the binary Sn-based Pb-free solder was obtained based on the predicted model.

  13. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less

  14. EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Hera, K.; Coleman, C.

    2011-12-05

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testingmore » for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the Cs{sub 2}CO{sub 3} method for the measurement of magnesium (Mg), sodium (Na), and zirconium (Zr) with additional testing of the method by DWPF Laboratory being needed before further implementation of the Cs{sub 2}CO{sub 3} method at that laboratory. While the SME acceptability testing of the Isolok does not address any of the open issues remaining after the publication of the recommendation for the replacement of the mixed acid method by the Cs{sub 2}CO{sub 3} method (since those issues are to be addressed by the DWPF Laboratory), the Cs{sub 2}CO{sub 3} testing associated with the Isolok testing does provide additional insight into the performance of the method as conducted by SRNL. The performance is to be investigated by looking to the composition measurement data generated by the samples of a standard glass, the Analytical Reference Glass - 1 (ARG-1), that were prepared by the Cs{sub 2}CO{sub 3} method and included in the SME acceptability testing of the Isolok. The measurements of these samples were presented as part of the study results, but no statistical analysis of these measurements was conducted as part of those results. It is the purpose of this report to provide that analysis, which was supported using JMP Version 7.0.2.« less

  15. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  16. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Estochen, E.; Jordan, J.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformationmore » of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of stress corrosion cracking was indicated on either the canisters or U-bend coupons. Calculations and finite element modeling were used to determine forces over a range of handling conditions along with possible forces during decontamination. While expected reductions in some physical characteristics were found in the HCC, none were found to be significant when compared to the required values necessary to perform its intended function. Based on this study and a review of successful testing of thinner canisters at West Valley Demonstration Project (WVDP), the mechanical properties obtained with the thinner wall do not significantly undermine the ability of the canister to perform its intended function.« less

  17. Inference of viscosity jump at 670 km depth and lower mantle viscosity structure from GIA observations

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya

    2018-03-01

    A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper-mantle viscosity. The mantle viscosity structure adopted in this study depends on temperature distribution and activation energy and volume, and it is difficult to discuss the impact of each quantity on the inferred lower-mantle viscosity model. We conclude that models of smooth depth variation in the lower-mantle viscosity following η ( z ) ∝ {{ exp}}[ {( {E_{{{lm}}}^* + P( z )V_{{{lm}}}^*} )/{{R}}T( z )} ] with constant E_{{{lm}}}^* and V_{{{lm}}}^* are consistent with the GIA observations.

  18. Inference of mantle viscosity for depth resolutions of GIA observations

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi

    2016-11-01

    Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest that the GIA-based lower-mantle viscosity structure should be treated carefully in discussing the mantle dynamics related to the viscosity jump at ˜670 km depth. We also preliminarily put additional constraints on these viscosity solutions by examining typical relative sea level (RSL) changes used to infer the lower-mantle viscosity. The viscosity solution inferred from the far-field RSL changes in the Australian region is consistent with those for the J˙2 and LGM sea levels, and the analyses for RSL changes at Southport and Bermuda in the intermediate region for the North American ice sheets suggest the solution of η670,D > 1022, ηD,2891 ˜ (5-10) × 1022 Pa s (D = 1191 or 1691 km) and upper-mantle viscosity higher than 6 × 1020 Pa s.

  19. Defense Waste Processing Facility Process Enhancements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricker, Jonathan

    2010-11-01

    Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.

  20. Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-12-15

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable tomore » SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.« less

  1. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9more » by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.« less

  2. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less

  3. Modeling the viscosity of polydisperse suspensions: Improvements in prediction of limiting behavior

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2016-06-01

    The present study develops a fully consistent extension of the approach pioneered by Farris ["Prediction of the viscosity of multimodal suspensions from unimodal viscosity data," Trans. Soc. Rheol. 12, 281-301 (1968)] to describe the viscosity of polydisperse suspensions significantly improving upon our previous model [P. M. Mwasame, N. J. Wagner, and A. N. Beris, "Modeling the effects of polydispersity on the viscosity of noncolloidal hard sphere suspensions," J. Rheol. 60, 225-240 (2016)]. The new model captures the Farris limit of large size differences between consecutive particle size classes in a suspension. Moreover, the new model includes a further generalization that enables its application to real, complex suspensions that deviate from ideal non-colloidal suspension behavior. The capability of the new model to predict the viscosity of complex suspensions is illustrated by comparison against experimental data.

  4. The viscosity of magmatic silicate liquids: A model for calculation

    NASA Technical Reports Server (NTRS)

    Bottinga, Y.; Weill, D. F.

    1971-01-01

    A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.

  5. PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.

    2010-09-28

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix,more » or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.« less

  6. Predicting the viscosity of solids using steady-state creep behavior of the fibrous composites semi-theoretically

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    A semi-analytical formulation is presented for obtaining the viscosity of solids (such as metals) using the steady state creep model of the short-fiber composites. For achieving this aim, fluid mechanics theory is used for determining the viscosity. Sometimes, obtaining the viscosity is experimentally difficult and intricate. So, the present model may be beneficial to obtain the viscosity of metals.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Cooley, Scott K.; Sundaram, S. K.

    Slags of low viscosity readily penetrate the refractory lining in slagging gasifiers, causing rapid and severe corrosion called spalling. In addition, a low-viscosity slag that flows down the gasifier wall forms a relatively thin layer of slag on the refractory surface, allowing the corrosive gases in the gasifier to participate in the chemical reactions between the refractory and the slag. In contrast, a slag viscosity of <25 Pa•s at 1400°C is necessary to minimize the possibility of plugging the slag tap. There is a need to predict and optimize slag viscosity so slagging gasifiers can operate continuously at temperatures rangingmore » from 1300 to 1650°C. The approach adopted in this work was to statistically design and prepare simulated slags, measure the viscosity as a function of temperature, and develop a model to predict slag viscosity based on slag composition and temperature. Statistical design software was used to select compositions from a candidate set of all possible vertices that will optimally represent the composition space for 10 main components. A total of 21 slag compositions were generated, including 5 actual coal slag compositions. The Arrhenius equation was applied to measured viscosity versus temperature data of tested slags, and the Arrhenius coefficients (A and B in ln(vis) = A + B/T) were expressed as linear functions of the slag composition. The viscosity model was validated using 1) data splitting approach, and 2) viscosity/temperature data of selected slag compositions from the literature that were formulated and melted at Pacific Northwest National Laboratory. The capability of the model to predict the viscosity of coal slags was compared with the model developed by Browning et al. because this model can predict the viscosity of slags from coal ash better than the most commonly used empirical models found in the literature.« less

  8. Solidification of Savannah River plant high level waste

    NASA Astrophysics Data System (ADS)

    Maher, R.; Shafranek, L. F.; Kelley, J. A.; Zeyfang, R. W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY-83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quanitity of existing high level nuclear wastes can be safely and permanently immobilized.

  9. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.

    2013-03-18

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch ormore » qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.« less

  10. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  11. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  12. Constraints on mantle viscosity from convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Mao, W.; Zhong, S.

    2017-12-01

    The Earth's long-wavelength geoid and dynamic topography are mainly controlled by the mantle buoyancy and viscosity structure. Previous dynamical models for the geoid provide constraints on the 1-D mantle viscosity, using mantle buoyancy derived from seismic topography models. However, it is a challenge in these studies on how to convert seismic velocity to density anomalies and mantle buoyancy. Furthermore, these studies provide constraints only on relative viscosity variations but not on absolute magnitude of viscosity. In this study, we formulate time-dependent 3-D spherical mantle convection models with imposed plate motion history and seek constraints on mantle viscosity structure for both its radial relative variations and its absolute magnitude (i.e., Rayleigh number), using the geoid from the convection models. We found that the geoid at intermediate wavelengths of degrees 4-9 is mainly controlled by the subducted slabs in the upper mantle and the upper part of lower mantle that result from subduction from the last 50 Myr or the Cenozoic. To fit the degrees 4-9 geoid, we need viscosity contrast β defined as the ratio of the lower mantle viscosity and the asthenospheric viscosity to be larger than 2000 and Ra to be 1e8 (defined by the Earth's radius). The best fit model leads to 57% variance reduction and 76% correlation between the model and the observations. However, the long-wavelength geoid at degrees 2-3 is controlled by the lower mantle structure which requires much longer time scale to develop, as seen from our modeling. The preferred viscosity structure and Rayleigh number as constrained by the Cenozoic plate motion and the degrees 4-9 geoid no longer provide adequate fit to the geoid in models with the plate motion history for the last 450 Myr. The degrees 4-9 geoid amplitude is smaller for the models with longer plate motion history and a smaller Ra is required to fit the observation. In order to satisfy the relative amplitude between degrees 2-3 and degrees 4-9 geoid, either a gradually increase of viscosity in the upper part of lower mantle or larger thermal expansivity in the lower mantle is needed. We also consider thermo-chemical models to examine the effects of the African and Pacific thermochemical piles (i.e., LLSVPSs) on the geoid and the inferred mantle viscosity and Ra.

  13. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.

    PubMed

    Suzuki, Takashi; Takao, Hiroyuki; Suzuki, Takamasa; Suzuki, Tomoaki; Masuda, Shunsuke; Dahmani, Chihebeddine; Watanabe, Mitsuyoshi; Mamori, Hiroya; Ishibashi, Toshihiro; Yamamoto, Hideki; Yamamoto, Makoto; Murayama, Yuichi

    2017-01-01

    In most simulations of intracranial aneurysm hemodynamics, blood is assumed to be a Newtonian fluid. However, it is a non-Newtonian fluid, and its viscosity profile differs among individuals. Therefore, the common viscosity assumption may not be valid for all patients. This study aims to test the suitability of the common viscosity assumption. Blood viscosity datasets were obtained from two healthy volunteers. Three simulations were performed for three different-sized aneurysms, two using measured value-based non-Newtonian models and one using a Newtonian model. The parameters proposed to predict an aneurysmal rupture obtained using the non-Newtonian models were compared with those obtained using the Newtonian model. The largest difference (25%) in the normalized wall shear stress (NWSS) was observed in the smallest aneurysm. Comparing the difference ratio to the NWSS with the Newtonian model between the two Non-Newtonian models, the difference of the ratio was 17.3%. Irrespective of the aneurysmal size, computational fluid dynamics simulations with either the common Newtonian or non-Newtonian viscosity assumption could lead to values different from those of the patient-specific viscosity model for hemodynamic parameters such as NWSS.

  14. Measurement of the dynamic viscosity of hybrid engine oil -Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network

    NASA Astrophysics Data System (ADS)

    Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbar Ali

    2018-01-01

    The main objectives of this study have been measurement of the dynamic viscosity of CuO-MWCNTs/SAE 5w-50 hybrid nanofluid, utilization of artificial neural networks (ANN) and development of a new viscosity model. The new nanofluid has been prepared by a two-stage procedure with volume fractions of 0.05, 0.1, 0.25, 0.5, 0.75 and 1%. Then, utilizing a Brookfield viscometer, its dynamic viscosity has been measured for temperatures of 5, 15, 25, 35, 45, 55 °C. The experimental results demonstrate that the viscosity increases by increasing the nanoparticles volume fraction and decreases by increasing temperature. Based on the experimental data the maximum and minimum nanofluid viscosity enhancements, when the volume fraction increases from 0.05 to 1, are 35.52% and 12.92% for constant temperatures of 55 and 15 °C, respectively. The higher viscosity of oil engine in higher temperatures is an advantage, thus this result is important. The measured nanofluid viscosity magnitudes in various shear rates show that this hybrid nanofluid is Newtonian. An ANN model has been employed to predict the viscosity of the CuO-MWCNTs/SAE 5w-50 hybrid nanofluid and the results showed that the ANN can estimate the viscosity efficiently and accurately. Eventually, for viscosity estimation a new temperature and volume fraction based third-degree polynomial empirical model has been developed. The comparison shows that this model is in good agreement with the experimental data.

  15. On the resolution of shallow mantle viscosity structure using post-earthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Pollitz, Fred F.; Thatcher, Wayne R.

    2010-01-01

    Most models of lower crust/mantle viscosity inferred from postearthquake relaxation assume one or two uniform-viscosity layers. A few existing models possess apparently significant radially variable viscosity structure in the shallow mantle (e.g., the upper 200 km), but the resolution of such variations is not clear. We use a geophysical inverse procedure to address the resolving power of inferred shallow mantle viscosity structure using postearthquake relaxation data. We apply this methodology to 9 years of GPS-constrained crustal motions after the 16 October 1999 M = 7.1 Hector Mine earthquake. After application of a differencing method to isolate the postearthquake signal from the “background” crustal velocity field, we find that surface velocities diminish from ∼20 mm/yr in the first few months to ≲2 mm/yr after 2 years. Viscoelastic relaxation of the mantle, with a time-dependent effective viscosity prescribed by a Burgers body, provides a good explanation for the postseismic crustal deformation, capturing both the spatial and temporal pattern. In the context of the Burgers body model (which involves a transient viscosity and steady state viscosity), a resolution analysis based on the singular value decomposition reveals that at most, two constraints on depth-dependent steady state mantle viscosity are provided by the present data set. Uppermost mantle viscosity (depth ≲ 60 km) is moderately resolved, but deeper viscosity structure is poorly resolved. The simplest model that explains the data better than that of uniform steady state mantle viscosity involves a linear gradient in logarithmic viscosity with depth, with a small increase from the Moho to 220 km depth. However, the viscosity increase is not statistically significant. This suggests that the depth-dependent steady state viscosity is not resolvably different from uniformity in the uppermost mantle.

  16. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.« less

  17. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.« less

  18. Effect of viscosity on tear drainage and ocular residence time.

    PubMed

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  19. Emergent universe model with dissipative effects

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Paul, B. C.

    2017-12-01

    Emergent universe model is presented in general theory of relativity with isotropic fluid in addition to viscosity. We obtain cosmological solutions that permit emergent universe scenario in the presence of bulk viscosity that are described by either Eckart theory or Truncated Israel Stewart (TIS) theory. The stability of the solutions are also studied. In this case, the emergent universe (EU) model is analyzed with observational data. In the presence of viscosity, one obtains emergent universe scenario, which however is not permitted in the absence of viscosity. The EU model is compatible with cosmological observations.

  20. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  1. Searching for 3D Viscosity Models of Glacial Isostatic Adjustment in Support of the Global ICE-6G_C Ice History Model

    NASA Astrophysics Data System (ADS)

    LI, T., II; Wu, P.; Steffen, H.; Wang, H.

    2017-12-01

    The global ice history model ICE-6G_C was constructed based on the laterally homogeneous earth model VM5a. The combined model of glacial isostatic adjustment (GIA) called ICE-6G_C (VM5a) fits global observations of GIA simultaneously well. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Our aim therefore is to search for the best laterally heterogeneous viscosity models with ICE-6G_C ice history that is able to fit the global relative sea-level (RSL) data, the peak uplift rates (from GNSS) and peak g-dot rates (from the GRACE satellite mission) in Laurentia and Fennoscandia simultaneously. The Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea levels with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. As a start, the VM5a Earth model is used as the radial background viscosity structure but other radial background viscosity models will also be investigated. Lateral mantle viscosity structure is obtained by the superposition of the radial background viscosity and the lateral viscosity perturbations logarithmically. The latter is inferred from a seismic tomography model using a scaling relationship that takes into account the effects of anharmonicity, anelasticity and non-thermal effects. We will show that several laterally heterogeneous mantle viscosity models can fit the global sea level, GPS and GRACE data better than laterally homogeneous models, provided that the scaling relationship for mantle heterogeneity under northern Europe is allowed to be different from that under Laurentia. In addition, the effects of laterally heterogeneous lithosphere, as inferred from seismic tomography, and the lateral changes in sub-lithospheric properties will also be presented.

  2. Temperature-viscosity models reassessed.

    PubMed

    Peleg, Micha

    2017-05-04

    The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.

  3. Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.

    2016-01-01

    CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less

  4. Live Cell Imaging of Viscosity in 3D Tumour Cell Models.

    PubMed

    Shirmanova, Marina V; Shimolina, Lubov' E; Lukina, Maria M; Zagaynova, Elena V; Kuimova, Marina K

    2017-01-01

    Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.

  5. Phase 2 Report--Mercury Behavior In The Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.; Fellinger, T.

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  6. Effect of interactions between multiple interfaces on the rheological characteristics of double emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang

    2018-06-01

    In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.

  7. Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth

    NASA Astrophysics Data System (ADS)

    Hill, A. M.; Milne, G. A.; Ranalli, G.

    2017-12-01

    We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.

  8. Subduction zone evolution and low viscosity wedges and channels

    NASA Astrophysics Data System (ADS)

    Manea, Vlad; Gurnis, Michael

    2007-12-01

    Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile budget such that the dehydration front moves to shallower depths. Our flat-slab models shed some light on puzzling flat subduction systems, like in Central Mexico, where there is no deformation within the overriding plate above the flat segment. The lack of in-plane compression in Central Mexico suggests the presence of a low viscosity shear zone above the flat slab.

  9. A Study of Oil Viscosity Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad

    2017-02-01

    There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.

  10. Measuring viscosity with a resonant magnetic perturbation in the MST RFP

    NASA Astrophysics Data System (ADS)

    Fridström, Richard; Munaretto, Stefano; Frassinetti, Lorenzo; Chapman, Brett; Brunsell, Per; Sarff, John; MST Team

    2016-10-01

    Application of an m = 1 resonant magnetic perturbation (RMP) causes braking and locking of naturally rotating m = 1 tearing modes (TMs) in the MST RFP. The experimental TM dynamics are replicated by a theoretical model including the interaction between the RMP and multiple TMs [Fridström PoP 23, 062504 (2016)]. The viscosity is the only free parameter in the model, and it is chosen such that model TM velocity evolution matches that of the experiment. The model does not depend on the means by which the natural rotation is generated. The chosen value of the viscosity, about 40 m2/s, is consistent with separate measurements in MST using a biased probe to temporarily spin up the plasma. This viscosity is about 100 times larger than the classical prediction, likely due to magnetic stochasticity in the core of these plasmas. Viscosity is a key parameter in visco-resistive MHD codes like NIMROD. The validation of these codes requires measurement of the viscosity over a broad parameter range, which will now be possible with the RMP technique that, unlike the biased probe, is not limited to low-energy-density plasmas. Estimation with the RMP technique of the viscosity in several MST discharges suggests that the viscosity decreases as the electron beta increases. Work supported by USDOE.

  11. A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models.

    PubMed

    Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F

    2004-08-01

    In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).

  12. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    PubMed

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  13. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washedmore » Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.« less

  14. Dynamical influences on the moment of inertia tensor from lateral viscosity variations inferred from seismic tomographic models

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1994-01-01

    We have investigated the influences of lateral variations of viscosity on the moment of inertia tensor from viscous flows due to the density anomalies in the mantle inferred from seismic tomographic models. The scaling relations between the density and the seismic anomalies is taken as either a constant or a function increasing with depth in accord with the recent high-pressure experimental studies. The viscosity is taken as an exponential function of the 3D density anomaly. In models with an isoviscous background, the effects on the perturbed moment of inertia tensor from the lateral viscosity variations are smaller than those due to variations in the radial viscosity profiles. In mantle models with a background viscosity increasing with depth, the influences of the lateral viscosity variations are significant. The most striking feature in the latter case is that the two off-diagonal elements delta I(sub xz) and delta I(sub yz) in the inertia tensor exhibit greatest sensitivity to lateral variations of the viscosity. While the other elements of the inertia change by only about a few tens of percent in the range of lateral viscosity contrast considered (less than 300), delta I(sub xz) and delta I(sub yz) can vary up to 40 times even with a change in sign, depending on the radial viscosity stratification and the location of the strongest lateral variations. The increase in the velocity-density scaling relation with depth can reduce the influences of the lateral viscosity variations, but it does not change the overall sensitive nature of delta I(sub xz) and delta I(sub yz). This study demonstrates clearly that the lateral viscosity variations, especially in the upper mantle, must be considered in the determination of long-term polar wander, since the variations in the delta I(sub xz) and delta I(sub yz) terms are directly responsible for exciting rotational movements.

  15. Tidal dissipation in a viscoelastic planet

    NASA Technical Reports Server (NTRS)

    Ross, M.; Schubert, G.

    1986-01-01

    Tidal dissipation is examined using Maxwell standard liner solid (SLS), and Kelvin-Voigt models, and viscosity parameters are derived from the models that yield the amount of dissipation previously calculated for a moon model with QW = 100 in a hypothetical orbit closer to the earth. The relevance of these models is then assessed for simulating planetary tidal responses. Viscosities of 10 exp 14 and 10 ex 18 Pa s for the Kelvin-Voigt and Maxwell rheologies, respectively, are needed to match the dissipation rate calculated using the Q approach with a quality factor = 100. The SLS model requires a short time viscosity of 3 x 10 exp 17 Pa s to match the Q = 100 dissipation rate independent of the model's relaxation strength. Since Q = 100 is considered a representative value for the interiors of terrestrial planets, it is proposed that derived viscosities should characterize planetary materials. However, it is shown that neither the Kelvin-Voigt nor the SLS models simulate the behavior of real planetary materials on long time scales. The Maxwell model, by contrast, behaves realistically on both long and short time scales. The inferred Maxwell viscosity, corresponding to the time scale of days, is several times smaller than the longer time scale (greater than or equal to 10 exp 14 years) viscosity of the earth's mantle.

  16. Representing ductile damage with the dual domain material point method

    DOE PAGES

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less

  17. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids

    NASA Astrophysics Data System (ADS)

    Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad

    The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.

  18. Development of Viscosity Model for Petroleum Industry Applications

    NASA Astrophysics Data System (ADS)

    Motahhari, Hamed reza

    Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was demonstrated that the framework of the correlation is valid for these compounds, except for compounds with strong hydrogen bonding such as water. A temperature dependency was introduced into the correlation for strongly hydrogen bonding compounds. The EF correlation fit the viscosity data of pure non-hydrocarbon compounds with AARDs below 6% and predicted the viscosity of sour and sweet natural gases and aqueous solutions of organic alcohols with overall AARDs less than 9%. An internally consistent estimation method was also developed to calculate the fluid-specific parameters for hydrocarbons when no experimental viscosity data are available. The method correlates the fluid-specific parameters to the molecular weight and specific gravity. The method was evaluated against viscosity data of over 250 pure hydrocarbon compounds and petroleum distillations cuts. The EF correlation predictions were found to be within the same order of magnitude of the measurements with an overall AARD of 31%. A methodology was then proposed to apply the EF viscosity correlation to crude oils characterized as mixtures of the defined components and pseudo-components. The above estimation methods are used to calculate the fluid-specific parameters for pseudo-components. Guidelines are provided for tuning of the correlation to available viscosity data, calculating the dilute gas viscosities, and improving the densities calculated with the Peng-Robinson EoS. The viscosities of over 10 dead and live crude oils and bitumen were predicted within a factor of 3 of the measured values using the measured density of the oils as the input. It was shown that single parameter tuning of the model improved the viscosity prediction to within 30% of the measured values. Finally, the performance of the EF correlation was evaluated for diluted heavy oils and bitumens. The required density and viscosity data were collected for over 20 diluted dead and live bitumen mixtures using an in-house capillary viscometer also equipped with an in-line density-meter at temperatures and pressures up to 175 °C and 10 MPa. The predictions of the correlation were found within the same order of magnitude of the measured values with overall AARDs less than 20%. It was shown that the predictions of the correlation with generalized non-zero interaction parameters for the solvent-oil pairs were improved to overall AARDs less than 10%.

  19. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE PAGES

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...

    2018-01-12

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  20. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  1. Hyperviscosity for unstructured ALE meshes

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.; Ulitsky, Mark S.; Miller, Douglas S.

    2013-01-01

    An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eulerian model (dubbed 'hyperviscosity') are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier-Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.

  2. Effects of fluid viscosity on a moving sonoluminescing bubble.

    PubMed

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Rezaee, Nastaran; Ebrahimi, Homa

    2011-08-01

    Based on the quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence in water, adiponitrile, and N-methylformamide are calculated for various fluid viscosities. By using a complete form of the hydrodynamic force, the bubble trajectory is calculated for a moving single bubble sonoluminescence (m-SBSL). It is found that as the fluid viscosity increases, the unique circular path changes to an ellipsoidal and then linear form and along this incrementally increase of viscosity the light intensity increases. By using the Bremsstrahlung model to describe the bubble radiation, gradual increase of the viscosity results in brighter emissions. It is found that in fluids with higher viscosity the light intensity decreases as time passes.

  3. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  4. Results of an inter-laboratory study of glass formulation for the immobilization of excess plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.K.

    1999-12-08

    The primary focus of the current study is to determine allowable loadings of feed streams containing different ratios of plutonium, uranium, and minor components into the LaBS glass and to evaluate thermal stability with respect to the DWPF pour.

  5. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Edwards, T. B.

    2013-06-26

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid streammore » into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B203 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B203 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT.« less

  6. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less

  7. Laparoscopy and tribology: the effect of laparoscopic gas on peritoneal fluid.

    PubMed

    Ott, D E

    2001-02-01

    To assess the changes in viscosity of peritoneal fluid during laparoscopic exposure to CO2 insufflation. Analysis and mathematic modeling of peritoneal fluid viscosity in vivo and in vitro as a result of exposure to unconditioned CO2 (Canadian Task Force classification II-2). Medical school university research laboratory and hospital. Peritoneal fluid from 45 women. Peritoneal fluid was obtained at laparoscopy before insufflation and tested for viscosity after exposure to currently used raw dry unconditioned CO2. Peritoneal fluid viscosity was tested by viscometric methods and mathematic modeling. Initial viscosity of peritoneal fluid before gas exposure was 1.425 centipoise (cP). Viscosity measurements were obtained at 20-second intervals for gas flows of 1 and 3 L/minute. Increases in viscosity occur rapidly, and by 200 seconds it was 59 cP and 98 cP for 1 and 3 L flow rates, respectively. Very dry CO2 for laparoscopy causes peritoneal fluid viscosity to increase dramatically. (J Am Assoc Gynecol Laparosc 8(1):117-123, 2001)

  8. Sweetness and other sensory properties of model fruit drinks: Does viscosity have an impact?

    PubMed

    Brandenstein, Cai V S; Busch-Stockfisch, Mechthild; Fischer, Markus

    2015-03-15

    The impact of thickening agents and viscosity levels on sensory perception was studied in model fruit drinks. Four formulations were prepared that varied in the sweetener blend (erythritol, maltitol and/or steviol glycosides). Locust bean gum and its blends with either xanthan or carrageenan were used to adjust viscosity levels (20, 40, and 70 mPa s). The ranges of viscosity and sweetness level were selected to represent a typical concentration range in commercially available beverages. An increase in viscosity resulted in significant increases in pulpiness, sliminess and perceived viscosity (P-values ≤ 0.001), which were not dependent on sweeteners or hydrocolloid type. Taste perception remained largely unchanged irrespective of the hydrocolloid used. The impact of viscosity on sweetness and taste perception was much smaller in the concentrations used than has been generally reported. The effect of the type of hydrocolloid on the perception of taste attributes was greater than that of viscosity. © 2014 Society of Chemical Industry.

  9. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  10. Compositional dependence of lower crustal viscosity

    NASA Astrophysics Data System (ADS)

    Shinevar, William J.; Behn, Mark D.; Hirth, Greg

    2015-10-01

    We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.

  11. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamecnik, J. R.; Edwards, T. B.

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processingmore » Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.« less

  13. Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    1999-01-01

    The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.

  14. Basics of Physical Modeling in Coastal and Hydraulic Engineering

    DTIC Science & Technology

    2013-09-01

    gravity (Fg), viscosity (Fv), surface tension (Fs), and elasticity (Fe) must have the same ratios. This requirement arises from Newton’s Second Law which...they are relatively small. Viscosity can be neglected in most free-surface models if the model is not too (a) (b) ERDC/CHL CHETN-XIII-3 September... viscosity is to ensure that the model flow is in the turbulent range, which occurs for Re above approximately 104. The Reynolds number (Re) is defined

  15. Capillary waves with surface viscosity

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  16. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  17. Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin

    NASA Astrophysics Data System (ADS)

    Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu

    2007-07-01

    In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.

  18. Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

    PubMed Central

    Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp

    2013-01-01

    A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822

  19. The Larger the Viscosity, the Higher the Bounce

    NASA Astrophysics Data System (ADS)

    Stern, Menachem; Klein Schaarsberg, Martin; Peters, Ivo; Dodge, Kevin; Zhang, Wendy; Jaeger, Heinrich

    A low-viscosity liquid drop can bounce upon impact onto a solid. A high-viscosity drop typically just flattens, i.e., it splats. Surprisingly, our experiments with a droplet made of densely packed glass beads in silicone oil display the opposite behavior: the low-viscosity oil suspension drop splats. The high-viscosity oil suspension bounces. Increasing solvent viscosity increases the rebound energy. To gain insight into the underlying mechanism, we model the suspension as densely packed elastic spheres experiencing viscous lubrication drag between neighbors. The model reproduces the observed trends. Plots of elastic compression and drag experienced by the particles show that rebounds are made possible by (1) a fraction of the impact energy being stored during initial contact via elastic compression, (2) a rapid broadening of local lubrication drag interactions at the initial impact site into a spatially uniform upward force throughout the drop. Including finite wall drag due to the presence of ambient air into the numerical model diminishes and eventually cuts off the rebound.

  20. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  1. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.

  2. ΛCDM model with dissipative nonextensive viscous dark matter

    NASA Astrophysics Data System (ADS)

    Gimenes, H. S.; Viswanathan, G. M.; Silva, R.

    2018-03-01

    Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.

  3. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  4. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  5. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2012-03-15

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB7b. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred frommore » the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH{sup -}/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described. The following conclusions were drawn from the analytical results reported here: (1) The ratios of the major elements for the SB7b WAPS sample are different from those measured for the SB7a WAPS sample. There is less Al and Mn relative to Fe than the previous sludge batch. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. The element ratios for Al/Fe, Ca/Fe, Mn/Fe, and U/Fe agree within 10% between this work and the DWPF Sludge Receipt and Adjustment Tank (SRAT) receipt analyses. (3) Sulfur in the SB7b WAPS sample is 82% soluble, slightly less than results reported for SB3, SB4, and SB6 samples but unlike the 50% insoluble sulfur observed in the SB5 WAPS sample. In addition, 23% of the soluble sulfur is not present as sulfate in SB7b. (4) The average activities of the fissile isotopes of interest in the SB7b WAPS sample are (in {mu}Ci/g of total dried solids): 4.22E-02 U-233, 6.12E-04 U-235, 1.08E+01 Pu-239, and 5.09E+01 Pu-241. The full radionuclide composition will be reported in a future document. (5) The fission product noble metal and Ag concentrations appear to have largely peaked in previous DWPF sludge batches, with the exception of Ru, which still shows a slight increase in SB7b.« less

  6. The Drainage of Thin, Vertical, Model Polyurethane Liquid Films

    NASA Astrophysics Data System (ADS)

    Snow, Steven; Pernisz, Udo; Braun, Richard; Naire, Shailesh

    1999-11-01

    We have successfully measured the drainage rate of thin, vertically-aligned, liquid films prepared from model polyurethane foam formulations. The pattern of interference fringes in these films was consistent with a wedge-shaped film profile. The time evolution of this wedge shape (the ``collapsing wedge") obeyed a power law relationship between fringe density s and time t of s = k t^m. Experimentally, m ranged from -0.47 to -0.92. The lower bound for m represented a case where the surface viscosity of the film was very high (a ``rigid" surface). Theoretical modeling of this case yielded m = -0.5, in excellent agreement with experiment. Instantaneous film drainage rate (dV/dt) could be extracted from the ``Collapsing Wedge" model. As expected, dV/dt scaled inversely with bulk viscosity. As surfactant concentration was varied at constant bulk viscosity, dV/dt passed through a maximum value, consistent with a model where the rigidity of the surface was a function of both the intensity of surface tension gradients and the surface viscosity of the film. The influence of surface viscosity on dV/dt was also modeled theoretically.

  7. Role of rheology in reconstructing slab morphology in global mantle models

    NASA Astrophysics Data System (ADS)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul; Müller, Dietmar

    2015-04-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 years. Although numerical models and computational capabilities have incredibly progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of the lithosphere. Previous studies have employed diverse viscosity laws, most of them being temperature and depth dependent with relatively small viscosity contrasts. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. We also investigate the importance of pseudo-plasticity in such models. We show that strong temperature dependence of viscosity combined with pseudo-plasticity produce laterally and vertically continuous slabs, and flat subduction where trench retreat is fast (North, Central and South America). Moreover, pseudo-plasticity allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity only. However, even our most sophisticated model is not able to reproduce unambiguously stagnant slabs probably because of the simplicity of material properties we use here. The differences between models employing different viscosity laws are very large, larger than the differences between two models with the same rheology but using two different plate reconstructions or initial conditions.

  8. A study on the dependence of nuclear viscosity on temperature

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.

    2018-05-01

    Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.

  9. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  10. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  11. Quantitative characterization of the viscosity of a microemulsion

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Huang, John S.

    1987-01-01

    The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.

  12. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of kimberlite and basaltic magmas at the T, P - parameters of the Earth's crust and upper mantle. The Russian Foundation for Basic Research (project 15-05-01318) and the Russian Science Foundation (project 14-27-00054) are acknowledged for the financial support. [1] Persikov, E.S. & Bukhtiyarov, P.G. (2009) Russian Geology & Geophysics, 50, No 12, 1079-1090.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times, which may eventually impact canister production rates, the Liquid Waste Organization (LWO) performed a 100K gallon supernate decant of Tank 40 in April 2008. SRNLmore » performed a supplemental glass variability study to support the April 2008 100K gallon decant incorporating the impact of coupled operations (addition of the Actinide Removal Process (ARP) stream). Recently LWO requested that SRNL assess the impact of a second decant (up to 100K gallon) to the Frit 510-SB4 system. This second decant occurred in June 2008. LWO provided nominal compositions on May 6, 2008 representing Tank 40 prior to the second decant, following the second decant, and the SB4 Heel prior to blending with Tank 51 to constitute SB5. Paper study assessments were performed for these options based on sludge-only and coupled operations processing (ARP addition), as well as possible Na{sub 2}O additions (via NaOH additions) to both flowsheets. A review of the ComProTM database relative to the compositional region defined by the projections after the second decant coupled with Frit 510 identified only a few glasses with similar glass compositions. These glasses were acceptable from a durability perspective, but did not sufficiently cover the new glass compositional region. Therefore, SRNL recommended that a supplemental variability study be performed to support the June 2008 Tank 40 decant. Glasses were selected for the variability study based on three sludge compositional projections (sludge-only, coupled and coupled + 2 wt% Na{sub 2}O) at waste loadings (WLs) of interest to DWPF (32%, 35% and 38%). These nine glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). All of the glasses that were selected for this study satisfy the Product Composition Control System (PCCS) criteria and are deemed processable and acceptable for the DWPF, except for the SB4VS2-03 (sludge-only at 38% WL) target composition. This glass fails the T{sub L} criterion and would not be considered processable based on Slurry Mix Evaporator (SME) acceptability decisions. The durabilities of all of the study glasses (both quenched and ccc) are well below that of the normalized leachate for boron (NL [B]) of the reference EA glass (16.695 g/L) and are predictable using the current PCCS models. Very little variation exists between the NL [B] of the quenched and ccc versions of the glasses. There is some evidence of a trend toward a less durable glass as WL increases for some of the sludge projections. Frit 510 is a viable option for the processing of SB4 after a second Tank 40 decant with or without the addition of products from the ARP stream as well as the 2 wt% Na{sub 2}O addition. The addition of ARP had no negative impacts on the acceptability and predictability of the variability study glasses.« less

  14. Dependence of Perpendicular Viscosity on Magnetic Fluctuations in a Stochastic Topology

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Chapman, B. E.; Almagri, A. F.; Frassinetti, L.; Brunsell, P. R.; Nishizawa, T.; Sarff, J. S.

    2018-06-01

    In a magnetically confined plasma with a stochastic magnetic field, the dependence of the perpendicular viscosity on the magnetic fluctuation amplitude is measured for the first time. With a controlled, ˜ tenfold variation in the fluctuation amplitude, the viscosity increases ˜100 -fold, exhibiting the same fluctuation-amplitude-squared dependence as the predicted rate of stochastic field line diffusion. The absolute value of the viscosity is well predicted by a model based on momentum transport in a stochastic field, the first in-depth test of this model.

  15. Viscosity studies of water based magnetite nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anu, K.; Hemalatha, J.

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  16. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  17. Effect of Qing Nao tablet on blood stasis model of mice

    NASA Astrophysics Data System (ADS)

    Kong, Xuejun; Hao, Shaojun; Wang, Hongyu; Liu, Xiaobin; Xie, Guoqi; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To investigate the effect of Qing Nao tablet on mouse model of blood stasis syndrome, 60 mice, male and female, were randomly divided into 6 groups, were fed with large, small doses of Qing Nao tablet suspension, Naoluotong saline suspension and the same volume (group 2, 0.1ml/10g), administer 1 times daily, orally for 15 days. Intragastric administration for first days, in addition to the 1 group saline group every day in the hind leg intramuscular saline, the other 5 groups each rat day hind leg muscle injection of dexamethasone 0.8mg/kg intramuscular injection every day, 1 times, 15 days. 1 hour continuous intramuscular injection and intramuscular drug perfusion on the sixteenth day after mice. The eyeball blood, heparin after whole blood viscosity test. Compared with the control group, model group, high and low shear viscosity were significantly increased (P<0.01), indicating that the model was successful. Compared with the model group, high dose group and Qing Nao tablet Naoluotong group can significantly reduce the viscosity at high shear and (P<0.01), middle dose Qing Nao tablet group can significantly reduce high shear and shear viscosity (P<0.05); large, middle dose Qing Nao tablet group can significantly reduce the low shear viscosity (P<0.05), Naoluotong group can significantly reduce the low shear viscosity (P<0.01); low dose Qing Nao tablet group were lower high cut, low shear viscosity and trend The potential (P>0.05). The Qing Nao tablet has a good effect on the model of blood stasis in mice.

  18. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysismore » of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 μm and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter in this unwashed sample. Neither the washed nor unwashed PRFT solids TGA traces showed any features that would indicate presence of sodium oxalate solids. The PRFT Filtrate elemental analysis shows that Na, S and Al are major soluble species with trace levels of B, Cr, Cu, K, Li, Si, Tc, Th and U present. Nitrate, nitrite, sulfate, oxalate, carbonate and hydroxide are major soluble anion species. There is good agreement between the analyzed TOC and the total carbon calculated from the sum of oxalate and minor species formate. Comparison of the amount and speciation of the carbon species between filtrate and slurry indicates no significant carbon-containing species, e.g., sodium oxalate, are present in the slurry solids. Dissolution of the PRFT slurry and subsequent analysis shows that Na, Ti, Si and U are the major elements present on a Wt.% total dried solids basis with 30, 5.8 and 0.47 and 0.11 Wt.% total dried solids, respectively. The amount of Al in the dissolved PRFT slurry is less than that calculated from the PRFT filtrate alone which suggests that the mixed acid digestion used in this work is not optimized for Al recovery. The concentrations of Ca, Fe, Hg and U are all low (at or below 0.11 wt%) and there is no detectable Mn or Ni present which indicates no significant HLW sludge solids are present in the PRFT slurry sample.« less

  19. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    PubMed

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  20. The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity in a narrow model bay

    NASA Astrophysics Data System (ADS)

    Deng, Fangjing; Jiang, Wensheng; Feng, Shizuo

    2017-09-01

    The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used.

  1. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity in the weak zone of ~ 1018×0.3 Pa s, and larger than ~ 1020 Pa s outside this region. Models with sharp boundaries to the weak zone fit the data better than those with a smooth increase of viscosity away from the fault. Thus abrupt changes in material properties, such as those that might result from grain-size reduction, may be required in addition to any effect from shear heating. Unlike some previous models, we do not require non-linear stress-dependent viscosities. Our models imply that geodetic strain rates decay to a quasi-steady state within about 10% of the inter-earthquake period (years or decades) and that interseismic geodetic observations can therefore be used to infer the long-term geological slip rate, provided there has not been a recent earthquake. Rheologies inferred from postseismic studies alone likely reflect the rheology of the weak zone beneath the fault, and should not be used to infer the strength profile of normal lithosphere.

  2. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.

    2017-02-01

    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  3. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrma, Pavel R.

    2008-04-15

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values ofmore » -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550°C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450°C and viscosity range of 0.4 to 250 Pa.s.« less

  4. A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.

    1996-01-01

    Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.

  5. A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Giordano, D.; Dingwell, D. B.

    2005-12-01

    Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all silicate melts converge to a common, but unknown, high-T limit (e.g., A) and that all compositional dependence is accommodated for by B and C. We adopt a linear compositional dependence for B and C: B = σi=1..n [xi βi] C = σi=1..n [xi γi] where xi's are the mole fractions of oxide components (n=8) and βi and γi are adjustable parameters. The model, therefore, comprises 2 · n+1 adjustable parameters which are optimized for against the experimental database including a common value of A and compositional coefficeints for B and C. The new model reproduces the original database to within experimental uncertainty and can predict the viscosity of silicate melts across the full range of conditions found in Nature. References Cited: [1] Friedman et al., 1963. J Geophys Res 68, 6523-6535. [2] Bottinga Y & Weill D 1972. Am J Sci 272, 438- 475. [3] Shaw HR 1972. Am J Sci 272, 438- 475. [4] Persikov ES 1991. Adv Phys Geochem 9, 1-40. [5] Prusevich AA 1988. Geol Geofiz 29, 67-69. [6] Baker DR 1996. Am Min 81, 126-134. [7] Hess KU & Dingwell DB 1996. Am Min 81, 1297- 1300. [8] Zhang, et al. 2003. Am min 88, 1741- 1752. [9] Russell et al. 2002. Eur J Min 14, 417-428. [10] Russell et al. 2003. Am Min 8, 1390- 1394. [11] Russell JK & Giordano D In Press. Geochim Cosmochim Acta. [12] Giordano D & Dingwell DB 2003. Earth Planet. Sci. Lett. 208, 337-349.

  6. Reynolds Stress Distributions and the Measurement and Calculation of Eddy Viscosity in Gravity Currents

    NASA Astrophysics Data System (ADS)

    Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.

    2016-12-01

    In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.

  7. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    PubMed

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  8. Internally heated mantle convection and the thermal and degassing history of the earth

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  9. A singularity free approach to post glacial rebound calculations

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1994-01-01

    Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.

  10. Gibbs Energy Additivity Approaches in Estimation of Dynamic Viscosities of n-Alkane-1-ol

    NASA Astrophysics Data System (ADS)

    Phankosol, S.; Krisnangkura, K.

    2017-09-01

    Alcohols are solvents for organic and inorganic substances. Dynamic viscosity of liquid is important transport properties. In this study models for estimating n-alkan-1-ol dynamic viscosities are correlated to the Martin’s rule of free energy additivity. Data available in literatures are used to validate and support the proposed equations. The dynamic viscosities of n-alkan-1-ol can be easily estimated from its carbon numbers (nc) and temperatures (T). The bias, average absolute deviation and coefficient of determination (R2) in estimating of n-alkan-1-ol are -0.17%, 1.73% and 0.999, respectively. The dynamic viscosities outside temperature between 288.15 and 363.15 K may be possibly estimated by this model but accuracy may be lower.

  11. Two-phase model for prediction of cell-free layer width in blood flow

    PubMed Central

    Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho

    2014-01-01

    This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701

  12. Chemoviscosity modeling for thermosetting resins

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Hou, T. H.; Bai, J. M.

    1985-01-01

    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported.

  13. Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry

    2015-04-01

    Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.

  14. Experience in using a numerical scheme with artificial viscosity at solving the Riemann problem for a multi-fluid model of multiphase flow

    NASA Astrophysics Data System (ADS)

    Bulovich, S. V.; Smirnov, E. M.

    2018-05-01

    The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.

  15. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles

    NASA Astrophysics Data System (ADS)

    Grayson, James W.; Evoy, Erin; Song, Mijung; Chu, Yangxi; Maclean, Adrian; Nguyen, Allena; Upshur, Mary Alice; Ebrahimi, Marzieh; Chan, Chak K.; Geiger, Franz M.; Thomson, Regan J.; Bertram, Allan K.

    2017-07-01

    The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol) were studied under dry conditions, the third (1,2,3,4-butanetetrol) was studied as a function of relative humidity (RH), including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose) were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5 × 10-1 to 3.7 × 101 Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C3 to C6 carbon backbone, we show (1) there is a near-linear relationship between log10 (viscosity) and the number of hydroxyl groups in the molecule, (2) that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3) the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4) higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30 % RH, viscosity increases by approximately 2-5 orders of magnitude as molar mass increases from 180 to 342 g mol-1, and at 80 % RH, viscosity increases by approximately 4-5 orders of magnitude as molar mass increases from 180 to 991 g mol-1. These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA) could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities observed in some SOA. Finally, two quantitative structure-property relationship models (Sastri and Rao, 1992; Marrero-Morejón and Pardillo-Fontdevila, 2000) were used to predict the viscosity of alkanes, alcohols, and polyols with a C3-C6 carbon backbone. Both models show reasonably good agreement with measured viscosities for the alkanes, alcohols, and polyols studied here except for the case of a hexol, the viscosity of which is underpredicted by 1-3 orders of magnitude by each of the models.

  16. High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging

    NASA Astrophysics Data System (ADS)

    Liu, L.; Hasterok, D. P.

    2016-12-01

    An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of <200 km where active tectonic deformation and volcanism occur. However, the effective viscosity structure of the lithosphere remains a key challenge in geodynamics due to the intimate involvement of viscosity with time and its dependence on many factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.

  17. The role of viscosity in TATB hot spot ignition

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  18. Viscosity as related to dietary fiber: a review.

    PubMed

    Dikeman, Cheryl L; Fahey, George C

    2006-01-01

    Viscosity is a physicochemical property associated with dietary fibers, particularly soluble dietary fibers. Viscous dietary fibers thicken when mixed with fluids and include polysaccharides such as gums, pectins, psyllium, and beta-glucans. Although insoluble fiber particles may affect viscosity measurement, viscosity is not an issue regards insoluble dietary fibers. Viscous fibers have been credited for beneficial physiological responses in human, animal, and animal-alternative in vitro models. The following article provides a review of viscosity as related to dietary fiber including definitions and instrumentation, factors affecting viscosity of solutions, and effects of viscous polysaccharides on glycemic response, blood lipid attenuation, intestinal enzymatic activity, digestibility, and laxation.

  19. Comment on "An alternative theory to explain the effects of coalescing oil drops on mouthfeel" by B. Le Reverend and J. Engmann, Soft Matter, 2015, 11, 7077.

    PubMed

    Xia, Qiuyang

    2016-03-28

    In a recent paper by B. Le Reverend and J. Engmann, they used a model to explain the change in the perceived viscosity by phase separation. We improved this model by adding the drop in viscosity in the aqueous phase to it and we show how this will significantly change the conclusion in the original paper. The increase in viscosity due to phase separation is highly unlikely to happen because the drop in viscosity due to loss of oil is faster at a high oil concentration.

  20. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  1. Effect of viscosity on droplet-droplet collisional interaction

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Padding, Johan T.; Deen, Niels G.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2017-06-01

    A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which drastically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation is still not entirely understood and a general model for collision outcome boundaries is not available. In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct numerical simulations employing the volume of fluid method. The role of viscous energy dissipation is analysed in collisions of droplets with different sizes and different physical properties. From the simulations results, a general phenomenological model depending on the capillary number (Ca, accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (Δ) is proposed.

  2. Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material

    NASA Astrophysics Data System (ADS)

    Aladool, A.; Aziz, M. M.; Wright, C. D.

    2017-06-01

    The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.

  3. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.

    2017-07-01

    Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.Plain Language SummaryThe Moon's mantle is locally ilmenite rich. Previous models exploring the convective evolution of the lunar mantle did not consider the effects of ilmenite viscosity. Recent rock deformation experiments demonstrate that Fe-Ti oxide (ilmenite) is a low viscosity phase compared to olivine and other silicate minerals. Our modeling shows that ilmenite changes the lunar mantle plume process. An ilmenite-rich layer around the lunar core would be highly stable throughout geologic time, consistent with a partially molten, low viscosity layer around the core inferred from seismic attenuation and tidal dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29221654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29221654"><span>Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G</p> <p>2018-03-01</p> <p>Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.8467T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.8467T"><span>The sensitivity of conduit flow models to basic input parameters: there is no need for magma trolls!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, M. E.; Neuberg, J. W.</p> <p>2012-04-01</p> <p>Many conduit flow models now exist and some of these models are becoming extremely complicated, conducted in three dimensions and incorporating the physics of compressible three phase fluids (magmas), intricate conduit geometries and fragmentation processes, to name but a few examples. These highly specialised models are being used to explain observations of the natural system, and there is a danger that possible explanations may be getting needlessly complex. It is coherent, for instance, to propose the involvement of sub-surface dwelling magma trolls as an explanation for the change in a volcanoes eruptive style, but assuming the simplest explanation would prevent such additions, unless they were absolutely necessary. While the understanding of individual, often small scale conduit processes is increasing rapidly, is this level of detail necessary? How sensitive are these models to small changes in the most basic of governing parameters? Can these changes be used to explain observed behaviour? Here we will examine the sensitivity of conduit flow models to changes in the melt viscosity, one of the fundamental inputs to any such model. However, even addressing this elementary issue is not straight forward. There are several viscosity models in existence, how do they differ? Can models that use different viscosity models be realistically compared? Each of these viscosity models is also heavily dependent on the magma composition and/or temperature, and how well are these variables constrained? Magma temperatures and water contents are often assumed as "ball-park" figures, and are very rarely exactly known for the periods of observation the models are attempting to explain, yet they exhibit a strong controlling factor on the melt viscosity. The role of both these variables will be discussed. For example, using one of the available viscosity models a 20 K decrease in temperature of the melt results in a greater than 100% increase in the melt viscosity. With changes of this magnitude resulting from small alterations in the basic governing parameters does this render any changes in individual conduit processes of secondary importance? As important as the melt viscosity is to any conduit flow model, it is a meaningless parameter unless there is a conduit through which to flow. The shape and size of a volcanic conduit are even less well constrained than magma's temperature and water content, but have an equally important role to play. Rudimentary changes such as simply increasing or decreasing the radius of a perfectly cylindrical conduit can have large effects, and when coupled with the range of magma viscosities that may be flowing through them can completely change interpretations. Although we present results specifically concerning the variables of magma temperature and water content and the radius of a cylindrical conduit, this is just the start, by systematically identifying the effect each parameter has on the conduit flow models it will be possible to identify which areas are most requiring of future attention.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.430..191B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.430..191B"><span>Assessing the role of slab rheology in coupled plate-mantle convection models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John</p> <p>2015-11-01</p> <p>Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25842308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25842308"><span>In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): viscosity measurement and prediction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villemejane, C; Wahl, R; Aymard, P; Denis, S; Michon, C</p> <p>2015-09-01</p> <p>The effects of biscuit composition on the viscosity generated during digestion were investigated. A control biscuit, one with proteins, one with fibres, and one with both proteins and fibres were digested under the same conditions, using the TNO intestinal model (TIM-1). The TIM-1 is a multi-compartmental and dynamic in vitro system, simulating digestion in the upper tract (stomach and small intestine) of healthy adult humans. Digesta were collected at different times, in the different compartments of the TIM-1 (stomach, duodenum, jejunum and ileum) and viscosity was measured with a dynamic rheometer. Results showed a marked effect of biscuit composition on chyme viscosity. Highest viscosity was obtained with biscuits containing viscous soluble fibres, followed by those enriched in both proteins and fibres, then by protein-enriched and control biscuits. The viscosity was maintained throughout the gut up to the ileal compartment. A prediction of the evolution of the chyme viscosity in each compartment of the TIM-1 was built, based on model curves describing the evolution of the viscosity as a function of biscuit concentration, and on dilution factors measured by spectrophotometry on a blank digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11720983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11720983"><span>Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drury, J L; Dembo, M</p> <p>2001-12-01</p> <p>It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301777"><span>Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drury, J L; Dembo, M</p> <p>2001-01-01</p> <p>It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious. PMID:11720983</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22399212-rheological-profile-boron-nitrideethylene-glycol-nanofluids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22399212-rheological-profile-boron-nitrideethylene-glycol-nanofluids"><span>Rheological profile of boron nitride–ethylene glycol nanofluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Żyła, Gaweł, E-mail: gzyla@prz.edu.pl; Witek, Adam; Gizowska, Magdalena</p> <p>2015-01-07</p> <p>The paper presents the complete rheological profile of boron nitride (BN)–ethylene glycol (EG) nanofluids. Nanofluids have been produced by two-step method on the basis of commercially available powder of plate-like grains of nanometrical thickness. Viscoelastic structure has been determined in oscillatory measurements at a constant frequency and temperature. Viscosity and flow curves for these materials have been measured. Studies have shown that the Carreau model can be used for the modeling of dynamic viscosity curves of the material. The samples were tested for the presence of thixotropy. The dependence of viscosity on temperature was also examined. The effect of temperaturemore » on the dynamic viscosity of BN-EG nanofluids can be modelled with the use of Vogel-Fulcher-Tammann expression.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1133389','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1133389"><span>ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fox, K.; Peeler, D.; Herman, C.</p> <p></p> <p>The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1129869-volume-translated-cubic-eos-pc-saft-density-models-free-volume-based-viscosity-model-hydrocarbons-extreme-temperature-pressure-conditions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1129869-volume-translated-cubic-eos-pc-saft-density-models-free-volume-based-viscosity-model-hydrocarbons-extreme-temperature-pressure-conditions"><span>Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.</p> <p>2013-12-01</p> <p>This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquidmore » density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21033796','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21033796"><span>Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meijer, A S; de Wijn, A S; Peters, M F E; Dam, N J; van de Water, W</p> <p>2010-10-28</p> <p>We investigate coherent Rayleigh-Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the used pump laser. Experiments were done for both polar and nonpolar gases and the bulk viscosity was obtained from the spectra using the Tenti S6 model. Results are compared to simple classical kinetic models of molecules with internal degrees of freedom. At the extremely high (gigahertz) frequencies of our experiment, most internal vibrational modes remain frozen and the bulk viscosity is dominated by the rotational degrees of freedom. Our measurements show that the molecular dipole moments have unexpectedly little influence on the bulk viscosity at room temperature and moderate pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920063050&hterms=CFS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DCFS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920063050&hterms=CFS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DCFS"><span>Diskoseismology: Probing accretion disks. II - G-modes, gravitational radiation reaction, and viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nowak, Michael A.; Wagoner, Robert V.</p> <p>1992-01-01</p> <p>A scalar potential is used to derive a single partial differential equation governing the oscillation of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically, the eigenfunctions and eigenfrequencies of isothermal disks are computed, and the way in which these results can be generalized to other disk models is indicated. The (assumed) relatively small rates of growth or damping of the modes due to various mechanisms, in particular gravitational radiation reaction and parameterized models of viscosity are also computed. It is found that for certain parameters the p-modes are unstable to gravitational radiation reaction (CFS instability), while both the p-modes and g-modes are unstable to viscosity unless highly anisotropic viscosity models are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25122390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25122390"><span>Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doorwar, Shashvat; Mohanty, Kishore K</p> <p>2014-07-01</p> <p>Immiscible displacement of viscous oil by water in a petroleum reservoir is often hydrodynamically unstable. Due to similarities between the physics of dielectric breakdown and immiscible flow in porous media, we extend the existing dielectric breakdown model to simulate viscous fingering patterns for a wide range of viscosity ratios (μ(r)). At low values of power-law index η, the system behaves like a stable Eden growth model and as the value of η is increased to unity, diffusion limited aggregation-like fractals appear. This model is compared with our two-dimensional (2D) experiments to develop a correlation between the viscosity ratio and the power index, i.e., η = 10(-5)μ(r)(0.8775). The 2D and three-dimensional (3D) simulation data appear scalable. The fingering pattern in 3D simulations at finite viscosity ratios appear qualitatively similar to the few experimental results published in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A"><span>Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allu Peddinti, D.; McNamara, A. K.</p> <p>2012-12-01</p> <p>Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T13A4618S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T13A4618S"><span>Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinevar, W. J.; Behn, M. D.; Hirth, G.</p> <p>2014-12-01</p> <p>Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24571089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24571089"><span>Possible benefits of catheters with lateral holes in coronary thrombus aspiration: a computational study for different clot viscosities and vacuum pressures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soleimani, Sajjad; Dubini, Gabriele; Pennati, Giancarlo</p> <p>2014-10-01</p> <p>According to a number of clinical studies, coronary aspiration catheters are useful tools to remove a thrombus (blood clot) blocking a coronary artery. However, these thrombectomy devices may fail to remove the blood clot entirely. Few studies have been devoted to a systematic analysis of factors affecting clot aspiration. The geometric characteristics of the aspiration catheter, the physical properties of the thrombus, and the applied vacuum pressure are crucial parameters. In this study, the aspiration of a blood clot blocking a coronary bifurcation is computationally simulated. The clot is modeled as a highly viscous fluid, and a two-phase (blood and clot) problem is solved. The effects of geometric variations in the tip of the coronary catheter, including lateral hole size and location, are investigated considering different aspiration pressures and clot viscosities. A Bird-Carreau model is adopted for blood viscosity, while a power law model is used to describe the clot rheology. Computational results for blood clot aspiration show that the presence of holes in the lateral part of the tip of the catheter can be beneficial depending on clot viscosity, hole features, and applied aspiration pressure. In general, the holes are beneficial when the clot viscosity is low, while aspiration catheters without any extra lateral holes exhibit better performance for higher clot viscosity. However, when higher aspiration pressures are applied, the catheters tend to behave relatively similarly in removing clots with various viscosities, reducing the role of the clot viscosity. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28926254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28926254"><span>New in Situ Measurements of the Viscosity of Gas Clathrate Hydrate Slurries Formed from Model Water-in-Oil Emulsions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majid, Ahmad A A; Wu, David T; Koh, Carolyn A</p> <p>2017-10-24</p> <p>In situ rheological measurements for clathrate hydrate slurries were performed using a high pressure rheometer to determine the effect of hydrate particles on the viscosity and transportability of these slurries. These measurements were conducted using a well-characterized model water-in-oil emulsion ( Delgado-Linares et al. Model Water in-Oil Emulsions for Gas Hydrate Studies in Oil Continuous Systems . Energy Fuels 2013 , 27 , 4564 - 4573 ). The emulsion consists of a model liquid hydrocarbon, water, and a surfactant mixture of sorbitane monooleate 80 (Span 80) and sodium di-2-ethylhexylsulfosuccinate (Aerosol OT, AOT). This emulsion was used as an analog to water-in-crude oil (w/o) emulsions and provides reproducible results. The flow properties of the model w/o emulsion prior to hydrate formation were investigated in terms of several parameters including water percentage, temperature and pressure. A general equation that describes the viscosity of the emulsion as a function of the aforementioned parameters was developed. This general equation was able to predict the viscosity of a saturated emulsion at various temperatures and water percentages to within ±13% error. The general equation was then used to analyze the effect of hydrate formation on the transportability of gas hydrate slurries. As for hydrate slurries investigation, measurements were performed using methane gas as the hydrate former and a straight vane impeller as a stirring system. Tests were conducted at constant temperature and pressure (1 °C and 1500 psig of methane) and water percentages ranging from 5 to 30 vol %. Results of this work were analyzed and presented in terms of relative values, i.e., viscosities of the slurries relative to the viscosities of the continuous phase at similar temperature and pressure. In this work, a correlation to predict the relative viscosity of a hydrate slurry at various hydrate volume fractions was developed. Analysis of the developed correlation showed that the model was able to predict the relative viscosity of a hydrate slurry to within ±17% error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21320534-viscosity-alumina-nanoparticles-dispersed-car-engine-coolant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21320534-viscosity-alumina-nanoparticles-dispersed-car-engine-coolant"><span>Viscosity of alumina nanoparticles dispersed in car engine coolant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kole, Madhusree; Dey, T.K.</p> <p></p> <p>The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of themore » nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/985084-high-temperature-viscosity-commercial-glasses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/985084-high-temperature-viscosity-commercial-glasses"><span>High-Temperature Viscosity Of Commercial Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hrma, Pavel R; See, Clem A; Lam, Oanh P</p> <p>2005-01-01</p> <p>Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa∙s to 750 Pa∙s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, andmore » Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1022916','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1022916"><span>The Role of Viscosity in TATB Hot Spot Ignition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fried, L E; Zepeda-Ruis, L; Howard, W M</p> <p>2011-08-02</p> <p>The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046523&hterms=plate+tectonics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046523&hterms=plate+tectonics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplate%2Btectonics"><span>A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bercovici, David</p> <p>1995-01-01</p> <p>A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/79509-source-sink-model-generation-plate-tectonics-from-non-newtonian-mantle-flow','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/79509-source-sink-model-generation-plate-tectonics-from-non-newtonian-mantle-flow"><span>A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bercovici, D.</p> <p>1995-02-01</p> <p>A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489850-plasma-viscosity-mass-transport-spherical-inertial-confinement-fusion-implosion-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489850-plasma-viscosity-mass-transport-spherical-inertial-confinement-fusion-implosion-simulations"><span>Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vold, E. L.; Molvig, K.; Joglekar, A. S.</p> <p>2015-11-15</p> <p>The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1148749','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1148749"><span>Bubblers Speed Nuclear Waste Processing at SRS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>None</p> <p>2018-05-23</p> <p>At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1235440','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1235440"><span>Analysis Of Condensate Samples In Support Of The Antifoam Degradation Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hay, M.; Martino, C.</p> <p>2016-01-12</p> <p>The degradation of Antifoam 747 to form flammable decomposition products has resulted in declaration of a Potential Inadequacy in the Safety Analysis (PISA) for the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) testing with simulants showed that hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and 1-propanal are formed in the offgas from the decomposition of the antifoam. A total of ten DWPF condensate samples from Batch 735 and 736 were analyzed by SRNL for three degradation products and additional analytes. All of the samples were analyzed to determine the concentrations of HMDSO, TMS, and propanal. The results of the organicmore » analysis found concentrations for propanal and HMDSO near or below the detection limits for the analysis. The TMS concentrations ranged from below detection to 11 mg/L. The samples from Batch 736 were also analyzed for formate and oxalate anions, total organic carbon, and aluminum, iron, manganese, and silicon. Most of the samples contained low levels of formate and therefore low levels of organic carbon. These two values for each sample show reasonable agreement in most cases. Low levels of all the metals (Al, Fe, Mn, and Si) were present in most of the samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240870','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240870"><span>ANALYSIS OF CONDENSATE SAMPLES IN SUPPORT OF THE ANTIFOAM DEGRADATION STUDY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hay, M.; Martino, C.</p> <p>2016-02-29</p> <p>The degradation of Antifoam 747 to form flammable decomposition products has resulted in declaration of a Potential Inadequacy in the Safety Analysis (PISA) for the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) testing with simulants showed that hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and 1-propanal are formed in the offgas from the decomposition of the antifoam. A total of ten DWPF condensate samples from Batch 735 and 736 were analyzed by SRNL for three degradation products and additional analytes. All of the samples were analyzed to determine the concentrations of HMDSO, TMS, and propanal. The results of the organicmore » analysis found concentrations for propanal and HMDSO near or below the detection limits for the analysis. The TMS concentrations ranged from below detection to 11 mg/L. The samples from Batch 736 were also analyzed for formate and oxalate anions, total organic carbon, and aluminum, iron, manganese, and silicon. Most of the samples contained low levels of formate and therefore low levels of organic carbon. These two values for each sample show reasonable agreement in most cases. Low levels of all the metals (Al, Fe, Mn, and Si) were present in most of the samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5a6501W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5a6501W"><span>Estimation of the viscosities of liquid binary alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Min; Su, Xiang-Yu</p> <p>2018-01-01</p> <p>As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030071685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030071685"><span>Scientific Objectives of the Critical Viscosity Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berg, R. F.; Moldover, M. R.</p> <p>1993-01-01</p> <p>In microgravity, the Critical Viscosity Experiment will measure the viscosity of xenon 15 times closer to the critical point than is possible on earth. The results are expected to include the first direct observation of the predicted power-law divergence of viscosity in a pure fluid and they will test calculations of the value of the exponent associated with the divergence. The results, when combined with Zeno's decay-rate data, will strengthen the test of mode coupling theory. Without microgravity viscosity data, the Zeno test will require an extrapolation of existing 1-g viscosity data by as much as factor of 100 in reduced temperature. By necessity, the extrapolation would use an incompletely verified theory of viscosity crossover. With the microgravity viscosity data, the reliance on crossover models will be negligible allowing a more reliable extrapolation. During the past year, new theoretical calculations for the viscosity exponent finally achieved consistency with the best experimental data for pure fluids. This report gives the justification for the proposed microgravity Critical Viscosity Experiment in this new context. This report also combines for the first time the best available light scattering data with our recent viscosity data to demonstrate the current status of tests of mode coupling theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18975141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18975141"><span>Effect of matrix elasticity on the continuous foaming of food models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Narchi, I; Vial, Ch; Djelveh, G</p> <p>2008-12-01</p> <p>The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/909478-glass-viscosity-calculation-based-global-statistical-modelling-approach','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/909478-glass-viscosity-calculation-based-global-statistical-modelling-approach"><span>Glass viscosity calculation based on a global statistical modelling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fluegel, Alex</p> <p>2007-02-01</p> <p>A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurementmore » and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.113...22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.113...22S"><span>The viscous lee wave problem and its implications for ocean modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shakespeare, Callum J.; Hogg, Andrew McC.</p> <p>2017-05-01</p> <p>Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...106.6747H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...106.6747H"><span>Quantifying mixing and age variations of heterogeneities in models of mantle convection: Role of depth-dependent viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, D. L.; Kellogg, L. H.</p> <p>2001-04-01</p> <p>Using a two-dimensional finite element model of mantle convection containing over a million tracer particles, we examine the effects of depth-dependent viscosity on the rates and patterns of mixing. We simulate the processes of recycling crust at subduction zones and the homogenization of recycled material (by dispersion and by melting at mid-ocean ridges). Particles are continually introduced at downwellings and destroyed when they either are so thoroughly dispersed that it would be impossible to measure their presence in the geochemical signature of mid-ocean ridges or oceanic islands, or when they are close to spreading centers, at which point melting would "reset" the geochemical clock. A large number of factors influence the flow pattern and thus the rate at which heterogeneities are dispersed by convection. We examine the effect of increasing the viscosity with depth, and determine how both the residence time of heterogeneities and the extent of lateral mixing and exchange between the upper and lower mantle vary with the viscosity profile of the mantle. We determine the particle distribution resulting from convection models with three viscosity profiles: uniform viscosity, a smooth increase of viscosity with depth, and an abrupt jump in viscosity between the upper and lower mantle. We characterize the resulting distribution of heterogeneities in space and time by examining the age distribution of particles and their locations relative to others introduced into the flow at separate downwellings. Mixing rates in the three models are calculated as a function of the number of particles removed from the flow through time. We found that an increase of viscosity at depth does not induce age stratification in which older particles stagnate in the lover mantle, and it does not produce an upper layer (the source of mid-ocean ridge basalt) that is well-mixed compared to the deeper regions. However, pronounced lateral heterogeneity is evident in the distribution of particles of different ages and starting locations that is not apparent from the particle positions alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26801888','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26801888"><span>Effect of two viscosity models on lethality estimation in sterilization of liquid canned foods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calderón-Alvarado, M P; Alvarado-Orozco, J M; Herrera-Hernández, E C; Martínez-González, G M; Miranda-López, R; Jiménez-Islas, H</p> <p>2016-09-01</p> <p>A numerical study on 2D natural convection in cylindrical cavities during the sterilization of liquid foods was performed. The mathematical model was established on momentum and energy balances and predicts both the heating dynamics of the slowest heating zone (SHZ) and the lethal rate achieved in homogeneous liquid canned foods. Two sophistication levels were proposed in viscosity modelling: 1) considering average viscosity and 2) using an Arrhenius-type model to include the effect of temperature on viscosity. The remaining thermodynamic properties were kept constant. The governing equations were spatially discretized via orthogonal collocation (OC) with mesh size of 25 × 25. Computational simulations were performed using proximate and thermodynamic data for carrot-orange soup, broccoli-cheddar soup, tomato puree, and cream-style corn. Flow patterns, isothermals, heating dynamics of the SHZ, and the sterilization rate achieved for the cases studied were compared for both viscosity models. The dynamics of coldest point and the lethal rate F0 in all food fluids studied were approximately equal in both cases, although the second sophistication level is closer to physical behavior. The model accuracy was compared favorably with reported sterilization time for cream-style corn packed at 303 × 406 can size, predicting 66 min versus an experimental time of 68 min at retort temperature of 121.1 ℃. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25230766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25230766"><span>Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan</p> <p>2014-11-14</p> <p>Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AcAau..69..429T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AcAau..69..429T"><span>A mathematical model for the movement of food bolus of varying viscosities through the esophagus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tripathi, Dharmendra</p> <p>2011-09-01</p> <p>This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28259413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28259413"><span>Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V</p> <p>2017-05-01</p> <p>This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23679542','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23679542"><span>Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zu, Y Q; He, S</p> <p>2013-04-01</p> <p>A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1365657','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1365657"><span>Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zamecnik, J.; Edwards, T.</p> <p></p> <p>The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) statemore » of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V53B2247I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V53B2247I"><span>Bingham fluid behavior of plagioclase-bearing basaltic magma: Approach from laboratory viscosity measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishibashi, H.; Sato, H.</p> <p>2010-12-01</p> <p>Datasets of one atmosphere high temperature rotational viscometry of the Fuji 1707 basalt (Ishibashi, 2009) were analyzed based on the Bingham fluid model, and both yield stress and Bingham viscosity were determined. Reproducibility of the dataset by the Bingham fluid model was slightly better than that by the power law fluid modes adopted in our previous study although both the fluid models well represent the dataset in practical perspective. The relation between Bingham viscosity and crystallinity was compared with the Krieger-Dougherty equation, and both the maximum packing fraction of crystals and intrinsic viscosity for Bingham viscosity were determined ca. 0.45 and ca. 5.25, respectively, revealing that the maximum packing fraction decreased and intrinsic viscosity increased concomitantly with the increase in shape-anisotropy of crystals. However, the obtained value of the product of the maximum packing fraction and intrinsic viscosity (= ca. 2.36) was similar to that of uniform, isotropic-shaped particles (= 2.5), indicating that the effect of crystal shape-anisotropy on Bingham viscosity might be predicted only by change of the maximum packing fraction. Finite yield stress was detected for crystallinity larger than 0.133; it increased with crystallinity which suggests that critical crystallinity for onset of yield stress is at least lower than 0.133. The upper limit value of the critical crystallinity resembles the value calculated numerically for randomly oriented uniform particles by Saar et al. (2001) (0.10-0.15 for width/length ratio of 0.1-0.2, which is similar to the ratios in the basalt) whereas crystals in the basalt were moderately parallel arranged and their sizes vary significantly. That fact might be explained as follows; effects of parallel arrangement and size variation of crystals on the critical crystallinity are offset by the effect of variation in crystal shape-anisotropy, which suggests that shape-anisotropy distribution of crystals must be a critical factor for the onset of yield stress. Keywords: magma, viscosity, Bingham fluid, yield stress, plagioclase</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0775990','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0775990"><span>Eddy Viscosity for Variable Density Coflowing Streams,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890043206&hterms=resins+composite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dresins%2Bcomposite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890043206&hterms=resins+composite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dresins%2Bcomposite"><span>Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.</p> <p>1988-01-01</p> <p>A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25843869','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25843869"><span>Modelling of wicking and moisture interactions of flax and viscose fibres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stuart, T; McCall, R D; Sharma, H S S; Lyons, G</p> <p>2015-06-05</p> <p>Methods for assessing the wicking properties of individual fibre bundles have been developed from models based on the original Washburn equation (WE) and the modified Washburn equation (MWE), which also accounts for swelling. Both models gave indication of differences in wicking properties of flax and the viscose fibres, though MWE gave additional information that could be interpreted in terms of the physical model. Wicking of the viscose fibres is mainly via inter-fibre capillaries while that of flax is a combination of inter-fibre capillaries and lumen present in some elementary fibres. The degree of swelling and associated rotation of flax fibre in a vapour pressure range of 1-6torr were monitored using an environmental scanning electron microscope (ESEM). Viscose fibre exhibited swelling under the same conditions but did not rotate. The two techniques highlighted different mechanisms of wicking which can be used for monitoring moisture uptake/swelling of treated fibres for fabrication of composites. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019427"><span>A kinematic eddy viscosity model including the influence of density variations and preturbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, L. S.</p> <p>1973-01-01</p> <p>A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DPPUO6008A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DPPUO6008A"><span>Modeling viscosity and diffusion of plasma mixtures across coupling regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnault, Philippe</p> <p>2014-10-01</p> <p>Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860040629&hterms=stress+country&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstress%2Bcountry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860040629&hterms=stress+country&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstress%2Bcountry"><span>On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daly, S. F.; Raefsky, A.</p> <p>1985-01-01</p> <p>The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MMTB...45...58C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MMTB...45...58C"><span>Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun</p> <p>2014-01-01</p> <p>The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR23B..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR23B..05C"><span>Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.</p> <p>2016-12-01</p> <p>Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25548768','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25548768"><span>Vinpocetine and pyritinol: a new model for blood rheological modulation in cerebrovascular disorders—a randomized controlled clinical study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alkuraishy, Hayder M; Al-Gareeb, Ali I; Albuhadilly, Ali K</p> <p>2014-01-01</p> <p>Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50-65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274818','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274818"><span>Vinpocetine and Pyritinol: A New Model for Blood Rheological Modulation in Cerebrovascular Disorders—A Randomized Controlled Clinical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alkuraishy, Hayder M.; Al-Gareeb, Ali I.; Albuhadilly, Ali K.</p> <p>2014-01-01</p> <p>Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50–65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders. PMID:25548768</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43B0358J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43B0358J"><span>Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jadamec, M. A.; MacDougall, J.; Fischer, K. M.</p> <p>2017-12-01</p> <p>The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150406','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150406"><span>Titin Based Viscosity in Ventricular Physiology: An Integrative Investigation of PEVK-Actin Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chung, Charles S; Methawasin, Methajit; Nelson, O Lynne; Radke, Michael H; Hidalgo, Carlos G; Gotthardt, Michael; Granzier, Henk L</p> <p>2011-01-01</p> <p>Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In-vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in-vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in-vivo via an integrative physiological study on a unique PEVK-knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30–40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in-vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in-vivo and shows that PEVK-actin interactions are an important physiological source of viscosity. PMID:21708170</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......159A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......159A"><span>In vitro dissolution of strontium titanate to estimate clearance rates in human lungs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Jeri Lynn</p> <p></p> <p>At the In-Tank Precipitation facility (ITP) of the Savannah River Site, strontium and other radionuclides are removed from high-level radioactive waste and sent to the Defense Waste Processing Facility (DWPF). Strontium removal is accomplished by ion-exchange using monosodium titanate slurry which creates a form of strontium titanate with unknown solubility characteristics. In the case of accidental inhalation of a compound containing radioactive strontium, the ICRP, in Publication 66, recommends using default values for rates of absorption into body fluids at the lungs in the absence of reliable human or animal data. The default value depends on whether the absorption is considered to be fast, moderate, or slow (Type F, M, or S). Current dose assessment for an individual upon inadvertent exposure to airborne radioactive strontium assumes that all strontium compounds are Type F (soluble) or Type S (insoluble). Pure high-fired strontium titanate (SrTiOsb3) is considered Type S. The purpose of this project was to determine the solubility of strontium titanate in the form created at the ITP facility. An in vitro dissolution study was done with a precipitate simulant and with several types of strontium titanate and the results were compared. An in vivo study was also performed with high-fired SrTiOsb3 in rats. The data from both studies were used independently to assign the compounds to absorption type based on criteria specified in ICRP 71. Results of the in vitro studies showed that the DWPF simulant should be assigned to Type M and the strontium titanate should be assigned to Type S. It is possible the difference in the DWPF simulant is due to the other chemicals present. Results of the in vivo study verified that SrTiOsb3 should be assigned to Type S. Lung clearance data of SrTiOsb3 from rats showed that 85% cleared within the first 24 hours and the remaining 15% with a half-time of 130 days. The initial rapid clearance is attributed to deposition in airways as compared to the alveolar region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G21B0865B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G21B0865B"><span>A 3D Finite Element Model with Improved Spatial Resolution to Investigate the Effect of Varying Viscosity on Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.</p> <p>2017-12-01</p> <p>B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V13C4805W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V13C4805W"><span>A Simple Model for the Viscosity of Rhyolites as a Function of Temperature, Pressure and Water Content: Implications for Obsidian Flow Emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whittington, A. G.; Romine, W. L.</p> <p>2014-12-01</p> <p>Understanding the dynamics of rhyolitic conduits and lava flows, requires precise knowledge of how viscosity (η) varies with temperature (T), pressure (P) and volatile content (X). In order to address the paucity of viscosity data for high-silica rhyolite at low water contents, which represent water saturation at near-surface conditions, we made 245 viscosity measurements on Mono Craters (California) rhyolites containing between 0.01 and 1.1 wt.% H2O, at temperatures between 796 and 1774 K using parallel plate and concentric cylinder methods at atmospheric pressure. We then developed and calibrated a new empirical model for the log of the viscosity of rhyolitic melts, where non-linear variations due to temperature and water content are nested within a linear dependence of log η on P. The model was fitted to a total of 563 data points: our 245 new data, 255 published data from rhyolites across a wide P-T-X space, and 63 data on haplogranitic and granitic melts under high P-T conditions. Statistically insignificant parameters were eliminated from the model in an effort to increase parsimony and the final model is simple enough for use in numerical models of conduit or lava flow dynamics: log η = -5.142+(13080-2982log⁡(w+0.229))/(T-(98.9-175.9 log⁡(w+0.229)))- P(0.0007-0.76/T ) where η is in Pa s, w is water content in wt.%, P is in MPa and T is in K. The root mean square deviation (rmsd) between the model predictions and the 563 data points used in calibration is 0.39 log units. Experimental constraints have led previously to spurious correlations between P, T, X and η in viscosity data sets, so that predictive models may struggle to correctly resolve the individual effects of P, T and X, and especially their cross-correlations. The increasing water solubility with depth inside a simple isothermal sheet of obsidian suggests that viscosity should decrease by ~1 order of magnitude at ~20m depth and by ~2 orders of magnitude at ~100m depth. If equilibrium water contents are maintained, then deformation in spreading obsidian flows should be strongly partitioned into the deeper parts of the flow. Kinetically inhibited degassing, or recycling of degassed crust into a flow interior (e.g. by caterpillar-tread motion) could lead to strong lateral variations in viscosity within a flow, affecting flow evolution and morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001A%26A...368..325C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001A%26A...368..325C"><span>Radiating gravitational collapse with shearing motion and bulk viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, R.</p> <p>2001-03-01</p> <p>A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000MNRAS.316..588C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000MNRAS.316..588C"><span>Radiating gravitational collapse with shear viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, R.</p> <p>2000-08-01</p> <p>A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391767-shear-viscosity-coefficient-liquid-lanthanides','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391767-shear-viscosity-coefficient-liquid-lanthanides"><span>Shear viscosity coefficient of liquid lanthanides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com</p> <p>2015-05-15</p> <p>Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1661k0012P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1661k0012P"><span>Shear viscosity coefficient of liquid lanthanides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.; Prajapati, A. V.</p> <p>2015-05-01</p> <p>Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29775189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29775189"><span>Investigating mixing and emptying for aqueous liquid content from the stomach using a coupled biomechanical-SPH model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harrison, Simon M; Cleary, Paul W; Sinnott, Matthew D</p> <p>2018-05-18</p> <p>The stomach is a critical organ for food digestion but it is not well understood how it operates, either when healthy or when dysfunction occurs. Stomach function depends on the timing and amplitude of wall contractions, the fill level and the type of gastric content. Using a coupled biomechanical-Smoothed Particle Hydrodynamics (B-SPH) model, we investigate how gastric discharge is affected by the contraction behaviour of the stomach wall and the viscosity of the content. The results of the model provide new insights into how the content viscosity and the number of compression waves down the length of the stomach affect the mixing within and the discharge rate of the content exiting from the stomach to the duodenum. This investigation shows that the B-SPH model is capable of simulating complicated stomach behaviour. The rate of gastric emptying is found to increase with a smaller period in between contractile waves and to have a nonlinear relationship with content viscosity. Increased resistance to flow into the duodenum is also shown to reduce the rate of emptying. The degree of gastric mixing is found to be insensitive to changes in the period between contractile waves for fluid with a viscosity of water but to be substantially affected by the viscosity of the gastric content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......116S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......116S"><span>A one-dimensional model for gas-solid heat transfer in pneumatic conveying</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smajstrla, Kody Wayne</p> <p></p> <p>A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1012809-effective-shear-viscosity-dynamics-suspensions-micro-swimmers-from-small-moderate-concentrations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1012809-effective-shear-viscosity-dynamics-suspensions-micro-swimmers-from-small-moderate-concentrations"><span>Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gyrya, V.; Lipnikov, K.; Aranson, I.</p> <p>2011-05-01</p> <p>Recently, there has been a number of experimental studies convincingly demonstrating that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime (in the absence of rotational diffusion) the effectivemore » shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled microswimmers can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We also performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28155072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28155072"><span>Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S</p> <p>2017-04-01</p> <p>To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPB..3250157Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPB..3250157Q"><span>A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng</p> <p>2018-05-01</p> <p>A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3838757','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3838757"><span>The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.</p> <p>2013-01-01</p> <p>Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JChPh.100.3317Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JChPh.100.3317Y"><span>Viscosity of dilute suspensions of rodlike particles: A numerical simulation method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Satoru; Matsuoka, Takaaki</p> <p>1994-02-01</p> <p>The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970002954','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970002954"><span>Diffusion, Viscosity and Crystal Growth in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Myerson, Allan S.</p> <p>1996-01-01</p> <p>The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.138w4901R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.138w4901R"><span>Anomalous viscosity effect in the early stages of the ion-assisted adhesion/fusion event between lipid bilayers: A theoretical and computational study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raudino, Antonio; Marrink, Siewert J.; Pannuzzo, Martina</p> <p>2013-06-01</p> <p>The effect of viscosity on the encounter rate of two interacting membranes was investigated by combining a non-equilibrium Fokker-Planck model together with extensive Molecular Dynamics (MD) calculations. The encounter probability and stabilization of transient contact points represent the preliminary steps toward short-range adhesion and fusion of lipid leaflets. To strengthen our analytical model, we used a Coarse Grained MD method to follow the behavior of two charged palmitoyl oleoyl phosphatidylglycerol membranes embedded in a electrolyte-containing box at different viscosity regimes. Solvent friction was modulated by varying the concentration of a neutral, water-soluble polymer, polyethylene glycol, while contact points were stabilized by divalent ions that form bridges among juxtaposed membranes. While a naïve picture foresees a monotonous decrease of the membranes encounter rate with solvent viscosity, both the analytical model and MD simulations show a complex behavior. Under particular conditions, the encounter rate could exhibit a maximum at a critical viscosity value or for a critical concentration of bridging ions. These results seem to be confirmed by experimental observations taken from the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027...90O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027...90O"><span>Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olanrewaju, Kayode O.; Breedveld, Victor</p> <p>2008-07-01</p> <p>We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..1902011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..1902011S"><span>Viscosity of diluted suspensions of vegetal particles in water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szydłowska, Adriana; Hapanowicz, Jerzy</p> <p>2017-10-01</p> <p>Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i) 150÷212 μm, (ii) 106÷150 μm and (iii) below106 μm) of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25114354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25114354"><span>Optimization of enzymatic hydrolysis of guar gum using response surface methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mudgil, Deepak; Barak, Sheweta; Khatkar, B S</p> <p>2014-08-01</p> <p>Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1107775','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1107775"><span>Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>White, T. L.; Wiedenman, B. J.; Lambert, D. P.</p> <p></p> <p>The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tankmore » farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121m4302L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121m4302L"><span>Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamorgese, A.; Mauri, R.</p> <p>2017-04-01</p> <p>We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RuMet2017..372B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RuMet2017..372B"><span>Construction of viscosity diagrams for CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags by the simplex lattice method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babenko, A. A.; Istomin, S. A.; Zhuchkov, V. I.; Sychev, A. V.; Ryabov, V. V.; Upolovnikova, A. G.</p> <p>2017-05-01</p> <p>The simplex lattice method of planning experiments is used to study the viscosities of CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition-viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8-1.2 Pa s in the temperature range 1500-1600°C, are indicated in the diagrams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1264789-shear-viscosities-photons-strongly-coupled-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1264789-shear-viscosities-photons-strongly-coupled-plasmas"><span>Shear viscosities of photons in strongly coupled plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yang, Di-Lun; Müller, Berndt</p> <p>2016-07-18</p> <p>We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N=4 super Yang–Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA622430','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA622430"><span>Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-10-01</p> <p>and so on to viscosity . Kolmogorov’s theory considered the characterization of fully mixed turbulence at high Reynolds numbers. This number, Re, is a...size, and ν is the kinematic viscosity (m2/s) of air, ν = µ/ρa. Here, µ is the dynamic viscosity , and ρa is the air density: µ = µ0 ( Tµ + C T + C... viscosity is 1.79×10−5 m2/s. Stull (1988) observes, “The Reynolds number can be interpreted as the ratio of inertial to viscous forcings.” Under most</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/460732-viscosity-saturated-liquid-phase-three-fluorinated-ethanes-r152a-r143a-r125','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/460732-viscosity-saturated-liquid-phase-three-fluorinated-ethanes-r152a-r143a-r125"><span>Viscosity of the saturated liquid phase of three fluorinated ethanes: R152a, R143a, and R125</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ripple, D.; Defibaugh, D.</p> <p>1997-03-01</p> <p>Data are reported for the viscosity of three saturated liquids over a temperature range from 255 K to 323 K. The liquids studied are the fluorinated compounds 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), and pentafluoroethane (R125). A capillary viscometer constructed of stainless steel and sapphire was used to obtain the data. The viscosity measurements have an expanded uncertainty of 2.4%. A free volume model of viscosity was used to correlate the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069285&hterms=iodine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Diodine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069285&hterms=iodine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Diodine"><span>Viscosity of high-temperature iodine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kang, Steve H.; Kunc, Joseph A.</p> <p>1991-01-01</p> <p>The viscosity coefficient of iodine in the temperature range 500 - 3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I + I2 and I + I collisions must be taken into account in calculation of viscosity at temperatures greater than 1000 deg. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70135102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70135102"><span>Vertical structure of mean cross-shore currents across a barred surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haines, John W.; Sallenger, Asbury H.</p> <p>1994-01-01</p> <p>Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209.1660N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209.1660N"><span>Secular variations in zonal harmonics of Earth's geopotential and their implications for mantle viscosity and Antarctic melting history due to the last deglaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi</p> <p>2017-06-01</p> <p>Secular variations in zonal harmonics of Earth's geopotential based on the satellite laser ranging observations, {\\dot{J}_n}, contain important information about the Earth's deformation due to the glacial isostatic adjustment (GIA) and recent melting of glaciers and the Greenland and Antarctic ice sheets. Here, we examine the GIA-induced {\\dot{J}_n}, \\dot{J}_n^{GIA} (2 ≤ n ≤ 6), derived from the available geopotential zonal secular rate and recent melting taken from the IPCC 2013 Report (AR5) to explore the possibility of additional information on the depth-dependent lower-mantle viscosity and GIA ice model inferred from the analyses of the \\dot{J}_2^{GIA} and relative sea level changes. The sensitivities of the \\dot{J}_n^{GIA} to lower-mantle viscosity and GIA ice model with a global averaged eustatic sea level (ESL) of ∼130 m indicate that the secular rates for n = 3 and 4 are mainly caused by the viscous response of the lower mantle to the melting of the Antarctic ice sheet regardless of GIA ice models adopted in this study. Also, the analyses of the \\dot{J}_n^{GIA} based on the available geopotential zonal secular rates indicate that permissible lower-mantle viscosity structure satisfying even zonal secular rates of n = 2, 4 and 6 is obtained for the GIA ice model with an Antarctic ESL component of ∼20 or ∼30 m, but there is no viscosity solution satisfying \\dot{J}_3^{GIA} and \\dot{J}_5^{GIA} values. Moreover, the inference model for the lower-mantle viscosity and GIA ice model from each odd zonal secular rate is distinctly different from that satisfying GIA-induced even zonal secular rate. The discrepancy between the inference models for the even and odd zonal secular rates may partly be attributed to uncertainties of the geopotential zonal secular rates for n > 2 and particularly those for odd zonal secular rates due to weakness in the orbital geometry. If this problem is overcome at least for the secular rates of n < 5, then the analyses of the \\dot{J}_n^{GIA} would make it possible to put more convincing constraints on the lower-mantle viscosity structure and GIA ice model, particularly for the controversial Antarctic melting history in GIA community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......124K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......124K"><span>Solution dynamics of synthetic and natural polyelectrolytes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krause, Wendy E.</p> <p></p> <p>Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied in the presence and absence of the seven selected anti-inflammatory agents. Only hydroxychloroquine (HCQ) and (D)-penicillamine strongly influence the theology of the synovial fluid model. HCQ reduces the viscosity of the model solution as well as the model's viscoelasticity. (D)-Penicillamine also reduces the viscosity of the synovial fluid model, but has little effect on the viscoelasticity of the solution. None of the additives effected the osmotic pressure of the synovial fluid model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28512313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28512313"><span>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Juhyun; Chou, Tzu-Chieh; Kang, Dongyang; Kang, Hanul; Chen, Junjie; Baek, Kyung In; Wang, Wei; Ding, Yichen; Carlo, Dino Di; Tai, Yu-Chong; Hsiai, Tzung K</p> <p>2017-05-16</p> <p>Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s -1 ), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s -1 were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U23D0074N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U23D0074N"><span>Does low post-perovskite viscosity have an effect on structures at the core-mantle boundary ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakagawa, T.; Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D.</p> <p>2009-12-01</p> <p>According to recent high pressure experiments [e.g. Yamazaki et al., 2006], viscosity determination using geoid fitting [Tosi et al., 2009], and new ab initio DFT calculations [Ammann et al., 2009], the viscosity of the post-perovskite phase may be lower than the viscosity of the perovskite by up to 2-3 orders of magnitude. Both activation enthalpy and the pre-exponential factor in the viscosity law are expected to be different. Here we implement phase-dependent viscosity into 3-D spherical shell, thermo-chemical mantle convection model, to investigate an effect of low post-perovskite viscosity and its influence on the heterogeneous structures in the core-mantle boundary region, including lateral variations in heat flux across the core-mantle boundary. Rheological parameters are taken from first principle calculations for perovskite [Ammann et al., 2009] plus new calculations for post-perovskite, with post-perovskite viscosity being up to three orders of magnitude lower. A major finding from our simulations is that low PPV viscosity increases the lateral heterogeneity in CMB heat flux and stabilizes compositionally-dense anomalies by basaltic material above the CMB. In order to understand the relationship between local heat flux and seismic anomaly near the core-mantle boundary, the results of these mantle convection simulations are used to expand the simple theory for the scaling relationship between CMB heat flux and seismic anomalies found in our recent paper [Nakagawa and Tackley, 2008]. Stabilizing the dense piles above the CMB by low post-perovskite viscosity effects can explain the current inference of thermo-chemical-phase structures from both seismology and mineral physics . Here we also try to determine how seismic anomalies can predict heat flux across the CMB from our modeling results. References Ammann, M., J. P. Brodholt and D. P. Dobson, PCM, doi:10.1007/s00269-008-0265-z, 2009. Nakagawa, T., and P. J. Tackley, EPSL, 271, 348-358, 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR31A0438E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR31A0438E"><span>Experimental Investigation of the Viscosity of Iron-rich Silicate Melts under Pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, P. M.; Lesher, C. E.; Pommier, A.; O'Dwyer Brown, L.</p> <p>2017-12-01</p> <p>The transport properties of silicate melts govern diffusive flow of momentum, heat, and mass in the interior of terrestrial planets. In particular, constraining melt viscosity is critical for dynamic modeling of igneous processes and is thus key to our understanding of magma convection and mixing, melt migration in the mantle, and crystal-liquid fractionation. Among the different constituents of silicate melts, iron is of significant importance as it highly influences some of their properties, such as surface tension, compressibility, and density. We present an experimental study of the viscosity of natural and synthetic iron-rich silicate melts under pressure. In situ falling-sphere measurements of viscosity have been conducted on hedenbergite (CaFeSi2O6) and iron-rich peridotite melts from 1 to 7 GPa and at temperatures between 1750 and 2100 K, using the multi-anvil apparatus at the GSECARS beamline at the Advanced Photon Source, Argonne National Lab. We used double reservoir capsules, with the bottom reservoir containing the sample, while a more refractory material is placed in the upper reservoir (e.g., diopside, enstatite, forsterite). This configuration allows the fall of two rhenium spheres across the sample at different temperatures. Melt viscosity is calculated using Stokes' law and the terminal velocity of the spheres. We observe that melt viscosity slightly decreases with increasing temperature and increasing pressure: for instance, the viscosity of the hedenbergite melt decreases from 1.26 Pa•s to 0.43 Pa•s over the 1 - 3.5 GPa pressure range and between 1820 and 1930 K. Our experimental data are used to develop a viscosity model of iron-rich silicate melts under pressure. Results will be compared with previous viscosity works on iron-free and iron-bearing silicate liquids in order to discuss the effect of iron on melt viscosity and structure at pressure and temperature conditions relevant to terrestrial mantles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1235433','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1235433"><span>Results Of Hg Speciation Testing On DWPF SMECT-1, SMECT-3, And SMECT-5 Samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bannochie, C.</p> <p>2016-01-07</p> <p>The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The thirteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) from Sludge Receipt and Adjustment Tank (SRAT) Batch 736 and 738 samples. Triplicate samples of each material were prepared for this shipment. Each replicate was analyzed for seven Hg species: total Hg, total soluble (dissolved) Hg, elemental Hg [Hg(0)], ionic (inorganic) Hg [Hg(I) andmore » Hg(II)], methyl Hg [CH 3Hg-X, where X is a counter anion], ethyl Hg [CH 3CH 2-Hg-X, where X is a counter anion], and dimethyl Hg [(CH 3) 2Hg]. The difference between the total Hg and total soluble Hg measurements gives the particulate Hg concentration, i.e. Hg adsorbed to the surface of particulate matter in the sample but without resolution of the specific adsorbed species. The average concentrations of Hg species in the aqueous samples derived from Eurofins reported data corrected for dilutions performed by SRNL are tabulated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1051766','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1051766"><span>Inhibition Of Washed Sludge With Sodium Nitrite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Congdon, J. W.; Lozier, J. S.</p> <p>2012-09-25</p> <p>This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrationsmore » and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/825190','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/825190"><span>Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>CRAWFORD, CHARLES L.</p> <p>2004-05-26</p> <p>In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks.more » Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/809743','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/809743"><span>DWPF Melt Cell Crawler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ward, C.R.</p> <p>2003-04-08</p> <p>On December 2, 2002, Remote and Specialty Equipment Systems (RSES) of the Savannah River Technology Center (SRTC) was requested to build a remotely operated crawler to assist in cleaning the Defense Waste Processing Facility (DWPF) melt cell floor of glass, tools, and other debris. The crawler was to assist a grapple and vacuum system in cleaning the cell. The crawler was designed to push glass and debris into piles so that the grapple could pick up the material and place it in waste bins. The crawler was also designed to maneuver the end of the vacuum hose, if needed. Inmore » addition, the crawler was designed to clean the area beneath the cell worktable that was inaccessible to the grapple and vacuum system. Originally, the system was to be ready for deployment by December 17. The date was moved up to December 12 to better utilize the available time for clean up. The crawler was designed and built in 10 days and completed cleaning the melt cell in 8 days. Due to initial problems with the grapple and vacuum system, the crawler completed essentially all of the cleanup tasks by itself. The crawler also cleaned an area on the west side of the cell that was not initially slated for cleaning.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525007-renormalizing-viscous-fluid-model-large-scale-structure-formation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525007-renormalizing-viscous-fluid-model-large-scale-structure-formation"><span>Renormalizing a viscous fluid model for large scale structure formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk</p> <p>2016-02-01</p> <p>Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM..tmp...51Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM..tmp...51Y"><span>Fractional time-dependent apparent viscosity model for semisolid foodstuffs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xu; Chen, Wen; Sun, HongGuang</p> <p>2017-10-01</p> <p>The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15447585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15447585"><span>Drag reduction in homogeneous turbulence by scale-dependent effective viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benzi, Roberto; Ching, Emily S C; Procaccia, Itamar</p> <p>2004-08-01</p> <p>We demonstrate, by using suitable shell models, that drag reduction in homogeneous turbulence is usefully discussed in terms of a scale-dependent effective viscosity. The essence of the phenomenon of drag reduction found in models that couple the velocity field to the polymers can be recaptured by an "equivalent" equation of motion for the velocity field alone, with a judiciously chosen scale-dependent effective viscosity that succinctly summarizes the important aspects of the interaction between the velocity and the polymer fields. Finally, we clarify the differences between drag reduction in homogeneous and in wall bounded flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory"><span>Renormalization-group theory for the eddy viscosity in subgrid modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, YE; Vahala, George; Hossain, Murshed</p> <p>1988-01-01</p> <p>Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1169922','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1169922"><span>Viscosity Meaurement Technique for Metal Fuels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ban, Heng; Kennedy, Rory</p> <p>2015-02-09</p> <p>Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188367"><span>Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, Fred; Evans, Eileen</p> <p>2017-01-01</p> <p>GPS velocity fields in the Western US have been interpreted with various physical models of the lithosphere-asthenosphere system: (1) time-independent block models; (2) time-dependent viscoelastic-cycle models, where deformation is driven by viscoelastic relaxation of the lower crust and upper mantle from past faulting events; (3) viscoelastic block models, a time-dependent variation of the block model. All three models are generally driven by a combination of loading on locked faults and (aseismic) fault creep. Here we construct viscoelastic block models and viscoelastic-cycle models for the Western US, focusing on the Pacific Northwest and the earthquake cycle on the Cascadia megathrust. In the viscoelastic block model, the western US is divided into blocks selected from an initial set of 137 microplates using the method of Total Variation Regularization, allowing potential trade-offs between faulting and megathrust coupling to be determined algorithmically from GPS observations. Fault geometry, slip rate, and locking rates (i.e. the locking fraction times the long term slip rate) are estimated simultaneously within the TVR block model. For a range of mantle asthenosphere viscosity (4.4 × 1018 to 3.6 × 1020 Pa s) we find that fault locking on the megathrust is concentrated in the uppermost 20 km in depth, and a locking rate contour line of 30 mm yr−1 extends deepest beneath the Olympic Peninsula, characteristics similar to previous time-independent block model results. These results are corroborated by viscoelastic-cycle modelling. The average locking rate required to fit the GPS velocity field depends on mantle viscosity, being higher the lower the viscosity. Moreover, for viscosity ≲ 1020 Pa s, the amount of inferred locking is higher than that obtained using a time-independent block model. This suggests that time-dependent models for a range of admissible viscosity structures could refine our knowledge of the locking distribution and its epistemic uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..81e1402B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..81e1402B"><span>Viscosity of a concentrated suspension of rigid monosized particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brouwers, H. J. H.</p> <p>2010-05-01</p> <p>This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was presented, which depend on particle concentration only. Here, an original and exact closed form expression is derived based on geometrical considerations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit (for spheres the Einstein limit) and by random close packing of the unimodal particles in the concentrated limit. The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement is found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NRL.....6..221P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NRL.....6..221P"><span>Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.</p> <p>2011-12-01</p> <p>The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA615707','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA615707"><span>Computational Modeling and High Performance Computing in Advanced Materials Processing, Synthesis, and Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-12-07</p> <p>parameters of resin viscosity and preform permeability prior to resin gelation. However, there could be significant variations in these two parameters...during actual manufacturing due to differences in the resin batches, mixes, temperature, ambient conditions for viscosity ; in the preform rolls...optimal injection time and locations for given process parameters of resin viscosity and preform permeability prior to resin gelation. However, there</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3d3101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3d3101S"><span>Effects of nonuniform viscosity on ciliary locomotion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shoele, Kourosh; Eastham, Patrick S.</p> <p>2018-04-01</p> <p>The effect of nonuniform viscosity on the swimming velocity of a free swimmer at zero Reynolds number is examined. Using the generalized reciprocal relation for Stokes flow with nonuniform viscosity, we formulate the locomotion problem in a fluid medium with spatially varying viscosity. Assuming the limit of small variation in the viscosity of the fluid as a result of nonuniform distribution of nutrients around a swimmer, we derive a perturbation model to calculate the changes in the swimming performance of a spherical swimmer as a result of position-dependent viscosity. The swimmer is chosen to be a spherical squirmer with a steady tangential motion on its surface modeling ciliary motion. The nutrient concentration around the body is described by an advection-diffusion equation. The roles of the surface stroke pattern, the specific relationship between the nutrient and viscosity, and the Péclet number of the nutrient in the locomotion velocity of the squirmer are investigated. Our results show that for a pure treadmill stroke, the velocity change is maximum at the limit of zero Péclet number and monotonically decreases toward zero at very high Péclet number. When higher surface stroke modes are present, larger modification in swimming velocity is captured at high Péclet number where two mechanisms of thinning the nutrient boundary layer and appearance of new stagnation points along the surface of squirmer are found to be the primary reasons behind the swimming velocity modifications. It is observed that the presence of nonuniform viscosity allows for optimal swimming speed to be achieved with stroke combinations other than pure treadmill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI31B2640H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI31B2640H"><span>Thermal evolution of flattening slab and formation of wet plume: Insight into intraplate volcanism in East Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, L.</p> <p>2016-12-01</p> <p>Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of subduction. Equation of water transfer is explicitly included, and water effects on density and viscosity are considered. Modeling results indicate that behavior of water transport relates closely to the transient thermal state and viscosities both of the slab and the surrounding mantle. Generally, initiation of wet plume is mainly influenced by the viscosity of the wet layer in the uppermost slab, whereas the horizontal distance of water transport and its ascending rate is affected strongly by the viscosity of the big mantle wedge. Whether water can be carried successfully by slab into the mantle transition zone and trigger wet plume at the surface of flattening slab depends on the viscosity contrast between wet layer and surrounding mantle. The complex fluid flow superposed by corner flow and free thermal convection controls the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab when water layer viscosity is much higher than the wedge viscosity, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of warm flattening slab if containing water, which arrives at the lithospheric base and induces melting; and 3) water spreads all over the big mantle wedge, mantle convection within the big mantle wedge becomes more active, leading to upwelling of asthenosphere and erosion of the overriding continental lithosphere. Wet plume from the flattening Pacific Plate can explain the intraplate Cenozoic volcanoes in East Asia.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G12A..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G12A..07P"><span>The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.</p> <p>2016-12-01</p> <p>Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G12A..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G12A..07P"><span>The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.</p> <p>2017-12-01</p> <p>Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950056944&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950056944&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dviscoelastic"><span>Time-domain approach for the transient responses in stratified viscoelastic Earth models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hanyk, L.; Moser, J.; Yuen, D. A.; Matyska, C.</p> <p>1995-01-01</p> <p>We have developed the numerical algorithm for the computation of transient viscoelastic responses in the time domain for a radially stratified Earth model. Stratifications in both the elastic parameters and the viscosity profile have been considered. The particular viscosity profile employed has a viscosity maximum with a constrast of O(100) in the mid lower mantle. The distribution of relaxation times reveals the presence of a continuous spectrum situated between O(100) and O(exp 4) years. The principal mode is embedded within this continuous spectrum. From this initial-value approach we have found that for the low degree harmonics the non-modal contributions are comparable to the modal contributions. For this viscosity model the differences between the time-domain and normal-mode results are found to decrease strongly with increasing angular order. These calculations also show that a time-dependent effective relaxation time can be defined, which can be bounded by the relaxation times of the principal modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22524966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22524966"><span>Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil</p> <p>2012-05-01</p> <p>Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcMod..96..291R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcMod..96..291R"><span>A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.</p> <p>2015-12-01</p> <p>MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..181L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..181L"><span>In search of laterally heterogeneous viscosity models of Glacial Isostatic Adjustment with the ICE-6G_C global ice history model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng</p> <p>2018-05-01</p> <p>Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1407942','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1407942"><span>Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jantzen, Carol M.</p> <p></p> <p>Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1407942-using-polymerization-glass-structure-quasicrystalline-theory-produce-high-level-radioactive-borosilicate-glass-remotely-year-legacy','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1407942-using-polymerization-glass-structure-quasicrystalline-theory-produce-high-level-radioactive-borosilicate-glass-remotely-year-legacy"><span>Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jantzen, Carol M.</p> <p>2017-03-27</p> <p>Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5471488','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5471488"><span>HEMORHEOLOGY INDEX CHANGES IN A RAT ACUTE BLOOD STASIS MODEL: A SYSTEMATIC REVIEW AND META-ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Jun-Xiu; Feng, Yu; Zhang, Yin; Liu, Yi; Li, Shao-Dan; Yang, Ming-Hui</p> <p>2017-01-01</p> <p>Background: Blood stasis has received increasing attention in research related to traditional Chinese medicine (TCM) and integrative Chinese and Western medicine. More than 90% of research studies use hemorheology indexes to evaluate the establishment of animal blood stasis models rather than pathological methods, as hemorheology index evaluations of blood stasis were short of the consolidated standard. The aim of this study was to evaluate the accuracy of hemorheology indexes in rat models of acute blood stasis (ABS) based on studies in which the ABS model had been confirmed by pathological methods. Materials and Methods: We searched the Chinese National Knowledge Infrastructure database (CNKI), Chinese Medical Journal Database (CMJD), Chinese Biology Medicine disc (CBM), Wanfang database, and PubMed for studies of rat blood stasis models; the search identified 18 studies of rat ABS models induced by subcutaneous injection of epinephrine combined with an ice bath. Each included study received a modified Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) score list and methodological quality assessment, then data related to whole blood viscosity, plasma viscosity, platelet aggregation rate, erythrocyte aggregation index, and fibrinogen concentration were extracted. Extracted data were analyzed using Revman 5.3; heterogeneity was tested using Egger’s test. Results: A total of 343 studies of rat blood stasis were reviewed. Eighteen studies were included in this meta-analysis; the mean CAMARADES score was 3.5. The rat ABS model revealed a significant increase in whole blood viscosity (medium shear rate), whole blood viscosity (high shear rate), plasma viscosity, platelet aggregation rate, erythrocyte aggregation index, and fibrinogen concentration compared to controls, with weighted mean differences (WMD) of 2.42 mPa/s (95% confidence interval (CI) = 1.73 - 3.10); 1.76 mPa/s (95% CI = 1.28 - 2.24); 0.39 mPa/s (95% CI = 0.24 - 0.55); 13.66% (95% CI = 9.78 - 17.55); 0.84 (95% CI = 0.53 - 1.16); and 1.22 g/L (95% CI = 0.76 - 1.67), respectively. Subgroup analysis showed that whole blood viscosity, plasma viscosity, and the platelet aggregation rate test methods were more sensitive when measured at 0-24 h than at 24-72 h after induction of blood stasis. Conclusions: Rat blood stasis studies have incomplete experimental design and quality controls, and thus need an integrated improvement. Meta-analysis of included studies indicated that the unified hemorheology index of whole blood viscosity (medium and high shear rate), platelet aggregation rate, erythrocyte aggregation rate, and fibrinogen concentration might be used for assessment of rat ABS models independent of pathology methods. PMID:28638872</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......106L"><span>Dynamics of Compressible Convection and Thermochemical Mantle Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xi</p> <p></p> <p>The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43C..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43C..04S"><span>Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.</p> <p>2017-12-01</p> <p>Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average grain size. Finally, we compare the numerical results with seismological observations by computing 1D seismic velocity profiles (p-wave, shear-wave and bulk velocities) inside and outside our detected piles using thermodynamic data calculated from Perple_X .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyE...87..273A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyE...87..273A"><span>How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid</p> <p>2017-03-01</p> <p>In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JChEd..74..224W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JChEd..74..224W"><span>Viscosity of Common Seed and Vegetable Oils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.</p> <p>1997-02-01</p> <p>Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27990815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27990815"><span>Influence of Functional Groups on the Viscosity of Organic Aerosol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rothfuss, Nicholas E; Petters, Markus D</p> <p>2017-01-03</p> <p>Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ExFl...57..187S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ExFl...57..187S"><span>Modelling droplet collision outcomes for different substances and viscosities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommerfeld, Martin; Kuschel, Matthias</p> <p>2016-12-01</p> <p>The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G43A0916P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G43A0916P"><span>Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.</p> <p>2017-12-01</p> <p>Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1393190-viscous-dissipation-one-dimensional-quantum-liquids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1393190-viscous-dissipation-one-dimensional-quantum-liquids"><span>Viscous Dissipation in One-Dimensional Quantum Liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Matveev, K. A.; Pustilnik, M.</p> <p></p> <p>We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1393190-viscous-dissipation-one-dimensional-quantum-liquids','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1393190-viscous-dissipation-one-dimensional-quantum-liquids"><span>Viscous Dissipation in One-Dimensional Quantum Liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Matveev, K. A.; Pustilnik, M.</p> <p>2017-07-20</p> <p>We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28440380','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28440380"><span>Viscosity of particulate soap films: approaching the jamming of 2D capillary suspensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Timounay, Yousra; Rouyer, Florence</p> <p>2017-05-14</p> <p>We compute the effective viscosity of particulate soap films thanks to local velocity fields obtained by Particle Image Velocimetry (PIV) during film retraction experiments. We identify the jamming of these 2D capillary suspensions at a critical particle surface fraction (≃0.84) where effective viscosity diverges. Pair correlation function and number of neighbors in contact or close to contact reveal the cohesive nature of this 2D capillary granular media. The experimental 2D dynamic viscosities can be predicted by a model considering viscous dissipation at the liquid interfaces induced by the motion of individual particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon investigators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG...104...21S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG...104...21S"><span>Geometry of torn boudin-An indicator of relative viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samanta, Susanta Kumar; Basu Majumder, Debojyoti; Sarkar, Goutam</p> <p>2017-11-01</p> <p>The present study determines the role of viscosity on the development of rectangular torn boudin and its various types, defined by the curvature of their exterior and face margins. Numerical modeling was performed with the help of Finite Element Method considering Maxwell visco-elastic materials in commercial code ANSYS. Seven different viscosities were used and interchanged among the boudin, inter-boudin and matrix materials to understand the effect of viscosity ratios, specifically of relative viscosity of inter-boudin material. Results show that the viscosity of inter-boudin material has significant control on the shape of torn boudins apart from the viscosity ratio of boudin to matrix material. Bone-shaped boudin develops only when the inter-boudin is more competent than boudin and it becomes more prominent when matrix is also competent than boudin, but incompetent than inter-boudin. When boudins are stiffer than inter-boudin, barrel-shaped and fish-head boudins with concave faces develop. Exterior or face margins remain almost straight when boudin is relatively rigid compared to its surrounding matrix materials, or when there is no or very little viscosity contrast between boudin and inter-boudin material even in case of large boudin-matrix viscosity contrast. Therefore, the relative viscosity among the boudin, inter-boudin and matrix materials can be estimated qualitatively by studying the shape of boudin in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A14A2523R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A14A2523R"><span>Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, S.; Petersen, M. R.; Reckinger, S. J.</p> <p>2016-02-01</p> <p>MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE...96...85H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE...96...85H"><span>A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemmat Esfe, Mohammad; Tatar, Afshin; Ahangar, Mohammad Reza Hassani; Rostamian, Hossein</p> <p>2018-02-01</p> <p>Since the conventional thermal fluids such as water, oil, and ethylene glycol have poor thermal properties, the tiny solid particles are added to these fluids to increase their heat transfer improvement. As viscosity determines the rheological behavior of a fluid, studying the parameters affecting the viscosity is crucial. Since the experimental measurement of viscosity is expensive and time consuming, predicting this parameter is the apt method. In this work, three artificial intelligence methods containing Genetic Algorithm-Radial Basis Function Neural Networks (GA-RBF), Least Square Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP) were applied to predict the viscosity of TiO2/SAE 50 nano-lubricant with Non-Newtonian power-law behavior using experimental data. The correlation factor (R2), Average Absolute Relative Deviation (AARD), Root Mean Square Error (RMSE), and Margin of Deviation were employed to investigate the accuracy of the proposed models. RMSE values of 0.58, 1.28, and 6.59 and R2 values of 0.99998, 0.99991, and 0.99777 reveal the accuracy of the proposed models for respective GA-RBF, CSA-LSSVM, and GEP methods. Among the developed models, the GA-RBF shows the best accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution"><span>Finite-element numerical modeling of atmospheric turbulent boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, H. N.; Kao, S. K.</p> <p>1979-01-01</p> <p>A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295210-production-photons-relativistic-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295210-production-photons-relativistic-heavy-ion-collisions"><span>Production of photons in relativistic heavy-ion collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; ...</p> <p>2016-04-18</p> <p>In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1131479','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1131479"><span>DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crawford, C. L.; Diprete, D. P.</p> <p></p> <p>The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2011-0004; Rev. 0 entitled Sludge Batch 7b Qualification Studies. Specifically, this report details results from performing Subtask II, Item 2 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00247, Rev. 0 and Analytical Study Plan (ASP), SRNL-RP-2011-00248, Rev. 0. In order to determine the reportable radionuclides for SB7b (MB9), a list of radioisotopes that may meet the criteria as specified by the Department of Energy’s (DOE) WAPS was developed. All radioactive U- 235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 27 radionuclides have been identified as reportable for DWPF SB7b as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB7b to 29. The radionuclide measurements made for SB7b are similar to those performed in the previous SB7a MB8 work. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible. Improvement in the analytical measurements will likely continue, and this in turn should lead to improved detection limit values for some radionuclides and actual measurements for still others.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1091787','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1091787"><span>Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crawford, C. L.; DiPrete, D. P.</p> <p></p> <p>The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2011-0004; Rev. 0 entitled Sludge Batch 7b Qualification Studies. Specifically, this report details results from performing Subtask II, Item 2 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00247, Rev. 0 and Analytical Study Plan (ASP), SRNL-RP-2011-00248, Rev. 0. In order to determine the reportable radionuclides for SB7b (MB9), a list of radioisotopes that may meet the criteria as specified by the Department of Energy’s (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 27 radionuclides have been identified as reportable for DWPF SB7b as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100-year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB7b to 29. The radionuclide measurements made for SB7b are similar to those performed in the previous SB7a MB8 work. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible. Improvement in the analytical measurements will likely continue, and this in turn should lead to improved detection limit values for some radionuclides and actual measurements for still others.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21229341-yield-stress-reduction-dwpf-melter-feed-slurries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21229341-yield-stress-reduction-dwpf-melter-feed-slurries"><span>Yield Stress Reduction of DWPF Melter Feed Slurries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stone, M.E.; Smith, M.E.</p> <p>2007-07-01</p> <p>The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This indicates that the bead slurry would not require higher flows rates than frit slurry at DWPF during transfers. Another key finding was that the pump impeller was not significantly damaged by the bead slurry, while the Frit 320 slurry rapidly destroyed the impeller. Evidence of this was first observed when black particles were seen in the Frit 320 slurry being recirculated and then confirmed by a post-test inspection of the impeller. Finally, the pumping of bead slurry could be recovered even if flow is stopped. The Frit 320 slurry could not be restarted after stopping flow due to the nature of the frit to pack tightly when settled. Beads were shown to represent a significant process improvement versus frit for the DWPF process in lowering yield stress of the melter feed. Lower erosion of process equipment is another expected benefit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25749106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25749106"><span>Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao</p> <p>2015-05-01</p> <p>The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3576527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3576527"><span>Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pathak, Jai A.; Sologuren, Rumi R.; Narwal, Rojaramani</p> <p>2013-01-01</p> <p>Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions. PMID:23442970</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d0909J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d0909J"><span>Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi</p> <p>2018-04-01</p> <p>A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22817394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22817394"><span>Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar</p> <p>2014-01-01</p> <p>A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/40203385-two-state-protein-model-water-interactions-influence-temperature-intrinsic-viscosity-myoglobin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/40203385-two-state-protein-model-water-interactions-influence-temperature-intrinsic-viscosity-myoglobin"><span>Two-state protein model with water interactions: Influence of temperature on the intrinsic viscosity of myoglobin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bakk, Audun</p> <p>2001-06-01</p> <p>We describe a single-domain protein as a two-state system with water interactions. Around the unfolded apolar parts of the protein we incorporate the hydration effect by introducing hydrogen bonds between the water molecules in order to mimic the {open_quotes}icelike{close_quotes} shell structure. Intrinsic viscosity, proportional to the effective hydrodynamic volume, for sperm whale metmyoglobin is assigned from experimental data in the folded and in the denaturated state. By weighing statistically the two states against the degree of folding, we express the total intrinsic viscosity. The temperature dependence of the intrinsic viscosity, for different chemical potentials, is in good correspondence with experimentalmore » data [P. L. Privalov , J. Mol. Biol. >190, 487 (1986)]. Cold and warm unfolding, common to small globular proteins, is also a result of the model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930056524&hterms=State+flow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DState%2Bflow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930056524&hterms=State+flow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DState%2Bflow"><span>Steady flow on to a conveyor belt - Causal viscosity and shear shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Syer, D.; Narayan, Ramesh</p> <p>1993-01-01</p> <p>Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF35008R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF35008R"><span>Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, Parthib; Schaefer, Laura</p> <p>2017-11-01</p> <p>Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3b3101Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3b3101Z"><span>Reduced viscosity for flagella moving in a solution of long polymer chains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.</p> <p>2018-02-01</p> <p>The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040085895&hterms=torque+measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtorque%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040085895&hterms=torque+measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtorque%2Bmeasurement"><span>Torque Transient of Magnetically Drive Flow for Viscosity Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ban, Heng; Li, Chao; Su, Ching-Hua; Lin, Bochuan; Scripa, Rosalia N.; Lehoczky, Sandor L.</p> <p>2004-01-01</p> <p>Viscosity is a good indicator of structural changes for complex liquids, such as semiconductor melts with chain or ring structures. This paper discusses the theoretical and experimental results of the transient torque technique for non-intrusive viscosity measurement. Such a technique is essential for the high temperature viscosity measurement of high pressure and toxic semiconductor melts. In this paper, our previous work on oscillating cup technique was expanded to the transient process of a magnetically driven melt flow in a damped oscillation system. Based on the analytical solution for the fluid flow and cup oscillation, a semi-empirical model was established to extract the fluid viscosity. The analytical and experimental results indicated that such a technique has the advantage of short measurement time and straight forward data analysis procedures</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5805S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5805S"><span>Oxidation-state dependence of rheology in peralkaline glasses of phonolitic composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scherrer, M. C.; Hess, K.-U.; Fehr, K. T.; Dingwell, D. B.</p> <p>2012-04-01</p> <p>The precise description of magmatic melts rheology at the glass transition is crucial in understanding dynamic processes in volcanology. The glass transition has been described to scale with the viscosity of the material according to Maxwell's relaxation theory for viscoelastic liquids (Dingwell and Webb, 1989). The temperature dependence of the viscosity of multi-component systems can adequately be calculated using empirical models such as Hess et al. (1996), Giordano et al. (2008) and Hui and Zhang (2008); yet, within these calculations, the influence of oxidation state has been so far considered minor and was consequently neglected. The rheological behavior of some iron-rich silicate melts has shown noteworthy oxidation state-dependent variations (Cukierman and Uhlmann 1974, Dingwell and Virgo 1987). The focus of our study is to improve the viscosity models by investigating the necessity of an additional redox-parameter. Thirteen re-melted glass samples of natural phonolitic composition (peralkaline lavas with 8.5 wt. % FeOtot) were produced under different oxygen fugacity (fO2) conditions in a CO/CO2 gas-mixing furnace. Their oxidation-state (Fe3+/Fetot) ranges from 0.44 to 0.93 (±0.05). The viscosity above the liquidus was recorded via the concentric cylinder technique at a constant temperature of 1186 ° C. Additionally, viscosities were measured in the interval of 107to 1011Pa swith temperatures up to 900 ° C at ambient pressure via a BAEHR micro-penetration viscometer. Glass transition temperatures (Tg) have been determined with a constant heating/cooling rate of 10K/min on a SETARAM Sensys evo DSC using the peak of the specific heat capacity curve. Under a constant temperature in the super-liquidus state, the viscosity increases strongly with increasing fO2. In the sub-liquidus state, the measured calorimetric Tgis shifted to lower temperatures as the ratio of ferrous/total iron decreases from 638 ° C to 610 ° C. However, there is no equivalent measurable effect of the oxidation-state on super-cooled melt viscosity at Tg, within the precision of the micro-penetration experiment (all values are scattered around 10.10 ± 0.2 Pa s). Our results show a large discrepancy of 0.5 log units compared to the predicted viscosity at Tg using the kinetic model of Gottsmann et al. (2002). We further investigate additional relatively iron-rich compositions aiming for the development of an improved model for the viscosity prediction at the glass transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJT....34..987H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJT....34..987H"><span>Densities and Viscosities of the Quinary System: Cyclohexane (1) + \\varvec{m} -Xylene (2) + Cyclooctane (3) + Chlorobenzene (4) + Decane (5) and Its Quaternary Subsystems at 308.15 K and 313.15 K</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamzehlouia, Sepehr; Asfour, Abdul-Fattah A.</p> <p>2013-06-01</p> <p>The volumetric and viscometric properties of the quinary system: cyclohexane + m -xylene + cyclooctane + chlorobenzene + decane, were measured over the entire composition range at 308.15 K and 313.15 K. The experimental data obtained in the course of the present study were employed to analyze the predictive capability of six semi-theoretical and empirical well-known viscosity models reported in the literature, namely, the generalized McAllister three-body interaction model, the pseudo- binary McAllister model, the group contribution model, the generalized corresponding states principle model, the Allan and Teja correlation, and the Grunberg and Nissan law of viscosity. The predictive capabilities of the models were compared using the percentage average absolute deviation (%AAD). The final results showed that the generalized McAllister model gives the lowest AADs of 3.3 % and 3.7 % at 308.15 K and 313.15 K, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CeMDA.129..235W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CeMDA.129..235W"><span>Tidal effects in differentiated viscoelastic bodies: a numerical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walterová, M.; Běhounková, M.</p> <p>2017-09-01</p> <p>The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ChPhL..22..747L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ChPhL..22..747L"><span>Shear Viscosity of Aluminium under Shock Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Fu-Sheng; Yang, Mei-Xia; Liu, Qi-Wen; Chen, Jun-Xiang; Jing, Fu-Qian</p> <p>2005-03-01</p> <p>Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effective viscosity of shocked aluminium. The shear viscosity coefficient is determined to be about 5000 poises at 42 GPa with strain rate of 1.27×106 s-1, which is a reasonable estimation compared with the results of other measurement methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999ApPhL..74.3410H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999ApPhL..74.3410H"><span>Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrmann, F.; Hahn, D.; Büttgenbach, S.</p> <p>1999-05-01</p> <p>Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3211279','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3211279"><span>Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity. PMID:21711737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12412127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12412127"><span>Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Otevrel, Marek; Klepárník, Karel</p> <p>2002-10-01</p> <p>The partial differential equation describing unsteady velocity profile of electroosmotic flow (EOF) in a cylindrical capillary filled with a nonconstant viscosity electrolyte was derived. Analytical solution, based on the general Navier-Stokes equation, was found for constant viscosity electrolytes using the separation of variables (Fourier method). For the case of a nonconstant viscosity electrolyte, the steady-state velocity profile was calculated assuming that the viscosity decreases exponentially in the direction from the wall to the capillary center. Since the respective equations with nonconstant viscosity term are not solvable in general, the method of continuous binding conditions was used to solve this problem. In this method, an arbitrary viscosity profile can be modeled. The theoretical conclusions show that the relaxation times at which an EOF approaches the steady state are too short to have an impact on a separation process in any real systems. A viscous layer at the wall affects EOF significantly, if it is thicker than the Debye length of the electric double layer. The presented description of the EOF dynamics is applicable to any microfluidic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MMTB...44..506C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MMTB...44..506C"><span>Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun</p> <p>2013-06-01</p> <p>The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29e2002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29e2002M"><span>Influence of interfacial viscosity on the dielectrophoresis of drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandal, Shubhadeep; Chakraborty, Suman</p> <p>2017-05-01</p> <p>The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE...99..285S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE...99..285S"><span>An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood</p> <p>2018-05-01</p> <p>In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N"><span>Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.</p> <p>2001-12-01</p> <p>The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..524L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..524L"><span>Glacial Isostatic Adjustment with ICE-6G{_}C (VM5a) and Laterally Heterogeneous Mantle Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Tanghua; Wu, Patrick; Steffen, Holger</p> <p>2017-04-01</p> <p>Recently, Peltier et al. (2015) introduced the ICE-6GC (VM5a) ice-earth model pair, which has successfully explained many observations of Glacial Isostatic Adjustment (GIA) simultaneously. However, their earth model used (VM5a) to infer the ice history (ICE-6G_C) is laterally homogeneous with viscosity profile varying in the radial direction only. Since surface geology and seismic tomography clearly indicates that the Earth's material properties also vary in the lateral direction, laterally heterogeneity must be included in GIA models. This can be achieved by using the Coupled-Laplace-Finite-Element method (Wu 2004) to model GIA in a spherical, self-gravitating, compressible viscoelastic Earth with linear rheology and lateral heterogeneity. In fact, Wu et al (2013) have used such model with GIA observations (e.g. global relative sea level data, GRACE data with recent hydrology contributions removed and GPS crustal uplift rates) to study the thermal contribution to lateral heterogeneity in the mantle. Their lateral viscosity perturbations are inferred from the seismic shear wave tomography model S20A (Ekstrom & Dziewonski 1998) by applying a scaling law, which includes both the effect of anharmonicity and anelasticity. The thermal contribution to seismic tomography, which is represented by the beta factor in the scaling relationship, is searched in the upper and lower mantle, for the best combination that gives the best fit between GIA predictions and observations. However, their study is based on ICE-4G only, and the new ice-earth model pair may give other best beta value combinations in the upper and lower mantle. Here, we follow the work of Wu et al (2013) but use the new ICE-6GC ice model instead. The higher resolution seismic tomography model by Bunge & Grand (2000) substitutes S20A. Earth model VM5a is used as the reference background viscosity model. The full viscosity model is obtained by superposing the background model with the lateral viscosity perturbations inferred from the seismic tomography model (Bunge & Grand 2000) logarithmically. The preliminary results of these and other background viscosity profiles will be presented. References: Bunge, H.-P. & Grand, S. P. (2000). Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405(6784):337-340. Peltier, W., Argus, D., and Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6GC (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2): 401-408. Wu, P., Wang, H.S. & Steffen, H. (2012). The role of thermal effect on mantle seismic anomalies under Laurentia and Fennoscandia from observations of Glacial Isostatic Adjustment. Geophysical Journal International, 192(1):7-17.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM...22...67S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM...22...67S"><span>Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh</p> <p>2018-02-01</p> <p>This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PMag...94.1552C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PMag...94.1552C"><span>Viscosity and diffusivity in melts: from unary to multicomponent systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun</p> <p>2014-05-01</p> <p>Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064579','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064579"><span>Computing the Viscosity of Supercooled Liquids: Markov Network Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C.; Diep, Phong; Yip, Sidney</p> <p>2011-01-01</p> <p>The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or “terrain” is needed for low-temperature viscosity (of order 107 Pa·s) from that associated with high-temperature viscosity (10−5 Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent “terrain” characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27130611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27130611"><span>Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard</p> <p>2016-07-01</p> <p>Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..976N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..976N"><span>Viscosity structure of Earth's mantle inferred from rotational variations due to GIA process and recent melting events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakada, Masao; Okuno, Jun'ichi; Lambeck, Kurt; Purcell, Anthony</p> <p>2015-08-01</p> <p>We examine the geodetically derived rotational variations for the rate of change of degree-two harmonics of Earth's geopotential, skew5dot J_2, and true polar wander, combining a recent melting model of glaciers and the Greenland and Antarctic ice sheets taken from the IPCC 2013 Report (AR5) with two representative GIA ice models describing the last deglaciation, ICE5G and the ANU model developed at the Australian National University. Geodetically derived observations of skew4dot J_2 are characterized by temporal changes of -(3.7 ± 0.1) × 10-11 yr-1 for the period 1976-1990 and -(0.3 ± 0.1) × 10-11 yr-1 after ˜2000. The AR5 results make it possible to evaluate the recent melting of the major ice sheets and glaciers for three periods, 1900-1990, 1991-2001 and after 2002. The observed skew4dot J_2 and the component of skew4dot J_2 due to recent melting for different periods indicate a long-term change in skew4dot J_2-attributed to the Earth's response to the last glacial cycle-of -(6.0-6.5) × 10-11 yr-1, significantly different from the values adopted to infer the viscosity structure of the mantle in most previous studies. This is a main conclusion of this study. We next compare this estimate with the values of skew4dot J_2 predicted by GIA ice models to infer the viscosity structure of the mantle, and consequently obtain two permissible solutions for the lower mantle viscosity (ηlm), ˜1022 and (5-10) × 1022 Pa s, for both adopted ice models. These two solutions are largely insensitive to the lithospheric thickness and upper mantle viscosity as indicated by previous studies and relatively insensitive to the viscosity structure of the D″ layer. The ESL contributions from the Antarctic ice sheet since the last glacial maximum (LGM) for ICE5G and ANU are about 20 and 30 m, respectively, but glaciological reconstructions of the Antarctic LGM ice sheet have suggested that its ESL contribution may have been less than ˜10 m. The GIA-induced skew4dot J_2 for GIA ice models with an Antarctic ESL component of ˜10 m suggests two permissible lower mantle viscosity solutions of ηlm ˜ 2 × 1022 and ˜5 × 1022 Pa s or one solution with (2-5) × 1022 Pa s. These results suggest that the effective lower mantle viscosity is larger than ˜1022 Pa s regardless of the uncertainties for an Antarctic ESL component. We also examine the polar wander due to recent melting and GIA processes, suggesting that the observed polar wander may be significantly attributed to convection motions in the mantle and/or another cause, particularly for permissible lower mantle viscosity solution of (5-10) × 1022 Pa s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..134a2019K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..134a2019K"><span>Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.</p> <p>2016-06-01</p> <p>This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12443375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12443375"><span>Two-dimensional lattice Boltzmann model for magnetohydrodynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schaffenberger, Werner; Hanslmeier, Arnold</p> <p>2002-10-01</p> <p>We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15600679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15600679"><span>Drag reduction by a linear viscosity profile.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Angelis, Elisabetta; Casciola, Carlo M; L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil</p> <p>2004-11-01</p> <p>Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the polymers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simulations of the FENE-P model at the same flow conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/991542','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/991542"><span>DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crawford, C.; Peeler, D.; Click, D.</p> <p></p> <p>The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solidsmore » are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size range of the slurry solids was much broader than compared to the sump solids. More specifically, there were significantly more fines in the slurry solids as compared to the sump solids. (f) PSD results indicated that > 99% of both the sump and slurry solids were less than 350 microns. The PSD results also supported SEM/EDS analysis that there were significantly more fines in the slurry solids as compared to the sump solids. (2) Weight Percent Solids - Based on the measured supernate density and mass of insoluble solids (2.388 grams) filtered from the four liters of liquid slurry samples, the weight percent insoluble solids was estimated to be 0.060 wt%. This level of insoluble solids is higher than the ETP WAC limit of 100 mg/L, or 0.01 wt% which suggests a separation technology of some type would be required. (3) Chemical Analysis - (a) Elemental results from ICP-ES analysis indicated that the sump solids and slurry were very consistent with the nominal composition of Frit 418. There were other elements identified by ICP analysis which were either consistent with the presence of stainless steel (as identified by SEM/EDS analysis) or impurities that have been observed in 'as received' Frit 418 from the vendor. (b) IC anion analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. (c) Radionuclide analysis of the sump solids also indicated that most of the analytes were either at or below the detection limits. (d) Organic analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits or other alternative disposal options.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19964526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19964526"><span>Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L</p> <p>2009-01-01</p> <p>A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ArRMA.221.1285E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ArRMA.221.1285E"><span>Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evje, Steinar; Wang, Wenjun; Wen, Huanyao</p> <p>2016-09-01</p> <p>In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions {P^+neq P^-}. As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599-629, 2010) for the compressible two-fluid model, where {P^+=P^-} (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737-755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that {Δ P=P^+ - P^-=fneq 0} where the difference function {f} is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to {P^-}. This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARL18001N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARL18001N"><span>Structure-Property Relationships of Architectural Coatings by Neutron Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakatani, Alan</p> <p>2015-03-01</p> <p>Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJGMM..1450185B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJGMM..1450185B"><span>Inflationary universe in terms of a van der Waals viscous fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brevik, I.; Elizalde, E.; Odintsov, S. D.; Timoshkin, A. V.</p> <p></p> <p>The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920021408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920021408"><span>On the Subgrid-Scale Modeling of Compressible Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Squires, Kyle; Zeman, Otto</p> <p>1990-01-01</p> <p>A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917433S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917433S"><span>Toward unraveling a secret of the lower mantle: Detecting and characterizing piles using a grain size-dependent, composite rheology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schierjott, Jana; Rozel, Antoine; Tackley, Paul</p> <p>2017-04-01</p> <p>Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs, their viscosity is still debated. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size-dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011). Further, we consider a basal primordial layer and a time-dependent basalt production to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). Our study comprises three main parts: 1) We perform a parameter study which includes different densities and viscosities of the imposed primordial layer. 2) We detect possible piles and compute their average effective viscosity, density, rheology and grain size. 3) We test the influence of grain size evolution on the development and morphology of piles and compare it to non-grain size models. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the imposed primordial material is lower than basalt. In that case the average temperature of the pile is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the pile but not for a different average grain size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSV...332.3803M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSV...332.3803M"><span>Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marx, David; Aurégan, Yves</p> <p>2013-07-01</p> <p>Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24694614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24694614"><span>Novel submicronized rebamipide liquid with moderate viscosity: significant effects on oral mucositis in animal models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakashima, Takako; Sako, Nobutomo; Matsuda, Takakuni; Uematsu, Naoya; Sakurai, Kazushi; Ishida, Tatsuhiro</p> <p>2014-01-01</p> <p>This study aimed at developing a novel rebamipide liquid for an effective treatment of oral mucositis. The healing effects of a variety of liquids comprising submicronized rebamipide crystals were investigated using a rat cauterization-induced oral ulcer model. Whereas 2% rebamipide liquid comprising micro-crystals did not exhibit significant curative effect, 2% rebamipide liquids comprising submicronized crystals with moderate viscosities exhibited healing effects following intra-oral administration. The 2% and 4% optimized rebamipide liquids showed significant healing effects in the rat oral ulcer model (p<0.01). In addition, in the rat radiation-induced glossitis model, whereby the injury was caused to the tongue by exposing only around the rat's snout to a 15 Gy of X-irradiation, the 2% optimized rebamipide liquid significantly reduced the percent area of ulcerated injury (p<0.05). In conclusion, the submicronized rebamipide liquid with moderate viscosity following intra-oral administration showed better both healing effect in the rat oral ulcer model and preventive effect in the rat irradiation-induced glossitis model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000070491','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000070491"><span>Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bartels, Robert E.; Gatski, Thomas B.</p> <p>2000-01-01</p> <p>Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22275791-elementary-model-severe-plastic-deformation-kobo-process','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22275791-elementary-model-severe-plastic-deformation-kobo-process"><span>Elementary model of severe plastic deformation by KoBo process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gusak, A.; Storozhuk, N.; Danielewski, M., E-mail: daniel@agh.edu.pl</p> <p>2014-01-21</p> <p>Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In thismore » very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88g6108S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88g6108S"><span>Note: A portable automatic capillary viscometer for transparent and opaque liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soltani Ghalehjooghi, A.; Minaei, S.; Gholipour Zanjani, N.; Beheshti, B.</p> <p>2017-07-01</p> <p>A portable automatic capillary viscometer, equipped with an AVR microcontroller, was designed and developed. The viscometer was calibrated with Certified Reference Material (CRM) s200 and utilized for measurement of kinematic viscosity. A quadratic equation was developed for calibration of the instrument at various temperatures. Also, a model was developed for viscosity determination in terms of the viscometer dimensions. Development of the portable viscometer provides for on-site monitoring of engine oil viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA275503','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA275503"><span>The Influence of Wall Conductivity of Film Condensation with Integral Fin Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-09-23</p> <p>tube based on Nusselt theory ) dynamic viscosity, kg/(m*s) Mf dynamic viscosity of the condensate film, kg/(m*s) Aw dynamic viscosity of the cooling...improve the simple model of Nusselt to predict the heat transfer 2 coefficient for condensation on horizontal tubes. Nusselt’s theory was based on a plain...be developed and utilized. 1. Norisontal Smooth Tubes Nusselt [Ref. 16] developed the foundation for the study of filmwise condensation on horizontal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/159863-polythermal-investigation-viscosity-solution-metal-carboxylates-vik-grade-mixed-carboxylic-acids-yttrium-gadolinium-carboxylates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/159863-polythermal-investigation-viscosity-solution-metal-carboxylates-vik-grade-mixed-carboxylic-acids-yttrium-gadolinium-carboxylates"><span>Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.</p> <p></p> <p>Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NJPh...19e3024P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NJPh...19e3024P"><span>Setting the pace of microswimmers: when increasing viscosity speeds up self-propulsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pande, Jayant; Merchant, Laura; Krüger, Timm; Harting, Jens; Smith, Ana-Sunčana</p> <p>2017-05-01</p> <p>It has long been known that some microswimmers seem to swim counter-intuitively faster when the viscosity of the surrounding fluid is increased, whereas others slow down. This conflicting dependence of the swimming velocity on the viscosity is poorly understood theoretically. Here we explain that any mechanical microswimmer with an elastic degree of freedom in a simple Newtonian fluid can exhibit both kinds of response to an increase in the fluid viscosity for different viscosity ranges, if the driving is weak. The velocity response is controlled by a single parameter Γ, the ratio of the relaxation time of the elastic component of the swimmer in the viscous fluid and the swimming stroke period. This defines two velocity-viscosity regimes, which we characterize using the bead-spring microswimmer model and analyzing the different forces acting on the parts of this swimmer. The analytical calculations are supported by lattice-Boltzmann simulations, which accurately reproduce the two velocity regimes for the predicted values of Γ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1398166-integrated-solvent-design-co2-capture-viscosity-tuning','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1398166-integrated-solvent-design-co2-capture-viscosity-tuning"><span>Integrated Solvent Design for CO 2 Capture and Viscosity Tuning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.; ...</p> <p>2017-08-18</p> <p>We present novel design strategies for reduced viscosity single-component, water-lean CO 2 capture organic solvent systems. Through molecular simulation, we identify the main molecular-level descriptor that influences bulk solvent viscosity. Upon loading, a zwitterionic structure forms with a small activation energy of ca 16 kJ/mol and a small stabilization of ca 6 kJ/mol. Viscosity increases exponentially with CO 2 loading due to hydrogen-bonding between neighboring Zwitterions. We find that molecular structures that promote internal hydrogen bonding (within the same molecule) and suppress interactions with neighboring molecules have low viscosities. In addition, tuning the acid/base properties leads to a shift ofmore » the equilibrium toward a non-charged (acid) form that further reduces the viscosity. Here, based on the above structural criteria, a reduced order model is also presented that allows for the quick screening of large compound libraries and down selection of promising candidates for synthesis and testing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..MAR.Q1072L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..MAR.Q1072L"><span>Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jing; Krause, Wendy E.; Colby, Ralph H.</p> <p>2006-03-01</p> <p>Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a2404N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a2404N"><span>Shear thinning and shear thickening of a confined suspension of vesicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.</p> <p>2018-01-01</p> <p>Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27808313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27808313"><span>Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paquet-Mercier, F; Parvinzadeh Gashti, M; Bellavance, J; Taghavi, S M; Greener, J</p> <p>2016-11-29</p> <p>Continuous, non-intrusive measurements of time-varying viscosity of Pseudomonas sp. biofilms are made using a microfluidic method that combines video tracking with a semi-empirical viscous flow model. The approach uses measured velocity and height of tracked biofilm segments, which move under the constant laminar flow of a nutrient solution. Following a low viscosity growth stage, rapid thickening was observed. During this stage, viscosity increased by over an order of magnitude in less than ten hours. The technique was also demonstrated as a promising platform for parallel experiments by subjecting multiple biofilm-laden microchannels to nutrient solutions containing NaCl in the range of 0 to 34 mM. Preliminary data suggest a strong relationship between ionic strength and biofilm properties, such as average viscosity and rapid thickening onset time. The technique opens the way for a combinatorial approach to study the response of biofilm viscosity under well-controlled physical, chemical and biological growth conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23679440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23679440"><span>Translocation of a polymer through a nanopore across a viscosity gradient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Haan, Hendrick W; Slater, Gary W</p> <p>2013-04-01</p> <p>The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993PoCom..14..257C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993PoCom..14..257C"><span>Processing effects in production of composite prepreg by hot melt impregnation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chmielewski, C.; Jayaraman, K.; Petty, C. A.</p> <p>1993-06-01</p> <p>The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.974a2019B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.974a2019B"><span>Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus</p> <p>2018-03-01</p> <p>Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26651805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26651805"><span>Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R</p> <p>2015-11-01</p> <p>We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPGO6003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPGO6003H"><span>Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank</p> <p>2015-11-01</p> <p>We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92e3110H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92e3110H"><span>Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.</p> <p>2015-11-01</p> <p>We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28272797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28272797"><span>The Relation between Vaporization Enthalpies and Viscosities: Eyring's Theory Applied to Selected Ionic Liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf</p> <p>2017-05-19</p> <p>Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97t5122L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97t5122L"><span>Hall viscosity and geometric response in the Chern-Simons matrix model of the Laughlin states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lapa, Matthew F.; Hughes, Taylor L.</p> <p>2018-05-01</p> <p>We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos as a regularization of the noncommutative Chern-Simons theory description of the Laughlin states proposed earlier by Susskind. Both models can be understood as describing the electrons in a FQH state as forming a noncommutative fluid, i.e., a fluid occupying a noncommutative space. Here, we revisit the CSMM in light of recent work on geometric response in the FQH effect, with the goal of determining whether the CSMM captures this aspect of the physics of the Laughlin states. For this model, we compute the Hall viscosity, Hall conductance in a nonuniform electric field, and the Hall viscosity in the presence of anisotropy (or intrinsic geometry). Our calculations show that the CSMM captures the guiding center contribution to the known values of these quantities in the Laughlin states, but lacks the Landau orbit contribution. The interesting correlations in a Laughlin state are contained entirely in the guiding center part of the state/wave function, and so we conclude that the CSMM accurately describes the most important aspects of the physics of the Laughlin FQH states, including the Hall viscosity and other geometric properties of these states, which are of current interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21499526-shear-bulk-viscosities-pure-glue-matter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21499526-shear-bulk-viscosities-pure-glue-matter"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khvorostukhin, A. S.; Joint Institute for Nuclear Research, 141980 Dubna; Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu</p> <p></p> <p>Shear {eta} and bulk {zeta} viscosities are calculated in a quasiparticle model within a relaxation-time approximation for pure gluon matter. Below T{sub c}, the confined sector is described within a quasiparticle glueball model. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state, it is possible to describe the temperature dependence of the shear viscosity to entropy ratio {eta}/s and the bulk viscosity to entropy ratio {zeta}/s in reasonable agreement with available lattice data, but absolute values of the {zeta}/s ratio underestimate the upper limits of thismore » ratio in the lattice measurements typically by an order of magnitude.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010048921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010048921"><span>Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600085-dynamics-intrinsic-axial-flows-unsheared-uniform-magnetic-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600085-dynamics-intrinsic-axial-flows-unsheared-uniform-magnetic-fields"><span>Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, J. C.; Diamond, P. H.; Xu, X. Q.</p> <p>2016-05-15</p> <p>A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability.more » Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDKP1042P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDKP1042P"><span>Effects of Viscosity on the Performance of Air-Powered Liquid Jet Injectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Portaro, Rocco; Jaber, Hadi; Ng, Hoi Dick</p> <p>2017-11-01</p> <p>Drug delivery without the use of hypodermic needles has been a long-term objective within the medical field. This study focuses on observing the effects of drug viscosity on injector performance for air-powered liquid jet injectors, as well as the viability of using this technology for delivering viscous-type medications such as monoclonal antibodies. The experiments are conducted through the use of a prototype injector which allows key parameters such as driver pressure, injection volume and nozzle size to be varied. Different viscosities which range from 0.9 cP to 87 cP are obtained by using a water-glycerol mix. The liquid jets emanating from the injector are assessed using high speed photography as well as a pressure transducer. Experimental findings are then compared to a CFD model which considered experimental geometry and parameters. The results of this study highlight the effect of viscosity on the operating pressure of the injector and the reduction in jet stagnation pressure. It also illustrates improved jet confinement as viscosity is increased, a finding which is in line with the numerical model, and should play a key role in improving the device's characteristics for puncturing skin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1418040-low-viscosity-lunar-magma-ocean-forms-stratified-anorthitic-flotation-crust-mafic-poor-rich-units-lunar-magma-ocean-viscosity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1418040-low-viscosity-lunar-magma-ocean-forms-stratified-anorthitic-flotation-crust-mafic-poor-rich-units-lunar-magma-ocean-viscosity"><span>A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.</p> <p></p> <p>Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22more » $$+0.11\\atop{-0.19}$$to 1.45 $$+0.46\\atop{-0.82}$$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RJPCA..91.1654K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RJPCA..91.1654K"><span>Sensitivity of viscosity Arrhenius parameters to polarity of liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.</p> <p>2017-09-01</p> <p>Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7143135-measurement-relative-viscosity-suspensions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7143135-measurement-relative-viscosity-suspensions"><span>On the measurement of the relative viscosity of suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Acrivos, A.; Fan, X.; Mauri, R.</p> <p></p> <p>The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement withmore » those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. [bold 41], 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number [ital A], and should attain its correct value for a well-mixed suspension only as [ital A][r arrow][infinity]. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1327781','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1327781"><span>Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.</p> <p></p> <p>Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1238603','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1238603"><span>Sludge batch 9 (SB9) acceptance evaluation. Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bannochie, C. J.; Diprete, D. P.; Pareizs, J. M.</p> <p></p> <p>Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240868','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240868"><span>Sludge batch 9 (SB9) accepance evaluation: Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bannochie, C.; Diprete, D.; Pareizs, J.</p> <p></p> <p>Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a compositioniv expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11970274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11970274"><span>Mesoscopic model for the viscosities of nematic liquid crystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chrzanowska, A; Kröger, M; Sellers, S</p> <p>1999-10-01</p> <p>Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI11A0255R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI11A0255R"><span>Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richards, F. D.; Hoggard, M.; White, N. J.</p> <p>2017-12-01</p> <p>Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long-wavelength discrepancy that exploit the velocity to density conversion described above combined with radial variation of mantle viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016030"><span>Local dynamic subgrid-scale models in channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cabot, William H.</p> <p>1994-01-01</p> <p>The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148h1101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148h1101C"><span>Communication: Simple liquids' high-density viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.</p> <p>2018-02-01</p> <p>This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621343','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621343"><span>North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-08-01</p> <p>published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040073502&hterms=crystallization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcrystallization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040073502&hterms=crystallization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcrystallization"><span>Effect of Viscosity on the Crystallization of Undercooled Liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26380041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26380041"><span>Negative viscosity can enhance learning of inertial dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A</p> <p>2009-06-01</p> <p>We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChPhB..24i8901K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChPhB..24i8901K"><span>A new traffic model with a lane-changing viscosity term</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ko, Hung-Tang; Liu, Xiao-He; Guo, Ming-Min; Wu, Zheng</p> <p>2015-09-01</p> <p>In this paper, a new continuum traffic flow model is proposed, with a lane-changing source term in the continuity equation and a lane-changing viscosity term in the acceleration equation. Based on previous literature, the source term addresses the impact of speed difference and density difference between adjacent lanes, which provides better precision for free lane-changing simulation; the viscosity term turns lane-changing behavior to a “force” that may influence speed distribution. Using a flux-splitting scheme for the model discretization, two cases are investigated numerically. The case under a homogeneous initial condition shows that the numerical results by our model agree well with the analytical ones; the case with a small initial disturbance shows that our model can simulate the evolution of perturbation, including propagation, dissipation, cluster effect and stop-and-go phenomenon. Project supported by the National Natural Science Foundation of China (Grant Nos. 11002035 and 11372147) and Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (Grant No. CURE 14024).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ECSS..104...80C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ECSS..104...80C"><span>A sensitivity analysis of low salinity habitats simulated by a hydrodynamic model in the Manatee River estuary in Florida, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, XinJian</p> <p>2012-06-01</p> <p>This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750044548&hterms=planes+history&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dplanes%2Bhistory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750044548&hterms=planes+history&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dplanes%2Bhistory"><span>Tidal friction and the early history of the moon's orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, D. P.</p> <p>1975-01-01</p> <p>The present work investigates the consequences implied by various rheological models of the early earth for the orbital history of the moon subsequent to its formation. Models of the earth that yield small tidal angles, such as low-viscosity models, imply that the moon never orbited in the earth's equatorial plane, thereby ruling out an equatorial origin for the moon. A high-viscosity model is shown to permit the moon to originate in the equatorial plane and still account for the present-day characteristics of the moon's orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29283342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29283342"><span>Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F</p> <p>2018-01-01</p> <p>Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1238237-nonlinear-simulations-peeling-ballooning-modes-anomalous-electron-viscosity-role-edge-localized-mode-crashes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1238237-nonlinear-simulations-peeling-ballooning-modes-anomalous-electron-viscosity-role-edge-localized-mode-crashes"><span>Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xu, X. Q.; Dudson, B.; Snyder, P. B.; ...</p> <p>2010-10-22</p> <p>A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1674b0021Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1674b0021Z"><span>Rheology behaviour of modified silicone-dammar as a natural resin coating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zakaria, Rosnah; Ahmad, Azizah Hanom</p> <p>2015-08-01</p> <p>Modified silicone-dammar (SD) was prepared by various weight percent from 5 - 45 wt% of dammar added. The n-value (viscosity index) of silicone with 5 and 10 % were turn to be 1.6 and 1.3 of viscosity index. While 15, 20, 25 and 30 wt% of dammar added gave 0.7, 0.3, 0.2 and 0.1 of viscosity index. On the other hand, 35, 40 and 45 wt% of dammar gave a fixed value of viscosity index of 0.03. This n-value shows the dispersion quality of paint mixture indicates that the modified silicone-dammar was followed the Bingham's Model. The rheology measurement of SD mixture was analysed by plotting ln shear stress vs shear rate value. Analysis of the graph showed a Bingham plastic model with regression R2 equivalent to 0.99. The linear viscoelastic behaviour of SD samples increased in parallel with increasing dammar content indicate that the suspension of dammar in silicone resin could flow steadily with time giving a pseudoplastic behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840028739&hterms=evolution+rock&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Devolution%2Brock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840028739&hterms=evolution+rock&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Devolution%2Brock"><span>Viscosity of rock-ice mixtures and applications to the evolution of icy satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Friedson, A. J.; Stevenson, D. J.</p> <p>1983-01-01</p> <p>Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1090052','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1090052"><span>The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peeler, D. K.; Edwards, T. B.; Stone, M. E.</p> <p>2013-08-14</p> <p>As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream intomore » the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 – SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 – SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B2O3 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B2O3 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT. The impact on CPC processing of a 0.01M boric acid solution for elution of cesium during Modular Caustic Side Solvent Extraction Unit (MCU) processing has previously been evaluated by the Savannah River National Laboratory (SRNL). Increasing the acid strength to 0.0125M boric acid to account for variations in the boric acid strength has been reviewed versus the previous evaluation. The amount of acid from the boric acid represented approximately 5% of the total acid during the previous evaluation. An increase from 0.01 to 0.0125M boric acid represents a change of approximately 1.3% which is well within the error of the acid calculation. Therefore, no significant changes to CPC processing (hydrogen generation, metal solubilities, rheological properties, REDOX control, etc.) are expected from an increase in allowable boric acid concentration from 0.01M to 0.0125M.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/918144','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/918144"><span>SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, M. E.; Jones, T. M.; Miller, D. H.</p> <p></p> <p>Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters' describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. The melt rate for the SMRF SB4/Frit 510 test was 14.6 grams/minute. Due to cold cap mounding problems with the SMRF SB4/Frit 418 feed at 50 weight % solids that prevented a melt rate determination, this feed was diluted to 45 weight % solids. The melt rate for this diluted feed was 8.9 grams/minute. A correction factor of 1.2 for estimating the melt rate at 50 weight % solids from 45 weight % solids test results (based on previous SMRF testing5) was then used to estimate a melt rate of 10.7 grams/minute for SB4/Frit 418 at 50 weight % solids. Therefore, the use of Frit 510 versus Frit 418 with SB4 resulted in a higher melt rate (14.6 versus an estimated 10.7 grams/minute). For reference, a previous SMRF test with SB3/Frit 418 feed at 35% waste loading and 50 weight % solids resulted in a melt rate of 14.1 grams/minute. Therefore, depending on the actual feed rheology, the use of Frit 510 with SB4 could result in similar melt rates as experienced with SB3/Frit 418 feed in the DWPF.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.G12C..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.G12C..04H"><span>Transient Postseismic Relaxation With Burger's Body Viscoelasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetland, E. A.; Hager, B. H.; O'Connell, R. J.</p> <p>2002-12-01</p> <p>Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Tectp.397..195S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Tectp.397..195S"><span>Modelling deformation of partially melted rock using a poroviscoelastic rheology with dynamic power law viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simakin, A.; Ghassemi, A.</p> <p>2005-03-01</p> <p>A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5514620','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5514620"><span>Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.</p> <p>2017-01-01</p> <p>This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4966561','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4966561"><span>Computational tool for the early screening of monoclonal antibodies for their viscosities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Agrawal, Neeraj J; Helk, Bernhard; Kumar, Sandeep; Mody, Neil; Sathish, Hasige A.; Samra, Hardeep S.; Buck, Patrick M; Li, Li; Trout, Bernhardt L</p> <p>2016-01-01</p> <p>Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies. PMID:26399600</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14009026T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14009026T"><span>Viscosity of particle laden films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Timounay, Yousra; Rouyer, Florence</p> <p>2017-06-01</p> <p>We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983511','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983511"><span>Effect of thrombus composition and viscosity on sonoreperfusion efficacy in a model of microvascular obstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Black, John J.; Yu, Francois T. H.; Schnatz, Rick G.; Flordeliza, Xucai Chen; Villanueva, S.; Pacella, John J.</p> <p>2016-01-01</p> <p>Distal embolization of microthrombi during stenting for myocardial infarction (MI) causes microvascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasonic (US) therapy, resolves MVO from venous microthrombi in vitro in saline. However, blood is more viscous than saline and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial microthrombi are more resistant to SRP therapy compared with venous microthrombi and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MB suspended in plasma with adjusted viscosity (1.1 or 4.0 cP) were passed through tubing bearing a mesh with 40 μm pores to simulate a microvascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous microthrombi to increase upstream pressure to 40±5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector (PCD). MVO caused by arterial microthrombi at either blood or plasma viscosity resulted in less effective SRP therapy, compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. PCD showed a decrease in inertial cavitation when viscosity was increased while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy, increased viscosity decreases SRP efficacy, and both inertial and stable cavitation are implicated in observed SRP efficacy. PMID:27207018</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29141415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29141415"><span>Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levashov, V A</p> <p>2017-11-14</p> <p>We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1313556-nonlinear-elm-simulations-based-nonideal-peelingballooning-model-using-bout++-code','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1313556-nonlinear-elm-simulations-based-nonideal-peelingballooning-model-using-bout++-code"><span>Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...</p> <p>2011-09-23</p> <p>A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.494...83S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.494...83S"><span>Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinevar, William J.; Behn, Mark D.; Hirth, Greg; Jagoutz, Oliver</p> <p>2018-07-01</p> <p>We investigate the role of composition on the viscosity of the lower crust through a joint inversion of seismic P-wave (Vp) and S-wave (Vs) velocities. We determine the efficacy of using seismic velocity to constrain viscosity, extending previous research demonstrating robust relationships between seismic velocity and crustal composition, as well as crustal composition and viscosity. First, we calculate equilibrium mineral assemblages and seismic velocities for a global compilation of crustal rocks at relevant pressures and temperatures. Second, we use a rheological mixing model that incorporates single-phase flow laws for major crust-forming minerals to calculate aggregate viscosity from predicted mineral assemblages. We find a robust correlation between crustal viscosity and Vp together with Vs in the α-quartz regime. Using seismic data, geodetic surface strain rates, and heat flow measurements from Southern California, our method predicts that lower crustal viscosity varies regionally by four orders of magnitude, and lower crustal stress varies by three orders of magnitude at 25 km depth. At least half of the total variability in stress can be attributed to composition, implying that regional lithology has a significant effect on lower crustal geodynamics. Finally, we use our method to predict the depth of the brittle-ductile transition and compare this to regional variations of the seismic-aseismic transition. The variations in the seismic-aseismic transition are not explained by the variations in our model rheology inferred from the geophysical observations. Thus, we conclude that fabric development, in conjunction with compositional variations (i.e., quartz and mica content), is required to explain the regional changes in the seismic-aseismic transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990100908&hterms=models+Rheological+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodels%2BRheological%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990100908&hterms=models+Rheological+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodels%2BRheological%2Bcurrent"><span>On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivins, Erik R.; Sammis, Charles G.</p> <p>1995-01-01</p> <p>Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147r4502L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147r4502L"><span>Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levashov, V. A.</p> <p>2017-11-01</p> <p>We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........96A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........96A"><span>What's Cooler Than Being Cool? Ice-Sheet Models Using a Fluidity-Based FOSLS Approach to Nonlinear-Stokes Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, Jeffery M.</p> <p></p> <p>This research involves a few First-Order System Least Squares (FOSLS) formulations of a nonlinear-Stokes flow model for ice sheets. In Glen's flow law, a commonly used constitutive equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero. This typically occurs near the ice surface or where there is basal sliding. The computational difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of Glen's law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis are designed to overcome this difficulty. The first FOSLS formulation is just the first-order representation of the standard nonlinear, full-Stokes and is known as the viscosity formulation and suffers from the problem above. To overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity. Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system. Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems. Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness of the various formulations. These test show that the viscosity based method is more expensive and less accurate. The basic fluidity system shows optimal finite-element convergence. However, there is not yet an efficient iterative solver for this type of system and this is the topic of future research. Alternatively, AMG performs better on the augmented fluidity system when using specific scaling. Unfortunately, this scaling results in reduced finite-element convergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26133080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26133080"><span>Optimizing the dermal accumulation of a tazarotene microemulsion using skin deposition modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nasr, Maha; Abdel-Hamid, Sameh</p> <p>2016-01-01</p> <p>It is well known that microemulsions are mainly utilized for their transdermal rather than their dermal drug delivery potential due to their low viscosity, and the presence of penetration enhancing surfactants and co-surfactants. Applying quality by design (QbD) principles, a tazarotene microemulsion formulation for local skin delivery was optimized by creating a control space. Critical formulation factors (CFF) were oil, surfactant/co-surfactant (SAA/CoS), and water percentages. Critical quality attributes (CQA) were globular size, microemulsion viscosity, tazarotene skin deposition, permeation, and local accumulation efficiency index. Increasing oil percentage increased globular size, while the opposite occurred regarding SAA/CoS, (p = 0.001). Microemulsion viscosity was reduced by increasing oil and water percentages (p < 0.05), due to the inherent high viscosity of the utilized SAA/CoS. Drug deposition in the skin was reduced by increasing SAA/CoS due to the increased hydrophilicity and viscosity of the system, but increased by increasing water due to hydration effect (p = 0.009). Models with very good fit were generated, predicting the effect of CFF on globular size, microemulsion viscosity, and drug deposition. A combination of 40% oil and 45% SAA/CoS showed the maximum drug deposition of 75.1%. Clinical skin irritation study showed that the aforementioned formula was safe for topical use. This article suggests that applying QbD tools such as experimental design is an efficient tool for drug product design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3717093','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3717093"><span>Dynamic contact angle of water-based titanium oxide nanofluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014402','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014402"><span>MAGMIX: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frost, T.P.; Lindsay, J.R.</p> <p>1988-01-01</p> <p>MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ap%26SS.363..117S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ap%26SS.363..117S"><span>New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, Milan; Singh, C. P.</p> <p>2018-06-01</p> <p>The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025578','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025578"><span>Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vergnolle, M.; Pollitz, F.; Calais, E.</p> <p>2003-01-01</p> <p>We use GPS measurements and models of postseismic deformation caused by seven M6.8 to 8.4 earthquakes that occurred in the past 100 years in Mongolia to assess the viscosity of the lower crust and upper mantle. We find an upper mantle viscosity between 1 ?? 1018 and 4 ?? 1018 Pa s. The presence of such a weak mantle is consistent with results from independent seismological and petrological studies that show an abnormally hot upper mantle beneath Mongolia. The viscosity of the lower crust is less well constrained, but a weak lower crust (3 ?? 1016 to 2 ?? 1017 Pa s) is preferred by the data. Using our best fit upper mantle and lower crust viscosities, we find that the postseismic effects of viscoelastic relaxation on present-day horizontal GPS velocities are small (<2 mm yr-1) but still persist 100 years after the 1905, M8.4, Bolnay earthquake. This study shows that the GPS velocity field in the Baikal-Mongolia area can be modeled as the sum of (1) a rigid translation and rotation of the whole network, (2) a 3-5 mm yr-1 simple shear velocity gradient between the Siberian platform to the north and northern China to the south, and (3) the contribution of postseismic deformation, mostly caused by the 1905 Bolnay-Tsetserleg sequence and by the smaller, but more recent, 1957 Bogd earthquake. Copyright 2003 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222326','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222326"><span>Hydrodynamic resistance and mobility of deformable objects in microfluidic channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sajeesh, P.; Doble, M.; Sen, A. K.</p> <p>2014-01-01</p> <p>This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ϕ and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ϕ and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells. PMID:25538806</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240947-shear-viscosity-dense-plasmas-equilibrium-molecular-dynamics-asymmetric-yukawa-ionic-mixtures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240947-shear-viscosity-dense-plasmas-equilibrium-molecular-dynamics-asymmetric-yukawa-ionic-mixtures"><span>Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...</p> <p>2015-11-24</p> <p>We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.124..348C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.124..348C"><span>Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.</p> <p>2014-01-01</p> <p>The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and may explain the lower range of viscosities (102-104 Pa s) inferred from lava flow morphology. Further, the differences between the rheological behaviors of tholeiitic vs. trachy-basalts are significant enough to affect their emplacement as intrusive bodies or as effusive lava flows. The upper range of viscosities (106-108 Pa s) suggested from lava flow morphology is found consistent with the occurrence of alkali basalt documented from in situ analyses and does not necessarily imply the occurrence of basaltic-andesite or andesitic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1262320','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1262320"><span>Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.</p> <p>2016-06-17</p> <p>The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1149233','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1149233"><span>Road Map for Development of Crystal-Tolerant High Level Waste Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Matyas, Josef; Vienna, John D.; Peeler, David</p> <p></p> <p>This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MMTB...44..820C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MMTB...44..820C"><span>Viscosity of SiO2-"FeO"-Al2O3 System in Equilibrium with Metallic Fe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun</p> <p>2013-08-01</p> <p>The present study delivered the measurements of viscosities in SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-"FeO" slag was investigated. The "charge compensation effect" of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1329869-plasma-viscosity-mass-transport-spherical-inertial-confinement-fusion-implosion-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1329869-plasma-viscosity-mass-transport-spherical-inertial-confinement-fusion-implosion-simulations"><span>Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...</p> <p>2015-11-20</p> <p>The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRB..118.3101D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRB..118.3101D"><span>Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeVries, Phoebe M. R.; Meade, Brendan J.</p> <p>2013-06-01</p> <p>observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.493..161C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.493..161C"><span>The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chevrel, Magdalena Oryaëlle; Harris, Andrew J. L.; James, Mike R.; Calabrò, Laura; Gurioli, Lucia; Pinkerton, Harry</p> <p>2018-07-01</p> <p>Viscosity is one of the most important physical properties controlling lava flow dynamics. Usually, viscosity is measured in the laboratory where key parameters can be controlled but can never reproduce the natural environment and original state of the lava in terms of crystal and bubble contents, dissolved volatiles, and oxygen fugacity. The most promising approach for quantifying the rheology of molten lava in its natural state is therefore to carry out direct field measurements by inserting a viscometer into the lava while it is flowing. Such in-situ syn-eruptive viscosity measurements are notoriously difficult to perform due to the lack of appropriate instrumentation and the difficulty of working on or near an active lava flow. In the field, rotational viscometer measurements are of particular value as they have the potential to measure the properties of the flow interior rather than an integration of the viscosity of the viscoelastic crust + flow interior. To our knowledge only one field rotational viscometer is available, but logistical constraints have meant that it has not been used for 20 yr. Here, we describe new viscosity measurements made using the refurbished version of this custom-built rotational viscometer, as performed on active pāhoehoe lobes from the 61G lava flow of Kilauea's Pu'u 'Ō'ō eruption in 2016. We successfully measured a viscosity of ∼380 Pa s at strain-rates between 1.6 and 5 s-1 and at 1144 °C. Additionally, synchronous lava sampling allowed us to provide detailed textural and chemical characterization of quenched samples. Application of current physico-chemical models based on this characterization (16 ± 4 vol.% crystals; 50 ± 6 vol.% vesicles), gave viscosity estimates that were approximately compatible with the measured values, highlighting the sensitivity of model-based viscosity estimates on the effect of deformable bubbles. Our measurements also agree on the range of viscosities in comparison to previous field experiments on Hawaiian lavas. Conversely, direct comparison with sub-liquidus rheological laboratory measurements on natural lavas was unsuccessful because recreating field conditions (in particular volatile and bubble content) is so far inaccessible in the laboratory. Our work shows the value of field rotational viscometry fully-integrated with sample characterization to quantify three-phase lava viscosity. Finally, this work suggests the need for the development of a more versatile instrument capable of recording precise measurements at low torque and low strain rate, and with synchronous temperature measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDR39005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDR39005S"><span>Vortex lattices and defect-mediated viscosity reduction in active liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slomka, Jonasz; Dunkel, Jorn</p> <p>2016-11-01</p> <p>Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2d3102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2d3102S"><span>Geometry-dependent viscosity reduction in sheared active fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Słomka, Jonasz; Dunkel, Jörn</p> <p>2017-04-01</p> <p>We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...79a2002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...79a2002A"><span>Surface viscosity effects on the motion of self-propelling boat in a channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aliperio, M. G.; Nolan Confesor, Mark</p> <p>2015-06-01</p> <p>Self-propelled droplets have been conceived as simple chemical toy models to mimic motile biological samples such as bacteria. The motion of these droplets is believe to be due to the surface tension gradient in the boundary of the droplet. We performed experiments to look at the effect of varying the medium viscosity to the speed of a circular boat that was soaked in Pentanol. We found that the boats undergo oscillatory type of motion inside a channel. Moreover we found the maximum speed of the boat is independent on the viscosity of the medium. On the other a time scale describing the width of the velocity profile of the boat was found to increase with increasing viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896239','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896239"><span>Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>den Otter, W. K.; Shkulipa, S. A.</p> <p>2007-01-01</p> <p>The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/389293-models-non-newtonian-hele-shaw-flow','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/389293-models-non-newtonian-hele-shaw-flow"><span>Models of non-Newtonian Hele-Shaw flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kondic, L.; Palffy-Muhoray, P.; Shelley, M.J.</p> <p>1996-11-01</p> <p>We study the Saffman-Taylor instability of a non-Newtonian fluid in a Hele-Shaw cell. Using a fluid model with shear-rate dependent viscosity, we derive a Darcy{close_quote}s law whose viscosity depends upon the squared pressure gradient. This yields a natural, nonlinear boundary value problem for the pressure. A model proposed recently by Bonn {ital et} {ital al}. [Phys. Rev. Lett. {bold 75}, 2132 (1995)] follows from this modified law. For a shear-thinning liquid, our derivation shows strong constraints upon the fluid viscosity{emdash} strong shear-thinning does not allow the construction of a unique Darcy{close_quote}s law, and is related to the appearance of slipmore » layers in the flow. For a weakly shear-thinning liquid, we calculate corrections to the Newtonian instability of an expanding bubble in a radial cell. {copyright} {ital 1996 The American Physical Society.}« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356634-strength-viscosity-effects-perturbed-shock-front-stability-metals','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356634-strength-viscosity-effects-perturbed-shock-front-stability-metals"><span>Strength and viscosity effects on perturbed shock front stability in metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...</p> <p>2017-05-09</p> <p>Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240881-correlation-between-critical-viscosity-ash-fusion-temperatures-coal-gasifier-ashes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240881-correlation-between-critical-viscosity-ash-fusion-temperatures-coal-gasifier-ashes"><span>Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James</p> <p>2015-09-27</p> <p>Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240881','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240881"><span>Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James</p> <p></p> <p>Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4846989','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4846989"><span>Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yeom, Eunseop; Park, Jun Hong; Kang, Yang Jun; Lee, Sang Joon</p> <p>2016-01-01</p> <p>Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index IA·T based on APlatelet and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (μ) can be estimated by measuring W. Biophysical parameters (IA·T, μ) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions. PMID:27118101</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCoPh.317..204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCoPh.317..204S"><span>Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.</p> <p>2016-07-01</p> <p>The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5875772','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5875772"><span>Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum</p> <p>2018-01-01</p> <p>Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033271&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033271&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA"><span>A mantle plume model for the Equatorial Highlands of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kiefer, Walter S.; Hager, Bradford H.</p> <p>1991-01-01</p> <p>The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27656114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27656114"><span>Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chevrel, Magdalena Oryaëlle; Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B</p> <p>2015-03-01</p> <p>Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt-sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time-Temperature-Transformation) diagram illustrating the crystallization "nose" for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear-thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384706','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384706"><span>In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tomar, Dheeraj S.; Li, Li; Broulidakis, Matthew P.; Luksha, Nicholas G.; Burns, Christopher T.; Singh, Satish K.; Kumar, Sandeep</p> <p>2017-01-01</p> <p>ABSTRACT Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence—structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on VH, VL, and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development. PMID:28125318</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28125318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28125318"><span>In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomar, Dheeraj S; Li, Li; Broulidakis, Matthew P; Luksha, Nicholas G; Burns, Christopher T; Singh, Satish K; Kumar, Sandeep</p> <p>2017-04-01</p> <p>Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence-structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on V H , V L , and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5012119','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5012119"><span>Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B.; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B.</p> <p>2015-01-01</p> <p>Abstract Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt‐sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time‐Temperature‐Transformation) diagram illustrating the crystallization “nose” for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear‐thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity. PMID:27656114</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29a2106S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29a2106S"><span>Mechanism of gas saturated oil viscosity anomaly near to phase transition point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suleimanov, Baghir A.; Abbasov, Elkhan M.; Sisenbayeva, Marziya R.</p> <p>2017-01-01</p> <p>The article presents experimental studies of the phase behavior by the flash liberation test and of the viscosity of the live oil at different pressures. Unlike the typical studies at the pressure near the saturation pressure, the measurements were conducted at a relatively small pressure increment of 0.08-0.25 MPa. The viscosity anomaly was discovered experimentally near to the phase transition point in the range of the pressure levels P/Pb = 1-1.14 (Pb—bubble point pressure) and shows that it decreases about 70 times in comparison to the viscosity at the reservoir pressure. It was found that the bubble point pressure decreases significantly (up to 36%) with surfactant addition. Furthermore, the viscosity of the live oil at the surfactant concentration of 5 wt. % decreases almost 37 times in comparison to the viscosity at the reservoir pressure. The mechanism of observed effects was suggested based on the formation of the stable subcritical gas nuclei and associated slippage effect. The mechanism for the stabilization of the subcritical nuclei by the combined action of the surface and electrical forces, as well as the morphology of the formed nanobubbles, was considered. The model for determining the oil viscosity taking into account the slippage effect was suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ResPh...7..667S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ResPh...7..667S"><span>Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak</p> <p></p> <p>The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..908.1287P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..908.1287P"><span>Estimation Of Rheological Law By Inverse Method From Flow And Temperature Measurements With An Extrusion Die</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pujos, Cyril; Regnier, Nicolas; Mousseau, Pierre; Defaye, Guy; Jarny, Yvon</p> <p>2007-05-01</p> <p>Simulation quality is determined by the knowledge of the parameters of the model. Yet the rheological models for polymer are often not very accurate, since the viscosity measurements are made under approximations as homogeneous temperature and empirical corrections as Bagley one. Furthermore rheological behaviors are often traduced by mathematical laws as the Cross or the Carreau-Yasuda ones, whose parameters are fitted from viscosity values, obtained with corrected experimental data, and not appropriate for each polymer. To correct these defaults, a table-like rheological model is proposed. This choice makes easier the estimation of model parameters, since each parameter has the same order of magnitude. As the mathematical shape of the model is not imposed, the estimation process is appropriate for each polymer. The proposed method consists in minimizing the quadratic norm of the difference between calculated variables and measured data. In this study an extrusion die is simulated, in order to provide us temperature along the extrusion channel, pressure and flow references. These data allow to characterize thermal transfers and flow phenomena, in which the viscosity is implied. Furthermore the different natures of data allow to estimate viscosity for a large range of shear rates. The estimated rheological model improves the agreement between measurements and simulation: for numerical cases, the error on the flow becomes less than 0.1% for non-Newtonian rheology. This method couples measurements and simulation, constitutes a very accurate mean of rheology determination, and allows to improve the prediction abilities of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOUC...17..227Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOUC...17..227Z"><span>Evaluation of the Momentum Closure Schemes in MPAS-Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Shimei; Liu, Yudi; Liu, Wei</p> <p>2018-04-01</p> <p>In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith closure. The dissipative scale in the Leith closure depends on the parameter L, and the dissipative intensity depends on the parameter D. 5) Although optimal results may not be achieved by using the optimal parameters obtained from the 2D barotropic model in the 3D baroclinic simulation, the total energies are dissipative in all three closures. Dissipation is the strongest in the biharmonic viscosity closure, followed by that in the Leith closure, and that in the Laplacian viscosity closure is the weakest. Mesoscale eddies develop the fastest in the biharmonic viscosity closure after the baroclinic adjustment process finishes, and the kinetic energy reaches its maximum, which is attributed to the smallest dissipation of enstrophy in the biharmonic viscosity closure. Mesoscale eddies develop the slowest, and the kinetic energy peak value is the smallest in the Laplacian viscosity closure. Results in the Leith closure are between that in the biharmonic viscosity closure and the Laplacian viscosity closure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Ap%26SS.330..191T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Ap%26SS.330..191T"><span>Bianchi type-VIh string cloud cosmological models with bulk viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tripathy, Sunil K.; Behera, Dipanjali</p> <p>2010-11-01</p> <p>String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026468','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026468"><span>One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Puleo, J.A.; Mouraenko, O.; Hanes, D.M.</p> <p>2004-01-01</p> <p>Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/813454','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/813454"><span>FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Charles McCormick; Roger Hester</p> <p></p> <p>To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24075416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24075416"><span>A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir</p> <p>2014-02-01</p> <p>Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T43E3094H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T43E3094H"><span>The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, W. E.; Wang, X.; Ghosh, A.</p> <p>2016-12-01</p> <p>Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle in Pacific (Frost and Rost, 2014) provides important components of mantle flow affecting plate stresses and motions. We demonstrate in this paper how lower mantle density heterogeneity has a marked influence on plate stresses and plate motions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990340','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990340"><span>Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert</p> <p>2016-01-01</p> <p>We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.337..252D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.337..252D"><span>Numerical dissipation vs. subgrid-scale modelling for large eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos</p> <p>2017-05-01</p> <p>This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2i3101R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2i3101R"><span>Two-fluid model for locomotion under self-confinement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reigh, Shang Yik; Lauga, Eric</p> <p>2017-09-01</p> <p>The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770005053','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770005053"><span>Atmospheric flow over two-dimensional bluff surface obstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bitte, J.; Frost, W.</p> <p>1976-01-01</p> <p>The phenomenon of atmospheric flow over a two-dimensional surface obstruction, such as a building (modeled as a rectangular block, a fence or a forward-facing step), is analyzed by three methods: (1) an inviscid free streamline approach, (2) a turbulent boundary layer approach using an eddy viscosity turbulence model and a horizontal pressure gradient determined by the inviscid model, and (3) an approach using the full Navier-Stokes equations with three turbulence models; i.e., an eddy viscosity model, a turbulence kinetic-energy model and a two-equation model with an additional transport equation for the turbulence length scale. A comparison of the performance of the different turbulence models is given, indicating that only the two-equation model adequately accounts for the convective character of turbulence. Turbulence flow property predictions obtained from the turbulence kinetic-energy model with prescribed length scale are only insignificantly better than those obtained from the eddy viscosity model. A parametric study includes the effects of the variation of the characteristics parameters of the assumed logarithmic approach velocity profile. For the case of the forward-facing step, it is shown that in the downstream flow region an increase of the surface roughness gives rise to higher turbulence levels in the shear layer originating from the step corner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1441324-integrated-rheology-model-explosive-composition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1441324-integrated-rheology-model-explosive-composition"><span>Integrated rheology model: Explosive Composition B-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.</p> <p></p> <p>Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441324-integrated-rheology-model-explosive-composition','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441324-integrated-rheology-model-explosive-composition"><span>Integrated rheology model: Explosive Composition B-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...</p> <p>2018-03-20</p> <p>Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.146r4106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.146r4106B"><span>Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhadauria, Ravi; Aluru, N. R.</p> <p>2017-05-01</p> <p>We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25127873','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25127873"><span>Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yi, Jingru; Tang, Heyu; Zhao, Gang</p> <p>2014-10-01</p> <p>The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48.1450T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48.1450T"><span>Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit</p> <p>2017-06-01</p> <p>Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121n5904G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121n5904G"><span>Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.</p> <p>2017-04-01</p> <p>The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15380862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15380862"><span>The regional cerebral blood flow changes in major depressive disorder with and without psychotic features.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan</p> <p>2004-09-01</p> <p>Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1091788','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1091788"><span>Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martino, C. J.</p> <p>2013-08-13</p> <p>Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1323879','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1323879"><span>Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>J. D. Newell; Pareizs, J. M.; Martino, C. J.</p> <p></p> <p>For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27375827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27375827"><span>Microfluidic rheology of active particle suspensions: Kinetic theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David</p> <p>2016-07-01</p> <p>We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ExFl...50..769Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ExFl...50..769Y"><span>A blood-mimicking fluid for particle image velocimetry with silicone vascular models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yousif, Majid Y.; Holdsworth, David W.; Poepping, Tamie L.</p> <p>2011-03-01</p> <p>For accurate particle image velocimetry measurements in hemodynamics studies, it is important to use a fluid with a refractive index ( n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers ( n = 1.40-1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4 ± 0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2 ± 0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom ( n = 1.4140 ± 0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol-water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4 .31 ± 0 .03 cP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARS16010W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARS16010W"><span>A Classical Phase Space Framework For the Description of Supercooled Liquids and an Apparent Universal Viscosity Collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weingartner, Nicholas; Pueblo, Chris; Nogueira, Flavio; Kelton, Kenneth; Nussinov, Zohar</p> <p></p> <p>A fundamental understanding of the phenomenology of the metastable supercooled liquid state remains elusive. Two of the most pressing questions in this field are how to describe the temperature dependence of the viscosity, and determine whether or not the dynamical behaviors are universal. To address these questions, we have devised a simple first-principles classical phase space description of supercooled liquids that (along with a complementary quantum approach) predicts a unique functional form for the viscosity which relies on only a single parameter. We tested this form for 45 liquids of all types and fragilities, and have demonstrated that it provides a statistically significant fit to all liquids. Additionally, by scaling the viscosity of all studied liquids using the single parameter, we have observed a complete collapse of the data of all 45 liquids to a single scaling curve over 16 decades, suggesting an underlying universality in the dynamics of supercooled liquids. In this talk I will outline the basic approach of our model, as well as demonstrate the quality of the model performance and collapse of the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26.1239L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26.1239L"><span>Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena</p> <p>2018-06-01</p> <p>Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ..tmp...10L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ..tmp...10L"><span>Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena</p> <p>2018-01-01</p> <p>Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411282D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411282D"><span>A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.; Kono, Yoshio; Gardner, James E.</p> <p>2017-11-01</p> <p>Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22-0.19+0.11 to 1.45-0.82+0.46 Pa s at experimental conditions (1,300-1,600°C; 0.1-4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RJPCA..92..943D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RJPCA..92..943D"><span>Relationship between the Macroscopic and Quantum Characteristics of Dynamic Viscosity for Hydrocarbons upon the Compensation Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolomatov, M. Yu.; Kovaleva, E. A.; Khamidullina, D. A.</p> <p>2018-05-01</p> <p>An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel-Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJT....31..535R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJT....31..535R"><span>Study on Solution Properties of Binary Mixtures of Some Industrially Important Solvents with Cyclohexylamine and Cyclohexanone at 298.15 K</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, Mahendra Nath; Das, Rajesh Kumar; Chanda, Riju</p> <p>2010-03-01</p> <p>Densities and viscosities were measured for the binary mixtures of cyclohexylamine and cyclohexanone with butyl acetate, butanone, butylamine, tert-butylamine, and 2-butoxyethanol at 298.15 K over the entire composition range. From density data, the values of the excess molar volume ( V E) have been calculated. The experimental viscosity data were correlated by means of the equation of Grunberg-Nissan. The density and viscosity data have been analyzed in terms of some semiempirical viscosity models. The results are discussed in terms of molecular interactions and structural effects. The excess molar volume is found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures and is discussed in terms of molecular interactions and structural changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24580321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24580321"><span>Numerical analysis of a red blood cell flowing through a thin micropore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Omori, Toshihiro; Hosaka, Haruki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji</p> <p>2014-01-01</p> <p>Red blood cell (RBC) deformability plays a key role in microcirculation, especially in vessels that have diameters even smaller than the nominal cell size. In this study, we numerically investigate the dynamics of an RBC in a thin micropore. The RBC is modeled as a capsule with a thin hyperelastic membrane. In a numerical simulation, we employ a boundary element method for fluid mechanics and a finite element method for membrane mechanics. The resulting RBC deformation towards the flow direction is suppressed considerably by increased cytoplasm viscosity, whereas the gap between the cell membrane and solid wall becomes smaller with higher cytoplasm viscosity. We also measure the transit time of the RBC and find that nondimensional transit time increases nonlinearly with respect to the viscosity ratio, whereas it is invariant to the capillary number. In conclusion, cytoplasmic viscosity plays a key role in the dynamics of an RBC in a thin pore. The results of this study will be useful for designing a microfluidic device to measure cytoplasmic viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850055562&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850055562&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica"><span>The effects of transient rheology on the interpretation of lower mantle viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sabadini, R.; Yuen, D. A.; Gasperini, P.</p> <p>1985-01-01</p> <p>The role played by transient rheology in the interpretation of mantle viscosity is reexamined. The investigation has been carried out by comparing the amplitude responses with the data of secular variation of J(2), the relative sea-level histories at sites well within the ice margins and at the ice margin like the city of Boston. A linear Burgers body rheology has been assumed in ther lower mantle. The data near the edge of the ice load proves most sensitive to the transient viscosity structure. The non-monotonic behavior of sea-level data near Boston can be explained both by a steady-state lower mantle viscosity of 10 to the 22nd P with a thick lithosphere and by a transient lower mantle rheology but with a thin lithosphere. The long-term viscosity of the lower mantle in this second model has a steady-state value of around 5 x 10 to the 23rd P.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996APS..MAR.G1706C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996APS..MAR.G1706C"><span>Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang</p> <p>1996-03-01</p> <p>Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489042-inorganic-organic-nanocomposites-reaching-high-filler-content-without-increasing-viscosity-using-core-shell-structured-nanoparticles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489042-inorganic-organic-nanocomposites-reaching-high-filler-content-without-increasing-viscosity-using-core-shell-structured-nanoparticles"><span>Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.</p> <p>2015-11-23</p> <p>Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1593..231M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1593..231M"><span>Rheological changes of polyamide 12 under oscillatory shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mielicki, C.; Gronhoff, B.; Wortberg, J.</p> <p>2014-05-01</p> <p>Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22255115-transport-dielectric-properties-water-influence-coarse-graining-comparing-bmw-spc-tip3p-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22255115-transport-dielectric-properties-water-influence-coarse-graining-comparing-bmw-spc-tip3p-models"><span>Transport and dielectric properties of water and the influence of coarse-graining: Comparing BMW, SPC/E, and TIP3P models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Braun, Daniel; Boresch, Stefan; Steinhauser, Othmar</p> <p></p> <p>Long-term molecular dynamics simulations are used to compare the single particle dipole reorientation time, the diffusion constant, the viscosity, and the frequency-dependent dielectric constant of the coarse-grained big multipole water (BMW) model to two common atomistic three-point water models, SPC/E and TIP3P. In particular, the agreement between the calculated viscosity of BMW and the experimental viscosity of water is satisfactory. We also discuss contradictory values for the static dielectric properties reported in the literature. Employing molecular hydrodynamics, we show that the viscosity can be computed from single particle dynamics, circumventing the slow convergence of the standard approaches. Furthermore, our datamore » indicate that the Kivelson relation connecting single particle and collective reorientation time holds true for all systems investigated. Since simulations with coarse-grained force fields often employ extremely large time steps, we also investigate the influence of time step on dynamical properties. We observe a systematic acceleration of system dynamics when increasing the time step. Carefully monitoring energy/temperature conservation is found to be a sufficient criterion for the reliable calculation of dynamical properties. By contrast, recommended criteria based on the ratio of fluctuations of total vs. kinetic energy are not sensitive enough.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJT....39...54K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJT....39...54K"><span>Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khoshnamvand, Younes; Assareh, Mehdi</p> <p>2018-04-01</p> <p>In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..89l5303F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..89l5303F"><span>Hall viscosity of hierarchical quantum Hall states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fremling, M.; Hansson, T. H.; Suorsa, J.</p> <p>2014-03-01</p> <p>Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CQGra..33t5009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CQGra..33t5009S"><span>Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shogin, Dmitry; Amund Amundsen, Per</p> <p>2016-10-01</p> <p>We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28197614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28197614"><span>Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rothfuss, Nicholas E; Petters, Markus D</p> <p>2017-03-01</p> <p>Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5450008','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5450008"><span>Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6an02674e Click here for additional data file.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Payam, A. F.; Trewby, W.</p> <p>2017-01-01</p> <p>Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant. PMID:28352874</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009HMT....45.1453M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009HMT....45.1453M"><span>Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar</p> <p>2009-09-01</p> <p>It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL29009D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL29009D"><span>On the self-preservation of turbulent jet flows with variable viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danaila, Luminita; Gauding, Michael; Varea, Emilien; Turbulence; mixing Team</p> <p>2017-11-01</p> <p>The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express one-point or two-point statistics by choosing an appropriate unique length scale. Determining this length scale and its scaling is of high relevance for modeling. In this work, we study turbulent jet flows with variable viscosity from the self-preservation perspective. Turbulent flows encountered in engineering and environmental applications are often characterized by fluctuations of viscosity resulting for instance from variations of temperature or species composition. Starting from the transport equation for the moments of the mixture fraction increment, constraints for self-preservation are derived. The analysis is based on direct numerical simulations of turbulent jet flows where the viscosity between host and jet fluid differs. It is shown that fluctuations of viscosity do not affect the decay exponents of the turbulent energy or the dissipation but modify the scaling of two-point statistics in the dissipative range. Moreover, the analysis reveals that complete self-preservation in turbulent flows with variable viscosity cannot be achieved. Financial support from Labex EMC3 and FEDER is gratefully acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1107776','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1107776"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wiedenman, B. J.; White, T. L.; Mahannah, R. N.</p> <p></p> <p>Ion Chromatography (IC) is the principal analytical method used to support studies of Sludge Reciept and Adjustment Tank (SRAT) chemistry at DWPF. A series of prior analytical ''Round Robin'' (RR) studies included both supernate and sludge samples from SRAT simulant, previously reported as memos, are tabulated in this report.2,3 From these studies it was determined to standardize IC column size to 4 mm diameter, eliminating the capillary column from use. As a follow on test, the DWPF laboratory, the PSAL laboratory, and the AD laboratory participated in the current analytical RR to determine a suite of anions in SRAT simulantmore » by IC, results also are tabulated in this report. The particular goal was to confirm the laboratories ability to measure and quantitate glycolate ion. The target was + or - 20% inter-lab agreement of the analyte averages for the RR. Each of the three laboratories analyzed a batch of 12 samples. For each laboratory, the percent relative standard deviation (%RSD) of the averages on nitrate, glycolate, and oxalate, was 10% or less. The three laboratories all met the goal of 20% relative agreement for nitrate and glycolate. For oxalate, the PSAL laboratory reported an average value that was 20% higher than the average values reported by the DWPF laboratory and the AD laboratory. Because of this wider window of agreement, it was concluded to continue the practice of an additional acid digestion for total oxalate measurement. It should also be noted that large amounts of glycolate in the SRAT samples will have an impact on detection limits of near eluting peaks, namely Fluoride and Formate. A suite of scoping experiments are presented in the report to identify and isolate other potential interlaboratory disceprancies. Specific ion chromatography inter-laboratory method conditions and differences are tabulated. Most differences were minor but there are some temperature control equipment differences that are significant leading to a recommendation of a heated jacket for analytical columns that are remoted for use in radiohoods. A suggested method improvement would be to implement column temperture control at a temperature slightly above ambient to avoid peak shifting due to temperature fluctuations. Temperature control in this manner would improve short and longer term peak retention time stability. An unknown peak was observed during the analysis of glycolic acid and SRAT simulant. The unknown peak was determined to best match diglycolic acid. The development of a method for acetate is summaraized, and no significant amount of acetate was observed in the SRAT products tested. In addition, an alternative Gas Chromatograph (GC) method for glycolate is summarized.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1133391','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1133391"><span>ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martino, C.</p> <p>2014-05-28</p> <p>Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extentmore » to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25215736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25215736"><span>Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Longquan; Bonaccurso, Elmar</p> <p>2014-08-01</p> <p>In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3117617','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3117617"><span>One-, two- and three-phase viscosity treatments for basaltic lava flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Harris, Andrew J. L.; Allen, John S.</p> <p>2009-01-01</p> <p>Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JChPh.108.7909S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JChPh.108.7909S"><span>Flow properties of liquid crystal phases of the Gay-Berne fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarman, Sten</p> <p>1998-05-01</p> <p>We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>