Study of cobalt effect on structural and optical properties of Dy doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Pandey, Praveen C.
2018-05-01
The present study has been carried out to investigate the effect of Co doping on structural and optical properties of Dy doped ZnO nanoparticles. We have prepared pure Zinc oxide, Dy (1%) doped ZnO and Dy (1%) doped ZnO co-doped with Co(2%) with the help of simple sol-gel combustion method. The structural analysis carried out using X-ray diffraction spectra (XRD) indicates substitution of Dy and Co at Zn site of ZnO crystal structure and hexagonal crystal structure without any secondary phase formation in all the samples. The surface morphology was analyzed by transmission electron microscopy (TEM). Absorption study indicates that Dy doping causes a small shift in band edge, while Co co-doping results significant change is absorption edge as well as introduce defect level absorption in the visible region. The band gap of samples decreases due to Dy and Co doping, which can be attributed to defect level formation below the conduction band in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Yang, Bin
2015-09-15
Systematic characterization of electronic structures in the (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B system, especially the 4f behavior, provides an insight to the physical nature of the evolution of magnetic properties. A series of X-ray photoelectron spectroscopy (XPS) core-level and valence-band spectra were used to study the electronic structures. It was found that substitution of Dy for Nd in Nd{sub 2}Fe{sub 14}B results in a nonlinear variation in the evolution of electronic structures. Only the finite coupling between the Nd 4f states and the Fe 3d states is found at both the Nd-rich regime and the Dy-rich regime. When the Dymore » concentration and the Nd concentration approach to be equal, a strong coupling between the Nd 4f states and the Fe 3d states is found, which results in a bonding state between them. Additionally, the 4f components in the (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B system are ascribed to three parts: 1) the individual contribution of the Dy 4f states, which emerges just after the Dy-substitution; 2) the contribution of the coupling between the Nd 4f states and the Dy 4f states, which arises only when 0.4 ≤ x ≤ 0.6; 3) the associated contributions of the Nd 4f states and the Dy 4f states, where the contribution of the Nd 4f states and that of the Dy 4f states are prominent in the Nd-rich regime and Dy-rich regime, respectively.« less
Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes
NASA Astrophysics Data System (ADS)
Lee, Su Youn; Lee, J. H.; Lee, Young Jun
2018-05-01
The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.
Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses
NASA Astrophysics Data System (ADS)
Srihari, T.; Jayasankar, C. K.
2017-07-01
Niobium phosphate glasses (P2O5+Nb2O5+K2O + Al2O3+Dy2O3) doped with different concentrations of Dy3+ ions have been synthesized by melt quenching technique and characterized through structural and optical measurements to evaluate the fluorescence properties and find their suitability for white light emitting diodes (LEDs). Phonon energy and vibrational groups of the host matrix have been analyzed from Raman spectra. Judd-Ofelt analysis has been applied for 1.0 mol% Dy2O3-doped glass and inturn radiative properties have been evaluated for excited states of the Dy3+ ion. The higher value of stimulated emission cross-section (σe = 6.4 × 10-21 cm2) for the 4F9/2 → 6H13/2 level confirms its potentiality to be used as yellow laser. The decay curves exhibit non-exponential nature at higher concentrations (≥1 mol %) of Dy3+ ion. From the decay curve analysis, the quantum efficiency for the 4F9/2 level of 1.0 mol % Dy3+-doped glass is found to be 92%. The yellow to blue intensity ratios and chromaticity color co-ordinates are found to vary with Dy3+ ion concentrations/excitation wavelengths and are within the white light region.
Limit on the temporal variation of the fine-structure constant using atomic dysprosium.
Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R
2007-01-26
Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.
Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.
2016-05-23
In this work, we report a hydrothermally synthesized Dy doped BaF{sub 2} (BaF{sub 2}:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF{sub 2}:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The {sup 60}Co γ- ray irradiated BaF{sub 2}:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF{sub 2}:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicablemore » as a gamma dosimeter.« less
Dysprosium complexes with mono-/di-carboxylate ligands-From simple dimers to 2D and 3D frameworks
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.
2014-11-01
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)-1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)-1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated.
PSEUDO-BINARY SYSTEMS INVOLVING RARE EARTH LAVES PHASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernick, J.H.; Haszko, S.E.; Dorsi, D.
1962-06-01
The phase relations in a number of pseudo-binary systems involving rare earth Laves phases were determined. Complete series of cubic solid-solutions occur in the DyMn/sub 2/HoMn/sub 2/, HoMn/sub 2/-HoFe/sub 2/, DyMn/sub 2/-DyFe/ sub 2/, HoMn/sub 2/-HoAl/ sub 2/, TbMn/sub 2/TbAl/sub 2/, and DyMn/sub 2/-DyAl/ sub 2/ pseudobinary systems. Deviations from linearity in the lattice constants with composition occur in all these systems. Complete series of cubic solidsolutions also exist in the GdAl/sub 2/-ErAl/sub 2/, GdAl/sub 2/-PrAl/sub 2/ , GdAl/sub 2/-NdAl/sub 2/, GdAl/sub 2/-DyAl/sub 2/, TbAl/sub 2/-NdAl/sub 2/, and T bAl/sub 2/-DyAl/sub 2/ systems. For these systems, no deviation from linearitymore » occurs in the lattice constants. For the DyFe/sub 2/-DyAl/sub 2/ and DyCo/sub 2/- DyAl/sub 2/ systems, two new ternary phases, DyFeAl and DyCoAl, form and have the MgZn/sub 2/ structure. Their structures were determined from x-ray powder data only. The electronic state giving rise to the formation of these ternary phases is discussed qualitatively. For the DyMn/sub 2/TmMn/sub 2/ system, the range of composition in which the cubic MgCu/sub 2/ and hexagonal MgZn/sub 2/ structures exist are reported. No complete series of solid solutions or intermediate phases are formed in the DyNi/sub 2/-DyAl/sub 2/ system. (auth)« less
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
NASA Astrophysics Data System (ADS)
Wang, Wen-Min; Zhao, Xiao-Yu; Qiao, Hui; Bai, Li; Han, Hong-Fei; Fang, Ming; Wu, Zhi-Lei; Zou, Ji-Yong
2017-09-01
In search of simple approaches to rationally modulate the single-molecule magnet behaviour in polynuclear lanthanide compound, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(hfac)4L2] (1) and [Dy2(hfac)4L‧2] (2) (hfac = hexafluoroacetylacetonate, HL = 2-[4-methylaniline-imino]methyl]-8-hydroxyquinoline and HL' = 2-[(3,4-dimethylaniline)-imino]methyl]-8-hydroxyquinoline), are successfully synthesized and the structure-dependent magnetic properties are investigated. The two Dy2 compounds display only slight variations in the coordination geometries of the center Dy(III) ion but display remarkably different single-molecule magnet behaviors with the anisotropic barriers (ΔE/kB) of 9.91 K for 1 and 20.57 K for 2. The different magnetic relaxation behaviors of the two Dy2 complexes mainly originate from the different chemical environments of the central DyIII ions.
Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas
2014-11-15
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less
Yoshida, Toru; Tsuge, Hideaki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi
2011-07-01
The dye-decolorizing peroxidase (DyP)-type peroxidase family is a unique heme peroxidase family. The primary and tertiary structures of this family are obviously different from those of other heme peroxidases. However, the details of the structure-function relationships of this family remain poorly understood. We show four high-resolution structures of DyP (EC1.11.1.19), which is representative of this family: the native DyP (1.40 Å), the D171N mutant DyP (1.42 Å), the native DyP complexed with cyanide (1.45 Å), and the D171N mutant DyP associated with cyanide (1.40 Å). These structures contain four amino acids forming the binding pocket for hydrogen peroxide, and they are remarkably conserved in this family. Moreover, these structures show that OD2 of Asp171 accepts a proton from hydrogen peroxide in compound I formation, and that OD2 can swing to the appropriate position in response to the ligand for heme iron. On the basis of these results, we propose a swing mechanism in compound I formation. When DyP reacts with hydrogen peroxide, OD2 swings towards an optimal position to accept the proton from hydrogen peroxide bound to the heme iron. © 2011 The Authors Journal compilation © 2011 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru
The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39} (AlB{sub 2}-type), Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9} (Th{sub 2}Zn{sub 17}-type), ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22} (unknown structures), DyNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), Dy{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), DyNi{sub 2}Si (YPd{sub 2}Si-type), ∼Dy{sub 40}Ni{sub 47}Si{submore » 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3} (unknown structures). Quasi–binary solid solutions were detected at 1070 (870 K) for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. No detectable solubility is observed for the other binary compounds of the Dy–Ni–Si system. The crystal structures of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, has been studied. Magnetic properties of few representative compounds are also reported. - Graphical abstract: The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39}, Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9}, ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22}, DyNi{sub 7}Si{sub 6}, Dy{sub 3}Ni{sub 8}Si, DyNi{sub 2}Si, ∼Dy{sub 40}Ni{sub 47}Si{sub 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3}. Quasi–binary solid solutions were detected for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. The crystal structures and magnetic properties of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, are also reported. - Highlights: • Dy–Ni–Si isothermal section was obtained at 870 K/1070 K. • Twelve known ternary dysprosium nickel silicides were confirmed in Dy–Ni–Si. • Nine new dysprosium nickel silicides were detected in Dy–Ni–Si. • Seventeen new rare earth nickel silicides were detected in (Y, Gd–Tm)–Ni–Si. • Tb{sub 3}Ni{sub 8}Si, Dy{sub 3}Ni{sub 8}Si, Ho{sub 3}Ni{sub 12}Si{sub 4} and DyNi{sub 2}Si show ferromagnetic-like ordering.« less
Rational Design of a Lanthanide-Based Complex Featuring Different Single-Molecule Magnets.
Pointillart, F; Guizouarn, T; Lefeuvre, B; Golhen, S; Cador, O; Ouahab, L
2015-11-16
The rational synthesis of the 2-{1-methylpyridine-N-oxide-4,5-[4,5-bis(propylthio)tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) is described. It led to the tetranuclear complex [Dy4(tta)12(L)2] (Dy-Dy2-Dy) after coordination reaction with the precursor Dy(tta)3⋅2 H2O (tta(-) = 2-thenoyltrifluoroacetonate). The X-ray structure of Dy-Dy2-Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out-of-phase signal of the magnetic susceptibility with two distinct sets of data. The high- and low-frequency components were attributed to the two terminal mononuclear single-molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy-Dy2-Dy is a self-assembly of two known mononuclear SMMs bridged by a known dinuclear SMM. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boyle, Timothy J; Bunge, Scott D; Clem, Paul G; Richardson, Jacob; Dawley, Jeffrey T; Ottley, Leigh Anna M; Rodriguez, Mark A; Tuttle, Bruce A; Avilucea, Gabriel R; Tissot, Ralph G
2005-03-07
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.
THEORETICAL RESEARCH OF THE OPTICAL SPECTRA AND EPR PARAMETERS FOR Cs2NaYCl6:Dy3+ CRYSTAL
NASA Astrophysics Data System (ADS)
Dong, Hui-Ning; Dong, Meng-Ran; Li, Jin-Jin; Li, Deng-Feng; Zhang, Yi
2013-09-01
The calculated EPR parameters are in reasonable agreement with the observed values. The important material Cs2NaYCl6 doped with rare earth ions have received much attention because of its excellent optical and magnetic properties. Based on the superposition model, in this paper the crystal field energy levels, the electron paramagnetic resonance parameters g factors of Dy3+ and hyperfine structure constants of 161Dy3+ and 163Dy3+ isotopes in Cs2NaYCl6 crystal are studied by diagonalizing the 42 × 42 energy matrix. In the calculations, the contributions of various admixtures and interactions such as the J-mixing, the mixtures among the states with the same J-value, and the covalence are all considered. The calculated results are in reasonable agreement with the observed values. The results are discussed.
Fieser, Megan E.; Palumbo, Chad T.; La Pierre, Henry S.; Halter, Dominik P.; Voora, Vamsee K.; Ziller, Joseph W.
2017-01-01
A new series of Ln3+ and Ln2+ complexes has been synthesized using the tris(aryloxide)arene ligand system, ((Ad,MeArO)3mes)3–, recently used to isolate a complex of U2+. The triphenol precursor, (Ad,MeArOH)3mes, reacts with the Ln3+ amides, Ln(NR2)3 (R = SiMe3), to form a series of [((Ad,MeArO)3mes)Ln] complexes, 1-Ln. Crystallographic characterization was achieved for Ln = Nd, Gd, Dy, and Er. The complexes 1-Ln can be reduced with potassium graphite in the presence of 2.2.2-cryptand (crypt) to form highly absorbing solutions with properties consistent with Ln2+ complexes, [K(crypt)][((Ad,MeArO)3mes)Ln], 2-Ln. The synthesis of the Nd2+ complex [K(crypt)][((Ad,MeArO)3mes)Nd], 2-Nd, was unambiguously confirmed by X-ray crystallography. In the case of the other lanthanides, crystals were found to contain mixtures of 2-Ln co-crystallized with either a Ln3+ hydride complex, [K(crypt)][((Ad,MeArO)3mes)LnH], 3-Ln, for Ln = Gd, Dy, and Er, or a hydroxide complex, [K(crypt)][((Ad,MeArO)3mes)Ln(OH)], 4-Ln, for Ln = Dy. A Dy2+ complex with 18-crown-6 as the potassium chelator, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)Dy], 5-Dy, was isolated as a co-crystallized mixture with the Dy3+ hydride complex, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)DyH], 6-Dy. Structural comparisons of 1-Ln and 2-Ln are presented with respect to their uranium analogs and correlated with density functional theory calculations on their electronic structures. PMID:29163894
Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs
NASA Astrophysics Data System (ADS)
Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.
2018-01-01
Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.
NASA Astrophysics Data System (ADS)
Jin, Long-huan; W, J. James; J, Rhyne; R, Lemaire
1985-06-01
Powder neutron diffraction measurements have been carried out on the intermetallic compound DyFe3 at 4 and 295K. The magnetic structure of the compound at 4 and 295K are noncollinear but coplanar in the a-c plane, and the moments of the Dy and Fe ions lie closer to the basal plane.
New limits on variation of the fine-structure constant using atomic dysprosium.
Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D
2013-08-09
We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17) yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.
β-γ and isomeric decay spectroscopy of 168Dy
NASA Astrophysics Data System (ADS)
Zhang, G. X.; Watanabe, H.; Kondev, F. G.; Lane, G. J.; Regan, P. H.; Söderström, P.-A.; Walker, P. M.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Liu, J. J.; Nishimura, S.; Wu, J.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2018-05-01
This contribution will report on the experimental work on the level structure of 168Dy. The experimental data have been taken as part of the EURICA decay spectroscopy campaign at RIBF, RIKEN in November 2014. In the experiment, a 238U primary beam is accelerated up to 345 MeV/u with an average intensity of 12 pnA. The nuclei of interest are produced by in-flight fission of 238U impinging on Be target with a thickness of 5 mm. The excited states of 168Dy have been populated through the decay from a newly identified isomeric state and via the β decay from 168Tb. In this contribution, scientific motivations, experimental procedure and some preliminary results for this study are presented.
Enhancement of white light emission from novel Ca3Y2Si3O12:Dy3+ phosphors with Ce3+ ion codoping
NASA Astrophysics Data System (ADS)
Bandi, Vengala Rao; Nien, Yung-Tang; Chen, In-Gann
2010-07-01
The luminescent properties of the Ce3+ or Dy3+ singly doped and Ce3+/Dy3+ codoped in Ca3Y2Si3O12 novel phosphors were investigated, which are prepared by a sol-gel method. Ce3+ doped phosphor showed a brighter and broader violet-blue color emission band with a maximum peak centered at 389 nm, which is attributed to the parity and spin allowed 5d-4f transition. Photoluminescence spectra reveals that the white color emission is originated from the mixtures of two characteristic emission bands of Dy3+ ion, viz., the 473 nm blue emission (F49/2-H615/2) and the 580 nm yellow emission (F49/2-H613/2). codoping of Ce3+ has enhanced the luminescence of Dy3+ quite significantly upon the UV excitation wavelength (242 nm) and the optimized codopant concentration of Ce3+ is found to be 3 mol %. The mechanism involved in the energy transfer between Ce3+ and Dy3+ has been elucidated by an energy level diagram. The structure and morphology of the prepared samples have been analyzed by x-ray diffraction and transmission electron microscope.
Optical and structural investigation of Dy3+-Nd3+ co-doped in magnesium lead borosilicate glasses.
Rao, T G V M; Rupesh Kumar, A; Neeraja, K; Veeraiah, N; Rami Reddy, M
2014-01-24
MgO-PbO-B2O3-SiO2-Nd2O3-Dy2O3 glasses are prepared by melt-quenching technique. The samples are characterized by X-ray diffraction (XRD), optical absorption, luminescence and Fourier transform infrared (FT-IR) spectral studied. XRD analysis evidently indicates that the prepared samples are fully amorphous nature. From the optical absorption spectra, the bonding environment surrounding the Dy(3+) and their energy level scheme in glass network is analyzed. Enhancement of Dy(3+) emission by non-radiative energy transfers from Nd(3+) has been observed here. The samples emits intensive bluish yellow color from the (4)F9/2→(6)H15/2, (6)H13/2 transition of Dy(3+) ions in these glasses which are nearer to white light and it is also supported by the chromaticity color coordinates. The FT-IR spectra reveal that network connectivity is increased with replacement of bonds B-O-B, Si-O-Si by more resistant B-O-Si bonds with gradually increasing the content of Dy(3+) ions in the glass network. Along with spectroscopic parameters some physical parameters like density, refractive index etc. are measured for the glasses. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning
2016-01-01
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375
Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo
2017-12-01
We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.
Helium-induced one-neutron transfer to levels in 162Dy
NASA Astrophysics Data System (ADS)
Andersen, E.; Helstrup, H.; Løvhøiden, G.; Thorsteinsen, T. F.; Guttormsen, M.; Messelt, S.; Tveter, T. S.; Hofstee, M. A.; Schippers, J. M.; van der Werf, S. Y.
1992-12-01
Levels in 162Dy have been studied in the 161Dy(α, 3He) and 163Dy( 3He, α) reactions with 50 MeV α- and 3He-beams from the KVI cyclotron in Groningen. The reaction products were analyzed in the QMG/2 magnetic spectrograph and registered in a two-dimensional detector system. The observed levels and cross sections are well described by the Nilsson model with the exception of the three levels at 1578, 1759 and 1990 keV. The present data combined with previous results strongly indicate that these levels are the spin-4, -6, and -8 members of the S-band.
Crystal structures of dye-decolorizing peroxidase with ascorbic acid and 2,6-dimethoxyphenol.
Yoshida, Toru; Tsuge, Hideaki; Hisabori, Toru; Sugano, Yasushi
2012-12-14
The structure of dye-decolorizing peroxidase (DyP)-type peroxidase differs from that of other peroxidase families, indicating that DyP-type peroxidases have a different reaction mechanism. We have determined the crystal structures of DyP with ascorbic acid and 2,6-dimethoxyphenol at 1.5 and 1.4Å, respectively. The common binding site for both substrates was located at the entrance of the second cavity leading from the DyP molecular surface to heme. This resulted in a hydrogen bond network connection between each substrate and the heme distal side. This network consisted of water molecules occupying the second cavity, heme 6-propionate, Arg329, and Asn313. This network is consistent with the proton transfer pathway from substrate to DyP. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Pointillart, Fabrice; Bernot, Kevin; Sessoli, Roberta; Gatteschi, Dante
2007-01-01
[{Dy(hfac)(3)}(2){Fe(bpca)(2)}] x CHCl(3) ([Dy(2)Fe]) and [{Dy(hfac)(3)}(2){Ni(bpca)(2)}]CHCl(3) ([Dy(2)Ni]) (in which hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate and bpca(-)=bis(2-pyridylcarbonyl)amine anion) were synthesized and characterized. Single-crystal X-ray diffraction shows that [Dy(2)Fe] and [Dy(2)Ni] are linear trinuclear complexes. Static magnetic susceptibility measurements reveal a weak ferromagnetic exchange interaction between Ni(II) and Dy(III) ions in [Dy(2)Ni], whereas the use of the diamagnetic Fe(II) ion leads to the absence of magnetic exchange interaction in [Dy(2)Fe]. Dynamic susceptibility measurements show a thermally activated behavior with the energy barrier of 9.7 and 4.9 K for the [Dy(2)Fe] and [Dy(2)Ni] complexes, respectively. A surprising negative effect of the ferromagnetic exchange interaction has been found and has been attributed to the structural conformation of these trinuclear complexes.
Spectroscopic studies of Dy3+ ion doped tellurite glasses for solid state lasers and white LEDs.
V, Himamaheswara Rao; P, Syam Prasad; M, Mohan Babu; P, Venkateswara Rao; T, Satyanarayana; Luís F, Santos; N, Veeraiah
2018-01-05
Rare earth ion Dy 3+ -doped tellurite glasses were synthesised in the system of (75-x)TeO 2 -15Sb 2 O 3 -10WO 3 -xDy 2 O 3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy 3+ ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484nm along with less intense emissions around 662 and 751nm. Various radiative properties of the 4 F 9/2 excited level of Dy 3+ ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Pico-level DNA sensing by hetero-polymetalate, Na10{Dy2W10O30(µ-S)6}·80H2O, cluster
NASA Astrophysics Data System (ADS)
Dutta, Taposhree; Ganguly, Jhuma; Sarkar, Sabyasachi
2018-04-01
The polyoxometalate dysprosium cluster, (Dy-S-W POM) , Na10[Dy2W10O30(µ-S)6]·80H2O, shows remarkable dsDNA denaturation property. In the presence of 0.22 µmol of this Dy-S-W POM, the melting temperature (Tm) of calf-thymus (CT) dsDNA is decreased to 62.35 °C. Dy-S-W POM shows bleaching of methylene blue (MB). Addition of CT-DNA in the MB bleached solution of Dy-S-W POM apparently intercalates MB. Such trapped MB by CT-DNA responds to its re-oxidation by elemental sulfur formed in the bleaching process involving Dy-S-W POM. This reduction-oxidation property of MB with Dy-S-W POM led to the detection of pico (13.20 pmol) level of DNA even by naked eye, which will be helpful for rapid trace DNA detection in forensic science and DNA-related diagnostics, complimenting time-consuming sophisticated methodology.
Karbowiak, Mirosław; Rudowicz, Czesław; Ishida, Takayuki
2013-11-18
This study is the first in a series of experimental and theoretical investigations of the crystal-field (CF) energy levels obtained from optical electronic spectra for selected heterometallic 4f-3d compounds intensively studied for the development of novel single-molecule magnets (SMMs). An intriguing question is why the [{Dy(III)(hfac)3}2Cu(II)(dpk)2] (abbreviated as [Dy2Cu]; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, Hdpk = di-2-pyridyl ketoxime) has antiferromagnetic coupling, whereas [Gd2Cu] and heavy [Ln2Cu] systems usually show ferromagnetic coupling. As the first step to explain this peculiarity, the recently synthesized complex, [Dy2Pd], is investigated. This complex is isostructural with [Dy2Cu] yet contains the diamagnetic Pd ion instead of the magnetic Cu(II) ion. Experimental energy levels of Dy(3+) ions in the powder [Dy2Pd] sample were determined from the 4.2 K absorption spectra. CF analysis was performed yielding the fitted free ion and CF parameters. The number of freely varied parameters was restricted using the superposition model. The fittings yield very satisfactory agreement between the experimental and the calculated energy levels (rms = 12.0 cm(-1)). The energies and exact composition of the state vector for the ground multiplet (6)H(15/2) of Dy(3+) are determined. These results are used for the simulation of the temperature dependence of the magnetic susceptibility, which enables the theoretical interpretation of the experimentally measured magnetic susceptibility in the range 1.8-300 K for the [Dy2Pd] complex. This study provides background for the subsequent investigation of the magnetic exchange interactions in the pertinent heterometallic complexes.
Optical properties of Dy3+ and Eu3+ -Codoped SrWO4 phosphors for white light-emitting diodes
NASA Astrophysics Data System (ADS)
Cho, Shinho
2018-01-01
Dy3+ - and Eu3+ -codoped SrWO4 phosphor powders were prepared using a solid-state reaction technique by changing the molar concentration of Eu3+ within the range of 0 to 15 mol% at a fixed Dy3+ concentration of 5 mol%. The effects of Dy3+ and Eu3+ doping on the structural, morphological, and optical properties of SrWO4:Dy3+, Eu3+ phosphors were investigated via Xray diffraction, scanning electron microscopy, and photoluminescence spectrophotometry, respectively. Irrespective of the concentrations of Dy3+ and Eu3+ ions, the crystal structures of all the phosphors were tetragonal, and the grains exhibited a tendency to agglomerate. The emission spectra of Sr0.925WO4:5 mol% Dy3+ contained an intense yellow band at 573 nm arising from the 4 F 9/2 → 6 H 13/2 electric dipole transition of Dy3+, as well as three weak emission lines. When the Eu3+ ions were incorporated into the SrWO4:Dy3+ phosphors, a strong red emission peak at 615 nm originating from the 5D0 → 7F2 transition of Eu3+ appeared in addition to the four emission bands centered at 481, 573, 662, and 750 nm, which result from the 4 f-4 f transitions of Dy3+. The emission intensity decreased as the Eu3+ concentration increased up to 15 mol% due to concentration quenching, which resulted from dipole-dipole interactions. The results suggest that the color emissions and intensities of SrWO4:Dy3+, Eu3+ phosphors can be tuned from yellow to white to red by varying the types of ions used and the ratio of Dy3+ to Eu3+ ions.
Langley, Stuart K; Ungur, Liviu; Chilton, Nicholas F; Moubaraki, Boujemaa; Chibotaru, Liviu F; Murray, Keith S
2014-05-05
The synthesis and structural characterization of four related heterometallic complexes of formulas [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)4](NO3)2·MeOH·H2O (1a) and [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·H2O (1b), [Dy(III)2Co(III)2(OMe)2(dea)2(O2CPh)4(MeOH)4](NO3)2 (2), [Dy(III)2Co(III)2(OMe)2(mdea)2(O2CPh)4(NO3)2] (3), and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)4](NO3)2·0.5MeOH·H2O (4a) and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·1.5H2O (4b) are reported (teaH3 = triethanolamine, deaH2 = diethanolamine, mdeaH2 = N-methyldiethanolamine, and bdeaH2 = N-n-butyldiethanolamine). Compounds 1 (≡ 1a and 1b) and 4 (≡ 4a and 4b) both display two unique molecules within the same crystal and all compounds display a butterfly type core, with the Dy(III) ions occupying the central body positions and the diamagnetic Co(III) ions the outer wing-tip sites. Compounds 1-4 were investigated via direct current and alternating current magnetic susceptibility measurements, and it was found that each complex displayed single-molecule magnet (SMM) behavior. All four compounds display unique coordination and geometric environments around the Dy(III) ions and it was found that each displays a different anisotropy barrier. Ab initio calculations were performed on 1-4 and these determined the low lying electronic structure of each Dy(III) ion and the magnetic interactions for each cluster. It was found that there was a strong correlation between the calculated energy gap between the ground and first excited states of the single-ion ligand-field split Dy(III) levels and the experimentally observed anisotropy barrier. Furthermore, the transverse g factors found for the Dy(III) ions, defining the tunnelling rates within the ground Kramers doublets, are largest for 1, which agrees with the experimental observation of the shortest relaxation time in the high-temperature domain for this complex. The magnetic exchange between the Dy(III) ions revealed overall antiferromagnetic interactions for each compound, derived from the dominant dipolar exchange resulting in nonmagnetic ground states for 1-4. The diamagnetic ground states coupled with small tunneling gaps resulted in quantum tunneling time scales at zero field of between 0.1 and >1.5 s.
NASA Astrophysics Data System (ADS)
Iwadate, Yasuhiko; Ohkubo, Takahiro
2017-11-01
Electrical conductivities (κs) of molten DyCl3-NaCl and DyCl3-KCl systems were estimated by measuring the impedances of each mixture melt at any temperature and/or frequency. The molar volumes (Vms) were measured by dilatometry and represented as a polynomial empirical equation of temperature and composition. Due to both the properties, the molar conductivities (Λms) were calculated and their temperature and/or composition dependences were discussed from the standpoint of structural features as well. The κs increased curvilinearly with increasing temperature across the whole composition ranges. This trend was also applied to the Λms which was fitted by an Arrhenius-type equation. The relationship of Λms with melt composition was studied and the Λms were found to decrease with increasing composition of DyCl3. These findings were interpreted based on the results of structural science so far reported, and finally, the relationship between Λms and the structures of pure rare earth chloride melts was discussed.
NASA Astrophysics Data System (ADS)
Damodaraiah, S.; Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.
2017-05-01
Different compositions of (5, 10, 15 and 20 mol%) of bismuth and different concentrations (0.5, 1.0, 1.5 and 2.0 mol%) of Dy3+ ion doped bismuth phosphate (BiP) glasses were synthesized by melt-quenching technique. The structural characterization was accomplished by XRD, SEM with EDS, FTIR, FT-Raman and 31P MAS NMR spectroscopy. The optical properties were studied using absorption and photoluminescence spectroscopy. Different structural groups were identified using FTIR and FT-Raman spectra. The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by 31P MAS NMR spectroscopic investigations. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6) were evaluated from absorption spectra. Radiative parameters such as radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated using Judd-Ofelt intensity parameters. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated for all the observed emission transitions of prepared glasses. The decay profiles for 4F9/2 level were recorded and fit exponential for 0.5 mol% and non-exponential for higher concentrations of Dy3+ due to non-radiative energy transfer among excited Dy3+ ions. The CIE chromaticity co-ordinates have been calculated from the luminescence spectra which confirmed greenish yellow light emission.
Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5
Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...
2016-07-12
The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less
Zubieta, Chloe; Krishna, S Sri; Kapoor, Mili; Kozbial, Piotr; McMullan, Daniel; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Hampton, Eric; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2007-11-01
BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Marappa, B.; Rudresha, M. S.; Nagabhsuhana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
The facile ultrasound synthesis of Y2O3:Dy3+ nanostructures by using bio-surfactant mimosa pudica leaves extract. The concentration of bio-surfactant was the key factor in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Dy3+ was characterized by SEM, TEM and HRTEM. The PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy3+ concentration on the structure morphology, UV absorption, and PL emission of Y2O3: Dy3+ nanostructures were investigated systematically. Y2O3: Dy3+ exhibits intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and CCT value is 5525 K which corresponds to vertical day light. SEM micrographs showed superstructure morphology influenced by both sonication time as well as surfactant concentration. Pl emission spectra shows three intense peaks observed at 480, 574 and 666 nm attributed to the Dy3+ transitions. The photometric properties were studied by evaluating the CIE, CCT diagrams and the results were very fruitful in making the white light emitting diodes. This method has been considered to be the cost effective and eco-friendly to synthesize nanomaterials with superior morphology suitable for display device applications.
NASA Astrophysics Data System (ADS)
Singh, Dhananjay Kumar; Manam, Jairam
2017-07-01
A series of perovskite CaTiO3:Dy3+ nanophosphors have been prepared via solid state reaction method in order to investigate the structural, spectral and photometric properties. The structural, morphological and spectral properties of prepared nanophosphors were systematically characterized by XRD, FESEM, EDX, Photoluminescence, PL decay time and UV-Visible spectroscopy. The novel CaTiO3:Dy3+ nanophosphors exhibited single phase orthorhombic structure with space group Pbnm. The high magnification FESEM images of prepared sample demonstrated the particle size in the range 220-240 nm. The photoluminescence properties of Dy3+ doped CaTiO3 nanophosphors were investigated through excitation, emission spectra and decay time by varying the concentration of activator (Dy3+). Under the excitation of 386 nm UV light, Dy3+ activated CaTiO3 nanophosphors exhibited its characteristic excellent intense emissions in blue and yellow region around the wavelength 484 and 575 nm due to the transition 4F9/2→6H15/2 and 4F9/2 → 6H13/2 respectively. The photometric parameters such as CIE-coordinate and correlated color temperature (CCT) was also calculated. The CIE- coordinate (0.28, 0.32) was found near white light and CCT value was found to be 9222.31 K for optimum composition Ca0.96TiO3:0.04Dy3+ which was useful for cold light emission. The affirmative experimental results indicated that the prepared nanophosphors could be the favorable candidate for lighting applications.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davaasuren, Bambar; Dashjav, Enkhtsetseg; Kreiner, Guido
The carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] (RE=Dy, Ho) were prepared from mixtures of the elements by arc-melting followed with subsequent annealing at 1373 K. The crystal structures were determined from single crystal X-ray diffraction data and revealed an isotypic relationship to Er{sub 15}[Fe{sub 8}C{sub 25}] (hP48, P321). The main feature of the crystal structure is given by Fe{sub 6} cluster units characterized by covalent Fe–Fe bonding interactions. {sup 57}Fe Mössbauer spectra of Dy{sub 15}[Fe{sub 8}C{sub 25}] were fitted by three subspectra with relative spectral weights of about 3:3:2 which is in general agreement with the crystal structure. Below 50 K,more » an onset of magnetic hyperfine fields at the three iron sites is observed which is supposed to be caused by dipolar fields arising from neighboring, slowly relaxing Dy magnetic moments. - Graphical abstract: Fe{sub 6}-cluster in the crystal structure of RE{sub 15}[Fe{sub 8}C{sub 25}], RE=Dy, Ho. - Highlights: • New carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] with RE=Dy, Ho have been synthesized. • The crystal structures were refined using single crystal X-ray data. • An orientational relationship between Fe{sub 6}-clusters and Fe in γ-Fe is outlined. • {sup 57}Fe Mössbauer spectra are in agreement with structural data from X-rays. • Magnetic hyperfine fields below 50 K are explained by dipolar fields from Dy atoms.« less
Wang, H; Yu, M; Lin, C K; Lin, J
2006-08-01
Spherical SiO(2) particles have been coated with YVO(4):Dy(3+)/Sm(3+) phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO(2)@YVO(4):Dy(3+)/Sm(3+) particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO(2)@YVO(4):Dy(3+)/Sm(3+) core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy(3+) for SiO(2)@YVO(4):Dy(3+) and from Sm(3+) for SiO(2)@YVO(4):Sm(3+) due to an efficient energy transfer from YVO(4) host to them. The PL intensity of Dy(3+) and Sm(3+) increases with raising the annealing temperature and the number of coating cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bo; Song, Yanhua; Sheng, Ye
Ce{sup 3+} and/or Dy{sup 3+} activated Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68} phosphors were synthesized by high temperature solid state reaction and their luminescent properties were studied. There are two emissions peaking at 407 and 577 nm in the emission spectra of Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68}:Ce{sup 3+}, Dy{sup 3+}, which are due to the transitions of Ce{sup 3+} and Dy{sup 3+} ions, respectively. More importantly, the effective energy transfer from Ce{sup 3+} to Dy{sup 3+} ions has been confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and mechanism of energy transfermore » were investigated and it was demonstrated to be resonant type via dipole–dipole reaction. Under the excitation of 345 nm, the emitting color can change from blue to white by adjusting the relative doping concentration of Ce{sup 3+} and Dy{sup 3+} ions, indicating that the phosphors Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68}:Ce{sup 3+}, Dy{sup 3+} are promising single-phase white-emitting phosphors for application in pc-white LEDs. - Highlights: • The Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68}:Ce{sup 3+},Dy{sup 3+} are novel luminescent materials that have not been reported before. • The crystal structure of Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68} and energy transfer from Ce{sup 3+} to Dy{sup 3+} were investigated. • The emission color of Ca{sub 20}Al{sub 26}Mg{sub 3}Si{sub 3}O{sub 68}:Ce{sup 3+},Dy{sup 3+} can be adjusted from blue to white. • The phosphors have great application value in WLEDs as a kind of blue-to-white emitting phosphors.« less
Electronic structure and magnetic properties of Dy adatom on Ir surface
NASA Astrophysics Data System (ADS)
Shick, A. B.; Lichtenstein, A. I.
2018-05-01
The electronic structure and magnetism of individual Dy atom adsorbed on the (1 1 1) surface of Ir is investigated using the combination of the density functional theory with the Hubbard-I approximation to the Anderson impurity model (DFT + HIA). The Dy3+ adatom is found magnetic with the magnetic moment of 9.35μB in the external magnetic field. The spin and orbital magnetic moments, and their ratio are evaluated, and compared with the X-ray magnetic circular dichroism data. The positive magnetic anisotropy energy of ≈ 1.3 meV determines the out-of-plane orientation of the Dy adatom magnetic moment. The role of 5d-4f interorbital exchange polarization in modification of the 4f shell energy spectrum is emphasized. We predict the Dy magnetization to drop by the factor of three with switching off the external magnetic field.
NASA Astrophysics Data System (ADS)
Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu
We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.
Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang
2015-04-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.
NASA Astrophysics Data System (ADS)
Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.
2007-11-01
Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.
Enhanced ultraviolet photo-response in Dy doped ZnO thin film
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.
2018-02-01
In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.
Rahmanpour, Rahman; Rea, Dean; Jamshidi, Shirin; Fülöp, Vilmos; Bugg, Timothy D H
2016-03-15
A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a β-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.
2018-04-01
This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.
NASA Astrophysics Data System (ADS)
Zhao, Z. Y.; Wang, Y. L.; Lin, L.; Liu, M. F.; Li, X.; Yan, Z. B.; Liu, J.-M.
2015-11-01
DyMn2O5 is an extraordinary example in the family of multiferroic manganites and it accommodates both the 4f and 3d magnetic ions with strong Dy-Mn (4f-3d) coupling. The electric polarization origin is believed to arise not only from the Mn spin interactions but also from the Dy-Mn coupling. Starting from proposed scenario on ferrielectricity in DyMn2O5 where the exchange-strictions associated with the Mn3+-Mn4+-Mn3+ blocks and Dy3+-Mn4+-Dy3+ blocks generate the two ferroelectric sublattices, we perform a set of characterizations on the structure, magnetism, and electric polarization of Dy1-xYxMn2O5 in order to investigate the roles of Dy-Mn coupling in manipulating the ferrielectricity. It is revealed that the non-magnetic Y substitution of Dy suppresses gradually the Dy3+ spin ordering and the Dy-Mn coupling. Consequently, the ferroelectric sublattice generated by the exchange striction associated with the Dy3+-Mn4+-Dy3+ blocks is destabilized, but the ferroelectric sublattice generated by the exchange striction associated with the Mn3+-Mn4+-Mn3+ blocks remains less perturbed, enabling the ferrielectricity-ferroelectricity transitions with the Y substitution. A phenomenological ferrielectric domain model is suggested to explain the polarization reversal induced by the Y substitution. The present work presents a possible scenario of the multiferroic mechanism in not only DyMn2O5 but probably also other RMn2O5 members with strong 4f-3d coupling.
Zubieta, Chloe; Joseph, Rosanne; Krishna, S Sri; McMullan, Daniel; Kapoor, Mili; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2007-11-01
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.
2014-11-01
Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.
Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Meena, Sher Singh; Kumar, Shalendra; Ahmed, Ateeq; Bhatt, Pramod
2018-05-01
Ce and Dy doped Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0.00 and 0.04) were synthesized via the chemical route using citrate-gel auto-combustion method. The structural analysis has been carried out with the help of x-ray diffraction (XRD). Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. Mössbauer spectra were recorded for both samples at room temperature. Presence of the well resolved sextet spectra corresponding to A and B sub-lattice clearly shows that both the samples have ferrimagnetic ordering at room temperature. Isomer shift observed from fitting of the Mössbauer spectra infers that Fe3+ ions are in high valence state. The decrease in the hyperfine field due to the doping of Ce and Dy clearly showed that magnetic interactions diluted due to the doping of Ce and Dy ions.
NASA Astrophysics Data System (ADS)
Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun
2016-11-01
Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.
Thermoelectric properties of Ca(1-x-y)Dy(x)CeyMnO3 for power generation.
Park, K; Lee, G W; Jung, J; Kim, S-J; Lim, Y-S; Choi, S-M; Seo, W-S
2011-08-01
The sintered Ca(1-x-y)Dy(x)CeyMnO3 bodies were a single phase with a perovskite structure without any impurity phases. The calculated crystallite sizes of the Ca(1-x-y)Dy(x)CeyMnO3 were in the range of 43.3 to 63.3 nm. The composition significantly affected their microstructural and thermoelectric characteristics. The doped Dy led to both an increase in the electrical conductivity as well as the absolute value of the Seebeck coefficient, resulting in an enhanced power factor. The highest power factor (5.1 x 10(-4) Wm(-1) K(-2)) was obtained for Ca(0.8)Dy(0.2)MnO3 at 800 degrees C. In this study, we systematically discussed the thermoelectric properties of the Ca(1-x-y)Dy(x)CeyMnO3, with respect to the substitution of Dy and/or Ce for Ca.
Pasteuning-Vuhman, S; Putker, K; Tanganyika-de Winter, C L; Boertje-van der Meulen, J W; van Vliet, L; Overzier, M; Plomp, J J; Aartsma-Rus, A; van Putten, M
2018-01-01
Merosin deficient congenital muscular dystrophy 1A (MDC1A) is a very rare autosomal recessive disorder caused by mutations in the LAMA2 gene leading to severe and progressive muscle weakness and atrophy. Although over 350 causative mutations have been identified for MDC1A, no treatment is yet available. There are many therapeutic approaches in development, but the lack of natural history data of the mouse model and standardized outcome measures makes it difficult to transit these pre-clinical findings to clinical trials. Therefore, in the present study, we collected natural history data and assessed pre-clinical outcome measures for the dy2J/dy2J mouse model using standardized operating procedures available from the TREAT-NMD Alliance. Wild type and dy2J/dy2J mice were subjected to five different functional tests from the age of four to 32 weeks. Non-tested control groups were taken along to assess whether the functional test regime interfered with muscle pathology. Respiratory function, body weights and creatine kinase levels were recorded. Lastly, skeletal muscles were collected for further histopathological and gene expression analyses. Muscle function of dy2J/dy2J mice was severely impaired at four weeks of age and all mice lost the ability to use their hind limbs. Moreover, respiratory function was altered in dy2J/dy2J mice. Interestingly, the respiration rate was decreased and declined with age, whereas the respiration amplitude was increased in dy2J/dy2J mice when compared to wild type mice. Creatine kinase levels were comparable to wild type mice. Muscle histopathology and gene expression analysis revealed that there was a specific regional distribution pattern of muscle damage in dy2J/dy2J mice. Gastrocnemius appeared to be the most severely affected muscle with a high proportion of atrophic fibers, increased fibrosis and inflammation. By contrast, triceps was affected moderately and diaphragm only mildly. Our study presents a complete natural history dataset which can be used in setting up standardized studies in dy2J/dy2J mice.
Dolores Linde; Francisco J. Ruiz-Dueñas; Elena Fernández-Fueyo; Victor Guallar; Kenneth E. Hammel; Rebecca Pogni; Angel T. Martínez
2015-01-01
The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus...
Synthesis, characterization and optical properties of NH{sub 4}Dy(PO{sub 3}){sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chemingui, S.; Ferhi, M., E-mail: ferhi.mounir@gmail.com; Horchani-Naifer, K.
2014-09-15
Polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH{sub 4}Ce(PO{sub 3}){sub 4} and RbHo(PO{sub 3}){sub 4}. It crystallizes in the monoclinic space group P2{sub 1/n} with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO{sub 3}){sub 3} after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decaymore » curves of Dy{sup 3+} ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy{sup 3+} in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (I{sub Y}/I{sub B}) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy{sup 3+} ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH{sub 4}Dy(PO{sub 3}){sub 4} is promising for white light generation but Dy(PO{sub 3}){sub 3} is potential candidates in field emission display (FED) and plasma display panel (PDP) devices. - Graphical abstract: The CIE color coordinate diagrams showing the chromatic coordinates of Dy{sup 3+} luminescence in NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3}. - Highlights: • The polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} are synthesized. • The obtained powders are characterized. • The spectroscopic properties of Dy{sup 3+} ion are investigated. • Results are discussed as function of crystal structure and chemical composition. • The usefulness of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} in optical devices is revealed.« less
The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)
NASA Astrophysics Data System (ADS)
Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.
2005-06-01
New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F 4¯ 3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.
Room-temperature ferromagnetism in Dy films doped with Ni
NASA Astrophysics Data System (ADS)
Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.
2008-09-01
Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x)Ni x-Ni and Dy (1-x)(NiFe) x-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x)Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni.
Cao, G. H.; Oertel, C. -G.; Schaarschuch, R.; ...
2017-05-03
DyCu and YCu are representatives of the family of CsCl-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (021¯) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of B33 and B2more » phases is (111¯)[112]B33 || (110)[001]B2. The simulated electron diffraction patterns of the B33 phase are consistent with those of experimental observations. TEM investigations also reveal that a dominant orthorhombic FeB-type B27 martensite with lattice parameters a = 0.71 nm, b = 0.45 nm, and c = 0.54 nm exists in YCu alloy. (11¯ 1) twins were observed in the B27 YCu martensite. As a result, the formation mechanism of B2 to B33 and B2 to B27 phase transformation is discussed.« less
Anisotropy induced anomalies in Dy 1$-$xTb xAl 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M.; Miami Univ., Oxford, OH; Pathak, A. K.
2017-01-02
The Dy 1$-$xTb xAl 2 alloys have been investigated by X-ray powder diffraction, heat capacity, and magnetic measurements. All samples exhibit cubic Laves phase crystal structure at room temperature but at T C, DyAl2 and TbAl 2 show tetragonal and rhombohedral distortions, respectively. First order phase transitions are observed below T C (at the spin-reorientation transition, T SR) in the alloys with 0.15 ≤ x ≤ 0.35. These transitions are signified by sharp heat capacity peaks and corresponding anomalies in the magnetization and ac magnetic susceptibility data. The observations are interpreted by taking into consideration the differences in easy magnetizationmore » directions of DyAl 2 and TbAl 2. Due to the competing magnetic structures, the anisotropy-related instability and magnetic frustrations are prominent in the Dy 1$-$xTb xAl 2 alloys at certain concentrations resulting in the first order transitions.« less
NASA Astrophysics Data System (ADS)
Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2016-09-01
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.
Relieving geometrical frustration through doping in the Dy1-x Ca x BaCo4O7 swedenborgites.
Nath Panja, Soumendra; Kumar, Jitender; Dengre, Shanu; Nair, Sunil
2016-12-07
The geometrically frustrated antiferromagnet DyBaCo 4 O 7 is investigated through a combination of x-ray diffraction, magnetization and dielectric measurements. Systematic doping in the series Dy 1-x Ca x BaCo 4 O 7 causes a lifting of the geometrical frustration resulting in a structural transition from a trigonal P31c to an orthorhombic Pbn2 1 symmetry at x = 0.4. This structural transition can also be accessed as a function of temperature, and all our orthorhombic specimens exhibit this transition at elevated temperatures. The temperature at which this structural transition occurs is observed to scale linearly with the mean ionic radius of the R site ion. However, CaBaCo 4 O 7 which has an equal number of Co 2+ and Co 3+ ions clearly violates this quasilinear relationship, indicating that charge ordering could also play a critical role in stabilizing the orthorhombic distortion in this system. Using thermoremanent magnetization measurements to circumvent the problem of the large paramagnetic background arising from Dy 3+ ions, we chart out the phase diagram of the Dy 1-x Ca x BaCo 4 O 7 series.
NASA Astrophysics Data System (ADS)
Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru
2016-12-01
Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.
Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru
2016-01-01
Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060
Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses
NASA Astrophysics Data System (ADS)
Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.
2014-12-01
This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Ruben; Huang, Gaochao; Meekins, David A.
Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pongmore » mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.« less
Shrestha, Ruben; Huang, Gaochao; Meekins, David A.; Geisbrecht, Brian V.; Li, Ping
2017-01-01
Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases, which have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been uncovered for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand with two channels at diameters of ~3.0 and 8.0 Å leading to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pH 3.5 suggested that cmpd 0 deprotonation by the distal aspartate is rate-limiting in the formation of cmpd I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with cmpd I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in DyPs is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for cmpd I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining DyPs’ acidic pH optimum. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity. PMID:29308295
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2016-05-02
The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.
NASA Astrophysics Data System (ADS)
Gómez-García, J. Francisco; Bucio, Lauro; Tavizon, Gustavo
2018-01-01
In this work, we present both structural and magnetic (DC magnetization and AC susceptibility) studies of the Dy3-xYxTaO7 solid solution. The structural characterization of samples was performed by Rietveld refinements of the X-ray diffraction data. All compounds crystallized in a weberite-related structure in the orthorhombic C2221 space group (No. 20); the variations of the lattice parameters obey the Vegard´s law in the whole range of composition. DC magnetic measurements of the Dy3-xYxTaO7 system showed a Curie-Weiss paramagnetic behaviour, with antiferromagnetic interactions at T>150 K. Below 3 K a spin glass behaviour in the 0 ≤ x ≤ 1 range of the solid solution was observed. The stoichiometric Dy3TaO7 compound showed spin glass behaviour although there is no evidence of structural disorder. For some Y3+ doped compounds (x = 0.33, 0.66 and 1.0), chemical disorder reduced the freezing temperature (Tg) values with a ×1/3 dependence. Cole-Cole analysis of the AC magnetic field response showed similar phenomenological parameters for the stoichiometric (x = 0) and the Y3+ doped compounds with spin glassiness, suggesting an analogous mechanism for these compounds. For the Dy3-xYxTaO7 system, in which the spin glass behaviour seems to exhibit a critical concentration, a magnetic phase diagram is proposed.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-08-01
In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com
2015-06-24
Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less
Magnetic and magnetocaloric properties of spin-glass material DyNi 0.67Si 1.34
Chen, X.; Mudryk, Y.; Pathak, A. K.; ...
2017-04-18
Structural, magnetic, and magnetocaloric properties of DyNi 0.67Si 1.34 were investigated using X-ray powder diffraction, magnetic susceptibility, and magnetization measurements. X-ray powder diffraction pattern shows that DyNi 0.67Si 1.34 crystallizes in the AlB 2-type hexagonal structure (space group: P6/ mmm, No. 191, a = b = 3.9873(9) Å, and c = 3.9733(1) Å). The compound is a spin-glass with the freezing temperature TG = 6.2 K. The ac magnetic susceptibility measurements confirm magnetic frustration in DyNi 0.67Si 1.34. Furthermore, the maximum value of the magnetic entropy change determined from M(H) data is –16.1 J/kg K at 10.5 K for amore » field change of 70 kOe.« less
Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng
2014-04-21
Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-10-18
(Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.
Förg, Katharina; Höppe, Henning A
2015-11-28
Lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho) were synthesised as colourless (Ln = Tb, Dy) and light pink (Ln = Ho) crystalline powders by reaction of Tb4O7/Dy2O3/Ho2O3 with H3PO3 at 380 °C. All compounds crystallise isotypically (P2(1)/c (no. 14), Z = 4, a(Tb) = 1368.24(4) pm, b(Tb) = 710.42(2) pm, c(Tb) = 965.79(3) pm, β(Tb) = 101.200(1)°, 3112 data, 160 parameters, wR2 = 0.062, a(Ho) = 1363.34(5) pm, b(Ho) = 709.24(3) pm, c(Ho) = 959.07(4) pm, β(Ho) = 101.055(1)°, 1607 data, 158 parameters, wR2 = 0.058). The crystal structure comprises two different infinite helical chains of corner-sharing phosphate tetrahedra. In-between these chains the lanthanide ions are located, coordinated by seven oxygen atoms belonging to four different polyphosphate chains. Vibrational, UV/Vis and fluorescence spectra of Ln[H(PO3)4] (Ln = Tb, Dy, Ho) as well as Dy[H(PO3)4]:Ln (Ln = Ce, Eu) and the magnetic and thermal behaviour of Tb[H(PO3)4] are reported.
Perez Sousa, Miguel Á; Olivares Sánchez-Toledo, Pedro R; Gusi Fuerte, Narcis
2017-12-01
The assessment of health-related quality of life (HRQoL) serves to detect changes over time in patients' health status and allows to do a cost-effectiveness analysis of treatments. When children with special health features cannot perform a self-assessment, it is possible to assess their HRQoL through their parents or caregivers. To date, the discrepancy in the assessment of HRQoL using the EQ-5D-Y questionnaire among children with cerebral palsy (CP) and their parents has not been analyzed. The objective of this study was to analyze the level of agreement in the HRQoL assessment using the EQ-5D-Y questionnaire and its proxy version among children with CP and their parents or caregivers. Children and adolescents with CP, and their parents, from a special education school in the region of Extremadura (Spain) participated in the study. The EQ-5D-Y questionnaire was used for children and the EQ-5D-Y proxy version, for parents. Interviews were conducted in the first quarter of 2015. The level of agreement in the responses was analyzed using the Cohen's kappa coefficient for the five domains of the EQ-5D-Y and the intraclass correlation coefficient for the visual analogue scale. Sixty-two children with CP and mild and/or moderate functional capacity impairment, and their parents, participated in the study. The level of agreement was poor in the HRQoL assessment between children and parents in all the questionnaire domains ( <0.20) and fair or poor ( <0.60) in the visual analogue scale. A high level of parent-child disagreement was observed in the HRQoL assessment in the population with CP using the EQ-5D-Y questionnaire. Sociedad Argentina de Pediatría
NASA Astrophysics Data System (ADS)
Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel
2018-04-01
Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.
Magnetic properties of Dy nano-islands on graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron
Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less
Magnetic properties of Dy nano-islands on graphene
Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...
2017-04-07
Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less
Anand, V K; Tennant, D A; Lake, B
2015-11-04
Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility χ(ac)(T), dc magnetic susceptibility χ(T), isothermal magnetization M(H) and heat capacity C(p)(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent χ(ac)(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca(2+) substitution for magnetic Dy(3+) is similar to the previous study on nonmagnetic isovalent Y(3+) substituted Dy(2-x)Y(x) Ti2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca(2+) substitution for Dy(3+) ions.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
Evol and ProDy for bridging protein sequence evolution and structural dynamics
Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet
2014-01-01
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577
Superparamagnetic behavior of Fe70Dy30 granular thin film
NASA Astrophysics Data System (ADS)
Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil
2018-04-01
In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.
Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, C. L.; Peng, H.; Su, W. B.; Wang, H. C.; Li, J. C.; Zhang, J. L.; Mei, L. M.
2012-11-01
Sr1- x Dy x TiO3 ( x = 0.02, 0.05, 0.10) ceramics were prepared by the reduced solid-state reaction method, and their thermoelectric properties were investigated from room temperature to 973 K. The resistivity increases with temperature, showing metallic behavior. The Seebeck coefficients tend to saturate at high temperatures, presenting narrow-band behavior, as proved by ab initio calculations of the electronic structure. The magnitudes of the Seebeck coefficient and the electrical resistivity decrease with increasing Dy content. At the same time, the thermal conductivity decreases because the lattice thermal conductivity is reduced by Dy substitution. The maximum value of the figure of merit reaches 0.25 at 973 K for the Sr0.9Dy0.1TiO3 sample.
Chen, Chia-Hsiang; Krylov, Denis S; Avdoshenko, Stanislav M; Liu, Fupin; Spree, Lukas; Yadav, Ravi; Alvertis, Antonis; Hozoi, Liviu; Nenkov, Konstantin; Kostanyan, Aram; Greber, Thomas; Wolter, Anja U B; Popov, Alexey A
2017-09-01
A method for the selective synthesis of sulfide clusterfullerenes Dy 2 S@C 2 n is developed. Addition of methane to the reactive atmosphere reduces the formation of empty fullerenes in the arc-discharge synthesis, whereas the use of Dy 2 S 3 as a source of metal and sulfur affords sulfide clusterfullerenes as the main fullerene products along with smaller amounts of carbide clusterfullerenes. Two isomers of Dy 2 S@C 82 with C s (6) and C 3v (8) cage symmetry, Dy 2 S@C 72 - C s (10528), and a carbide clusterfullerene Dy 2 C 2 @C 82 - C s (6) were isolated. The molecular structure of both Dy 2 S@C 82 isomers was elucidated by single-crystal X-ray diffraction. SQUID magnetometry demonstrates that all of these clusterfullerenes exhibit hysteresis of magnetization, with Dy 2 S@C 82 - C 3v (8) being the strongest single molecule magnet in the series. DC- and AC-susceptibility measurements were used to determine magnetization relaxation times in the temperature range from 1.6 K to 70 K. Unprecedented magnetization relaxation dynamics with three consequent Orbach processes and energy barriers of 10.5, 48, and 1232 K are determined for Dy 2 S@C 82 - C 3v (8). Dy 2 S@C 82 - C s (6) exhibits faster relaxation of magnetization with two barriers of 15.2 and 523 K. Ab initio calculations were used to interpret experimental data and compare the Dy-sulfide clusterfullerenes to other Dy-clusterfullerenes. The smallest and largest barriers are ascribed to the exchange/dipolar barrier and relaxation via crystal-field states, respectively, whereas an intermediate energy barrier of 48 K in Dy 2 S@C 82 - C 3v (8) is assigned to the local phonon mode, corresponding to the librational motion of the Dy 2 S cluster inside the carbon cage.
NASA Astrophysics Data System (ADS)
Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna
2015-09-01
Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy3+-Dy3+ ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region.
NASA Astrophysics Data System (ADS)
Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.
2018-03-01
A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.
NASA Astrophysics Data System (ADS)
Garbout, A.; Férid, M.
2018-06-01
Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.
Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run
2014-10-15
The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less
NASA Astrophysics Data System (ADS)
Zhu, Daoyun; Liao, Min; Mu, Zhongfei; Wu, Fugen
2018-05-01
Dy3+-doped Ca9NaZn(PO4)7 has been synthesized by high-temperature solid-state reaction. X-ray diffraction analysis revealed that the obtained phosphors existed as single phase. Doping with Dy3+ at low concentration had no obvious effect on the crystal structure of the host. Dy3+-doped samples showed strong emission at approximately 480 nm and 571 nm under excitation at 350 nm. The blue and yellow emissions showed almost the peak intensity. The combination of blue and yellow light formed white light. The color coordinates (0.323, 0.372) of the composite light are located in the white light region. The optimum doping concentration of Dy3+ ions was experimentally determined to be 10 mol.%. The concentration quenching mechanism was ascertained to be electric dipole-dipole interaction among Dy3+ ions. The obtained phosphors exhibited good thermal stability. These results indicate potential applications as single-phase white light-emitting phosphors.
Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems.
Bluschke, M; Frano, A; Schierle, E; Minola, M; Hepting, M; Christiani, G; Logvenov, G; Weschke, E; Benckiser, E; Keimer, B
2017-05-19
Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18 K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.
Ibrahim, Masooma; Moreno-Pineda, Eufemio; Anson, Christopher E.; Powell, Annie K.
2018-01-01
The reaction of [α-P2W15O56]12− with MnII and DyIII in an aqueous basic solution led to the isolation of an all inorganic heterometallic aggregate Na10(OH2)42[{Dy(H2O)6}2Mn4P4W30O112(H2O)2]·17H2O (Dy2Mn4-P2W15). Single-crystal X-ray diffraction revealed that Dy2Mn4-P2W15 crystallizes in the triclinic system with space group P1¯, and consists of a tetranuclear manganese(II)-substituted sandwich-type phosphotungstate [Mn4(H2O)2(P2W15O56)2]16− (Mn4-P2W15), Na, and DyIII cations. Compound Dy2Mn4-P2W15 exhibits a 1D ladder-like chain structure based on sandwich-type segments and dysprosium cations as linkers, which are further connected into a three-dimensional open framework by sodium cations. The title compound was structurally and compositionally characterized in solid state by single-crystal XRD, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TGA), and elemental analyses. Further, the absorption and emission electronic spectra in aqueous solutions of Dy2Mn4-P2W15 and Mn4-P2W15 were studied. Also, magnetic properties were studied and compared with the magnetic behavior of [Mn4(H2O)2(P2W15O56)2]16−. PMID:29342122
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-01-01
(Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839
Wang, C. L.; Liu, J.; Mudryk, Y.; ...
2015-12-19
In this study, the magnetic properties and magnetic entropy changes of DyCo 2B x (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo 2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo 2B x changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, themore » relative cooling power (RCP) of DyCo 2 and the B doped alloys remains nearly constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru; Knotko, A.V.; Yapaskurt, V.O.
2013-10-15
X-ray and microprobe analyses were employed for the investigation of Dy–Mn–Si system at 870/1070/1170 K. The Dy–Mn–Si system, contains the known DyMn{sub 2}Si{sub 2}, DyMnSi and Dy{sub 2}Mn{sub 3}Si{sub 5} compounds and DyMn{sub 4}Si{sub 2}, Dy{sub 2}MnSi{sub 2} and Dy{sub 3}Mn{sub 2}Si{sub 3} were new compounds identified first time and their structure are of the type TmCu{sub 4}Sb{sub 2}, Sc{sub 2}CoSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3} respectively. The quasi-binary solid solutions were detected at 870/1070/1170 K: the ThMn{sub 12}-type Dy{sub 8}Mn{sub 87}Si{sub 5}, Th{sub 6}Mn{sub 23}-type Dy{sub 23}Mn{sub 72}Si{sub 5}, MgCu{sub 2}-type Dy{sub 33}Mn{sub 58}Si{sub 9} and AlB{sub 2}-typemore » Dy{sub 38}Mn{sub 2}Si{sub 58}. The other binary compounds of the Dy–Mn–Si system do not show any visible solubility. New phases R{sub 2}MnSi{sub 2} and R{sub 3}Mn{sub 2}Si{sub 3} (R=Gd, Tb, Ho–Tm) were found out and their structure of the type Sc{sub 2}CoSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3} respectively. The specific features of ‘Dy–Transition Metal–Si’ systems were discussed. - Graphical abstract: The isothermal section of Dy–Mn–Si contains the known DyMn{sub 2}Si{sub 2}, DyMnSi, Dy{sub 2}Mn{sub 3}Si{sub 5} and new TmCu{sub 4}Sb{sub 2}-type DyMn{sub 4}Si{sub 2}, Sc{sub 2}CoSi{sub 2}-type Dy{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type Dy{sub 3}Mn{sub 2}Si{sub 3} ternary compounds. The ternary solid solution based on the binary compounds of the Dy–Mn and Dy–Si systems: the ThMn{sub 12}-type Dy{sub 8}Mn{sub 87}Si{sub 5}, Th{sub 6}Mn{sub 23}-type Dy{sub 23}Mn{sub 72}Si{sub 5}, MgCu{sub 2}-type Dy{sub 33}Mn{sub 58}Si{sub 9} and AlB{sub 2}-type Dy{sub 38}Mn{sub 2}Si{sub 58}. The other binary compounds of the Dy–Mn–Si system do not show any visible solubility. New Sc{sub 2}CoSi{sub 2}-type R{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type R{sub 3}Mn{sub 2}Si{sub 3} phases were discovered for R=Gd, Tb, Ho–Tm. Display Omitted - Highlights: • The Dy–Mn–Si section contains three known and three new ternary compounds (phases). • New phase the TmCu{sub 4}Sb{sub 2}-type DyMn{sub 4}Si{sub 2} compound. • New Sc{sub 2}CoSi{sub 2}-type R{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type R{sub 3}Mn{sub 2}Si{sub 3} were detected for R=Gd–Tm. • Dy–Mn–Si supplements the ‘Dy–3d metal–Si’ series and leads to the ‘RT{sub m}X{sub n}’ row's rule.« less
Yan, J.-Q.; Cao, H. B.; McGuire, M. A.; ...
2013-06-10
The spin and orbital ordering in Dy₁₋ xTb xVO₃ (x=0 and 0.2) was studied by measuring x-ray powder diffraction, magnetization, specific heat, and neutron single-crystal diffraction. The results show that G-OO/C-AF and C-OO/G-AF phases coexist in Dy 0.8Tb 0.20VO 3 in the temperature range 2–60 K, and the volume fraction of each phase is temperature and field dependent. The ordering of Dy moments at T* = 12 K induces a transition from G-OO/C-AF to a C-OO/G-AF phase. Magnetic fields suppress the long-range order of Dy moments and thus the C-OO/G-AF phase below T*. The polarized moments induced at the Dymore » sublattice by external magnetic fields couple to the V 3d moments, and this coupling favors the G-OO/C-AF state. Also discussed is the effect of the Dy-V magnetic interaction and local structure distortion on the spin and orbital ordering in Dy₁₋ xTb xVO₃.« less
Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique
2018-06-04
Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.
Guo, Jingshu; Yonemori, Kim; Le Marchand, Loïc; Turesky, Robert J.
2015-01-01
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic heterocyclic aromatic amine formed in cooked meat. The use of naturally colored hair containing PhIP can serve as a long-term biomarker of exposure to this carcinogen. However, the measurement of PhIP in dyed hair, a cosmetic treatment commonly used by the adult population, is challenging because the dye process introduces a complex mixture of chemicals into the hair matrix, which interfere with the measurement of PhIP. The high-resolution scanning features of the Orbitrap Fusion™ mass spectrometer were employed to biomonitor PhIP in dyed hair. Because of the complexity of chemicals in the hair dye, the consecutive reaction monitoring of PhIP at the MS3 scan stage was employed to selectively remove the isobaric interferences. The limit of quantification (LOQ) of PhIP was 84 parts-per-trillion (ppt) employing 50 mg hair. Calibration curves were generated in dyed hair matrices and showed good linearity (40 to 1000 pg PhIP/g hair) with a goodness-of-fit regression value r2 > 0.9978. The within-day (between-day) coefficients of variation were 7.7% (17%) and 5.4% (6.1%), respectively, with dyed hair samples spiked with PhIP at 200 and 600 ppt. The levels of PhIP accrued in dyed hair from volunteers on a semi-controlled feeding study who ingested known levels of PhIP were comparable to the levels of PhIP accrued in hair of subjects with natural hair color. The method was successfully employed to measure PhIP in non-dyed and dyed hair biospecimens of participants in a case-control study of colorectal adenoma on their regular diet. PMID:25969997
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
NASA Astrophysics Data System (ADS)
Park, Kyeongsoon; Lee, Ga Won
2011-10-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
2011-01-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature. PMID:21974984
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process.
Park, Kyeongsoon; Lee, Ga Won
2011-10-05
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Chen, Chia-Hsiang; Krylov, Denis S.; Avdoshenko, Stanislav M.; Liu, Fupin; Spree, Lukas; Yadav, Ravi; Alvertis, Antonis; Hozoi, Liviu; Nenkov, Konstantin; Kostanyan, Aram; Greber, Thomas; Wolter, Anja U. B.
2017-01-01
A method for the selective synthesis of sulfide clusterfullerenes Dy2S@C2n is developed. Addition of methane to the reactive atmosphere reduces the formation of empty fullerenes in the arc-discharge synthesis, whereas the use of Dy2S3 as a source of metal and sulfur affords sulfide clusterfullerenes as the main fullerene products along with smaller amounts of carbide clusterfullerenes. Two isomers of Dy2S@C82 with Cs(6) and C3v(8) cage symmetry, Dy2S@C72-Cs(10528), and a carbide clusterfullerene Dy2C2@C82-Cs(6) were isolated. The molecular structure of both Dy2S@C82 isomers was elucidated by single-crystal X-ray diffraction. SQUID magnetometry demonstrates that all of these clusterfullerenes exhibit hysteresis of magnetization, with Dy2S@C82-C3v(8) being the strongest single molecule magnet in the series. DC- and AC-susceptibility measurements were used to determine magnetization relaxation times in the temperature range from 1.6 K to 70 K. Unprecedented magnetization relaxation dynamics with three consequent Orbach processes and energy barriers of 10.5, 48, and 1232 K are determined for Dy2S@C82-C3v(8). Dy2S@C82-Cs(6) exhibits faster relaxation of magnetization with two barriers of 15.2 and 523 K. Ab initio calculations were used to interpret experimental data and compare the Dy-sulfide clusterfullerenes to other Dy-clusterfullerenes. The smallest and largest barriers are ascribed to the exchange/dipolar barrier and relaxation via crystal-field states, respectively, whereas an intermediate energy barrier of 48 K in Dy2S@C82-C3v(8) is assigned to the local phonon mode, corresponding to the librational motion of the Dy2S cluster inside the carbon cage. PMID:29263779
Lifetime measurements in 162Dy
NASA Astrophysics Data System (ADS)
Aprahamian, A.; Lesher, S. R.; Casarella, C.; Börner, H. G.; Jentschel, M.
2017-02-01
Background: The nature of oscillations or excitations around the equilibrium deformed nuclear shape remains an open question in nuclear structure. The 162Dy nucleus is one of the most extensively studied nuclei with the (n ,γ ), (n ,e- ), (α ,2 n ) reactions and most recently the (p ,t ) pickup reaction adding 11 0+ states to an excitation energy of 2.8 MeV to an already-well-developed level scheme. However, a major shortfall for a better understanding of the nature of the plethora of bands and levels in this nucleus has been the lack of lifetime measurements. Purpose: To determine the character of the low-lying excited bands in this 162Dy nucleus, we set out to measure the level lifetimes. Method: Lifetimes were measured in the 162Dy nucleus following neutron capture using the Gamma-Ray-Induced Doppler (GRID) broadening technique at the Institut Laue-Langevin in Grenoble, France. Results: In total, we have measured the lifetimes of 12 levels belonging to a number of excited positive- and negative-parity bands in the low-lying spectrum of the 162Dy nucleus. The lifetime of the Kπ=2+ bandhead at 888.16 keV was previously measured. We confirm this value and measure lifetimes of the 3+ and 4+ members of this band yielding B (E 2 ) values that are consistent with a single γ -vibrational phonon of several Weisskopf units. The first excited Kπ=4+ band, with a bandhead at 1535.66 keV, is strongly connected to the Kπ=2+ band with enhanced collective B (E 2 ) values and it is consistent with a double phonon vibrational (γ γ ) excitation. Lifetime of Kπ=0+ band members have also been measured, including the 4Kπ=02+ state at 1574.29 keV and the 2Kπ= 03+ state at 1728.31 keV. This latter state also displays the characteristics of a double phonon excitation built on the Kπ=2+ band. Conclusions: We discuss our findings in terms of the presence or absence of collective quadrupole and octupole vibrational excitations. We find two positive-parity excited bands at 1535.66 keV (Kπ=4+ ) and the 1728.312-keV 2+ state of a Kπ=0+ band at 1666 keV connected with sizably collective B (E 2 ) values to the (Kπ=2+ )γ band at 888 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahesh, P., E-mail: pamu@iitg.ernet.in; Subhash, T., E-mail: pamu@iitg.ernet.in; Pamu, D., E-mail: pamu@iitg.ernet.in
We report the dielectric properties of (K{sub 0.5}Na{sub 0.5})NbO{sub 3} ceramics doped with x wt% of Dy{sub 2}O{sub 3} (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy{sub 2}O{sub 3} diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy{sub 2}O{sub 3} are enhanced by increasing the Dy{sup 3+} content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz overmore » the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (∼ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com
2014-04-24
Keeping in view of the recent increased interest towards phosphor materials and its applications, an attempt has been made in the present paper to analyze the new NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor with different Dy{sub 3+} concentrations. Special attention is paid to investigate their crystal structure, morphology and luminescence properties. X-ray diffraction (XRD) results confirm the formation of NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor powder. The scanning electron microscope (SEM) images show that the grains are in micrometer range. Photoluminescence spectra are recorded with different excitation wavelengths for the investigated phosphor and analyzed the variation of intensity of emission bands withmore » Dy{sub 3+} ion concentration. Color co-ordinates are calculated and are used to characterize the color of the phosphor.« less
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859
Liu, Xuanwen; You, Junhua; Wang, Renchao; Ni, Zhiyuan; Han, Fei; Jin, Lei; Ye, Zhiqi; Fang, Zhao; Guo, Rui
2017-10-12
Dy 2 Cu 2 O 5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc) 2 (OAc)(H 2 O) 2 ]•10.5H 2 O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy 2 Cu 2 O 5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m 2 /g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy 2 Cu 2 O 5 and MG.
NASA Astrophysics Data System (ADS)
Dhiren Meetei, Sanoujam; Deben Singh, Mutum; Dorendrajit Singh, Shougaijam
2014-05-01
Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, the luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO4:Dy3+ and YVO4:Dy3+/Ca2+ nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO4:Dy3+ is made increased up to 432.63% by Ca2+ co-doping. Role of the Ca2+ on the luminescence enhanced mechanism of YVO4:Dy3+/Ca2+ is elucidated.
Life or death by NFκB, Losartan promotes survival in dy2J/dy2J mouse of MDC1A
Elbaz, M; Yanay, N; Laban, S; Rabie, M; Mitrani-Rosenbaum, S; Nevo, Y
2015-01-01
Inflammation and fibrosis are well-defined mechanisms involved in the pathogenesis of the incurable Laminin α2-deficient congenital muscular dystrophy (MDC1A), while apoptosis mechanism is barely discussed. Our previous study showed treatment with Losartan, an angiotensin II type I receptor antagonist, improved muscle strength and reduced fibrosis through transforming growth factor beta (TGF-β) and mitogen-activated protein kinases (MAPK) signaling inhibition in the dy2J/dy2J mouse model of MDC1A. Here we show for the first time that Losartan treatment up-regulates and shifts the nuclear factor kappa B (NFκB) signaling pathway to favor survival versus apoptosis/damage in this animal model. Losartan treatment was associated with significantly increased serum tumor necrosis factor alpha (TNF-α) level, p65 nuclei accumulation, and decreased muscle IκB-β protein level, indicating NFκB activation. Moreover, NFκB anti-apoptotic target genes TNF receptor-associated factor 1 (TRAF1), TNF receptor-associated factor 2 (TRAF2), cellular inhibitor of apoptosis (cIAP2), and Ferritin heavy chain (FTH1) were increased following Losartan treatment. Losartan induced protein expression toward a pro-survival profile as BCL-2 expression levels were increased and Caspase-3 expression levels were decreased. Muscle apoptosis reduction was further confirmed using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay. Thus, along with TGF-β and MAPK signaling, NFκB serves as an important regulatory pathway which following Losartan treatment promotes survival in the dy2J/dy2J mouse model of MDC1A. PMID:25766329
Evol and ProDy for bridging protein sequence evolution and structural dynamics.
Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R; Bahar, Ivet
2014-09-15
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Magnetic ground state of the Ising-like antiferromagnet DyScO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L. S.; Nikitin, Stanislav E.; Frontzek, Matthias D.
2017-10-05
Here, we report on the low-temperature magnetic properties of the DyScO3 perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below T N = 3.15 K, Dy 3+ moments form an antiferromagnetic structure with an easy axis of magnetization lying in the ab plane. The magnetic moments are inclined at an angle of ~ ±28° to the b axis. We show that the ground-state Kramers doublet of Dy 3+ is made up of primarily |±15/2> eigenvectors and well separated by a crystal field from the first excited state at E 1 =more » 24.9 meV. This leads to an extreme Ising single-ion anisotropy, M ⊥/M ∥~0.05. The transverse magnetic fluctuations, which are proportional to M 2 ⊥/M 2 ∥, are suppressed, and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic c axis are two to four times larger than in-plane interactions.« less
Gaszner, B; Simor, T; Hild, G; Elgavish, G A
2001-11-01
The 23Na NMR shift-reagent complexes (Dy(PPP)2, Dy(TTHA), and Tm(DOTP)) bind stoichiometric amounts of Ca2+. Thus, in perfused rat heart systems, a supplementation of Ca2+ is required to maintain the requisite extracellular free calcium concentration ([Ca(o)]f) and to approximate a physiological level of contractile function. The amount of reagent-bound Ca2+ in a heart perfusate that contains a shift-reagent depends on: (1) Ca2+ binding by excess ligand used during the preparation of the shift-reagent; and (2) the Ca2+ binding affinity of the shift-reagent. To address point 1), we introduced a 1H and 31P NMR spectroscopic titration method to quantify directly the concentration of the excess ligand. We also used this method to minimize the amount of excess ligand (L) and thus the amount of Ca*L complex. To address point (2), we determined the stepwise Kd (microm) values of the Ca complexes of the three shift-reagents.: Dy(PPP)2, Kd=0.09, Kd2=7.9; Dy(TTHA), Kd1=10.66, Kd2=10.12; and Tm(DOTP), K(d1)=0.502, Kd2=4.98. The Kd values of the Ca complexes of the phosphonate and triphosphate based shift-reagents, Tm(DOTP) and Dy(PPP)2, respectively, are lower than those of the polyaminocarboxylate-based Dy(TTHA), indicating stronger Ca binding affinities for the former two types of complexes. We have also shown a positive correlation between [Ca(o)]f and left ventricular developed pressure (LVDP) in perfused rat hearts. Dy(TTHA) has shown no effect on LVDP v[Ca(o)]f. The LVDP values in the presence of the phosphonate and triphosphate based shift-reagents, however, were significantly higher than expected from the [Ca(o)]f levels alone. Thus a positive inotropic effect, independent of [Ca(o)]f, is evident in the presence of Tm(DOTP) or Dy(PPP)2. Copyright 2001 Academic Press.
Dielectric spectroscopy of Dy2O3 doped (K0.5Na0.5)NbO3 piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Mahesh, P.; Subhash, T.; Pamu, D.
2014-06-01
We report the dielectric properties of ( K 0.5 Na 0.5 ) NbO 3 ceramics doped with x wt% of Dy 2 O 3 (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy 2 O 3 diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy 2 O 3 are enhanced by increasing the Dy 3+ content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz over the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (˜ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition. At the request of all authors, and by agreement with the Proceedings Editors, a corrected version of this article was published on 19 June 2014. The full text of the Corrigendum is attached to the corrected article PDF file.
NASA Astrophysics Data System (ADS)
Jain, Richa; Luthra, Vandna; Gokhale, Shubha
2018-06-01
Fe3-xRExO4 (RE = Er, Dy and Gd) nanoparticles with x varying from 0 to 0.1 were synthesized using co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and UV-Vis spectroscopy techniques. TEM images reveal round shaped particles of ∼8-14 nm diameter in case of undoped magnetite (Fe3O4) nanoparticles whereas there is evolution of rod like structures by the doping of RE ions with aspect ratio in the range of 6-16. The room temperature saturation magnetization (Ms) values show gradual increase with doping till a critical doping level which is found to depend on the ionic radius of dopant ion (x = 0.01 for Er, 0.03 for Dy and 0.04 for Gd). There is a variation in the maximum value of saturation magnetization which is directly proportional to the number of unpaired 4f electrons in the dopant element. Low temperature magnetization study, carried out at 5 K and 120 K reveal an increase in the value of Ms as well as coercivity. The direct bandgaps calculated from UV-Visible data are found to decrease with increasing number of unpaired electrons in the dopant ions.
Robles, Noemí; Rajmil, Luis; Rodriguez-Arjona, Dolors; Azuara, Marta; Codina, Francisco; Raat, Hein; Ravens-Sieberer, Ulrike; Herdman, Michael
2015-06-03
The objectives of the study were to develop web-based Spanish and Catalan versions of the EQ-5D-Y, and to compare scores and psychometric properties with the paper version. Web-based and paper versions of EQ-5D-Y were included in a cross-sectional study in Palafolls (Barcelona), Spain and administered to students (n = 923) aged 8 to 18 years from 2 primary and 1 secondary school and their parents. All students completed both the web-based and paper versions during school time with an interval of at least 2 h between administrations. The order of administration was randomized. Participants completed EQ-5D-Y, a measure of mental health status (the Strengths and Difficulties Questionnaire), and sociodemographic variables using a self-administered questionnaire. Parents questionnaire included parental level of education and presence of chronic conditions in children. Missing values, and floor and ceiling effects were compared between versions. Mean score differences were computed for the visual analogue scale (VAS). Percentage of agreement, kappa index (k) and intraclass correlation coefficient (ICC) were computed to analyze the level of agreement between web-based and paper versions on EQ-5D-Y dimensions and VAS. Known groups validity was analyzed and compared between the two formats. Participation rate was 77 % (n = 715). Both formats of EQ-5D-Y showed low percentages of missing values (n = 2, and 4 to 9 for web and paper versions respectively), and a high ceiling effect by dimension (range from 79 % to 96 %). Percent agreement for EQ-5D-Y dimensions on the web and paper versions was acceptable (range 89 % to 97 %), and k ranged from 0.55 (0.48-0.61, usual activities dimension) to 0.75 (0.68-0.82, mobility dimension). Mean score difference on the VAS was 0.07, and the ICC for VAS scores on the two formats was 0.84 (0.82-0.86). Both formats showed acceptable ability to discriminate according to self-perceived health, reporting chronic conditions, and mental health status. The digital EQ-5D-Y showed almost identical VAS scores and acceptable levels of agreement on dimensions. Both formats demonstrated acceptable levels of construct validity. Availability of the Spanish and Catalan web-version will facilitate its use in HRQOL assessment and in economic evaluation.
Structural Studies on Dy to 119 GPa and Applications to Lanthanide Systematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J; Akella, J
2005-05-31
The Rare Earth elements (REE) are known to undergo crystallographic as well as electronic structure changes with applied pressure. On increasing pressure, the trivalent lanthanides follow the sequence hcp {yields} Sm-type {yields} dhcp {yields} fcc {yields} dfcc. In this report we present room-temperature high-pressure x-ray diffraction data for Dy as well as our observations on the post-dfcc phases and concomitant volume changes in the heavy REE.
Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles
NASA Astrophysics Data System (ADS)
Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.
2012-05-01
Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.
Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures
Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal
2015-01-01
The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043
NASA Astrophysics Data System (ADS)
Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing
2018-03-01
Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianghui; Cheng, Qijin; Wu, Jieyang
Highlights: • A white phosphor NaBaBO{sub 3}:Dy{sup 3+},K{sup +} with CIE coordinate (0.301, 0.308) was synthesized. • The optimum doping concentration of Dy{sup 3+} ions was found. • The effect and mechanism of K{sup +} ion as a charge compensator were discussed. • Temperature-dependent PL property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} was studied. • PL decay and quantum efficiency behaviors of the samples were investigated. - Abstract: A novel Dy{sup 3+}-doped NaBaBO{sub 3} white-emitting phosphor has been prepared by high temperature solid-state reaction method. The phase structure and luminescence properties of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} samples were investigated. Photoluminescence resultsmore » show that the as-prepared samples could be effectively excited by near-ultraviolet (NUV) light and generate white light emission due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} (blue) transition and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} (yellow) transition of Dy{sup 3+} ions, respectively. The optimum doping concentration of Dy{sup 3+} ions in the NaBaBO{sub 3} host was determined to be 5.0 mol% and the CIE chromaticity of the sample was determined to be (0.301, 0.308). Moreover, the mechanism of K{sup +} ion as a charge compensator on the improvement of photoluminescence property and the effect of temperature on the photoluminescence property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were investigated. Furthermore, photoluminescence decay and quantum efficiency behaviors of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were also studied. The present work demonstrates that the NaBaBO{sub 3}:Dy{sup 3+},K{sup +} phosphor is a potential candidate for NUV white light emitting diodes.« less
Bai, Li-Yuan; Ma, Yihui; Kulp, Samuel K.; Wang, Shu-Huei; Chiu, Chang-Fang; Frissora, Frank; Mani, Rajeswaran; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Chen, Ching-Shih; Muthusamy, Natarajan
2013-01-01
Summary Drug resistance and associated immune deregulation limit use of current therapies in chronic lymphocytic leukaemia (CLL), thus warranting alternative therapy development. Herein we demonstrate that OSU-DY7, a novel D-tyrosinol derivative targeting p38 mitogen-activated protein kinase (MAPK), mediates cytotoxicity in lymphocytic cell lines representing CLL (MEC-1), acute lymphoblastic leukaemia (697 cells), Burkitt lymphoma (Raji and Ramos) and primary B cells from CLL patients in a dose- and time-dependent manner. The OSU-DY7-induced cytotoxicity is dependent on caspase activation, as evidenced by induction of caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage and rescue of cytotoxicity by Z-VAD-FMK. Interestingly, OSU-DY7-induced cytotoxicity is mediated through activation of p38 MAPK, as evidenced by increased phosphorylation of p38 MAPK and downstream target protein MAPKAPK2. Pretreatment of B-CLL cells with SB202190, a specific p38 MAPK inhibitor, results in decreased MAPKAPK2 protein level with concomitant rescue of the cells from OSU-DY7-mediated cytotoxicity. Furthermore, OSU-DY7-induced cytotoxicity is associated with down regulation of p38 MAPK target BIRC5, that is rescued at protein and mRNA levels by SB202190. This study provides evidence for a role of OSU-DY7 in p38 MAPK activation and BIRC5 down regulation associated with apoptosis in B lymphocytic cells, thus warranting development of this alternative therapy for lymphoid malignancies. PMID:21470196
NASA Astrophysics Data System (ADS)
Wu, Hongyue; Yang, Junfeng; Wang, Xiaoxue; Gan, Shucai; Li, Linlin
2018-05-01
A series of Tm3+ and Dy3+ codoped BaWO4 phosphors with tunable shapes were controllably synthesized by a facile solvothermal method. The effects of ratio of ethylene glycol (EG) and water on the morphologies of BaWO4 structures are systematically studied. It was discovered that the reason for these morphological changes is based on the reaction speed of the kinetic control, which relates to the strong chelating abilities of ethylene glycol. And when the solvent is pure ethylene glycol, the peanut-like BaWO4:Dy3+ has the strongest emission intensity. Moreover, the emission color of the phosphors varied from blue (0.232, 0.180) to white (0.268, 0.250) by controlling Dy3+ ions content with a fixed Tm3+ concentration. The energy transfer mechanism was investigated in detail. With increasing the doped concentration of Dy3+ ions, the energy transfer efficiency of BaWO4:0.005Tm3+,yDy3+ increased gradually and reached as high as 63% when the Dy3+ doped concentration is 0.03. The critical distance RC calculated by the spectral overlap method is about 19.93 Å, and it is in good agreement with that obtained using the concentration quenching method (19.70 Å), indicating that the electric dipole-dipole interaction is the main energy transfer mechanism for BaWO4:Tm3+,Dy3+ phosphors.
Zhang, Wentao; Yu, Meng; Dai, Siyi; Chen, Xianfei; Long, Jianping
2017-09-01
Sr 4 Al 2 O 7 :Eu 3+ and Sr 4 Al 2 O 7 :Dy 3+ phosphors with alkali metal substitution were prepared using a sol-gel method. The effects of a charge compensator R on the structure and luminescence of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr 4 Al 2 O 7 . Under ultraviolet excitation, all Sr 4 Al 2 O 7 :Eu 3+ ,R + samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu 3+ ions. All Sr 4 Al 2 O 7 :Dy 3+ ,R + phosphors showed two emission peaks at 492 and 582 nm, due to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions, respectively. The luminescence intensity of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light-emitting diodes with a near-ultraviolet chip. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiren Meetei, Sanoujam, E-mail: sdmdhiren@gmail.com; Dorendrajit Singh, Shougaijam, E-mail: dorendrajit@yahoo.co.in, E-mail: mdebensingh@gmail.com; Deben Singh, Mutum, E-mail: dorendrajit@yahoo.co.in, E-mail: mdebensingh@gmail.com
2014-05-28
Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, themore » luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO{sub 4}:Dy{sup 3+} and YVO{sub 4}:Dy{sup 3+}/Ca{sup 2+} nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO{sub 4}:Dy{sup 3+} is made increased up to 432.63% by Ca{sup 2+} co-doping. Role of the Ca{sup 2+} on the luminescence enhanced mechanism of YVO{sub 4}:Dy{sup 3+}/Ca{sup 2+} is elucidated.« less
Guo, Jingshu; Yonemori, Kim; Le Marchand, Loïc; Turesky, Robert J
2015-06-16
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic heterocyclic aromatic amine formed in cooked meat. The use of naturally colored hair containing PhIP can serve as a long-term biomarker of exposure to this carcinogen. However, the measurement of PhIP in dyed hair, a cosmetic treatment commonly used by the adult population, is challenging because the dye process introduces into the hair matrix a complex mixture of chemicals that interferes with the measurement of PhIP. The high-resolution scanning features of the Orbitrap Fusion mass spectrometer were employed to biomonitor PhIP in dyed hair. Because of the complexity of chemicals in the hair dye, the consecutive reaction monitoring of PhIP at the MS(3) scan stage was employed to selectively remove the isobaric interferences. The limit of quantification (LOQ) of PhIP was 84 parts-per-trillion (ppt) employing 50 mg of hair. Calibration curves were generated in dyed hair matrixes and showed good linearity (40-1000 pg PhIP/g hair) with a goodness-of-fit regression value of r(2) > 0.9978. The within-day (between-day) coefficients of variation were 7.7% (17%) and 5.4% (6.1%), respectively, with dyed hair samples spiked with PhIP at 200 and 600 ppt. The levels of PhIP accrued in dyed hair from volunteers on a semicontrolled feeding study who ingested known levels of PhIP were comparable to the levels of PhIP accrued in hair of subjects with natural hair color. The method was successfully employed to measure PhIP in nondyed and dyed hair biospecimens of participants in a case-control study of colorectal adenoma on their regular diet.
NASA Astrophysics Data System (ADS)
Zhu, Yuanhu; Wang, Chunlei; Su, Wenbin; Liu, Jian; Li, Jichao; Du, Yanling; Zhang, Xinhua; Qin, Yalin; Mei, Liangmo
2015-01-01
Perovskite-type Ca0.98Dy0.02MnO3, Ca0.96Dy0.04MnO3, and Ca0.96Dy0.02 Re0.02MnO3 (Re = La, Nd, Sm) were prepared by solid-state reaction, and their thermoelectric properties were evaluated between 300 and 1000 K. All were single-phase, with an orthorhombic structure, and had metal-like temperature dependence of resistivity and Seebeck coefficient. The second doping element, Re = La, Nd, or Sm, introduced a larger carrier concentration, leading to a decrease in both resistivity and Seebeck coefficient. This contributed to lower thermal conductivity by introducing a second element into the system. The highest figure of merit, 0.20, was obtained for Re = La at 973 K; this was an increase of almost 100% compared with Ca0.98Dy0.02MnO3 at the same temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tereshina, I. S., E-mail: irina-tereshina@mail.ru; Baikov Institute of Metallurgy and Material Sciences, Russian Academy of Sciences, Moscow 119991; International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421
2016-07-07
The influence of simultaneous substitution within the rare earth (R) and Co sublattices on the structural, magnetic, and magnetocaloric properties of the Laves phase RCo{sub 2}-type compounds is studied. Main attention is devoted to the studies of the magnetostructural phase transitions and the transition types with respect to the alloy composition. Multicomponent alloys Tb{sub x}(Dy{sub 0.5}Ho{sub 0.5}){sub 1−x}Co{sub 2} and Tb{sub x}(Dy{sub 0.5}Ho{sub 0.5}){sub 1−x}Co{sub 1.75}Al{sub 0.25} were prepared with the use of high purity metals. Majority of the Tb{sub x}(Dy{sub 0.5}Ho{sub 0.5}){sub 1−x}Co{sub 2} alloys exhibit magnetic transitions of the first-order type and a large magnetocaloric effect. The substitutionmore » of Al for Co in Tb{sub x}(Dy{sub 0.5}Ho{sub 0.5}){sub 1−x}Co{sub 2} increases the Curie temperature (T{sub C}) but changes the transition type from first-to the second-order. The discussion of the physical mechanisms behind the observed phenomena is given on the basis of the first principles electronic-structure calculations taking into account both the atomic disorder and the magnetic disorder effects at finite temperatures. The advantage of Al-containing materials is that sufficiently high magnetocaloric effect values are preserved at T > T{sub C}.« less
NASA Astrophysics Data System (ADS)
Reddy Yadav, L. S.; Raghavendra, M.; Sudheer Kumar, K. H.; Dhananjaya, N.; Nagaraju, G.
2018-04-01
ZnO nanoparticles doped with trivalent dysprosium ions (Dy3+) were prepared through the green combustion technique using E. tirucalli plant latex as a fuel. The fundamental and optical properties of the samples are examined via the X-ray diffraction, FTIR, UV-visible analytical methods and morphology by scanning electron microscope and transmission electron microscope. Rietveld refinement results show that the ZnO : Dy3+ were crystallized in the wurtzite hexagonal structure with space group P63mc (No. 186). The average particle size of ZnO : Dy3+ prepared with the different concentration of latex was found to be in the range 30-38nm, which is also confirmed by TEM analysis. A rapid and convenient method for the one-pot preparation of N-formamide derivatives aromatic amines and amino acid esters has been developed using Dy3+ doped ZnO as a catalytic agent. This method provides an efficient and much improved modification over reported protocols regarding yield, clean and work-up procedure milder reaction conditions. In this work, Pongamiapinnata oil was recycled for the preparation of biodiesel via Dy3+ doped ZnO as a catalytic agent.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar
2016-04-01
A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.
Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro
2015-03-01
The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, G. H.; Oertel, C. -G.; Schaarschuch, R.
DyCu and YCu are representatives of the family of CsCl-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (021¯) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of B33 and B2more » phases is (111¯)[112]B33 || (110)[001]B2. The simulated electron diffraction patterns of the B33 phase are consistent with those of experimental observations. TEM investigations also reveal that a dominant orthorhombic FeB-type B27 martensite with lattice parameters a = 0.71 nm, b = 0.45 nm, and c = 0.54 nm exists in YCu alloy. (11¯ 1) twins were observed in the B27 YCu martensite. As a result, the formation mechanism of B2 to B33 and B2 to B27 phase transformation is discussed.« less
Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant
2016-03-01
Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.
NASA Astrophysics Data System (ADS)
Lewandowski, Tomasz; Seweryński, Cezary; Walas, Michalina; Łapiński, Marcin; Synak, Anna; Sadowski, Wojciech; Kościelska, Barbara
2018-05-01
Tellurite glass systems of 73TeO2-4BaO-3Bi2O3-1Ag:xEu2O3-(2-x)Dy2O3 (where x = 0.5, 1, 1.5, 2 in molar ratio) composition have been successfully synthesized. In order to acquire Ag nanoparticles, materials have been heat treated at 350 °C in the air atmosphere. Structural properties of obtained samples were evaluated with various techniques. X-Ray Diffraction (XRD) measurements indicated that obtained materials are amorphous in nature. UV-vis results presented transitions characteristic to Dy3+ and Eu3+ ions. Additionally, X-Ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of silver in metallic form. Photoluminescence measurements shown influence of Ag nanoparticles on emission characteristics. Simultaneous emission of Dy3+ and Eu3+ has been observed when samples were excited with λexc = 390 nm. Change of the emission color induced by heat treatment has been observed and described in case of x = 1 glass series. According to CIE results emission color changes as Eu/Dy ratio and heat treatment time are changed. Emission shifts from reddish-orange to yellowish white color. Obtained photoluminescence results confirm that synthesized materials are good candidates for color tunable phosphors.
Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu Chunhong; Liu Yingli; Song Yuanqiang
2011-06-15
Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-typemore » hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.« less
2010-09-25
dermatitis associated with Rothia mucilaginosa bacteremia: a case report ,”American Journal of Dermatopathol- ogy, vol. 32, no. 2, pp. 175–179, 2010. [5] P...root- filled teeth with chronic apical periodontitis ,” International Endodontic Journal, vol. 34, no. 6, pp. 429–434, 2001. [12] L. C. de Paz...of Rothiamucilaginosa DY-18: A Clinical Isolate with DenseMeshwork-Like Structures from a Persistent Apical Periodontitis Lesion Kazuyoshi Yamane,1
Li, Kai; Liu, Xiaoming; Zhang, Yang; Li, Xuejiao; Lian, Hongzhou; Lin, Jun
2015-01-05
A series of Ln(3+) (Ln(3+) = Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+)) ion doped CaNb2O6 (CNO) phosphors have been prepared via the conventional high-temperature solid-state reaction route. The X-ray diffraction (XRD) and structure refinement, diffuse reflection, photoluminescence (PL), and fluorescent decay curves were used to characterize the as-prepared samples. Under UV radiation, the CNO host present a broad emission band from about 355 to 605 nm centered around 460 nm originating from the NbO6 octahedral groups, which has spectral overlaps with the excitation of f-f transitions of Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) samples. They show both host emission and respective emission lines derived from the characteristic f-f transitions of activators, which present different emission colors owing to the energy transfer from the NbO6 group in the host to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) with increasing activator concentrations. The decreases of decay lifetimes of host emissions in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) demonstrate the energy transfer from the hosts to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+). The energy transfer mechanisms in CNO:Eu(3+)/Tb(3+)/Dy(3+) phosphors have been determined to be a resonant type via dipole-dipole mechanisms. For CNO:Sm(3+), the metal-metal charge transfer transition (MMCT) might contribute to the different variations of decay lifetimes and emission intensity from CNO:Eu(3+)/Tb(3+)/Dy(3+) samples. The best quantum efficiency is 71.2% for CNO:0.01/0.02Dy(3+). The PL properties of as-prepared materials indicate the promising application in UV-pumped white-emitting lighting diodes field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boltynjuk, E. V., E-mail: boltynjuk@gmail.com; Ubyivovk, E. V.; Kshumanev, A. M.
2016-06-17
The structural properties of a Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glasses were investigated. Cylindrical rods of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} BMG were subjected to high pressure torsion at temperatures of 20°C and 150°C. X-ray diffraction, transmission electron microscopy were used to determine peculiarities of the modified structure. Analysis of fracture surfaces, nanohardness measurements were conducted to investigate the influence of structural changes on mechanical behavior of processed samples.
Nunes, Andreia M; Wuebbles, Ryan D; Sarathy, Apurva; Fontelonga, Tatiana M; Deries, Marianne; Burkin, Dean J; Thorsteinsdóttir, Sólveig
2017-06-01
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7β1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7β1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Synthesis, characterization and optical properties of NH4Dy(PO3)4
NASA Astrophysics Data System (ADS)
Chemingui, S.; Ferhi, M.; Horchani-Naifer, K.; Férid, M.
2014-09-01
Polycrystalline powders of NH4Dy(PO3)4 polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH4Ce(PO3)4 and RbHo(PO3)4. It crystallizes in the monoclinic space group P21/n with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO3)3 after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decay curves of Dy3+ ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy3+ in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (IY/IB) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy3+ ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH4Dy(PO3)4 is promising for white light generation but Dy(PO3)3 is potential candidates in field emission display (FED) and plasma display panel (PDP) devices.
NASA Astrophysics Data System (ADS)
Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna
2017-04-01
P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-24
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-28
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
Bi3+ sensitized Y2WO6:Ln3+ (Ln=Dy, Eu, and Sm) phosphors for solar spectral conversion.
Huang, M N; Ma, Y Y; Xiao, F; Zhang, Q Y
2014-01-01
The phosphors of Y2WO6:Bi3+, Ln3+ (Ln=Dy, Eu and Sm) were synthesized by solid-state reaction in this study. The crystal structure, photoluminescence properties and energy transfer mechanism were investigated. By introducing Bi3+ ions, the excitation band of the phosphors was broadened to be 250-380 nm, which could be absorbed by the dye-sensitized solar cells (DSSCs). The overlap between excitation of W-O groups/Bi3+ and the emission of Ln3+ (Dy, Eu, and Sm) indicated that the probability of energy transfer from W-O groups and Bi3+ to Ln3+. The energy transfer efficiency from Bi3+ to Ln3+ (Ln=Dy, Eu and Sm) are calculated to be 16%, 20% and 58%. This work suggested that Y2WO6:Bi3+, Ln3+ (Ln=Dy, Eu and Sm) might be a promising ultraviolet-absorbing luminescent converter to enhance the photoelectrical conversion efficiency of dye-sensitized solar cells (DSSCs). Copyright © 2013 Elsevier B.V. All rights reserved.
Structure and luminescence properties of Dy 2O 3 doped bismuth-borate glasses
Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; ...
2017-07-05
In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2O 3-(80-x)B 2O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2O 3 (2.5 and 5 mol%) in order to inducemore » the luminescence characteristics. The effects of Bi 2O 3 and Dy 2O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3 + centres emission.« less
Role of 4 f electrons in crystallographic and magnetic complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav
2017-08-09
Here, the functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f 9) and Er (4f 11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er 1–xDy xCo 2, and likely many other mixed lanthanide systems. Unlike the parentmore » binaries—DyCo 2 and ErCo 2—Er 1–xDy xCo 2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
Zhang, Junjun; Li, Ruiqing; Liu, Lu; Li, Linlin; Zou, Lianchun; Gan, Shucai; Ji, Guijuan
2014-09-01
Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln(3+) ions doped SrMoO4 samples exhibit respective bright red-orange, yellow, green and white light of Eu(3+), Sm(3+), Tb(3+) and Dy(3+) under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Highlights from COMPASS SIDIS and Drell-Yan programmes
NASA Astrophysics Data System (ADS)
Longo, R.; Compass Collaboration
2017-03-01
One of the main objectives of the COMPASS experiment at CERN is the study of transverse spin structure of the nucleon trough measurement of target spin (in)dependent azimuthal asymmetries in semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan (DY) processes with transversely polarized targets. Within the QCD parton model these azimuthal asymmetries give access to a set of transverse-momentum-dependent (TMD) parton distribution functions (PDF) which parameterize the spin structure of the nucleon. In the TMD framework of QCD it is predicted that the two naively time-reversal odd TMD PDFs, i.e. the quark Sivers functions and Boer-Mulders functions, have opposite sign when measured in SIDIS or DY. The experimental test of this fundamental prediction is a major challenge in hadron physics. COMPASS former SIDIS results and upcoming results from DY measurements give a unique and complementary input to address this and other important open issues in spin physics.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-09-01
The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.
Magnetic Memory from Site Isolated Dy(III) on Silica Materials
2017-01-01
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylated silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. During the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence. PMID:28386602
Magnetic memory from site isolated Dy(III) on silica materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouche, Florian; Lapadula, Giuseppe; Siddiqi, Georges
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylatedmore » silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. Throughout the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence.« less
Magnetic memory from site isolated Dy(III) on silica materials
Allouche, Florian; Lapadula, Giuseppe; Siddiqi, Georges; ...
2017-02-22
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylatedmore » silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. Throughout the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence.« less
Tuning of magnetism in DyMn1-xFexO3 (x<0.1) system by iron substitution
NASA Astrophysics Data System (ADS)
Mihalik, Matúš; Mihalik, Marián; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Fitta, Magdalena; Quintero, Pedro A.; Meisel, Mark W.
2018-05-01
The effect of Fe doping on the magnetism of DyMn1-xFexO3 (x<0.1) single crystals is reported. Specifically, TN of the Mn sublattice decreases from 38 K (x = 0) to 33 K (x = 0.1), TS = 17.9 K (x = 0) connected with the transition of Mn-spins into the cycloidal magnetic phase decreases to 15.9 K (x = 0.01) and vanishes for higher x concentrations, while the ordering temperature of the Dy sublattice varies between 5.9 K (x = 0.01) and 4.1 K (x = 0.02). These results indicate the ground state magnetic structure of DyMnO3 can be destabilized, and the multiferroicity is completely suppressed by very low Fe doping. Similar effects were previously observed in the multiferroic TbMn1-xFexO3 system.
Zheng, Si-Li; Li, Zhi-Yong; Zhang, Zheng; Wang, Dong-Sheng; Xu, Jian; Miao, Chao-Yu
2018-04-01
Metrnl is a newly discovered secreted protein with neurotrophic activity and metabolic effect, while in earlier studies its circulating level in human was not explored. We evaluated two commercial enzyme-linked immunosorbent assay kits (DY7867-05, R&D Systems and SK00478-02, Aviscera Bioscience) for the detection of human circulating Metrnl. The DY7867-05 kit showed superiority over the SK00478-02 kit since it generated better curve fitting degree, smaller variation among tests, higher inter-assay reproducibility and better specificity, and could effectively detect human Metrnl in six types of blood samples. Subsequent analysis was performed using the DY7867-05 kit. Sample storage conditions were investigated. No gender difference in circulating Metrnl levels was found, while people with newly diagnosed type 2 diabetes mellitus (T2DM) had significantly lower Metrnl levels compared to the healthy controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.
Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H 2O 2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Bluemore » 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.« less
Thermodynamics of radiation induced amorphization and thermal annealing of Dy 2Sn 2O 7 pyrochlore
Chung, Cheng-Kai; Lang, Maik; Xu, Hongwu; ...
2018-06-14
Thermodynamics and annealing behavior of swift heavy ion amorphized Dy 2Sn 2O 7 pyrochlore were studied. Its amorphization enthalpy, defined as the total energetic difference between the irradiation amorphized and undamaged Dy 2Sn 2O 7 states, was determined to be 283.6 ± 6.5 kJ/mol by high temperature oxide melt drop solution calorimetry. It has been an enigma that stannate and some other pyrochlores do not follow the general r A/r B-radiation resistance relation seen in most pyrochlore systems. In this paper, we use the amorphization enthalpy, which reflects all the complex chemical and structural characteristics, as a more effective parametermore » to correlate the radiation damage resistance of pyrochlores with their compositions. It successfully explains the superior radiation damage resistance of the stannate pyrochlores compared with titanate pyrochlores. Differential scanning calorimetry (DSC) reveals a strong exothermic event starting at 978 K, which is attributed to long-range recrystallization based on X-ray diffraction (XRD) analysis, similar to the effect previously observed in Dy 2Ti 2O 7. A second pronounced heat event beginning at ~1148 K, which results from local structural rearrangement, is clearly decoupled from the first event for irradiated Dy 2Sn 2O 7. Both the heat releases measured by DSC on heating to 1023 and 1473 K, and the excess enthalpies of the annealed samples indicate that the recovery to the original, ordered state was not fully achieved up to even 1473 K, despite XRD showing the apparent restoration of crystalline pyrochlore structure. The remaining metastability may be attributed to local disorder in the form of weberite-like short-range domains in the recrystallized material. Intriguingly, the second event for different pyrochlores generally starts at similar temperatures while the onset of the long range recrystallization is compositionally dependent. Finally, the amorphization and thermal annealing behavior observed in irradiated Dy 2Sn 2O 7 may provide insights into the general mechanisms of radiation damage and recovery of pyrochlores relevant to their nuclear applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
İlhan, Mustafa, E-mail: mustafa.ilhan@marmara.edu.tr; Ekmekçi, Mete Kaan
2015-03-15
The undoped and CdTa{sub 2}O{sub 6}:Dy{sup 3+} (0.2≤x≤2.0 mol%) phosphors were synthesized at 1100 °C for 12 h by the conventional solid state reaction method. The synthesized CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed the presence of excitation peaks between 310 and 440 nm due to the 4f–4f transitions of Dy{sup 3+}. The emission of Dy{sup 3+} ions at 353.0 nm excitation was observed at 487.1 nm (blue) and 577.8 nm (yellow) due to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2}more » transitions and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions, respectively. The PL analysis results also showed that the emissions increase with the increasing Dy{sup 3+} ion content. The emissions increased with the doping concentration of up to 1 mol%, and above this level decreased due to concentration quenching effect. The CIE chromaticity color coordinates (x,y) of the CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors were found to be in the white light region of the chromaticity diagram. - Graphical abstract: Emission spectra at λ{sub ex}=353.0 nm and CIE chromaticity coordinate diagram of CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors. - Highlights: • Pure and CdTa{sub 2}O{sub 6}:Dy{sup 3+} was produced by solid state reaction method. • CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphor exhibited blue and yellow emissions due to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions. • The CCT value for 1.0 mol% CdTa{sub 2}O{sub 6}:Dy{sup 3+} was 5133 K which was located in the cool white daylight region. • Dy{sup 3+} doped CdTa{sub 2}O{sub 6} phosphor has potential in the production of white LEDs.« less
The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.
Han, Xiumei; Feng, Xu; Qi, Xiwei; Wang, Xiaoqiang; Li, Mingya
2014-05-01
Bi3+, Eu3+, Dy3+ activated Y2O3 phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The XRD patterns show the refined crystal structure of Y2O3. The energy transfer processes of Bi(3+)-Eu3+ occurred in the host lattices. The thermal stability of Y2O3:Bi3+, Eu3+, Dy3+ phosphors was studied. Under short wavelength UV excitation, the phosphors show excellent characteristic red, blue, and yellow emission with medium intensity.
NASA Astrophysics Data System (ADS)
Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.
2016-08-01
Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.
NASA Astrophysics Data System (ADS)
Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin
2016-03-01
Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Adish; Shah, Alpa; Sudarsan, V., E-mail: vsudar@barc.gov.in
2015-04-15
Highlights: • Improved emission colour purity with orthorhombic form of Y{sub 2}GeO{sub 5}. • Non-stationary quenching exists in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}:Tb. • Ion pair formation and cross relaxation quenching operating for Y{sub 2}GeO{sub 5}:Dy samples. - Abstract: The luminescence properties of Tb{sup 3+} and Dy{sup 3+} doped orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5} are significantly different. Orthorhombic Y{sub 2}GeO{sub 5} doped with Tb{sup 3+} and Dy{sup 3+} ions gives bright green and blue emission upon UV light excitation with CIE coordinates (0.25, 0.46) and (0.25, 0.24), respectively. The monoclinic Y{sub 2}GeO{sub 5} dopedmore » with these ions exhibits light green and yellowish white emissions, respectively. This has been attributed to the differences in crystallographic environments around Y{sup 3+} ions in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}. Quantum yield of emission for orthorhombic Y{sub 2}GeO{sub 5}:Tb (∼29%) is significantly higher than that of the monoclinic Y{sub 2}GeO{sub 5}:Tb (∼14%). Lifetime values corresponding to {sup 4}F{sub 9/2} level of Dy{sup 3+} ions in both monoclinic and orthorhombic forms of Y{sub 2}GeO{sub 5} follow an opposite trend with respect to {sup 5}D{sub 4} level of Tb{sup 3+} ions. This is attributed to difference in the concentration quenching mechanism operating for Tb{sup 3+} and Dy{sup 3+} ions.« less
NASA Astrophysics Data System (ADS)
Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.
2015-12-01
The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karunadasa, H.; Regan, K.A.; Cava, R.J.
2005-04-01
The crystal structures, magnetic order, and susceptibility have been investigated for magnetically frustrated SrDy{sub 2}O{sub 4}, SrHo{sub 2}O{sub 4}, SrEr{sub 2}O{sub 4}, SrTm{sub 2}O{sub 4}, and SrYb{sub 2}O{sub 4}. Powder neutron-diffraction structural refinements reveal columns of LO{sub 6} octahedra that run along one crystallographic direction, with Sr-O polyhedra in the interstices. The lanthanide sublattice displays multiple triangular interconnections: one-dimensional strings form the backbones of four types of chains of lanthanide triangles sharing edges arranged in a honeycomb pattern. This crystal structure produces strong geometric frustration for the magnetic system that is evidenced in both magnetic susceptibility and neutron-scattering data atmore » low temperatures. The susceptibility measurements for the series, including SrGd{sub 2}O{sub 4} for which data are also reported, lack the sharp features characteristic of three-dimensional long-range magnetic ordering. Metamagnetic behavior is observed in the magnetization vs applied field data at 1.8 K for the cases of L=Dy, Er, and Ho. Magnetic neutron-scattering studies for the Dy and Er materials show only very broad magnetic scattering at low temperatures, while the Ho system exhibits long-range two-dimensional order. Any magnetic scattering in the Tm and Yb compounds, if present, was too weak to be detected in these measurements.« less
Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method
NASA Astrophysics Data System (ADS)
Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.
2012-02-01
We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.
White light generation in Dy3+-doped fluorosilicate glasses for W-LED applications
NASA Astrophysics Data System (ADS)
Krishnaiah, K. Venkata; Jayasankar, C. K.
2011-05-01
Dysprosium doped fluorosilicate (SNbKZLF:SiO2-Nb2O5-K2O-ZnF2-LiF) glasses have been prepared and studied through excitation, emission and decay rate analysis. Sharp emission peaks were observed at 485 nm (blue) and 577 nm (yellow) under 387 nm excitation, which are attributed to 4F9/2 --> 6H15/2 and 4F9/2 --> 6H13/2 transitions, respectively, of Dy3+ ions. The yellow-to-blue intensity ratio increases (0.85 to 1.19) with increase in Dy3+ ion concentration. The decay rates exhibit single exponential for lower concentrations and turns into non-exponential for higher concentrations. The non-exponential nature of the decay rates are well-fitted to the Inokuti-Hirayama model for S = 6, which indicates that the nature of the energy transfer between donor and acceptor ions is of dipole-dipole type. The lifetime for the 4F9/2 level of Dy3+ ion decreases (0.42 to 0.14 ms), whereas energy transfer parameter increases (0.11 to 0.99) with increase of Dy3+ ion concentration (0.05 to 4.0 mol %). The chromaticity coordinates have been calculated from the emission spectra and analyzed with Commission International de I'Eclairage diagram. The chromaticity coordinates appeared in the white light region for all concentrations of Dy3+ ions in the present glasses. The correlated color temperature value decreases from 5597 K (closer to the day light value of 5500 K) to 4524 K with increase of Dy2O3 ion concentration from 0.01 to 4.0 mol %. These results indicate that Dy3+:SNbKZLF glasses can be considered as a potential host material for the development of white light emitting diodes.
Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A
2015-01-01
Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.
Visible luminescence of Dy3+ doped PbF2-Li2O-SrO-ZnO-B2O3 glasses for yellow light applications
NASA Astrophysics Data System (ADS)
Anjaiah, G.; Sasikala, T.; Kistaiah, P.
2018-05-01
The present studies on various concentrations of Dy3+ ions doped PLSrZFB glasses were carried out through optical absorption, photoluminescence and decay time measurements. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2,4,6) can be utilized to evaluate the emission properties. The decay curves for the 4F9/2 levels have been measured and these turns to non-exponential nature at higher concentrations (> 0.1 mol%) is due to energy transfer between the Dy3+-Dy3+ ions dipole -dipole type through cross relaxation channels. The CIE chromaticity color coordinates were calculated and they were all located within the vicinity of white region of the color coordination diagram. The Inokuti-Hirayama model is used to analyze the energy transfer process and also energy transfer parameters have been calculated and discussed.
Li, Bo; Fan, Huitao; Zhao, Qiang; Wang, Congcong
2016-01-01
In this study, multifunctional Fe3O4@SiO2@GdVO4:Dy3+ nanocomposites were successfully synthesized via a two-step method. Their structure, luminescence and magnetic properties were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The results indicated that the as-prepared multifunctional composites displayed a well-defined core-shell structure. The composites show spherical morphology with a size distribution of around 360 nm. Additionally, the composites exhibit high saturation magnetization (20.40 emu/g) and excellent luminescence properties. The inner Fe3O4 cores and the outer GdVO4:Dy3+ layers endow the composites with good responsive magnetic properties and strong fluorescent properties, which endow the nanoparticles with great potential applications in drug delivery, magnetic resonance imaging, and marking and separating of cells in vitro. PMID:28773275
Pauling, L
1994-02-01
Analysis on the basis of the two-revolving-cluster model has been made of a cascade of 11 gamma-rays constituting a hyperdeformed band of 152(66)Dy86 (or possibly 153Dy) reported by Galindo-Uribarri et al. [Galindo-Uribarri, A., et al. (1993) Phys. Rev. Lett. 73, 231-234], leading to the conclusions that the band extends from values K approximately 82-104 for the angular-momentum quantum number, that the moment of inertia is approximately 5650 Da.fm2, that the composition of the central sphere is p40n50 and that of each of the clusters is p13n18, that each of the clusters consists of two tiers of spherons, and that the radii of revolution of the inner and outer tiers have values of about 8.00 and 11.20 fm, respectively.
Pauling, L
1994-01-01
Analysis on the basis of the two-revolving-cluster model has been made of a cascade of 11 gamma-rays constituting a hyperdeformed band of 152(66)Dy86 (or possibly 153Dy) reported by Galindo-Uribarri et al. [Galindo-Uribarri, A., et al. (1993) Phys. Rev. Lett. 73, 231-234], leading to the conclusions that the band extends from values K approximately 82-104 for the angular-momentum quantum number, that the moment of inertia is approximately 5650 Da.fm2, that the composition of the central sphere is p40n50 and that of each of the clusters is p13n18, that each of the clusters consists of two tiers of spherons, and that the radii of revolution of the inner and outer tiers have values of about 8.00 and 11.20 fm, respectively. PMID:11607453
NASA Astrophysics Data System (ADS)
Liu, Tie; Dong, Meng; Gao, Pengfei; Xiao, Yubao; Yuan, Yi; Wang, Qiang
2018-05-01
In this work, Tb0.27Dy0.73Fe1.95 alloys were solidified in a high magnetic field of 4.4 T at various cooling rates. Changes in the magnetostriction, crystal orientation, magnetization, and magnetic domain of the solidified alloys were investigated. The application of the magnetic field can induce <111> orientation of (Tb, Dy)Fe2 phase. However, the effect of the magnetic field is strongly dependent on the cooling rate. The alloy solidified at 5 °C/min shows the highest magnetostriction, strongest <111> orientation, best contrast of light and dark in the domain image, and fastest magnetization, and followed in descending order by the alloys solidified at 1.5 °C/min and 60 °C/min. The change in the magnetostriction of the alloys can be attributed to the changes in crystal orientation and magnetic domain structure caused by both the magnetic field and cooling rate.
Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng
2017-11-06
Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).
NASA Astrophysics Data System (ADS)
Dun, Z. L.; Trinh, J.; Lee, M.; Choi, E. S.; Li, K.; Hu, Y. F.; Wang, Y. X.; Blanc, N.; Ramirez, A. P.; Zhou, H. D.
2017-03-01
We present a systematic study of the structural and magnetic properties of two branches of the rare-earth tripod-kagome-lattice (TKL) family A2R3Sb3O14 (A = Mg, Zn; R = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation A-R, as in MgPr for Mg2Pr3Sb3O14 ), which complements our previously reported work on MgDy, MgGd, and MgEr [Z. L. Dun et al., Phys. Rev. Lett. 116, 157201 (2016), 10.1103/PhysRevLett.116.157201]. The present susceptibility (χdc, χac) and specific-heat measurements reveal various magnetic ground states, including the nonmagnetic singlet state for MgPr, ZnPr; long-range orderings (LROs) for MgGd, ZnGd, MgNd, ZnNd, and MgYb; a long-range magnetic charge ordered state for MgDy, ZnDy, and potentially for MgHo; possible spin-glass states for ZnEr, ZnHo; the absence of spin ordering down to 80 mK for MgEr, MgTb, ZnTb, and ZnYb compounds. The ground states observed here bear both similarities as well as striking differences from the states found in the parent pyrochlore systems. In particular, while the TKLs display a greater tendency towards LRO, the lack of LRO in MgHo, MgTb, and ZnTb can be viewed from the standpoint of a balance among spin-spin interactions, anisotropies, and non-Kramers nature of single-ion state. While substituting Zn for Mg changes the chemical pressure, and subtly modifies the interaction energies for compounds with larger R ions, this substitution introduces structural disorder and modifies the ground states for compounds with smaller R ions (Ho, Er, Yb).
The properties of RE-TM magneto-optical films
NASA Astrophysics Data System (ADS)
Lee, Z. Y.; Miao, X. S.; Zhu, P.; Hu, Y. S.; Wan, D. F.; Dai, D. W.; Chen, S. B.; Lin, G. Q.
1992-09-01
In this paper, the magnetic, magneto-optical and galvonomagnetic properties, and their temperature dependence for LRE-TM SmCo, SmCoDy and HRE-TM TbFeCo magneto-optical films as high density recording media prepared by rf magnetron sputtering or evaporation are reported. By adding Dy to SmCo thin film, the SmCoDy thin film is more suitable for magneto-optical recording, its domain size being below 0.63 μm. The Kerr enhancement and corrosion protective effects of AIN and AlSiN for optimum design of the multi-layer structure of magneto-optical disk are described. The instruments of measuring the magneto-optical Kerr effect and magneto-optical recording domain characteristics of thin films are reviewed.
Defect-mediated, thermally-activated encapsulation of metals at the surface of graphite
Zhou, Yinghui; Lii-Rosales, Ann; Kim, Minsung; ...
2017-11-04
Here, we show that 3 metals – Dy, Ru, and Cu – can form multilayer intercalated (encapsulated) islands at the graphite (0001) surface if 2 specific conditions are met: Defects are introduced on the graphite terraces to act as entry portals, and the metal deposition temperature is well above ambient. Focusing on Dy as a prototype, we show that surface encapsulation is much different than bulk intercalation, because the encapsulated metal takes the form of bulk-like rafts of multilayer Dy, rather than the dilute, single-layer structure known for the bulk compound. Carbon-covered metallic rafts even form for relatively unreactive metalsmore » (Ru and Cu) which have no known bulk intercalation compound.« less
NASA Astrophysics Data System (ADS)
Kharat, Shahaji P.; Swadipta, Roy; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.
2017-10-01
We report on the enhanced magnetostrictive properties of nanocrystalline Dysprosium (Dy3+) substituted iron-rich cobalt ferrites (Co0.8Fe(2.2-x)DyxO4, referred to as CFDO). The CFDO samples with a variable Dy concentration (x = 0.000-0.075) were synthesized by the sol-gel auto-combustion method. The phase purity and crystal structure were confirmed from X-ray diffraction analyses coupled with Rietveld refinement. Surface morphology analysis using scanning electron microscopy imaging indicates the agglomerated magnetic particles with a non-uniform particle size distribution, which is desirable to transfer the strain. The magnetostriction coefficient (λ11) measurements indicate that the CFDO with Dy concentration x = 0.025 exhibits the highest strain sensitivity, (dλ/dH) ˜1.432 nm/A (for H ≤ 1000 Oe). On the other hand, the magnetostriction coefficient (λ12) measurements indicate that the Dy concentration x = 0.075 exhibits the larger (dλ/dH) ˜ 0.615 nm/A (for H ≤ 1000 Oe). The maximum λ11value of 166 ppm (at H = 3300 Oe) was observed for a compound with Dy concentration x = 0.050. Magnetization measurements indicate that the saturation magnetization and coercivity of CFDO samples are dependent on the Dy3+content; the highest value of squareness ratio of 0.424 was observed for x = 0.050. The interplay between strain sensitivity (dλ/dH) and instantaneous susceptibility (dM/dH), as derived from magnetostriction and magnetization results, demonstrates that these CFDO materials may be useful for developing torque/stress sensors, as a constituent magnetostrictive phase for making the magnetoelectric composite materials and thus suitable for magnetoelectric sensor applications.
NASA Astrophysics Data System (ADS)
Dillip, G. R.; Dhoble, S. J.; Raju, B. Deva Prasad
2013-10-01
A series of novel plate-like microstructure Na3SrB5O10 doped with various Dy3+ ions concentration have been synthesized for the first time by solid-state reaction (SSR) method. X-ray diffraction (XRD) results demonstrated that the prepared Na3SrB5O10:Dy3+ phosphors are single-phase pentaborates with triclinic structure. The plate-like morphology of the phosphor is examined by Field emission scanning electron microscopy (FE-SEM). The existence of both BO3 and BO4 groups in Na3SrB5O10:Dy3+ phosphors are identified by Fourier transform infrared (FT-IR) spectroscopy. Upon excitation at 385 nm, the PL spectra mainly comprising of two broad bands: one is a blue light emission (˜486 nm) and another is a yellow light emission (˜581 nm), originating from the transitions of 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 in 4f9 configuration of Dy3+ ions, respectively and the optimized dopant concentration is determined to be 3 at.%. Interestingly, the yellow-to-blue (Y/B) emission integrated intensity ratio is close to unity (0.99) for 3 at.% Dy3+ ions, suggesting that the phosphors are favor for white illumination. Moreover, the calculated Commission International de l'Eclairage (CIE) chromaticity coordinates of Na3SrB5O10:Dy3+ phosphors shows the values lie in white light region and the estimated CCT values are located in cool/day white light region.
Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan
2015-11-09
The synthesis, gas sorption studies, magnetic properties, and theoretical studies of new molecular wheels of core type {Mn(III) 8 Ln(III) 8 } (Ln=Dy, Ho, Er, Y and Yb), using the ligand mdeaH2 , in the presence of ortho-toluic or benzoic acid are reported. From the seven wheels studied the {Mn8 Dy8 } and {Mn8 Y8 } analogues exhibit SMM behavior as determined from ac susceptibility experiments in a zero static magnetic field. From DFT calculations a S=16 ground state was determined for the {Mn8 Y8 } complex due to weak ferromagnetic Mn(III) -Mn(III) interactions. Ab initio CASSCF+RASSI-SO calculations on the {Mn8 Dy8 } wheel estimated the Mn(III) -Dy(III) exchange interaction as -0.1 cm(-1) . This weak exchange along with unfavorable single-ion anisotropy of Dy(III) /Mn(III) ions, however, led to the observation of SMM behavior with fast magnetic relaxation. The orientation of the g-anisotropy of the Dy(III) ions is found to be perpendicular to the plane of the wheel and this suggests the possibility of toroidal magnetic moments in the cluster. The {Mn8 Ln8 } clusters reported here are the largest heterometallic Mn(III) Ln(III) wheels and the largest {3d-4f} wheels to exhibit SMM behavior reported to date. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kourkoumelis, N.; El-Gaoudy, H.; Varella, E.; Kovala-Demertzi, D.
2013-08-01
A number of organic natural dyestuffs used in dyeing in ancient times, i.e. indigo, madder, turmeric, henna, cochineal, saffron and safflower, have been used to colour Egyptian fabrics based on linen. Their physicochemical properties have been evaluated on thermally aged linen samples. The aged dyed linen samples were thoroughly examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile strength and elongation measurements. It was found that, in the molecular level, dyes interact mainly with the cellulose compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Tensile strength is positively related to the dye treatment while elongation depends specifically on the type of the dye used. Results converge that the dyed textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration.
Study of absorption and IR-emission of Er3+, Dy3+, Tm3+ doped high-purity tellurite glasses
NASA Astrophysics Data System (ADS)
Motorin, S. E.; Dorofeev, V. V.; Galagan, B. I.; Sverchkov, S. E.; Koltashev, V. V.; Denker, B. I.
2018-04-01
A study of high-purity TeO2-ZnO based tellurite glasses doped with Er3+, Dy3+ or Tm3+ that could be used as laser media in the 2-3 μm spectral range is presented. The glasses are prepared by melting the oxides mixture inside a silica glass reactor in an atmosphere of purified oxygen. The low level of hydroxyl groups absorption allowed to measure correctly the luminescence decay characteristics of the dopants. The rare-earth ions absorption bands, the luminescence spectra and kinetic characteristics of emission from the levels 4I11/2, 4I13/2 of Er3+, 6H13/2 of Dy3+ and 3H4, 3H5, 3F4 of Tm3+ ions are investigated. The results confirm the high potential of tellurite glasses as an active media for bulk, planar waveguide and fiber lasers.
Resonance region measurements of dysprosium and rhenium
NASA Astrophysics Data System (ADS)
Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.
2017-09-01
Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.
NASA Astrophysics Data System (ADS)
Kazei, Z. A.; Snegirev, V. V.; Kozeeva, L. P.; Kameneva, M. Yu.
2016-01-01
We have experimentally studied the structural and elastic characteristics of rare-earth cobaltites RBaCo4- x M x O7 (R = Dy-Er, Yb, Y), in which cobalt ions are partly substituted by diamagnetic Al or Zn ions. It was found that small substitution of Co3+ ions by Al3+ ions in the YbRBaCo4- x M x O7 system ( x = 0.1, 0.2, 0.5) leads to a rapid decrease and smearing of Δ E( T) /E 0 anomalies of the Young's modulus in the region of the structural phase transition, which is accompanied by increasing hysteresis. Pure rare-earth cobaltites RBaCo4O7 (R = Dy-Er, Y) exhibit a correlation between the room-temperature structure distortion and hysteresis on the Δ E( T)/ E 0 curve in a temperature interval of 80-280 K. In Zn-substituted cobaltites RBaCoZn3O7, both the hysteresis and Δ E( T)/ E 0 anomalies disappear, as do low-temperature sound absorption maxima. This behavior is evidence of the suppression of structural and magnetic phase transitions and the retention of only short-range correlations of the order parameter in Zn-substituted samples.
Magnetic Behavior of a Dy8 Molecular Nanomagnet
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis
2015-03-01
As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).
Structural silicon nitride materials containing rare earth oxides
Andersson, Clarence A.
1980-01-01
A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon
In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.
Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan
2017-01-31
We report the synthesis, structural characterisation, magnetic properties and provide an ab initio analysis of the magnetic behaviour of two new heterometallic octanuclear coordination complexes containing Co III and Dy III ions. Single-crystal X-ray diffraction studies revealed molecular formulae of [Co III 4 Dy III 4 (μ-OH) 4 (μ 3 -OMe) 4 {O 2 CC(CH 3 ) 3 } 4 (tea) 4 (H 2 O) 4 ]⋅4 H 2 O (1) and [Co III 4 Dy III 4 (μ-F) 4 (μ 3 -OH) 4 (o-tol) 8 (mdea) 4 ]⋅ 3 H 2 O⋅EtOH⋅MeOH (2; tea 3- =triply deprotonated triethanolamine; mdea 2- =doubly deprotonated N-methyldiethanolamine; o-tol=o-toluate), and both complexes display an identical metallic core topology. Furthermore, the theoretical, magnetic and SMM properties of the isostructural complex, [Cr III 4 Dy III 4 (μ-F 4 )(μ 3 -OMe) 1.25 (μ 3 -OH) 2.75 (O 2 CPh) 8 (mdea) 4 ] (3), are discussed and compared with a structurally similar complex, [Cr III 4 Dy III 4 (μ 3 -OH) 4 (μ-N 3 ) 4 (mdea) 4 (O 2 CC(CH 3 ) 3 ) 4 ] (4). DC and AC magnetic susceptibility data revealed single-molecule magnet (SMM) behaviour for 1-4. Each complex displays dynamic behaviour, highlighting the effect of ligand and transition metal ion replacement on SMM properties. Complexes 2, 3 and 4 exhibited slow magnetic relaxation with barrier heights (U eff ) of 39.0, 55.0 and 10.4 cm -1 respectively. Complex 1, conversely, did not exhibit slow relaxation of magnetisation above 2 K. To probe the variance in the observed U eff values, calculations by using CASSCF, RASSI-SO and POLY_ANISO routine were performed on these complexes to estimate the nature of the magnetic coupling and elucidate the mechanism of magnetic relaxation. Calculations gave values of J Dy-Dy as -1.6, 1.6 and 2.8 cm -1 for complexes 1, 2 and 3, respectively, whereas the J Dy-Cr interaction was estimated to be -1.8 cm -1 for complex 3. The developed mechanism for magnetic relaxation revealed that replacement of the hydroxide ion by fluoride quenched the quantum tunnelling of magnetisation (QTM) significantly, and led to improved SMM properties for complex 2 compared with 1. However, the tunnelling of magnetisation at low-lying excited states was still operational for 2, which led to low-temperature QTM relaxation. Replacement of the diamagnetic Co III ions with paramagnetic Cr III led to Cr III ⋅⋅⋅Dy III coupling, which resulted in quenching of QTM at low temperatures for complexes 3 and 4. The best example was found if both Cr III and fluoride were present, as seen for complex 3, for which both factors additively quenched QTM and led to the observation of highly coercive magnetic hysteresis loops above 2 K. Herein, we propose a synthetic strategy to quench the QTM effects in lanthanide-based SMMs. Our strategy differs from existing methods, in which parameters such as magnetic coupling are difficult to control, and it is likely to have implications beyond the Dy III SMMs studied herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-03-01
Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.
Optical properties of Sr3B2O6:Dy3+/PMMA polymer nanocomposites
NASA Astrophysics Data System (ADS)
Khursheed, Sumara; Kumar, Vinay; Singh, Vivek K.; Sharma, Jitendra; Swart, H. C.
2018-04-01
The paper presents a facile way to synthesize luminescent polymer nanocomposite (PNC) films consisting of nanophosphors (NPs) of rare earth ions doped alkaline earth borates (Sr3B2O6:Dy3+) dispersed in a polymer (PMMA) matrix via a solution casting method and the results of their detailed structural and optical properties measurements. The PNC films were characterized using X-ray diffraction (XRD), Photoluminescence (PL), and differential scanning calorimetry (DSC). The crystallinity of the dispersed NPs did not suffer on account of being dispersed in the PMMA. The Rhombohedral structure and the formation of a single phase of Sr3B2O6:Dy3+ were confirmed by the XRD data of both the NP powders and the PNC films with an average particle size of 43 nm. Also, the observed PL emission and excitation spectra of the PNC films amply suggested that embedding of the nanophosphors in the PMMA matrix preserves their typical luminescence emission. The chromaticity coordinates (x = 0.37, y = 0.39) of the PNC films also validated the yellowish white emission of the nanophosphor. DSC scans on the PMMA only and the Sr3B2O6:Dy3+/PMMA films suggested an increase in the thermal stability of the PNC films as compared to pure PMMA although no significant change in the glass transition temperature was observed.
Broadband ∼3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses
NASA Astrophysics Data System (ADS)
Shen, Lingling; Wang, Ning; Dou, Aoju; Cai, Yangjian; Tian, Ying; Huang, Feifei; Xu, Shiqing; Zhang, Junjie
2018-01-01
The Dy3+/Yb3+ co-doped germanate glasses with good thermal stability have been prepared by the conventional melt quenching method. The J-O intensity parameters and radiative properties such as spontaneous transition probilities (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) were investigated according to the absorption spectrum based on Judd-Ofelt theory. An intense emission around ∼3 μm with the FWHM reaching to 322 nm was obtained in present glasses excited by 980 nm LD. The high spontaneous transition probability (63.94 s-1), large emission cross section (6.0 × 10-21 cm2) and superior gain performance corresponding to the Dy3+: 6H13/2 → 6H15/2 transition were obtained. Moreover, the energy transfer mechanism was analyzed qualitatively, and it was found that the energy transfer from Yb3+: 2F5/2 to Dy3+: 6H5/2 level could be quite efficient. Hence, the results indicated that the prepared Dy3+/Yb3+ co-doped germanate glass could be a potential candidate for ∼3 μm mid-infrared solid state lasers.
Absence of microRNA-21 does not reduce muscular dystrophy in mouse models of LAMA2-CMD.
Moreira Soares Oliveira, Bernardo; Durbeej, Madeleine; Holmberg, Johan
2017-01-01
MicroRNAs (miRNAs) are short non-coding RNAs that modulate gene expression post-transcriptionally. Current evidence suggests that miR-21 plays a significant role in the progression of fibrosis in muscle diseases. Laminin-deficient congenital muscular dystrophy (LAMA2-CMD) is a severe form of congenital muscular dystrophy caused by mutations in the gene encoding laminin α2 chain. Mouse models dy3K/dy3K and dy2J/dy2J, respectively, adequately mirror severe and milder forms of LAMA2-CMD. Both human and mouse LAMA2-CMD muscles are characterized by extensive fibrosis and considering that fibrosis is the final step that destroys muscle during the disease course, anti-fibrotic therapies may be effective strategies for prevention of LAMA2-CMD. We have previously demonstrated a significant up-regulation of the pro-fibrotic miR-21 in dy3K/dy3K and dy2J/dy2J skeletal muscle. Hence, the objective of this study was to explore if absence of miR-21 reduces fibrogenesis and improves the phenotype of LAMA2-CMD mice. Thus, we generated dy3K/dy3K and dy2J/dy2J mice devoid of miR-21 (dy3K/miR-21 and dy2J/miR-21 mice, respectively). However, the muscular dystrophy phenotype of dy3K/miR-21 and dy2J/miR-21 double knock-out mice was not improved compared to dy3K/dy3K or dy2J/dy2J mice, respectively. Mice displayed the same body weight, dystrophic muscles (with fibrosis) and impaired muscle function. These data indicate that miR-21 may not be involved in the development of fibrosis in LAMA2-CMD.
Synthesis and luminescent properties of Sr3Al2O5Cl2: Eu2+, Dy3+ rod-like nanocrystals
NASA Astrophysics Data System (ADS)
Wang, Zhengliang; Zhang, Qiuhan; Rong, Meizhu; Tan, Huiying; Wang, Qin; Zhou, Qiang; Chen, Guo
2016-08-01
White long afterglow phosphor with nano-rods, Sr3Al2O5Cl2: Eu2+, Dy3+, has been successfully synthesized by the solid state reaction. Their structure, morphology, scanning electron microscopy, luminescent properties and long afterglow properties were investigated by X-ray diffraction, transmission electron microscopy luminescence spectra and the luminescence decay curve. The obtained phosphor Sr3Al2O5Cl2: Eu2+, Dy3+ exhibits two broad emission bands, which are located at ∼445 nm and ∼590 nm, respectively. White light can be observed from this phosphor with appropriate CIE values (x = 0.357, y = 0.332). The white afterglow duration of this phosphor is about 0.5 h (>0.35 mcd/m2).
X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures
NASA Astrophysics Data System (ADS)
Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.
2018-05-01
We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).
Optical properties of Dy3+ doped YBO3 phosphor
NASA Astrophysics Data System (ADS)
Nair, Ramya G.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R. K.
2018-04-01
Dysprosium doped YBO3 luminescent particleis synthesized via poly-ol method and by subsequent annealing at 800°C. The synthesized material has been characterized for structure properties using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR)spectroscopy. Photoluminescence properties of these samples are studiedby means of steady state measurements and decay curve. The phosphor shows characteristic transitions of Dy3+ in the excitation and emission spectra. Colour purity is determined in terms of yellow/blue ratio, which is found to be 1.8. The higher ratio of yellow/blue indicates that Dy3+ preferentially occupies the asymmetric site in host lattice. The average lifetime is found to be 1.1ms. The chromatic properties of the phosphor have been found to have chromaticity coordinates x = 0.245, y = 0.274.
2010-06-01
heat removal technique and its efficiency , the gain medium itself is the bottleneck for non-distortive heat removal―simply due to low thermal...dysprosium (Dy) has been demonstrated by photoluminescence (PL), electroluminescence (EL), and/or cathodoluminescence (CL) (2, 3). As the RE dopant...provides the highest level of laser efficiency due to the pump and signal mode confinement within a crystalline-guided structure) has been designed. The
NASA Astrophysics Data System (ADS)
Maheshwary; Singh, B. P.; Singh, R. A.
2016-01-01
Lanthanide ions, Ln3+ (Dy3+, Eu3+ and Sm3+) doped SrWO4 nanoparticles were synthesized using ethylene glycol (EG) as a capping agent as well as reaction medium. The X-ray diffraction (XRD) study reveals that all the Ln3+ (Dy3+, Eu3+ and Sm3+) doped samples are well crystalline in nature with a tetragonal scheelite structure of SrWO4 phase. TG study reveals that the nanophosphors are thermally stable. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy techniques were used to obtain the information about internal and external vibrational modes present in the SrWO4 structure. Optical properties were investigated using UV-vis and photoluminescence (PL) spectroscopy. The average crystallite size was calculated using Debye-Scherrer's for as-prepared and 800 °C annealed samples and is found to be in the range of ∼35-70 nm. The luminescence intensity of Eu3+ doped SrWO4 nanoparticles under 364 nm excitation wavelength reveals that 5D0 → 7F2 transition at ∼613 nm (red) is more prominent than that of 5D0 → 7F1 transition at ∼590 nm (orange). Also upon excitation by UV radiation, the SrWO4:Dy3+ phosphor shows the yellow and blue transition lines appearing at ∼572 and 484 nm which are the characteristic electronic transitions of 4F9/2-6H13/2 and 4F9/2-6H15/2 emission line of Dy3+, respectively. Also Sm3+ doped SrWO4 nanophosphor shows its characteristic emission lines in the range of 550-720 nm, corresponding to 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm3+ ions. The predominant orange red color can be attributed to 4G5/2 → 6H9/2 located at ∼642 nm. This is related to the polarizing effect due to the energy transfer from WO42- to the Eu3+, Dy3+ and Sm3+ sites, respectively. Effect of annealing on the photoluminescence properties of samples has been studied and it was found that luminescence intensity increases up to ∼3 times on heating the samples at 800 °C. This may be due to reduction in non-radiative decay channels pathways and reduced surface defects associated with the samples. These studies show that these Ln3+ (Dy3+, Eu3+ and Sm3+) doped SrWO4 nanophosphors may be used as potential candidates for the advancement in LEDs.
Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.
2018-01-01
Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250
NASA Astrophysics Data System (ADS)
Li, F.; Liu, J. J.; Zhu, X. Y.; Shen, W. C.; Lin, L. L.; Du, J.; Si, P. Z.
2018-07-01
Alloys of Tb0.2Dy0.8-xPrx(Fe0.8Co0.2)1.93 (0 ≤ x ≤ 0.40) are arc melted and investigated for structural, magnetic and magnetoelastic properties by means of X-ray diffraction (XRD), a vibrating sample magnetometer and a standard strain technique. The 20 at.% Co substitution for Fe is shown to enable the formation of the single Laves phase with a high Pr content up to x = 0.25. Experimental evidence for magnetocrystalline-anisotropy compensation between Pr3+ and Dy3+ ions is obtained in the Laves phase system. The easy magnetization direction (EMD) at room temperature rotates from <100> to <110> axis when x increases from 0 to 0.40. The linear anisotropic magnetostriction λa (=λ||-λ⊥) increases with increasing Pr content when x ≤ 0.25 ascribed to both the larger magnetostriction of PrFe2 than that of DyFe2 and the decrease of the resulted anisotropy due to compensation. The composition anisotropy compensation is found to be around x = 0.25, shifting to the Pr-rich side at room temperature as compared to the Co-free counterpart Tb0.2Dy0.8-xPrxFe1.93 system. The Tb0.2Dy0.55Pr0.25(Fe0.8Co0.2)1.93 alloy has good magnetoelastic properties at room temperature, that is, a low anisotropy and a high low-field magnetostriction λa ∼140 ppm at 1 kOe.
Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal
2015-03-06
Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.
Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide
NASA Astrophysics Data System (ADS)
Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.
2018-05-01
Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.
Molten salt synthesis and luminescent properties of YVO4:Ln (Ln = Eu3+, Dy3+) nanophosphors.
Liu, Chenglu; Wang, Fang; Jia, Peiyun; Lin, Jun; Zhou, Zhiqiang
2012-01-01
Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively. TEM micrographs show the nanocrystallites are well crystallized with a cubic morphology in an average grain size of about 18 nm. Upon excitation of the vanadate group at 314 nm, YVO4:Eu3+ and YVO4:Dy3+ nanocrystallites exhibit the characteristic emission of Eu3+ and Dy3+, which indicates that there is an energy transfer from the vanadate group to the rare earth ions. Moreover, the structure and luminescent properties of the nanocrystallites were compared with their bulk counterparts with same composition in detail.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications.
Jaidass, N; Krishna Moorthi, C; Mohan Babu, A; Reddi Babu, M
2018-03-01
Different concentrations of Dy 3+ ions doped lithium zinc borosilicate glasses of chemical composition (30-x) B 2 O 3 - 25 SiO 2 -10 Al 2 O 3 -30 LiF - 5 ZnO - x Dy 2 O 3 (x = 0, 0.1, 0.5, 1.0 and 2.0 mol%) were prepared by the melt quenching technique. The prepared glasses were investigated through X-ray diffraction, optical absorption, photoluminescence and decay measurements. Intensities of absorption bands expressed in terms of oscillator strengths (f) were used to determine the Judd-Ofelt (J-O) intensity parameters Ω λ (λ = 2, 4 and 6). The evaluated J-O parameters were used to determine the radiative parameters such as transition probabilities (A R ), total transition probability rate (A T ), radiative lifetime (τ R ) and branching ratios (β R ) for the excited 4 F 9/2 level of Dy 3+ ions. The chromaticity coordinates determined from the emission spectra were found to be located in the white light region of CIE chromaticity diagram.
Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-04-03
Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less
NASA Astrophysics Data System (ADS)
Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin
2018-07-01
The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.
Shimokawa, Takuya; Shoda, Makoto; Sugano, Yasushi
2009-02-01
DyP isozymes (DyP2 and DyP3) from the culture fluid of the fungus Thanatephorus cucumeris Dec 1 by air-membrane surface bioreactor were purified and characterized. The characteristics of DyP2 were almost the same as those of a recombinant DyP reported previously, but different from DyP3.
PREFACE: International Conference on Dynamics of Systems on the Nanoscale (DySoN 2012)
NASA Astrophysics Data System (ADS)
Solov'yov, Andrey V.
2013-06-01
Conference logo The Second International Conference 'Dynamics of Systems on the Nanoscale' (DySoN 2012) took place in Saint Petersburg, Russia between 30 September and 4 October 2012. The venue was the Courtyard by Marriott St Petersburg Vasilievsky Hotel, 2nd line of Vasilievsky Island 61/30A, 199178. The conference was organized by the Frankfurt Institute for Advanced Studies - Goethe University, A F Ioffe Physical-Technical Institute and Saint Petersburg State Polytechnic University. This DySoN conference has been built upon a series of International Symposia 'Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale' (ISACC 2003, ISACC 2007, ISACC 2008, ISACC 2009 and ISACC 2011). During these meetings it has become clear that there is a need for an interdisciplinary conference covering a broader range of topics than just atomic cluster collisions, related to the Dynamics of Systems on a Nanoscale. Therefore, in 2010 it was decided to launch a new conference series under the title 'Dynamics of Systems on the Nanoscale'. The first DySoN conference took place at the National Research Council, Rome, Italy in 2010. The DySoN 2012 is the second conference in this series. The DySoN 2012 Conference promoted the growth and exchange of interdisciplinary scientific information on the structure, formation and dynamics of animate and inanimate matter on the nanometer scale. There are many examples of complex many-body systems of micro- and nanometer scale size exhibiting unique features, properties and functions. These systems may have very different nature and origin, e.g. atomic and molecular clusters, nanoobjects, ensembles of nanoparticles, nanostructures, biomolecules, biomolecular and mesoscopic systems. A detailed understanding of the structure and dynamics of these systems on the nanometer scale is an important fundamental task, the solution of which is necessary in numerous applications of nano- and biotechnology, material science and medicine. Although mesoscopic, nano- and biomolecular systems differ in their nature and origin, a number of fundamental problems are common to all of them: what are the underlying principles of self-organization and self-assembly of matter on the micro- and nanoscale? Are these principles classical or quantum? How does function emerge on the nano- and the mesoscale in systems of different origin? What criteria govern the stability of these systems? How do their properties change as a function of size and composition? How are their properties altered by their environment? Seeking answers to these questions is at the core of a new interdisciplinary field that lies at the intersection of physics, chemistry and biology, a field called Meso-Bio-Nano (MBN) Science. Both experimental and theoretical aspects of the mentioned problems were discussed at the DySoN 2012 Conference. Particular attention was devoted to dynamical phenomena and many-body effects taking place in various MBN systems, which include problems of structure formation, fusion and fission, collision and fragmentation, collective electron excitations, reactivity, nanoscale phase transitions, nanoscale insights into biodamage, channeling phenomena and many more. This volume is a collection of the contributions received from the participants of the DySoN 2012 Conference. It provides an overview of the topics, new results and ideas that have been discussed at the conference. I would like to thank all the authors of these proceedings, as well as all the participants of the conference for making it so successful. The third DySoN Conference will be held in Edinburgh in May 2014. A V Solov'yov Frankfurt Institute for Advanced Studies, Ruth-Moufang Str. 1, 60438, Frankfurt am Main, Germany On leave from A F Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021, St. Petersburg, Russia E-mail: solovyov@fias.uni-frankfurt.de The PDF contains further information about the conference. Conference photograph Picture
Table of superdeformed nuclear bands and fission isomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Singh, B.
A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding andmore » deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.« less
Structural, dielectric and impedance studies of polycrystalline La0.6Dy0.2Ca0.2MnO3
NASA Astrophysics Data System (ADS)
Nandan, K. R.; Kumar, A. Ruban
2017-05-01
Polycrystalline materials of Dy doped La1-xCaxMnO3 were prepared by Sol-Gel technique using citric acid as a chelating agent at 900°C. The compound was analyzed by powder X-ray diffraction technique and confirmed to be single phased orthorhombic perovskite structure with space group Pnma. From the dielectric and impedance studies confirmed the existence of dielectric relaxation and presence of space charge were observed from the dielectric constant and impedance plots respectively and confirms the existence of relaxation due to oxygen vacancy. Cole-cole plot confirms the presence of dielectric relaxation and grain contribution in the synthesized sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru; Isnard, O.; Université Grenoble Alpes, Inst. Néel, F-38042 Grenoble
The crystal structure of new Mo{sub 2}NiB{sub 2}-type (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} (Immm, No. 71, oI10) and La{sub 2}Ni{sub 3}-type (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} (Cmce No. 64, oC20) compounds has been established using powder X-ray diffraction studies. Magnetization measurements show that the Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} undergoes a ferromagnetic transition at ~66 K, whereas isostructural Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} shows an antiferromagnetic transition at ~52 K and a field-induced metamagnetic transition at low temperatures. Neutron diffraction study shows that, in zero applied field, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} exhibits c-axis antiferromagnetic order with propagation vectormore » K=[1/2, 0, 1/2] below its magnetic ordering temperature and Tb magnetic moment reaches a value of 8.32(5) μ{sub B} at 2 K. The La{sub 2}Ni{sub 3}-type Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} exhibits ferromagnetic like transition at ~42 K with coexisting antiferromagnetic interactions and field induced metamagnetic transition below ~17 K. The magnetocaloric effect of Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −14.3 J/kg K, −5.3 J/kg K and −10.3 J/kg K for a field change of 50 kOe near 66 K, 52 K and 42 K, respectively. Low temperature magnetic ordering with enhanced anisotropic effects in Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.35}Si{sub 0.65} is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +12.8 J/kg K and ~+9.9 J/kg K, respectively at 7 K for a field change of 50 kOe. - Graphical abstract: The (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} supplement the series of Mo{sub 2}NiB{sub 2}-type rare earth compounds, whereas the (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} supplement the series of La{sub 2}Ni{sub 3}-type rare earth compounds. The variation of alloy’s composition by ~3 at% i.e. from Dy{sub 2}Ni{sub 2.35}Si{sub 0.65} to Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} leads to significant transformation of crystal structure of compound with different variant of distortion of Po-type rare earth sublattice, as in Gd–Co–Ga and Er–Ni–In systems: the Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Co{sub 2}Ga and La{sub 2}Ni{sub 3}-type Gd{sub 2}Co{sub 2.9}Ga{sub 0.1}, and Mo{sub 2}FeB{sub 2}-type Er{sub 2}Ni{sub 1.78}In and Mn{sub 2}AlB{sub 2}-type Er{sub 2}Ni{sub 2}In. Magnetization measurements indicate collinear ferromagnetic ordering of Mo{sub 2}NiB{sub 2}-type Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} and a complex antiferromagnetic ordering with low-temperature metamagnetic nature for Mo{sub 2}NiB{sub 2}-type Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} compounds. However, neutron diffraction study in zero applied field of Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} reveals c-axis pure antiferromagnetic ordering of terbium sublattice with K=[1/2, 0, 1/2] propagation vector. Magnetization measurements indicate ferromagnetic order with coexisting antiferromagnetic interactions and low-temperature metamagnetic state for La{sub 2}Ni{sub 3}-type Dy{sub 2}Ni{sub 2.5}Si{sub 0.5}. We suggest possible polymorphism in other Mo{sub 2}FeB{sub 2}-type, Mo{sub 2}NiB{sub 2}-type, La{sub 2}Ni{sub 3}-type and Mn{sub 2}AlB{sub 2}-type rare earth compounds with corresponding change in their magnetic properties. - Highlights: • (Gd, Tb, Dy){sub 2}Ni{sub 2.35}Si{sub 0.65} compounds crystallize in the Mo{sub 2}NiB{sub 2}-type structure. • (Dy, Ho){sub 2}Ni{sub 2.5}Si{sub 0.5} compounds crystallize in the La{sub 2}Ni{sub 3}-type structure. • Gd{sub 2}Ni{sub 2.35}Si{sub 0.65} shows pure ferromagnetic type ordering. • Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} show mixed ferro-antiferromagnetic ordering. • Tb{sub 2}Ni{sub 2.35}Si{sub 0.65} and Dy{sub 2}Ni{sub 2.5}Si{sub 0.5} exhibit low-temperature metamagnetic behaviour.« less
Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Yan; Ding Shaohua; Zheng Xuefang
2007-07-15
Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. 1 crystallizes with monoclinic symmetry, space group P2(1)/n [a=7.995(4) A, b=10.945(5) A, c=8.164(4) A, {alpha}=90{sup o}, {beta}=93.619(6){sup o}, {gamma}=90{sup o}, V=713.0(5) A{sup 3}, Z=8]. It displays a three-dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains. 2 crystallizes with monoclinic symmetry, space group C2/c, [a=13.5605(17) A, b=6.7676(8) A, c=18.318(2) A, {alpha}=90{sup o}, {beta}=102.265(2){sup o}, {gamma}=90{supmore » o}, V=1642.7 (4) A{sup 3}, Z=4]. Its layered framework is attained by the europium atoms connected by the sulfate groups arranged in a helical manner. - Graphical abstract: Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2} (SO{sub 4}){sub 3} (H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. It displays a three dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains.« less
Rangari, V V; Singh, V; Dhoble, S J
2016-03-01
A series of Eu(3+)-, Ce(3+)-, Dy(3+)- and Tb(3+)-doped (Y,Gd)BO3 phosphors was synthesized by a solid-state diffusion method. X-Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu(3+), Ce(3+), Dy(3+) and Tb(3+) are effectively excited with near UV-light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu(3+)-, Ce(3+)- and Tb(3+)/Dy(3+)-doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu(2+) phosphor. The phosphor (Y,Gd)BO3 doped with Eu(3+), Dy(3+) and Tb(3+) showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near-UV white light-emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.
Physical metallurgy of metastable Bcc lanthanide-magnesium alloys for R = La, Gd, and Dy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herchenroeder, J.W.; Manfrinetti, P.; Gschneidner, K.A. Jr.
1989-09-01
Bcc La-Mg, Gd-Mg, and Dy-Mg alloys have been prepared by an ice water/acetone quench from liquid melts. Single-phase alloys could be retained in a window around the eutectoid composition: 13 to 22 at. pct Mg, 23.6 to 29 at. pct Mg, and 27 to 29 at. pct Mg for La, Gd, and Dy alloys, respectively. At the center of the windows, x-ray diffraction peaks are extremely sharp as in equilibrium bcc structures; however, as alloy composition is moved away from the eutectoid, line broadening is observed. Reversion of the bcc phase to the equilibrium microstructure for R-Mg alloys (R =more » La, Gd, or Dy) has been characterized by differential thermal analysis (DTA) or differential scanning calorimetry (DSC) and isothermal annealing. La-Mg alloys revert directly to {alpha}La (dhcp) + LaMg at about 350{degrees}C when heated at 10{degrees}C/min. In contrast, the Gd and Dy alloys revert by a two-step process: first, a transition to an intermediate distorted hcp phase between 300{degrees}C and 400{degrees}C, and, second, the relaxation of this phase to {alpha}R (hcp) + RMg at about 490{degrees}C when heated at 10{degrees}C/min. Isothermal annealing and high temperature x-ray diffraction confirm the nature of these reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ting; Li, Panlai, E-mail: li_panlai@126.com; Fu, Nian, E-mail: funian3678@163.com
A series of Dy{sup 3+}, Ce{sup 3+}/Dy{sup 3+}, Eu{sup 2+}/Dy{sup 3+} and Ce{sup 3+}/Eu{sup 2+}/Dy{sup 3+} doping LiBaB{sub 9}O{sub 15} (LBB) phosphors were synthesized via a high temperature solid-state method. LBB:Dy{sup 3+} cannot create light under ultraviolet radiation, however, LBB:Ce{sup 3+}, Dy{sup 3+} can produce yellow emission under 295 nm excitation. The energy transfer occurs from Ce{sup 3+} to Dy{sup 3+} ions via electric dipole-dipole interaction and the critical distance is estimated to be 21.15 Å based on concentration quenching model. Generally, Eu{sup 2+} ion is a sensitizer to Dy{sup 3+} ion, however, there is only the emission of Eu{supmore » 2+} in LBB:Eu{sup 2+}, Dy{sup 3+}, which means there is no energy transfer from Eu{sup 2+} to Dy{sup 3+} ions. Interestingly enough, when doping Eu{sup 2+} ion into LBB:Ce{sup 3+}, Dy{sup 3+}, white emission can be achieved by increase the blue (350–425 nm) emission intensity. The spectral property, quantum efficiency, CIE chromaticity coordinates and thermal quenching property of LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} are investigated. The results indicate that LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} may be a potential application to white light emitting diodes. - Graphical abstract: LBB:Ce{sup 3+}, Dy{sup 3+} can create white emission by doping Eu{sup 2+} ions. - Highlights: • LBB:Ce{sup 3+}, Dy{sup 3+} can produce white emission by doping Eu{sup 2+} ion. • There is no energy transfer from Eu{sup 2+} to Dy{sup 3+} ions. • Energy transfer occurs from Ce{sup 3+} to Dy{sup 3+} ions. • LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} may be a potential application for white LEDs.« less
White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.
Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T
2017-06-01
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kushch, L. A.; Yagubskii, E. B.; Dmitriev, A. I.; Morgunov, R. B.; Emel'Yanov, V. A.; Mustafina, A. R.; Gubaidullin, A. T.; Burilov, V. A.; Solovieva, S. E.; Schaniel, D.; Woike, Th.
2010-06-01
Two bifunctional supramolecular systems [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Gd3+(H2O)6·2[TCAS]4-·4H2O (1) and [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Dy3+(H2O)6·2[TCAS]4-·4H2O (2) on the platform of p-sulfonatothiacalix[4]arene containing photochromic mononitrosyl Ru and paramagnetic rare-earth (Gd3+, Dy3+) cations have been synthesized. The crystal structures of 1 and 2 are discussed. Their photochromic, magnetic and photomagnetic properties studied by IR and SQUID experimental techniques are presented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feraru, S.; Samoila, P.; Borhan, A.I.
2013-10-15
Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu; Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415; Anderson, Thomas J.
2012-10-15
A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which becamemore » weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.« less
Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates.
Guo, Yun-Nan; Chen, Xiao-Hua; Xue, Shufang; Tang, Jinkui
2012-04-02
Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of a carbonato ligand affords two novel Dy(6) and Dy(8) clusters, namely, [Dy(6)(ovph)(4)(Hpvph)(2)Cl(4)(H(2)O)(2)(CO(3))(2)]·CH(3)OH·H(2)O·CH(3)CN (2) and [Dy(8)(ovph)(8)(CO(3))(4)(H(2)O)(8)]·12CH(3)CN·6H(2)O (3). Compound 2 is composed of three petals of the Dy(2) units linked by two carbonato ligands, forming a triangular prism arrangement, while compound 3 possesses an octanuclear core with an unprecedented tub conformation, in which Dy(ovph) fragments are attached to the sides of the carbonato core. The static and dynamic magnetic properties are reported and discussed. In the Dy(6) aggregate, three Dy(2) "skeletons", having been well preserved (see the scheme), contribute to the single-molecule-magnet behavior with a relatively slow tunneling rate, while the Dy(8) cluster only exhibits a rather small relaxation barrier.
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali
2013-07-01
The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.
Tailored white light emission in Eu3+/Dy3+ doped tellurite glass phosphors containing Al3+ ions
NASA Astrophysics Data System (ADS)
Walas, Michalina; Piotrowski, Patryk; Lewandowski, Tomasz; Synak, Anna; Łapiński, Marcin; Sadowski, Wojciech; Kościelska, Barbara
2018-05-01
Tellurite glass systems modified by addition of aluminum fluoride AlF3 have been successfully synthesized as host matrices for optically active rare earth ions RE3+ (RE3+ = Eu3+, Dy3+). Samples with different Eu3+ to Dy3+ molar ratio have been studied in order to determine possibility of white light emission via UV excitation. Structural investigations confirmed amorphous character of materials whereas spectroscopic studies brought more insight into glass network's nature. FTIR results shown presence of two features related to tellurite glass matrix (in 490-935 cm-1 spectral region) and another one (940-1250 cm-1) due to aluminum addition. Especially, Al-O and Te-O-Al bonds of AlO4 tetrahedrons have been found. AlO4 units are considered as glass formers that improve network's strength and thermal resistivity against devitrification. Based on XPS studies of Al3+ photoelectron band the existence of Al-O and also Al-F bonds have been examined. Moreover, signals originating from Eu3+ and Dy3+ have been found confirming their valence state. Luminescence results revealed possibility of simultaneous UV excitation of Eu3+ and Dy3+ ions. Excitation with λexc = 390 and 393 nm resulted in white light generation starting from warm white to neutral and cool white depending on Eu3+ concentration and used excitation wavelength. Additionally, increase of decay lifetime of Eu3+ induced by Al3+ presence have been revealed based on luminescence decay analysis. Thus, tellurite glass systems modified by AlF3 and doped with Eu3+/Dy3+ may be considered as promising candidates for white light emitting sources.
Chow, Chun Y; Bolvin, Hélène; Campbell, Victoria E; Guillot, Régis; Kampf, Jeff W; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen; Pecoraro, Vincent L; Mallah, Talal
2015-07-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga 4 Ln 2 (shi 3- ) 4 (Hshi 2- ) 2 (H 2 shi - ) 2 (C 5 H 5 N) 4 (CH 3 OH) x (H 2 O) x ]· x C 5 H 5 N· x CH 3 OH· x H 2 O (where H 3 shi = salicylhydroxamic acid and Ln = Gd III 1 ; Tb III 2 ; Dy III 3 ; Er III 4 ; Y III 5 ; Y III 0.9 Dy III 0.1 6 ). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled Dy III ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy 2 than for the Er 2 complex.
Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Brechin, Euan K; Wersndorfer, Wolfgang; Lloret, Francesc; Colacio, Enrique
2013-08-19
The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(μ3-CO3)2[Zn(μ-L)Dy(NO3)]2}·4CH3OH (1), where H2L is the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(μ-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely, 1', exhibits SMM behavior at zero applied direct-current (dc) field with about 3 times higher thermal energy barrier than that in 1 (U(eff) = 68 K), thus demonstrating the important role of intermolecular dipolar interactions in favoring the fast QTM relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the reversal of the magnetization slightly slows, and U(eff) increases to 78 K. The dilution results combined with micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from single-ion relaxation of the Dy(3+) ions. Analysis of the relaxation data points out that a Raman relaxation process could significantly affect the Orbach relaxation process, reducing the thermal energy barrier U(eff) for slow relaxation of the magnetization.
NASA Astrophysics Data System (ADS)
Mohammed, Al-B. F. A.; Lakshminarayana, G.; Baki, S. O.; Halimah, M. K.; Kityk, I. V.; Mahdi, M. A.
2017-11-01
Dy3+-doped borate glasses with nominal composition (60-x) B2O3-10 ZnO-10 PbO-10 Na2O-10 CaO-(x) Dy2O3 (x = 0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5 and 2.0 mol%) were prepared by the melt quenching technique. The XRD and SEM confirm the amorphous nature of the glasses and through EDAX, all the related elements were found in the synthesized glasses. The vibrations of metal cations such as Pb2+ and Zn2+, B-O-B bond bending vibrations from pentaborate groups, bending vibrations of BO3 triangles, and stretching vibrations of tetrahedral BO4- units etc. are identified from the respective FTIR and Raman spectra including the non-hygroscopic nature of the synthesized glasses. The TGA and DSC measurements were performed to study thermal properties, where ΔT >100 °C (ΔT = Tx - Tg) for all the glasses. Among all the Dy3+-doped glasses, the 0.75 mol% Dy3+-doped glass shows the highest PL intensity with four emissions, where the two transitions corresponding to 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) are observed more intense than the others. The CIE chromaticity (x,y) coordinates for BZPNCDy 0.1 mol% glass are (0.398, 0.430), close to the white light region in the CIE 1931 chromaticity diagram. The dielectric properties of the 0.75 mol% Dy3+-doped glass such as dielectric constant, dielectric loss and AC conductivity were studied in the various frequencies and temperature.
Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ-ray and C5+ ion beam irradiation.
Oza, Abha H; Dhoble, N S; Lochab, S P; Dhoble, S J
2015-11-01
The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.
Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert
2017-06-01
Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Borel, A.; Kono, K.
2018-03-01
We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiyama, Atsuhide; Doi, Yoshihiro; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp
The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions betweenmore » Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells, respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.« less
Nuclear Data Sheets for A = 168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglin, Coral M.
2010-07-15
Nuclear structure data pertaining to all nuclei with mass A=168 (Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt) have been evaluated and incorporated into the ENSDF data file. This evaluation supersedes the previous publication (V.S. Shirley, Nuclear Data Sheets 71, 261 (1994) (literature cutoff date July 1993)) and subsequent ENSDF file revisions for Tb and Dy (C. Baglin, literature cutoff date of 15 June 1999) and Hf (B. Singh, literature cutoff date of 30 April 2001), and includes literature available by 15 June 2010. Since the above evaluations, the first excited states in {supmore » 168}Pt have been identified (1998Ki20, 2009Go16) and {alpha} decay from {sup 172}Hg has been observed (2009Sa27, 2004Ke06, 1999Se14). New levels in {sup 168}Dy have been excited using the {sup 170}Er({sup 82}Se,{sup 84}Kr{gamma}) reaction (2010So03). (HI,xn{gamma}) studies have significantly expanded our knowledge of level structure in {sup 168}Lu (1999Ka17, 2002Ha33), {sup 168}Ta (2008QiZZ), {sup 168}Yb (1995Fi01), {sup 168}Tm (2007CaZW), {sup 168}Hf (2009Ya21), {sup 168}Os (2001Jo11, 2009Od02) and, for {sup 168}Tm, important information has come also from (d,2n{gamma}) and ({alpha},n{gamma}) reactions (1995Si20). Revised decay schemes are available following new studies of {sup 168}Hf {epsilon} decay (6.7 min) (1997Ba26), {sup 168}Lu {epsilon} decay (1999Ba65), {sup 168}Ta {epsilon} decay (2007Mc08) and {sup 172}Au {alpha} decay (2009Ha42). Significant new information for {sup 168}Er is available from (p,t) (2006Bu09), (d,p) and (t,d) (1996Ma50), ({gamma},{gamma}') (1996Ma18), (136Xe, X{gamma}) (2010Dr02), ({sup 238}U,{sup 238}U{sup '{gamma}}) (2003Wu07) and (n,n{sup '{gamma}}) (1998Be20, 1998Be62) reactions, and the availability of {gamma}{gamma} coin data (1994Ju02, 1996Gi09) for the (n,{gamma}) E=thermal reaction has resulted in some significant level scheme revisions.« less
Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors
NASA Astrophysics Data System (ADS)
Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.
2015-01-01
Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.
NASA Astrophysics Data System (ADS)
Zhang, Jinsu; Chen, Baojiu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang
2012-08-01
Based on the persistent energy transfer principle, Mn2+ was introduced into a CaAl2Si2O8 : Eu2+/Dy3+ phosphor to achieve white long-lasting emissions. Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors with various Mn2+ concentrations were prepared via a solid-state reaction, and the crystal structure of the phosphors was identified by the x-ray diffraction technique. The luminescent properties of the Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors were studied. The energy transfer behaviour from Eu2+ to Mn2+ was analysed within the framework of Dexter theory. The physical mechanism of energy transfer was assigned to the electric dipole-quadrupole interaction. It was also demonstrated that the colour coordinates of the phosphors can be tuned from the blue region to the white region in the colour space. Furthermore, the afterglow decay and thermoluminescence curves were measured, indicating excellent phosphorescence properties of the current phosphors.
Identical superdeformed bands in yrast 152Dy: a systematic description
NASA Astrophysics Data System (ADS)
Dadwal, Anshul; Mittal, H. M.
2018-06-01
The nuclear softness (NS) formula, semiclassical particle rotor model (PRM) and modified exponential model with pairing attenuation are used for the systematic study of the identical superdeformed bands in the A ∼ 150 mass region. These formulae/models are employed to study the identical superdeformed bands relative to the yrast SD band 152Dy(1), {152Dy(1), 151Tb(2)}, {152Dy(1), 151Dy(4)} (midpoint), {152Dy(1), 153Dy(2)} (quarter point), {152Dy(1), 153Dy(3)} (three-quarter point). The parameters, baseline moment of inertia ({{I}}0), alignment (i) and effective pairing parameter (Δ0) are calculated using the least-squares fitting of the γ-ray transitions energies in the NS formula, semiclassical-PRM and modified exponential model with pairing attenuation, respectively. The calculated parameters are found to depend sensitively on the proposed baseline spin (I 0).
Vibrational and elastic properties of Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu)
NASA Astrophysics Data System (ADS)
Akbudak, S.; Kushwaha, A. K.
2018-04-01
In this study, an eight-parameter bond-bending force constant model was used to calculate the zone center phonon frequencies, elastic constants, and related properties of the stannate compounds Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu) with a pyrochlore structure. We found that the Snsbnd O bond strengths dominate the Ln-O and Osbnd O bonds. We also found that all of the materials are ductile and anisotropic in nature. The anisotropic nature of the compounds increases in the order of: La2Sn2O7 < Sm2Sn2O7 < Gd2Sn2O7 < Dy2Sn2O7 < Ho2Sn2O7 < Er2Sn2O7 < Yb2Sn2O7 < Lu2Sn2O7.
Color-tunable properties of Eu3+- and Dy3+-codoped Y2O3 phosphor particles
2012-01-01
Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffraction, field emission scanning electron microscope, and field emission transmission electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The room-temperature luminescence color emission of the synthesized particles can be tuned from red to yellow by switching the excitation wavelength from 254 to 350 nm. The luminescence intensities of red and yellow emissions could be altered by varying the dopant concentration. Strong quenching was observed at high Eu3+ and Dy3+ concentrations in the Y2O3 host lattice. PMID:23043645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mithlesh, E-mail: mithlesh@barc.gov.in; Gupta, Santosh K.; Kadam, R.M.
2016-02-15
Highlights: • ZnAl{sub 2}O{sub 4}:Dy{sup 3+} spinel synthesized using sol–gel method. • Characterized by XRD, SEM and PL spectroscopy. • Investigations of emission, excitation and lifetime properties. • Evaluation of defect centers and trap parameters of the system. • Evaluation of CIE indices of near white light emitting phosphor. - Abstract: ZnAl{sub 2}O{sub 4}:Dy{sup 3+} nanoparticles were synthesized using citrate sol–gel method and characterized systematically using X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy. Emission spectrum of pure ZnAl{sub 2}O{sub 4} shows intense violet blue emission under ultra violet irradiation. Based on electron paramagnetic resonance (EPR) results; it was attributedmore » to presence of singly ionized oxygen vacancy centres in ZnAl{sub 2}O{sub 4}. On doping Dy{sup 3+} in ZnAl{sub 2}O{sub 4}, complete host–dopant energy transfer does not take place. Local structural investigation and lifetime measurements reveal that dysprosium ion is distributed between both Zn{sup 2+} and Al{sup 3+} sites. Near white light from ZnAl{sub 2}O{sub 4}:Dy{sup 3+} is attributed to combined host and dopant luminescence. The trap parameters such as activation energy (E) and frequency factor (s) for TSL glow peak 165 °C were determined using different heating rate method. Thermally stimulated emission showed the presence of oxygen related defect centre.« less
Continuous Magnetoelectric Control in Multiferroic DyMnO3 Films with Twin-like Domains
NASA Astrophysics Data System (ADS)
Lu, Chengliang; Deniz, Hakan; Li, Xiang; Liu, Jun-Ming; Cheong, Sang-Wook
2016-02-01
The magnetic control of ferroelectric polarization is currently a central topic in the multiferroic researches, owing to the related gigantic magnetoelectric coupling and fascinating physics. Although a bunch of novel magnetoelectric effect have been discovered in multiferroics of magnetic origin, the manipulation of polarization was found to be fundamentally determined by the microscopic origin in a certain multiferroic phase, hindering the development of unusual magnetoelectric control. Here, we report emergent magnetoelectric control in DyMnO3/Nb:SrTiO3 (001) films showing twin-like domain structure. Our results demonstrate interesting magnetically induced partial switch of polarization due to the coexistence of polarizations along both the a-axis and c-axis enabled by the twin-like domain structure in DyMnO3 films, despite the polarization-switch was conventionally believed to be a one-step event in the bulk counterpart. Moreover, a continuous and periodic control of macroscopic polarization by an in-plane rotating magnetic field is evidenced in the thin films. This distinctive magnetic manipulation of polarization is the consequence of the cooperative action of the twin-like domains and the dual magnetic origin of polarization, which promises additional applications using the magnetic control of ferroelectricity.
NASA Astrophysics Data System (ADS)
Rodríguez-Carvajal, David A.; Meza-Rocha, A. N.; Caldiño, U.; Lozada-Morales, R.; Álvarez, E.; Zayas, Ma. E.
2016-11-01
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with Tesbnd Osbnd Te and Gesbnd Osbnd Ge related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370-420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s-1, respectively.
Structural and transport properties of double perovskite Dy{sub 2}NiMnO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanda, Sadhan, E-mail: sadhan.physics@gmail.com; Saha, Sujoy; Dutta, Alo
2015-02-15
Highlights: • Sol–gel citrate method is used to prepare the double perovskite Dy{sub 2}NiMnO{sub 6}. • Structure and dielectric relaxation of the sample are studied for nano and bulk phases. • The relaxation mechanism of the sample is modeled by Cole–Cole equation. • With increasing sintering temperature conductivity increases. • Electronic structures and magnetic properties have been studied by DFT calculations. - Abstract: The double perovskite oxide Dy{sub 2}NiMnO{sub 6} (DNMO) is synthesized in nano and bulk phase by the sol–gel citrate method. The Rietveld refinement of X-ray diffraction pattern of the sample at room temperature shows the monoclinic P2{submore » 1}/n phase. Dielectric relaxation of the sample is investigated in the impedance and electric modulus formalisms in the frequency range from 50 Hz to 1 MHz and in the temperature range from 253 to 415 K. The Cole–Cole model is used to explain the relaxation mechanism in DNMO. The frequency-dependent maxima in the imaginary part of impedance are found to obey an Arrhenius law with activation energy of 0.346 and 0.344 eV for nano and bulk DNMO, respectively. A significant increase in conductivity of bulk DNMO has been observed than that of the nanoceramic. Electronic structures and magnetic properties of DNMO have been studied by performing first principles calculation based on density functional theory.« less
Thermoluminescent Mechanisms in Calcium Sulphate Doped with Dysprosium.
NASA Astrophysics Data System (ADS)
Matthews, Robert James
Thermoluminescent (TL) mechanisms in CaSO(,4):Dy caused by ionizing irradiation are investigated. Influences of the background impurities on the structure of the glow curve are determined and are correlated with known electron spin resonance (ESR) results. These are combined with fading studies that determine the TL process as bimolecular or monomolecular and the order of the kinetics involved. The TL emission spectrum is determined for all temperature regions of the TL emission to 400(DEGREES)C; optical absorption (OA) in the visible provides information on the valence state of the Dy ion. Photo stimulated transfer of TL (PTTL) helps determine the influence of traps deeper than 400(DEGREES)C, while studies of CaSO(,4):Dy in the scanning electron microscope (SEM) operated in the cathodoluminescent (CL) mode provide information on processes occurring during electron bombardment and on the distribution of Dy in CaSO(,4). The information from these studies is combined to form comprehensive models of the TL mechanisms responsible for the TL glow peaks.(,). The glow peak occurring between 130(DEGREES)C and 260(DEGREES)C, usually designated as the dosimetric peak, was determined to be the result of two primary processes. In the first mechanism, the SO(,3)('-) radical recombines with an oxygen interstitial (O(,i)('-)) associated with the Dy('3+) in charge compensation. The recombination energy is given up as TL. In the second mechanism, it is concluded that divalent Dy release electrons to the conduction band in a non-radiative process. The liberated electron recombines with a hole center at a remote SO(,4)(' -) site. The recombination energy is either transferred to trivalent Dy, which emits TL, or this energy causes the (SO(,4)('-))* to disassociate and form an SO(,3)(' -) and an O(,i)('-). These defects are thought to recombine at about 300(DEGREES)C. In the low temperature region (room temperature to 130(DEGREES)C), the monovalent cation, particularly Na('+) acting as charge compensation for the trivalent Dy, stabilizes the SO(,4)('-) radical and the SO(,2)(' -) radical produced during irradiation. These are determined to be monomolecular type defect comples. The TL mechanisms proposed for the dosimetric region (130(DEGREES)C - 260(DEGREES)C) and the low temperature region (RT - 130(DEGREES)C) are those most consistent with all the results of the various methods of research.
NASA Astrophysics Data System (ADS)
Tikhonova, Natalia; Gusev, Anatoly; Diansky, Nikolay; Zakharchuk, Evgeny
2016-04-01
In this research, we study the influence of dynamic processes in the Danish Straits on the sea surface height (SSH) oscillations in the Baltic Sea. For this purpose, we use the model of marine and oceanic circulation INMOM (Institute of Numerical Mathematics Ocean Model). The simulations were carried out for the period 2009-2010, and the coastal station data were used for verification of SSH modelling quality. Comparison of the simulated data with the ones measured in the coastal points showed us that the model does not describe SSH variability in different areas of the Baltic Sea well enough, so in the following simulation series the in situ SSH data of the coastal measurements were assimilated at the open boundary in the Danish Straits. The results of the new simulation showed us that this approach significantly increases the SSH simulation quality in all areas of the sea, where the comparison was made. In particular, the correlation coefficients between the simulated and measured SSH data increased from 0.21-0.73 to 0.81-0.90. On the basis of these results, it has been suggested that the Baltic Sea SSH variability is largely determined by the influence of the dynamic processes in the Danish Straits, which can be represented as a superposition of oscillations of different space-time scales. These oscillations can either be generated in the straits themselves, or propagate from the North Sea. For verification of this hypothesis and assessment of the oscillation propagation distance in the Baltic Sea, the following experiment was performed. At the open boundary in the Danish Straits, the six harmonics were set with the following parameters: the periods are 1.5, 3.0, 6.0, 13.5, 40.5, and 121.5 days, and the amplitude for all the harmonics is 50 cm. The results showed us that the prescribed harmonic oscillations at the open boundary propagate into all areas of the sea without changing the frequency, but with decreasing amplitude. The decrease in amplitude is not related to the distance between the measurement point and open boundary. For example, in the Gulfs of Finland and Riga, the 36hr harmonic has an amplitude substantially higher than in the open sea, and in the Stockholm area, this harmonic is at the noise level. The 40dy and 121dy harmonics have slightly lower amplitudes than the original prescribed signal, but they are almost unchanged while propagating further into the sea, and in all the investigated locations have almost identical peaks of spectral density. The 3dy and 6dy harmonics significantly lost their amplitude in all parts of the sea, and spectral density peaks are at the noise level. The simulation results showed us that the Danish straits do not filter 121dy and 40dy oscillations, and their amplitude does not decrease much. The 13dy, 6dy and 3dy oscillations significantly lose in amplitude and have no significant peaks of the spectral density. The 1.5dy harmonic propagates to the Gulfs of Finland and Riga, and increases in amplitude due to resonance at the natural frequency of the basin. It is suggested that, while Danish straits do not filter or transform frequency characteristics of oscillations propagated from the North Sea, but the Baltic Sea configuration may affect the magnitude and propagation extent of these oscillations. Thus, the fluctuations in the North Sea and the Danish Straits can significantly contribute to the Baltic Sea dynamics in the low-frequency range of the spectrum, and the periods of natural oscillations of the basin. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and Saint-Petersburg State University (grant №18.37.140.2014)
Magnetic characteristics of polymorphic single crystal compounds DyIr2Si2
NASA Astrophysics Data System (ADS)
Uchima, Kiyoharu; Shigeoka, Toru; Uwatoko, Yoshiya
2018-05-01
We have confirmed that the tetragonal ternary compound DyIr2Si2 shows polymorphism; the ThCr2Si2-type structure as a low temperature phase (I-phase) and the CaBe2Ge2-type one as a high temperature phase (P-phase) exist. A comparative study on magnetic characteristics of the morphs was performed on the I- and P-phase single crystals in order to elucidate how magnetic properties are influenced by crystallographic symmetry. The magnetic behavior changes drastically depending on the structure. The DyIr2Si2(I) shows an antiferromagnetic ordering below TN = 30 K, additional magnetic transitions of T1 = 17 K and T2 = 10 K, and a strong uniaxial magnetic anisotropy with the easy [001] direction. The [001] magnetization shows four metamagnetic transitions at low temperatures. On the other hand, the DyIr2Si2(P) has comparatively low ordering temperature of TN1 = 9.4 K and an additional transition temperature of TN2 = 3.0 K, and exhibits an easy-plane magnetic anisotropy with the easy [110] direction. Two metamagnetic transitions appear in the basal plane magnetization processes. In both the morphs, the χ-T behavior suggests the existence of component-separated magnetic transitions. The ab-component of magnetic moments orders at the higher transition temperature TN1 for the P-phase compound, which is contrast to the I-phase behavior; the c-component orders firstly at TN. The crystalline electric field (CEF) analysis was made, and the difference in magnetic behaviors between both the morphs is explained by the CEF effects.
NASA Astrophysics Data System (ADS)
Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Singh, Fouran
2016-05-01
Nanoparticles of Y2O3:Dy3+ were prepared by the solution combustion method. The X-ray diffraction pattern of the 900°C annealed sample shows a cubic structure and the average crystallite size was found to be 31.49 nm. The field emission scanning electron microscopy image of the 900°C annealed sample shows well-separated spherical shape particles and the average particle size is found to be in a range 40 nm. Pellets of Y2O3:Dy3+ were irradiated with 100 MeV swift Si8+ ions for the fluence range of 3 × 1011_3 × 1013 ions cm-2. Pristine Y2O3:Dy3+ shows seven Raman modes with peaks at 129, 160, 330, 376, 434, 467 and 590 cm-1. The intensity of these modes decreases with an increase in ion fluence. A well-resolved thermoluminescence glow with peaks at ∼414 K (Tm1) and ∼614 K (Tm2) were observed in Si8+ ion-irradiated samples. It is found that glow peak intensity at 414 K increases with an increase in the dopant concentration up to 0.6 mol% and then decreases with an increase in dopant concentration. The high-temperature glow peak (614 K) intensity linearly increases with an increase in ion fluence. The broad TL glow curves were deconvoluted using the glow curve deconvoluted method and kinetic parameters were calculated using the general order kinetic equation.
User Manual for Personnel Inventory Aging and Promotion Model
2009-06-01
increased by 12. Now, an SQL 9 statement deletes records where [target] = NULL, and the model calculates the number of E8s that need to be promoted to...the run, the [Likelihood] and [Expected] tables are created. The first step in this process is to dy- namically build an SQL statement, based on the...This table has individual-level, longitudinal records. Next, a dy- namically built SQL statement based on the Number of Years, cre- ates a new data
Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.
Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A
2017-12-01
Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.
Increased polyamines as protective disease modifiers in congenital muscular dystrophy.
Kemaladewi, D U; Benjamin, J S; Hyatt, E; Ivakine, E A; Cohn, R D
2018-06-01
Most Mendelian disorders, including neuromuscular disorders, display extensive clinical heterogeneity that cannot be solely explained by primary genetic mutations. This phenotypic variability is largely attributed to the presence of disease modifiers, which can exacerbate or lessen the severity and progression of the disease. LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a fatal degenerative muscle disease resulting from mutations in the LAMA2 gene encoding Laminin-α2. Progressive muscle weakness is predominantly observed in the lower limbs in LAMA2-CMD patients, whereas upper limbs muscles are significantly less affected. However, very little is known about the molecular mechanism underlying differential pathophysiology between specific muscle groups. Here, we demonstrate that the triceps muscles of the dy2j/dy2j mouse model of LAMA2-CMD demonstrate very mild myopathic findings compared with the tibialis anterior (TA) muscles that undergo severe atrophy and fibrosis, suggesting a protective mechanism in the upper limbs of these mice. Comparative gene expression analysis reveals that S-Adenosylmethionine decarboxylase (Amd1) and Spermine oxidase (Smox), two components of polyamine pathway metabolism, are downregulated in the TA but not in the triceps of dy2j/dy2j mice. As a consequence, the level of polyamine metabolites is significantly lower in the TA than triceps. Normalization of either Amd1 or Smox expression in dy2j/dy2j TA ameliorates muscle fibrosis, reduces overactive profibrotic TGF-β pathway and leads to improved locomotion. In summary, we demonstrate that a deregulated polyamine metabolism is a characteristic feature of severely affected lower limb muscles in LAMA2-CMD. Targeted modulation of this pathway represents a novel therapeutic avenue for this devastating disease.
Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite
NASA Astrophysics Data System (ADS)
Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz
2018-05-01
High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.
Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh
2015-06-07
Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less
Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan
2013-01-01
Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.
Son, Hyeon-Taek; Kim, Yong-Ho; Yoo, Hyo-Sang
2018-03-01
The microstructure of the as-cast Mg-5Al-3Ca-2Nd-xDy alloys consists of α-Mg matrix, (Mg, Al)2Ca eutectic phase, Al-Nd and Al-Dy intermetallic compounds. α-Mg matrix morphology was changed from dendritic to equiaxed with the increase Dy addition. And grain size was remarkably refined. As Dy content was increased, yield strength was improved due to the refined grains and the homogeneous distribution of Al-Dy phase.
Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno
2013-06-17
Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius plot to be 12.2(7) and 6.1(3) K for 1Tb and 2Tb, respectively, and 18.1(6) and 14.5(4) K for 1Dy and 2Dy, respectively, under a dc bias field of 1000 Oe. Compound 1Dy showed relatively slow relaxation of magnetization reorientation even at zero dc applied field with Δ/kB = 6.6(4) K.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Ma, Qian; Lu, Mengkai; Yang, Ping; Zhang, Aiyu; Cao, Yongqiang
2014-06-01
In this study, a series of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) down-converting phosphors were synthesized using a modified sol-gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors with an average size of 200-300 nm obtained at 1100°C have an orthorhombic aeschynite-type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f-f transitions of RE(3+), including 489 nm ((5) D4 → (7) F6) and 545 nm ((5) D4 → (7) F5) for Tb(3+), 476 and 482 nm ((4) F9/2 → (6) H15/2) and 571 nm ((4) F9/2 → (6) H13/2) for Dy(3+), and 545 nm ((5) F4 + (5) S2 → (5) I8) for Ho(3+), respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mukherjee, P.; Sackville Hamilton, A. C.; Glass, H. F. J.; Dutton, S. E.
2017-10-01
A systematic study of the structural and magnetic properties of three-dimensionally frustrated lanthanide garnets Ln 3 A 2 X 3O12, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In, Te, X = Ga, Al, Li is presented. Garnets with Ln = Gd show magnetic behaviour consistent with isotropic Gd3+ spins; no magnetic ordering is observed for T ⩾ 0.4 K. Magnetic ordering features are seen for garnets with Ln = Tb, Dy, Ho in the temperature range 0.4 < T < 2.5 K, however the nature of the magnetic ordering varies for the different Ln as well as for different combinations of A and X. The magnetic behaviour can be explained by tuning of the magnetic interactions and changes in the single-ion anisotropy. The change in magnetic entropy is evaluated from isothermal magnetisation measurements to characterise the magnetocaloric effect in these materials. Among the Gd garnets, the maximum change in magnetic entropy per mole (15.45 J K-1 molGd-1 ) is observed for Gd3Sc2Ga3O12 at 2 K, in a field of 9 T. The performance of Dy3Ga5O12 as a magnetocaloric material surpasses the other garnets with Ln = Tb, Dy, Ho.
Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7
NASA Astrophysics Data System (ADS)
Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus
Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.
NASA Astrophysics Data System (ADS)
Ramakrishna, G.; Nagabhushana, H.; Hareesh, K.; Sunitha, D. V.
2017-07-01
Dy3+ doped Y2SiO5 nanophosphors were synthesized by solution combustion technique using Calotropis gigantean milk latex and NaCl as fuel and flux respectively. Powder X-ray diffraction (PXRD) confirmed the formation of monoclinic X2-phase Y2SiO5 belonging to the phase group C2/c. Fourier transform infrared spectroscopy (FTIR) shows characteristic metal-oxygen (Y-O) vibration band at 721 cm-1. Transmission electron microscopic (TEM) and Scanning electron microscopic (SEM) morphological feature exhibits non-uniform almost spherical shaped nanosized particles. The photoluminescence (PL) emission peaks, recorded at 388 nm, showed radiative emissions at 483, 575 and 636 nm respectively. Judd-Ofelt (JO) analysis was carried out to estimate the radiative (AR) properties, radiative life time (τR), branching ratio (βR) and stimulated emission crossection (σλp). The CIE and CCT was estimated using McCamy empirical formula. In the beginning, the CIE co-ordinate values were lying in the light blue region. However, with increase in Dy3+ concentration the values shifted towards white region. CCT value was found to be ∼6984 K. Therefore, Y2SiO5:Dy3+ (9 mol%) can be used for cool day light and WLED applications.
Luminescent LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres for encapsulation of biomolecules
NASA Astrophysics Data System (ADS)
Li, Dan; Liu, Chunlei; Jiang, Lianzhou
2015-10-01
In this study, LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres, synthesized via self-sacrificing templated route, are developed for enzyme immobilization and protein adsorption. The four LuVO4 hollow spheres with diameter of 180 nm, 280 nm, 370 nm and 480 nm were obtained. The size of LuVO4 hollow sphere is dependent on Lu(OH)CO3 template. Upon excitation by UV light, hollow LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) spheres exhibit red (Eu3+), orange (Sm3+), yellow-green (Dy3+), and green (Er3+) emissions. The good biocompatibility of sample is validated by MTT assay. Due to structure feature and size of obtained sample, the rapid encapsulation of biomolecules within samples has been achieved. Furthermore, the hollow spheres show different biomolecules adsorption capacities at different buffer solution pH values. The release behaviors of two kinds of biomolecules (lysozyme and bovine serum albumin) are also investigated. LuVO4 hollow spheres are suitable carriers for biomolecules. The emission intensity of Eu3+ in the LuVO4:Eu3+ varies with the released amount of LYZ. This enables the monitoring of release process by the change in the luminescence intensity.
Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.
2014-01-01
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127
Chow, Chun Y.; Bolvin, Hélène; Campbell, Victoria E.; Guillot, Régis; Kampf, Jeff W.; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen
2015-01-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3–)4(Hshi2–)2(H2shi–)2(C5H5N)4(CH3OH)x(H2O)x]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex. PMID:29218180
Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J; Martínez, Angel T
2015-03-01
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Venkataiah, G.; Marimuthu, K.
2015-02-01
A new series of white light emitting Dy3+ doped Lead tellurofluoroborate glasses have been prepared and their spectroscopic and energy transfer behavior were explored through analyzing XRD, FTIR, Raman, SEM, EDAX, optical absorption, photoluminescence and lifetime measurements. The fundamental stretching of the various borate and tellurite networks were identified using FTIR and Raman spectral analysis. The bonding parameter studies reveal the ionic nature of the Dysbnd O bond in the present glasses. The Judd-Ofelt (JO) intensity parameters determined from the absorption spectra have been used to investigate the nature of bonding and symmetry orientation of the Dy-ligand field environment. The luminescence intensity increases with increasing Dy3+ ion concentration up to 0.5 wt%, beyond that luminescence quenching is observed. The JO parameters have been used to determine the transition probability (A), stimulated emission cross-section (σPE), radiative lifetime (τR) and branching ratios (βR) for the different emission transitions from the 4F9/2 excited level. The higher σPE and βR values of the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions suggest the possible laser action in the visible region. The Y/B ratio, CIE chromaticity color coordinates (x, y) and Color correlated temperature (CCT) were also estimated from the luminescence spectra for different concentration as well as pumping wavelengths. The x, y chromaticity color coordinates fall within the white light region and the white light can be tuned by varying the excitation wavelengths. The lifetime of the 4F9/2 excited state were measured and is found to decrease with increasing Dy3+ ion content. The non-exponential behavior is predominant in higher Dy3+ ion content glasses and is due to the efficient energy transfer between Dy3+sbnd Dy3+ ions. The decay curves were fitted to the Inokuti-Hirayama (IH) model to understand the nature of energy transfer. Among the prepared glasses, 0.5DPTFB glass possesses higher A,βR, σPE, η values and is suggested for lasers and WLED applications.
Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil.
Lee, Jae-Jin; Srinivasan, Sathiyaraj; Lim, Sangyong; Joe, Minho; Lee, Sang Hee; Kwon, Shin Ae; Kwon, Yoon Jung; Lee, Jin; Choi, Jin Ju; Lee, Hye Min; Auh, Young Kyung; Kim, Myung Kyum
2014-03-01
Gram stain-negative and non-motile bacteria, designated as DY53(T) and DY43, were isolated from mountain soil in South Korea prior exposure with 5 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strains belonged to the family Cytophagaceae in the class Cytophagia. 16S rRNA gene sequence similarity of strains DY53(T) and DY43 was 100 %. The highest degrees of sequence similarities of strains DY53(T) and DY43 were found with Hymenobacter perfusus A1-12(T) (98.8 %), Hymenobacter rigui WPCB131(T) (98.5 %), H. yonginensis HMD1010(T) (97.9 %), H. xinjiangensis X2-1g(T) (96.6 %), and H. gelipurpurascens Txg1(T) (96.5 %). The DNA G+C content of the novel strains DY53(T) and DY43 were 59.5 mol%. Chemotaxonomic data revealed that strains possessed major fatty acids such as C₁₅:₀ iso, C₁₅:₀ anteiso, C₁₆:₁ ω5c, summed feature 3 (16:1 ω7c/ω6c), summed feature 4 (17:1 anteiso B/iso I) and C₁₇:₀ iso, and major polar lipid was phosphatidylethanolamine. The novel strains showed resistance to gamma radiation, with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) in excess of 5 kGy. Based on these data, strains DY53(T) and DY43 should be classified as representing a novel species, for which the name Hymenobacter swuensis sp. nov. is proposed, with the type strain DY53(T) (=KCTC 32018(T) = JCM 18582(T)) and DY43 (=KCTC 32010).
Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Bao-gai; Ma, Qing-lan; School of Electronics and Information, Nantong University, Jiangsu 226019
Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of themore » absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.« less
Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna
2014-01-15
Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.
Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke
2017-04-01
We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.
Long-Term Evolution of a Long-Term Evolution Model
2011-01-01
equations for the movement of the dune toe yD and the berm crest location yB are dyD/dt=(qw-qo)/DD and dyB/dt=-(qw-qo)/(DB+DC) respectively, where qw...and sand properties, yB and yD = distances to the seaward end of the berm and the dune toe , respectively, with the y-axis pointing offshore, y50...relative to mean sea level, MSL); zD = dune toe elevation (with respect to MSL); T = swash period (taken to be the same as the wave period); and Cs
Fabrication and properties of Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Miao, Xiangshui; Yan, Junbing; Cheng, Xiaomin
2009-08-01
Light rare earth-heavy rare earth-transition metal films (LRE-HRE-TM)have large saturation magnetization (Ms) and are the promising media for hybrid recording. In this paper, Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy were successfully fabricated onto glass substrate by RF magnetron sputtering and the effects of sputtering technology parameters and Nd substitution for HRE atoms on the magnetic properties were investigated. It was found that when the sputtering power and sputtering time are 250W and 4min, respectively, the magnetic properties of Nd(Tb,Dy)Co/Cr films obtain optimization, perpendicular coercivity, Ms and remanence square ratio(S) of NdTbCo/Cr film reach 3.8kOe, 247emu/cm3 and 0.801, respectively. With the increasing of Nd concentration, Ms increases, while the coercivity (Hc)and the temperature stability of magnetic properties decrease distinctly. These results can be explained by the ferri-magnetic structure of the RE-TM alloy.
A family of rare-earth-based single chain magnets: playing with anisotropy.
Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta
2006-06-21
The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization of both static and dynamic magnetic properties of the whole family is reported. Dy, Tb, and Ho compounds display slow relaxation of the magnetization, and ac susceptibility shows a thermally activated regime with energy barriers of 69, 45, and 34 K for Dy, Tb, and Ho compounds, respectively, while only a frequency-dependent susceptibility is observed for Er below 2.0 K. In Gd and Yb derivatives, antiferromagnetic interactions dominate. The pre-exponential factors differ by about 4 orders of magnitude. Finite size effects, due to naturally occurring defects, affect the static and dynamic properties of the compounds differently.
NASA Astrophysics Data System (ADS)
Zuo, Peng; Klein, Holger; Darie, Céline; Colin, Claire V.
2018-07-01
The focus of this study is on the magnetic properties of the very recently synthesized doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Magnetic characterizations were performed by magnetic susceptibility vs. temperature, isothermal magnetization and heat capacity measurements. All these compounds have been determined as antiferromagnets with Néel temperatures from 4 K to 13.1 K. When the lanthanide is magnetic, additional transitions were observed below the Néel temperature which are attributed to the polarization of the magnetic Ln3+ sublattice by the ordered Co2+ one. Taking into account the magnetic ordering found in this study and the polar structure in the nine compounds NaLnCoWO6 (Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) reported before, these compounds can be classified as new Type I multiferroics.
Impedance Spectroscopy Study of the Ferroelectric Pb0.8K0.1Dy0.1Nb2O6 Ceramics
NASA Astrophysics Data System (ADS)
Rao, K. Sambasiva; Latha, T. Swarna; Krishna, P. Murali; Prasad, D. Madhava
Polycrystalline Dy-modified Pb1-xK2xNb2O6 (PKN) ferroelectric ceramic with a general formula Pb1-xK2x-3yMyNb2O6 for x=0.20, y=0.10 and M=Dy, have been prepared by the solid-state reaction route. The X-ray diffraction (XRD) studies of the material at room temperature revealed orthorhombic structure with lattice parameters a=17.701 Å, b=17.958 Å and c=3.883 Å. The dielectric anomaly with a sharp peak is observed at 430°C. The impedance plots are used as a tool to analyze the sample behavior as a function of frequency. The grain and grain boundary contributions are estimated. The modulus mechanism indicates the non-Debye type relaxation. The activation energy value near the phase transition temperature has been found to be different in the above TC from AC conductivity measurements.
NASA Astrophysics Data System (ADS)
Kariem, Mukaddus; Kumar, Manesh; Yawer, Mohd; Sheikh, Haq Nawaz
2017-12-01
Two new coordination polymers (CPs) with the formula [Nd(hip)(adip) 0.5(H2O)2]n.nH2O (1) and [Dy(aip)(adip)0.5(H2O)2]n.nH2O (2) were synthesized by self-assembly of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)], [5-aminoisophthalic acid (H2aip)] and flexible [adipic acid (H2adip)] linkers under solvothermal conditions. The CPs 1 &2 crystallize in monoclinic C2/c space group. Both the CPs have 1D linear ladder shaped extension with the linkages having the backbone of hip2-, aip2- and adip2- ligands. The 1D linear ladder chains generate three dimensional (3D) supramolecular frameworks via significant π-π and hydrogen bonding interactions. The CP 2 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CP 2 also exhibit weak ferromagnetic interactions at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.; Nishimura, S.; Lorusso, G.
The β-decay half-lives of 94 neutron-rich nuclei 144$-$151Cs, 146$-$154Ba, 148$-$156La, 150$-$158Ce, 153$-$160Pr, 156$-$162Nd, 159$-$163Pm, 160$-$166Sm, 161$-$168Eu, 165$-$170Gd, 166$-$172Tb, 169$-$173Dy, 172$-$175Ho, and two isomeric states 174mEr, 172mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd, and 62Sm, and N = 105 for 63Eu, 64Gd, 65Tb, and 66Dy. Lastly, features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditionsmore » show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.; Nishimura, S.; Lorusso, G.
The β-decay half-lives of 94 neutron-rich nuclei 144 $-$ 151Cs, 146 $-$ 154Ba, 148 $-$ 156La, 1 50 $-$ 158Ce, 153 $-$160Pr, 156 $-$ 162 Nd, 159 $-$ 163Pm, 160 $-$ 166Sm, 161 $-$ 168Eu , 165 $-$ 170Gd, 166 $-$ 172Tb, 169 $-$ 173Dy, 172 $-$ 175Ho, and two isomeric states 174 mEr, 172 mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β -decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd , and 62Sm, and N = 105 for 63Eu,more » 64Gd, 65Tb, and 66Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. In conclusion, $r$-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.« less
NASA Astrophysics Data System (ADS)
Liu, Lei; Liu, Zhuang; Zhang, Xin; Feng, Yanping; Wang, Chunxiao; Sun, Yingli; Lee, Don; Yan, Aru; Wu, Qiong
2017-05-01
Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior.
Magnetic and magnetocaloric properties of iron subs tituted holmium chromite and dysprosium chromite
Yin, Shiqi; Sharma, Vinit; McDannald, Austin; ...
2016-01-11
In this work, structural, magnetic, and magnetocaloric properties of HoCrO 3 and Fe substituted HoCrO 3 and DyCrO 3 (i.e. HoCr 0.7Fe 0.3O 3 and DyCr 0.7Fe 0.3O 3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and x-ray diffraction techniques, which were further confirmed using first-principle calculations. The dc magnetic measurements indicate that the Cr 3+ ordering temperatures for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples are 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmedmore » the Cr 3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho 3+ ordering at ~10 K in the present HoCrO 3 and HoCr 0.7Fe 0.3O 3 samples, which to our knowledge, is the first ac magnetic evidence of Ho 3+ ordering in this system. The effective magnetic moments were determined to be 11.67μB, 11.30μB, and 11.27μB for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO 3 and HoCr 0.7Fe 0.3O 3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum magnetocaloric value were determined to be 7.2 (at 20 K), 6.83 (at 20 K), 13.08 J/kg K (at 5 K) and the relative cooling power were 408, 387, and 500 J/kg for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively.« less
High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3-LiF salt mixture
NASA Astrophysics Data System (ADS)
Kim, K. M.; Kim, J. Y.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.
2017-05-01
Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3-LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3-LiF) salt (25 mol% DyF3 - 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μ Ω .cm compared to 190 μ Ω .cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3-LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3-LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3-LiF) salt mixture was as good as those of the DyF3-doped magnet.
NASA Astrophysics Data System (ADS)
Huang, Shuai; Li, Guogang
2014-07-01
Li2SrGeO4:RE3+ (RE = Tb/Dy/Ce) phosphors were prepared by the conventional solid-state reaction. X-ray diffraction (XRD), photoluminescence (PL) spectra, and lifetimes were utilized to characterize samples. Under the excitation of ultraviolet (231 nm for Tb3+ and 351 nm for Dy3+), the Li2SrGeO4:Tb3+ and Li2SrGeO4:Dy3+ phosphors show their respective characteristic emissions of Tb3+ (5D3,4 → 7FJ‧, J‧ = 3, 4, 5, 6) and Dy3+ (4F9/2 → 6H15/2 and 4F9/2 → 6H13/2), respectively. Ce3+ activated Li2SrGeO4 phosphors exhibit broad band blue emission due to the 5d-4f transition of Ce3+. Co-doping Ce3+ into the LSG: Ce3+/Dy3+ samples enhances the luminescence intensity of Tb3+ and Dy3+ significantly under the excitation wavelength at 340 nm through energy transfer from Ce3+ to Tb3+/Dy3+. In addition, the energy transfer mechanism between Ce3+ and Tb3+/Dy3+ has been demonstrated to be a resonant type via a dipole-quadrupole interaction.
NASA Astrophysics Data System (ADS)
Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.
2017-10-01
By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3+ concentrations under 350 and 395 nm excitations. Following the analyzed optical data, the singly Dy3+ or Tb3+-doped and Dy3+/Tb3+-codoped glasses could be suggested as promising materials for their applications in solid state light emitting diodes and luminescent display devices.
Chen, Chao; Shrestha, Ruben; Jia, Kaimin; Gao, Philip F.; Geisbrecht, Brian V.; Bossmann, Stefan H.; Shi, Jishu; Li, Ping
2015-01-01
Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcatapp/Kmapp = (1.7 × 107) m−1 s−1) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp220 and Arg327 are found necessary for compound I formation, His312 is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His312 and Arg327 has significant effects on the oligomerization and redox potential (E°′) of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°′ to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders. PMID:26205819
Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry
Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.; ...
2017-01-01
An experiment populating low/medium-spin states in 156Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148Nd( 12C,4 n) reaction and the Gammasphere array was utilized to detect the emitted rays. B(E 2) /B(E1) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whether these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. Additionally,more » several other negative-parity structures were observed to higher spin and two new sequences were established« less
Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H
2004-01-22
Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.
Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.
2017-01-01
An experiment populating low/medium-spin states in 156 Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148 Nd ( 12 C , 4 n ) reaction and the Gammasphere array was utilized to detect the emitted γ rays. B ( E 2 ) / B ( E 1 ) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whethermore » these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. In addition, several other negative-parity structures were observed to higher spin and two new sequences were established.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, H.; Zhang, G. X.; Yoshida, K.
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71(5) s and Kπ = 8- has been identified at 1278 keV, which decays to the ground-state and γ -vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ = 8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ -vibrational levels have been identified at unusually lowmore » excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.« less
Merkle, Conrad W.; Srinivasan, Vivek J.
2015-01-01
The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654
Merkle, Conrad W; Srinivasan, Vivek J
2016-01-15
The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.
Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.
Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai
2015-03-15
Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.
2018-05-01
Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.
Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui
2016-06-28
An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.
Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions
NASA Astrophysics Data System (ADS)
Ramteke, D. D.; Gedam, R. S.; Swart, H. C.
2018-04-01
The borosilicate glasses with Dy3+ ions were prepared by the melt quench technique with varying concentration of Dy2O3. The glasses were characterized by the density calculation, absorbance and photoluminescence (PL) spectroscopy measurements. Density and molar volume of the glasses increases with increase in Dy3+ ions in the glass matrix. This behavior is correlated with the higher molecular weight and larger ionic radius of Dy3+ ion compared to the other constituents of glass matrix. Emission of Dy3+ doped glasses showed three bands at 482, 573 and at 665 nm which correspond to 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions. The emission spectra of glasses with different concentration of Dy3+ ions shows that, glasses with 0.5 mol% of Dy2O3 shows highest emission and decreases with further doping. CIE 1931 chromaticity diagram showed that the emission of these glasses was in the white region. Photographs of these glasses under 349 nm Light emitting diode excitation also confirmed the white light emission from these glasses.
Coercivity enhancement of Dy-coated Nd-Fe-B flakes by crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukunaga, H.; Sugimoto, Y.; Nakano, M.
2011-04-01
The coercivity of isotropic Dy-coated Nd-Fe-B flakes was enhanced by crystallization and simultaneous diffusion of Dy from their surfaces. Amorphous Dy-coated Nd-Fe-B flakes were crystallized by heating them to 923 K 2over a 2 min period followed by rapid cooling. During crystallization, the Dy on the surface diffused into the flakes. This low-temperature rapid annealing produced flakes with fine grains and the Dy diffusion enhanced their coercivity. The coercivity after crystallization increased with increasing Dy layer thickness, although the remanence decreased when the layer thickness exceeded 3 {mu}m. Thick coatings of over 6 {mu}m resulted in the formation of DyFe{submore » 2}, which degraded the magnetic properties of the crystallized flakes. Flakes with a 3-{mu}m-thick coating exhibited excellent magnetic properties after annealing: They had a coercivity of 1880 kA/m and a remanence of 78 emu/g. This coercivity is approximately 500 kA/m higher than that of uncoated flakes, whereas the remanence is comparable to that of uncoated flakes.« less
NASA Astrophysics Data System (ADS)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
Chen, Sihuai; Mereacre, Valeriu; Zhao, Zhiying; Zhang, Wanwan; Zhang, Mengsi; He, Zhangzhen
2018-06-05
Three dodecanuclear 3d-4f coordination clusters, [CrIII6LnIII6(μ3-OH)8(tbdea)6(C6H5COO)16]·2H2O (Ln = Dy (1), Y (2)) and [CoIII6DyIII6(μ3-OH)8(nbdea)6(m-CH3C6H4COO)16]·2H2O·2CH3CN (3), have been synthesized under solvothermal conditions and characterized. Single-crystal X-ray diffraction analysis revealed that all three compounds possess an analogous {MIII6LnIII6} core (M = Cr, Co; Ln = Dy, Y) and dc magnetic susceptibility studies indicated that the magnetic exchange couplings between DyIII ions are dominant antiferromagnetic, while the CrIII-DyIII interactions are weakly ferromagnetic. Furthermore, the ac magnetic susceptibility measurements showed that both CrIII6DyIII6 compound 1 and CoIIi6DyIII6 compound 3 containing highly anisotropic DyIII ions displayed single-molecule magnetic (SMM) behavior with the energy barrier Ueff increasing from 12.8 K (for 1) to 20.8 K (for 3), indicating that weak 3d-4f exchange couplings enhance the QTM and reduce the energy barrier.
Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K
2016-01-04
The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Microanalytical characterization of multi-rare earth nanocrystalline magnets by TEM and APT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y. Q.; Tang, W.; Miller, Michael K
2006-01-01
The partitioning behavior of various rare-earth (RE) elements during solidification and their segregation behavior at the grain boundaries were investigated in nanocrystalline (Y{sub 0.5}Dy{sub 0.5}{sub 2.2}Fe{sub 14}B and (Nd{sub 0.5}Y{sub 0.25}Dy{sub 0.25}){sub 1.8}Zr{sub 0.4}Co{sub 1.5}Fe{sub 12.5}B alloys by transmission electron microscopy and atom probe tomography. The best hard magnetic properties obtained are H{sub cj} = 22 kOe, B{sub r}=5.10 kG, and (BH){sub max} = 5.97 MG Oe for the Y-Dy-based alloy and H{sub cj}=10.6 kOe, B{sub r}=6.64 kG, and (BH){sub max}=9.56 MG Oe for the Y-Nd-Dy based alloy. The grain size of the Y-Dy based alloy was {approx} 50 nm.more » The Y-Nd-Dy based alloy had an overall finer, bimodal grain size. An intergranular (Y{sub 0.36}Dy{sub 0.64}){sub 6}Fe{sub 23} phase was detected in the Y-Dy based alloy. A uniform distribution of RE elements was found within the 2-14-1 grains in both alloys. The Y:(Dy+Nd) ratio in the Y-Nd-Dy alloy was lower than its nominal composition, indicating that the Y is segregating to grain boundaries or forming a second phase.« less
Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
Fernandez-Fueyo, Elena; Linde, Dolores; Almendral, David; ...
2015-05-13
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes ( Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, bothmore » enzymes also oxidize Mn 2+ to Mn 3+, albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn 2+ turnover (56 s –1) nearly in the same order of the two other Mn 2+-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s–1 average turnover) and versatile peroxidases (145 s –1 average turnover), whose genes were also heterologously expressed. Oxidation of Mn 2+ has been reported for an Amycolatopsis DyP (24 s –1) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn 2+ oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. In conclusion, it is suggested that generation of Mn 3+ oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn 2+-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.« less
Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Fueyo, Elena; Linde, Dolores; Almendral, David
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes ( Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, bothmore » enzymes also oxidize Mn 2+ to Mn 3+, albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn 2+ turnover (56 s –1) nearly in the same order of the two other Mn 2+-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s–1 average turnover) and versatile peroxidases (145 s –1 average turnover), whose genes were also heterologously expressed. Oxidation of Mn 2+ has been reported for an Amycolatopsis DyP (24 s –1) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn 2+ oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. In conclusion, it is suggested that generation of Mn 3+ oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn 2+-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.« less
CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry
NASA Astrophysics Data System (ADS)
Bahl, Shaila; Lochab, S. P.; Kumar, Pratik
2016-02-01
With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.
NASA Astrophysics Data System (ADS)
Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid
2017-05-01
In current work, Nd15-xDyxFe77.5B7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol-gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd-Fe-B nanoparticles have been studied. The coercivity of Nd-Fe-B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd-Fe-B nanoparticle synthesized by sol-gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH)max), lowest-order uniaxial magnetocrystalline anisotropy constant (Ku1), and Curie temperature (Tc) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd-Fe-B nanoparticles with (BH)max =40.38 MGOe, Hc=1663.9 kA/m, Br=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd-Fe-B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd-Fe-B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was -0.36, -0.46, -0.41, -0.34, -0.29, -0.24, -0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd-Fe-B magnet. Microstructure analysis showed a homogeneous distribution of Dy in produced samples. The possible reason for observed magnetic behavior is improving the intrinsic material parameter and optimizing the microstructure by a uniform enhancement of magnetocrystalline anisotropy by formation the nanocrystalline compound (Nd,Dy)2Fe14B.
NASA Astrophysics Data System (ADS)
Parida, S. C.; Jacob, K. T.; Venugopal, V.
2002-10-01
The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system DyFeO were developed at 1250 K.
Materials Data on DyTh (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyNi (SG:62) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Zhuang, Yixi; Lv, Ying; Wang, Le; Chen, Wenwei; Zhou, Tian-Liang; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun
2018-01-17
Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln 2+ /Ln 3+ -doped SrSi 2 O 2 N 2 system (Ln 2+ = Yb, Eu; Ln 3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi 2 O 2 N 2 :Yb,Dy and green-emitting SrSi 2 O 2 N 2 :Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.
A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.
Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong
2015-09-21
Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .
NASA Astrophysics Data System (ADS)
Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo
2013-05-01
We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.
NASA Astrophysics Data System (ADS)
Kautkar, Pranay R.; Acharya, Smita A.
2018-05-01
xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.
Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina
2017-12-12
Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.
Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe
2013-03-04
Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.
Li, Xuejun; Liu, Tianhong; Song, Lijun; Zhang, Heng; Li, Liqun; Gao, Xin
2016-12-15
As one of critical gluten proteins, high-molecular-weight glutenin subunits (HMW-GS) mainly affect the rheological behaviour of wheat dough. The influence of HMW-GS variations at the Glu-A1 and Glu-D1 loci on both secondary and micro structures of gluten and rheological properties of wheat dough was investigated in this study. Results showed that the Amide I bands of the three near-isogenic lines (NILs) shifted slightly, but the secondary structures differed significantly. The micro structure of gluten in NIL 4 (Ax null) showed bigger apertures and less connection, compared to that in Xinong 1330 (Ax1). The micro structure of gluten in NIL 5 (Dx5+Dy10) showed more compact than that in Xinong 1330 (Dx2+Dy12). Correlation analysis demonstrated that the content of β-sheets and disulfide bonds in gluten has a significant relationship with dough properties. The secondary structures of native gluten are suggested to be used as predictors of wheat quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali
2016-11-01
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f 6 5d 1 ', '4f7' has been corrected to '4f 7 ', 'Ba1.95' has been corrected to 'Ba 1.95 ' and 'Ba1.93' has been corrected to 'Ba 1.93 ' respectively.]. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dufour, C.; Dumesnil, K.; Mangin, Ph
2006-07-01
Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.
Decay of the neutron-rich isotope 171Ho and the identification of 169Dy
NASA Astrophysics Data System (ADS)
Chasteler, R. M.; Nitschke, J. M.; Firestone, R. B.; Vierinen, K. S.; Wilmarth, P. A.
1990-10-01
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between 170Er ions and natW targets. On-line mass separation was used together with β- and γ-ray spectroscopy in these studies. At mass A=169, the heaviest known dysprosium isotope, 39(8) s,169Dy, was identified. It was observed to β- decay to the ground state of 169Ho or through a level at 1578 keV. In the A=171 mass chain, a partial decay scheme for 55(3)-s 171Ho was determined.
Evidence for SrHo2O4 and SrDy2O4 as model J1-J2 zigzag chain materials
NASA Astrophysics Data System (ADS)
Fennell, A.; Pomjakushin, V. Y.; Uldry, A.; Delley, B.; Prévost, B.; Désilets-Benoit, A.; Bianchi, A. D.; Bewley, R. I.; Hansen, B. R.; Klimczuk, T.; Cava, R. J.; Kenzelmann, M.
2014-06-01
Neutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site-dependent anisotropic single-ion magnetism in both materials, and diffraction measurements show the presence of strong one-dimensional spin correlations. Our measurements indicate that competing interactions of the zigzag chain, combined with frustrated interchain interactions, play a crucial role in stabilizing spin-liquid type correlations in this series.
NASA Astrophysics Data System (ADS)
Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.
2017-10-01
Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.
Development of YAG:Dy Thermographic Phosphor Coatings for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Jenkins, T. P.; Allison, S. W.; Wolfe, D. E.; Jordan, E. H.
2012-01-01
The selection and development of thermographic phosphor coatings were pursued to meet the objective of demonstrating luminescence-decay-based temperature measurements up to 1300C on the surface of a vane in an operating demonstrator turbine engine. To meet this objective, YAG:Dy was selected based on the desirable luminescence performance observed for YAG:Dy powder: (1) excellent temperature sensitivity and intensity at operating turbine engine temperatures, (2) an emission peak at the relatively short wavelength of 456 nm, where the interference from background blackbody radiation is fairly low, and (3) its nearly single exponential decay which makes for a simple, reliable temperature calibration. However, implementation of YAG:Dy for surface temperature measurements required application of YAG:Dy as a coating onto the surface of a superalloy component with a preexisting yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC). An inherent dilemma in producing a YAG:Dy coating is that coating processing is constrained to be performed at temperatures below (less than 1200C) what is considered safe for the superalloy component, much lower than temperatures used to produce the high quality crystalline powder. Therefore, YAG:Dy coatings tend to exhibit lower luminescence performance compared to well prepared YAG:Dy powder, and the luminescence performance of the coating will depend on the method of coating deposition. In this presentation, the luminescence performance of YAG:Dy coatings prepared by the different methods of (1) application of a binder-based YAG:Dy-containing paint, (2) solution precursor plasma spray (SPPS), and (3) electron-beam physical vapor deposition (EB-PVD) and the effect of post-deposition heat treatments will be discussed.
Positron Annihilation Measurements of High Temperature Superconductors
NASA Astrophysics Data System (ADS)
Jung, Kang
1995-01-01
The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.
Burns, Corey P; Wilkins, Branford O; Dickie, Courtney M; Latendresse, Trevor P; Vernier, Larry; Vignesh, Kuduva R; Bhuvanesh, Nattamai S; Nippe, Michael
2017-07-25
We utilized a rigid ligand platform PyCp 2 2- (PyCp 2 2- = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2- ) to isolate dinuclear Dy 3+ complexes [(PyCp 2 )Dy-(μ-O 2 SOCF 3 )] 2 (1) and [(PyCp 2 )Dy-(μ-Cl)] 2 (3) as well as the mononuclear complex (PyCp 2 )Dy(OSO 2 CF 3 )(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy 3+ complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U eff = 49 cm -1 ) that can be favorably compared to those of the previously reported examples of [Cp 2 Dy(μ-Cl)] 2 (U eff = 26 cm -1 ) and [Cp 2 Dy(thf)(μ-Cl)] 2 (U eff = 34 cm -1 ).
Materials Data on DySb2 (SG:21) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-04-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy2SO2 (SG:164) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy(CuS)2 (SG:164) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-04-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyBPd3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy(BC)2 (SG:131) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyCoC (SG:131) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyTe3 (SG:63) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-05-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyMn2 (SG:227) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy11S16 (SG:18) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyCoSn2 (SG:63) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DySn2 (SG:63) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microwave-Assisted Synthesis, Microstructure, and Magnetic Properties of Rare-Earth Cobaltites.
Gutiérrez Seijas, Julia; Prado-Gonjal, Jesús; Ávila Brande, David; Terry, Ian; Morán, Emilio; Schmidt, Rainer
2017-01-03
The series of perovskite rare-earth (RE) doped cobaltites (RE)CoO 3 (RE = La-Dy) was prepared by microwave-assisted synthesis. The crystal structure undergoes a change of symmetry depending on the size of the RE cation. LaCoO 3 is rhombohedral, S.G. R3̅c (No. 167), while, for the rest of the RE series (Pr-Dy), the symmetry is orthorhombic, S.G. Pnma (No. 62). The crystal structure obtained by X-ray diffraction was confirmed by high-resolution transmission electron microscopy, which yielded a good match between experimental and simulated images. It is further shown that the well-known magnetism in LaCoO 3 , which involves a thermally induced Co 3+ (d 6 ) low spin to intermediate or high spin state transition, is strongly modified by the RE cation, and a rich variety of magnetic order has been detected across the series.
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
Refinement of the Pion PDF implementing Drell-Yan and Deep Inelastic Scattering Experimental Data
NASA Astrophysics Data System (ADS)
Barry, Patrick; Sato, Nobuo; Melnitchouk, Wally; Ji, Chueng-Ryong
2017-09-01
We realize that an abundance of ``sea'' quarks and gluons (as opposed to three valence quarks) is crucial to understanding the mass and internal structure of the proton. An effective pion cloud exists around the core valence structure. In the Drell-Yan (DY) process, two hadrons collide, one donating a quark and the other donating an antiquark. The quark-antiquark pair annihilate, forming a virtual photon, which creates a lepton-antilepton pair. By measuring their cross-sections, we obtain information about the parton distribution function (PDF) of the hadrons. The PDF is the probability of finding a parton at a momentum fraction of the hadron, x, between 0 and 1. Complementary to the DY process is deep inelastic scattering (DIS). Here, a target nucleon is probed by a lepton, and we investigate the pion cloud of the nucleon. The experiments H1 and ZEUS done at HERA at DESY collect DIS data by detecting a leading neutron (LN). By using nested sampling to generate sets of parameters, we present some preliminary fits of pion PDFs to DY (Fermilab-E615 and CERN-NA10) and LN (H1 and ZEUS) datasets. We aim to perform a full NLO QCD global analysis to determine pion PDFs accurately for all x. There have been no attempts to fit the pion PDF using both low and high x data until now.
Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno
2013-11-04
Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.
26 CFR 48.4081-2 - Taxable fuel; tax on removal at a terminal rack.
Code of Federal Regulations, 2011 CFR
2011-04-01
... connection with the removal of diesel fuel or kerosene that is not dyed and marked in accordance with § 48... fuel or kerosene is dyed and marked in accordance with § 48.4082-1. (4) Example. The following example... blendstocks), 48.4082-1 (relating to dyed diesel fuel and dyed kerosene), 48.4082-5 (relating to diesel fuel...
26 CFR 48.4081-2 - Taxable fuel; tax on removal at a terminal rack.
Code of Federal Regulations, 2012 CFR
2012-04-01
... connection with the removal of diesel fuel or kerosene that is not dyed and marked in accordance with § 48... fuel or kerosene is dyed and marked in accordance with § 48.4082-1. (4) Example. The following example... blendstocks), 48.4082-1 (relating to dyed diesel fuel and dyed kerosene), 48.4082-5 (relating to diesel fuel...
26 CFR 48.4081-2 - Taxable fuel; tax on removal at a terminal rack.
Code of Federal Regulations, 2013 CFR
2013-04-01
... connection with the removal of diesel fuel or kerosene that is not dyed and marked in accordance with § 48... fuel or kerosene is dyed and marked in accordance with § 48.4082-1. (4) Example. The following example... blendstocks), 48.4082-1 (relating to dyed diesel fuel and dyed kerosene), 48.4082-5 (relating to diesel fuel...
Yu, Qing; Sali, Arpana; Van der Meulen, Jack; Creeden, Brittany K; Gordish-Dressman, Heather; Rutkowski, Anne; Rayavarapu, Sree; Uaesoontrachoon, Kitipong; Huynh, Tony; Nagaraju, Kanneboyina; Spurney, Christopher F
2013-01-01
Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.
Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice
NASA Astrophysics Data System (ADS)
Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.
2013-01-01
Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.
NASA Astrophysics Data System (ADS)
Vijayalakshmi, L.; Naveen Kumar, K.; Srinivasa Rao, K.; Hwang, Pyung
2017-10-01
A set of co-doped (Ce3+/Dy3+): LBZ glasses were prepared by standard melt quenching technique. The pertinent absorption bands were observed in the optical absorption spectrum of co-doped Ce3+/Dy3+: LBZ glasses. We have been observed a prominent blue and yellow emission pertaining to Dy3+ ions at 0.5 mol % under the excitation of 385 nm doped glasses. However, the photoluminescence intensities were remarkably enhanced by co-doping with Ce3+ ions to Dy3+: LBZ glasses due to energy transfer from Ce3+ to Dy3+. The emission spectra of co-doped (Ce3+/Dy3+): LBZ glass exhibits three strong emissions at 440 nm, 480 nm and 574 nm which are assigned with corresponding electronic transitions of 4I15/2 → 6H15/2, 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 respectively. The Commission International de E'clairage coordinates were calculated from their emission spectra of single doped Dy3+ and co-doped (Ce3+/Dy3+): LBZ glasses. The obtained CIE chromaticity coordinates for optimized co-doped glass are found to be very close to the standard white region. Based on the concentration of Ce3+, the emitting color of the co-doped glass can be changed from blue to white color. The transformation of the color from blue to white region due to energy transfer from Ce3+ to Dy3+. The energy transfer mechanism was substantiated by various fluorescence dynamics such as overlapped spectral profiles, photoluminescence, lifetime decay and CIE color coordinate analysis. These results could be suggested that the obtained co-doped (Ce3+/Dy3+): LBZ glasses are promising candidates for commercial white light applications.
Varicocelescintigraphy versus X-ray phlebography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oei, H.Y.; Arndt, J.W.; Mali, W.P.T.
1984-01-01
In this study varicocelescintigraphy (VS) is compared to X-ray phlebography(XP). In 104 patients (pts) suspected for varicocele on physical examination, VS was performed using a large field camera and 5 mCi Tc-99m in-vivo labeled erythrocytes. This was done (without Valsalva) in upright position after taping penis to the abdomen, marking the penisbase and covering the thighs with lead. Twenty 5-sec dynamic images (DY) and 5-min static image (ST) were made. Variocele-size was quantitated by bloodpoolvalue (BPV) using digital image of ST. BPV is the ratio of mean counts/pixel in varicocele and right iliac vessels calculated from adjacent pixels with maximummore » counts. On XP varicocele was diagnosed if the testicular vein was visualized after contrast injection given during Valsalva in the renal vein. In 85 pts varicocele was confirmed on XP. In 67 of them this was recognized easily on both DY and ST; the DY shows activity in the varicocele 10-35 sec later than the iliac artery and the ST shows pooling of activity below the penisbase. In 11 pts the varicocele was only seen on ST and in other 5 pts only on DY. In the remaining 2 pts both DY and ST were false negative. The BPV in 72 pts with abnormal DY and in 11 pts with normal DY varied between 0.4 - 2.2(0.89 +- 0.38) resp. 0.4 - 1.0(0.61 +- 0.19). In 16 of the 19 pts who showed no varicocele on XP, VS also was negative; their BPV varied between 0.2 - 0.4(0.30 +- 0.08). However, in 3 pts who initially had a normal XP, varicocele was diagnosed on both DY and ST, which was confirmed when XP was repeated. Diagnosis of varicocele by physical examination is not accurate. VS is suitable for screenings procedure when both DY and ST are obtained. Pts with abnormal DY have larger varicocele than pts with normal DY.« less
Shang, Mengmeng; Geng, Dongling; Yang, Dongmei; Kang, Xiaojiao; Zhang, Yang; Lin, Jun
2013-03-18
Pure Ca2Ba3(PO4)3Cl and rare earth ion (Eu(2+)/Ce(3+)/Dy(3+)/Tb(3+)) doped Ca2Ba3(PO4)3Cl phosphors with the apatite structure have been prepared via a Pechini-type sol-gel process. X-ray diffraction (XRD) and structure refinement, photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, absolute quantum yield, as well as lifetimes were utilized to characterize samples. Under UV light excitation, the undoped Ca2Ba3(PO4)3Cl sample shows broad band photoluminescence centered near 480 nm after being reduced due to the defect structure. Eu(2+) and Ce(3+) ion doped Ca2Ba3(PO4)3Cl samples also show broad 5d → 4f transitions with cyan and blue colors and higher quantum yields (72% for Ca2Ba3(PO4)3Cl:0.04Eu(2+); 67% for Ca2Ba3(PO4)3Cl:0.016Ce(3+)). For Dy(3+) and Tb(3+) doped Ca2Ba3(PO4)3Cl samples, they give strong line emissions coming from 4f → 4f transitions. Moreover, the Ce(3+) ion can transfer its energy to the Tb(3+) ion in the Ca2Ba3(PO4)3Cl host, and the energy transfer mechanism has been demonstrated to be a resonant type, via a dipole-quadrupole interaction. However, under the low voltage electron beam excitation, Tb(3+) ion doped Ca2Ba3(PO4)3Cl samples present different luminescence properties compared with their PL spectra, which is ascribed to the different excitation mechanism. On the basis of the good PL and CL properties of the Ca2Ba3(PO4)3Cl:A (A = Ce(3+)/Eu(2+)/Tb(3+)/Dy(3+)), Ca2Ba3(PO4)3Cl might be promising for application in solid state lighting and field-emission displays.
Ferrielectricity in DyMn2O5: A golden touchstone for multiferroicity of RMn2O5 family
NASA Astrophysics Data System (ADS)
Liu, J.-M.; Dong, S.
2015-06-01
The RMn2O5 manganite compounds represent one class of multiferroic family with magnetic origins, which has been receiving continuous attention in the past decade. So far, our understanding of the magnetic origins for ferroelectricity in RMn2O5 is associated with the nearly collinear antiferromagnetic structure of Mn ions, while the exchange striction induced ionic displacements are the consequence of the spin frustration competitions. While this scenario may be applied to almost all RMn2O5 members, its limitation is either clear: the temperature-dependent behaviors of electric polarization and its responses to external stimuli are seriously materials dependent. These inconsistences raise substantial concern with the state-of-the-art physics of ferroelectricity in RMn2O5. In this mini-review, we present our recent experimental results on the roles of the 4f moments from R ions which are intimately coupled with the 3d moments from Mn ions. DyMn2O5 is a golden figure for illustrating these roles. It is demonstrated that the spin structure accommodates two nearly collinear sublattices which generate respectively two ferroelectric (FE) sublattices, enabling DyMn2O5 an emergent ferrielectric (FIE) system rarely identified in magnetically induced FEs. The evidence is presented from several aspects, including FIE-like phenomena and magnetoelectric responses, proposed structural model, and experimental check by nonmagnetic substitutions of the 3d and 4f moments. Additional perspectives regarding possible challenges in understanding the multiferroicity of RMn2O5 as a generalized scenario are discussed.
Transport properties of RCo_2B_2C with R = Dy, Ho, and Pr single
NASA Astrophysics Data System (ADS)
Duran, Alejandro; Escudero, Roberto
2002-03-01
Single crystals of (Dy, Ho, Pr)Co_2B_2C have been grown by a cold copper crucible method. Metallurgical and structural studies indicate that this borocarbide family melts incongruently and crystallizes as a derivative structure of the ThCr_2Si_2. The family accepts rare earth atoms depending on the type of transition metals used to form the compound. For instance with Ni atoms, all lanthanides ranging from the large lanthanum to lutetium ions are reported to form RNi_2B_2C single crystals, so far no single crystals have been obtained when changing Ni by Cobalt. A comparison of the structural parameters of the RCo_2B_2C with the RNiHo, Pr) compounds indicate that the atomic distance between transition metal atoms contracts with the insertion of the Co ion, resulting in an increasing of the c parameter and decreasing volume. Several recent reports published in the current literature related on the physical properties of RCo_2B_2C (R = rare earth metals and Y) have been only performed on polycrystalline samples, they commonly contain small amounts of second phases. High quality single crystals are necessaries in order to better understand the physical properties, such as anisotropy in the transport and in the magnetic properties. In this report we show magnetic susceptibility and resistivity measurements performed in single crystals in the ab-plane and c direction for 2 - 320 K temperature range for the three single crystals of (Dy, Ho, Pr)Co_2B_2C.
Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal
2013-06-03
The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.
Electrical properties of Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, K. Amar, E-mail: karn190@gmail.com; Chandra, K. P., E-mail: kpchandra23@gmail.com; Dubey, K., E-mail: kirandubey45@yahoo.com
2016-05-06
Polycrystalline Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher’s power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.
Wu, J; Nishimura, S; Lorusso, G; Möller, P; Ideguchi, E; Regan, P-H; Simpson, G S; Söderström, P-A; Walker, P M; Watanabe, H; Xu, Z Y; Baba, H; Browne, F; Daido, R; Doornenbal, P; Fang, Y F; Gey, G; Isobe, T; Lee, P S; Liu, J J; Li, Z; Korkulu, Z; Patel, Z; Phong, V; Rice, S; Sakurai, H; Sinclair, L; Sumikama, T; Tanaka, M; Yagi, A; Ye, Y L; Yokoyama, R; Zhang, G X; Alharbi, T; Aoi, N; Bello Garrote, F L; Benzoni, G; Bruce, A M; Carroll, R J; Chae, K Y; Dombradi, Z; Estrade, A; Gottardo, A; Griffin, C J; Kanaoka, H; Kojouharov, I; Kondev, F G; Kubono, S; Kurz, N; Kuti, I; Lalkovski, S; Lane, G J; Lee, E J; Lokotko, T; Lotay, G; Moon, C-B; Nishibata, H; Nishizuka, I; Nita, C R; Odahara, A; Podolyák, Zs; Roberts, O J; Schaffner, H; Shand, C; Taprogge, J; Terashima, S; Vajta, Z; Yoshida, S
2017-02-17
The β-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.
White emission materials from glass doped with rare Earth ions: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com; Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000
2016-03-11
Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nmmore » pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.« less
Photodissociation spectroscopy of the dysprosium monochloride molecular ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek
2015-09-28
We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells,more » including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.« less
Wang, Jing; Han, Yanping; Yang, Ruifu; Zhao, Xingxu
2015-08-04
To observe cell membrane and nucleus in bacteria for subcellular localization. FM4-64 and Hoechst were dyed that can label cell membrane and nucleus, respectively. Both dyes were used to co-stain the membranes and nucleus of eight bacterial strains ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Yersinia pestis, Legionella pneumonia, Vibrio cholerae and Bacillus anthracis). E. coli was dyed with different dye concentrations and times and then observed by confocal fluorescence microscopic imaging. Fluorescence intensity of cell membrane and nucleus is affected by dye concentrations and times. The optimal conditions were determined as follows: staining cell membrane with 20 μg/mL FM4-64 for 1 min and cell nucleus with 20 μg/mL Hoechst for 20 min. Gram-negative bacteria were dyed better than gram-positive bacteria with FM4-64dye. FM4-64 and Hoechst can be used to stain membrane and nucleus in different types of bacteria. Co-staining bacterial membrane and nucleus provides the reference to observe cell structure in prokaryotes for studying subcellular localization.
Yarn-dyed fabric defect classification based on convolutional neural network
NASA Astrophysics Data System (ADS)
Jing, Junfeng; Dong, Amei; Li, Pengfei
2017-07-01
Considering that the manual inspection of the yarn-dyed fabric can be time consuming and less efficient, a convolutional neural network (CNN) solution based on the modified AlexNet structure for the classification of the yarn-dyed fabric defect is proposed. CNN has powerful ability of feature extraction and feature fusion which can simulate the learning mechanism of the human brain. In order to enhance computational efficiency and detection accuracy, the local response normalization (LRN) layers in AlexNet are replaced by the batch normalization (BN) layers. In the process of the network training, through several convolution operations, the characteristics of the image are extracted step by step, and the essential features of the image can be obtained from the edge features. And the max pooling layers, the dropout layers, the fully connected layers are also employed in the classification model to reduce the computation cost and acquire more precise features of fabric defect. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show the capability of defect classification via the modified Alexnet model and indicate its robustness.
Pakhira, Santanu; Mazumdar, Chandan; Choudhury, Dibyasree; Ranganathan, R; Giri, S
2018-05-16
In this work, we report the successful synthesis of a new intermetallic compound Dy2Ni0.87Si2.95 forming in single phase only with a chemically disordered structure. The random distribution of Ni/Si and crystal defects create a variation in the local electronic environment between the magnetic Dy ions. In the presence of both disorder and competing exchange interactions driven magnetic frustration, originating due to c/a ∼ 1, the compound undergoes spin freezing behaviour below 5.6 K. In the non-equilibrium state below the spin freezing behaviour, the compound exhibits aging phenomena and magnetic memory effects. In the magnetically short-range ordered region, much above the freezing temperature, an unusual occurrence of considerable magnetic entropy change, -ΔSmaxM ∼ 21 J kg-1 K-1 with large cooling power RCP ∼ 531 J kg-1 and adiabatic temperature change, ΔTad ∼ 10 K for a field change of 70 kOe, is observed for this short range ordered cluster-glass compound without any magnetic hysteresis loss.
Crystal field effects in the intermetallic R Ni3Ga9 (R =Tb , Dy, Ho, and Er) compounds
NASA Astrophysics Data System (ADS)
Silva, L. S.; Mercena, S. G.; Garcia, D. J.; Bittar, E. M.; Jesus, C. B. R.; Pagliuso, P. G.; Lora-Serrano, R.; Meneses, C. T.; Duque, J. G. S.
2017-04-01
In this paper, we report temperature-dependent magnetic susceptibility, electrical resistivity, and heat-capacity experiments in the family of intermetallic compounds R Ni3Ga9 (R = Tb, Dy, Ho, and Er). Single-crystalline samples were grown using Ga self-flux method. These materials crystallize in a trigonal ErNi3Al9 -type structure with space group R 32 . They all order antiferromagnetically with TN<20 K . The anisotropic magnetic susceptibility presents large values of the ratio χeasy/χhard indicating strong crystalline electric-field (CEF) effects. The evolution of the crystal-field scheme for each R was analyzed in detail by using a spin model including anisotropic nearest-neighbor Ruderman-Kittel-Kasuya-Yosida interaction and the trigonal CEF Hamiltonian. Our analysis allows one to understand the distinct direction of the ordered moments along the series—the Tb-, Dy-, and Ho-based compounds have the ordered magnetic moments in the easy ab plane and the Er sample magnetization easy axis is along the c ̂ direction.
Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion
NASA Astrophysics Data System (ADS)
Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.
2017-04-01
The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.
Materials Data on Ca(DyS2)2 (SG:122) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy4(SiS4)3 (SG:14) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyCu(WO4)2 (SG:2) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyTa7O19 (SG:188) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy2Sn2O7 (SG:227) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor
NASA Astrophysics Data System (ADS)
Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.
2012-11-01
In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.
Growth and optical properties of Dy doped and undoped n-type InSe single crystal
NASA Astrophysics Data System (ADS)
Gürbulak, B.
1999-02-01
Undoped n-InSe and Dy doped n-InSe (n-InSe : Dy) single crystals were grown by a method which is similar to direct freezing method. Ingots had no cracks and voids on the surface. There were no processes to polish and clean treatment at cleavage faces of these samples because of the natural mirror-like cleavage faces. The absorption measurements were carried out in n-InSe and n-InSe : Dy samples in the temperature range 10-320 K. The first exciton energies for n=1 were calculated as 1.331, 1.248 eV in n-InSe and were 1.326, 1.244 eV in n-InSe : Dy at 10 and 300 K, respectively. The second exciton energies for n=2 in n-InSe were calculated as 1.346, 1.336 eV and in n-InSe : Dy were 1.340, 1.332 eV at 10 and 80 K, respectively. Binding energies of n-InSe and n-InSe : Dy were calculated as 19.47 and 18.87 meV, respectively. The direct bands gap for n-InSe are 1.350, 1.267 eV and for n-InSe : Dy are 1.344, 1.263 eV at 10, 300 K, respectively.
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong
2017-11-01
Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.
Optical and luminescence properties of Dy3+ ions in phosphate based glasses
NASA Astrophysics Data System (ADS)
Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.
2013-08-01
Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin
Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less
Luminescence studies on Dy3+:Tb3+ codoped borophosphate glasses for WLED applications
NASA Astrophysics Data System (ADS)
Vijayakumar, M.; Uma, V.; Maheshvaran, K.; Marimuthu, K.
2017-05-01
Dy3+:Tb3+ codoped borophosphate glasses with the chemical composition 60B2O3+(19.5-x)P2O5+10Na2O+10NaF+0.5Dy2O3+xTb2O3 (where x= 0.1, 0.5, 1 and 2 in wt %) have been synthesized following the melt quenching technique. The fall in emission intensity and lifetime value of the Dy3+ ions with increasing Tb3+ ions concentration indicates the energy transfer process takes place between the Dy3+ and Tb3+ ions. The non-exponential decay profile of the 4F9/2 state pertaining to the Dy3+ ions were well fitted with S=6 of IH model thus indicates the dipole-dipole type of interaction takes place between the Dy3+ and Tb3+ ions. Among the prepared glasses, BPD0.5T glass exhibit better colour coordinates (0.336, 0.358) and colour correlated temperature (CCT) value (5766 K) and the same is suggested as a potential candidate for cool white light applications.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...
2016-06-13
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011
2016-12-07
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
16 CFR 301.12 - Country of origin of imported furs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... labeling shall be preceded by the term fur origin; as for example: Dyed Muskrat Fur Origin: Russia or Dyed... example: Tip-dyed Canadian American Sable Fur Origin: Canada or Russian Sable Fur Origin: Russia (f...
16 CFR 301.12 - Country of origin of imported furs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... labeling shall be preceded by the term fur origin; as for example: Dyed Muskrat Fur Origin: Russia or Dyed... example: Tip-dyed Canadian American Sable Fur Origin: Canada or Russian Sable Fur Origin: Russia (f...
16 CFR 301.12 - Country of origin of imported furs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... labeling shall be preceded by the term fur origin; as for example: Dyed Muskrat Fur Origin: Russia or Dyed... example: Tip-dyed Canadian American Sable Fur Origin: Canada or Russian Sable Fur Origin: Russia (f...
16 CFR 301.12 - Country of origin of imported furs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... labeling shall be preceded by the term fur origin; as for example: Dyed Muskrat Fur Origin: Russia or Dyed... example: Tip-dyed Canadian American Sable Fur Origin: Canada or Russian Sable Fur Origin: Russia (f...
16 CFR 301.12 - Country of origin of imported furs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... labeling shall be preceded by the term fur origin; as for example: Dyed Muskrat Fur Origin: Russia or Dyed... example: Tip-dyed Canadian American Sable Fur Origin: Canada or Russian Sable Fur Origin: Russia (f...
A physicochemical research of the Dy-Sn-O system
NASA Astrophysics Data System (ADS)
Malinovskaya, Tatyana; Lysak, Ilya; Zhek, Valentina; Kuznetsova, Svetlana
2017-11-01
A physicochemical research of the processes of phase composition formation in the materials of the Dy-Sn-O system was performed. Phase composition was taking place in the course of thermal treatment of dysprosium (III) and tin (IV) codeposition products. These were codeposited from nitrate solutions at pH 7, and 25% ammonia water was used as the precipitant. Using thermal and X-ray diffraction analysis, it was found that in the above system at 90 wt. % of Dy2O3 and 10 wt. % of SnO2, when the precursors were heated above 600°C there are no solid solutions. In the meanwhile, at temperatures below 1000°C there is only one phase, Dy2O3. At temperatures above 1000°C, the system becomes bi-phase and includes Dy2O3 and Dy2Sn2O7.
NASA Astrophysics Data System (ADS)
Kumamoto, Narumi; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki
2018-02-01
We have synthesized Dy-doped 12CaO • 7Al2O3 (Dy:C12A7) single crystals with various Dy concentrations by the floating zone (FZ) method and investigated the photoluminescence (PL) and X-ray induced radioluminescence (RL) properties. The PL emissions are observed around 480-490, 570-590, 650-690, and 750 nm due to the 4f-4f transitions of Dy3+ under excitation around 350-400 and 450 nm. The decay time constant (580 nm emission under 340-390 nm excitation) was approximately 0.54-0.58 ms. The RL also showed line emissions at 487, 580, 668, and 757 nm due to the 4f-4f transitions of Dy3+ while the decay time was approximately 0.49-0.53 ms.
Growth and optical properties of Dy:Y3Al5O12 crystal
NASA Astrophysics Data System (ADS)
Pan, Yuxin; Zhou, Shidong; Li, Dongzhen; Liu, Bin; Song, Qingsong; Liu, Jian; Liu, Peng; Ding, Yuchong; Wang, Xiaodan; Xu, Xiaodong; Xu, Jun
2018-02-01
High optical quality Dy:Y3Al5O12 (Dy:YAG) crystal has been grown by the Czochralski method. Absorption spectra, fluorescence spectra and fluorescence decay curve of Dy:YAG have been recorded at room temperature. The strongest emission of Dy:YAG crystal is near 583 nm, corresponding to the 4F9/2 → 6H13/2 transition. The Judd-Ofelt parameters Ω2, Ω4 and Ω6 were calculated to be 1.49 × 10-20 cm2, 0.94 × 10-20 cm2 and 3.20 × 10-20 cm2, respectively. The radiative transition rates, branching ratios and the emission cross sections were calculated. The fluorescence and radiative lifetimes are 0.40 ms and 1.02 ms, respectively, resulting in a quantum efficiency of 39.2%. The results indicate that the Dy:YAG crystal would be a promising yellow solid state laser material.
NASA Astrophysics Data System (ADS)
Jisha, P. K.; Naik, Ramachandra; Prashantha, S. C.; Nagaswarupa, H. P.; Nagabhushana, H.; Basavaraj, R. B.; Sharma, S. C.; Prasad, Daruka
2016-04-01
Nanosized GdAlO3 phosphors activated with Dy3+ were prepared by a combustion method. Synthesized phosphors were calcined at 1000 °C for 3 h in order to achieve crystallinity. Powder x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was used to characterize the prepared product. The orthorhombic phase was observed in the XRD pattern. The particle size of the samples was calculated as around 25 nm. The SEM images show an irregular shape of the prepared nanophosphor. Functional groups of the phosphors were examined by Fourier transform infrared (FTIR) spectroscopy. Photoluminescence (PL) properties of Dy3+ doped GdAlO3 for near-ultraviolet excitation (352 nm) were studied in order to investigate the possibility of its use in white light emitting device applications. Judd-Ofelt intensity parameters, radiative transition rate (A T) and radiative lifetimes (τ rad) were evaluated from the emission spectrum by adopting a standard procedure. The Commission International de l’Eclairage (CIE) color coordinates and correlated color temperature (CCT) are studied for the optimized phosphor. It is found that the color coordinates of Dy3+ doped GdAlO3 powders fall in the white region of the CIE diagram, and the average CCT value was found to be about 6276 K. Therefore, the present phosphor is highly useful for display applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teitelbaum, Lawrence Paul
1992-04-01
We have measured the transverse momentum spectra 1/p T dN/dp T and rapidity distributions dN/dy of negatively charged hadrons and protons for central 32S + 32S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the target fragmentation region,more » exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be Δy ~ 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p T. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T f ~ 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teitelbaum, L.P.
1992-04-01
We have measured the transverse momentum spectra 1/p[sub T] dN/dp[sub T] and rapidity distributions dN/dy of negatively charged hadrons and protons for central [sup 32]S + [sup 32]S interactions at 200 GeV/nucleon incident energy. The negative hadron dN/dy distribution is too broad to be accounted for by thermal models which demand isotropic particle emission. It is compatible with models which emphasize longitudinal dynamics, by either a particle production mechanism, as in the Lund fragmentation model, or by introducing one-dimensional hydrodynamic expansion, as in the Landau model. The proton dN/dy distribution, although showing no evidence for a peak in the targetmore » fragmentation region, exhibits limited nuclear stopping power. We estimate the mean rapidity shift of participant target protons to be [Delta]y [approximately] 1.5, greater than observed for pp collisions, less than measured in central pA collisions, and much less than would be observed for a single equilibrated fireball at midrapidity. Both the negative hadron and proton dN/dy distributions can be fit by a symmetric Landau two-fireball model. Although the spectrum possesses a two-component structure, a comparison to pp data at comparable center-of-mass energy shows no evidence for enhanced production at low p[sub T]. The two-component structure can be explained by a thermal and chemical equilibrium model which takes into account the kinematics of resonance decay. Using an expression motivated by longitudinal expansion we find the same temperature for both the protons and negative hadrons at freezeout, T[sub f] [approximately] 170 MeV. We conclude that the charged particle spectra of negative hadrons and protons can be accommodated in a simple collision picture of limited nuclear stopping, evolution through a state of thermal equilibrium, followed by longitudinal hydrodynamic expansion until freezeout.« less
Materials Data on Ba2DyCu3O7 (SG:47) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Search for Quark-Lepton Compositeness in the Dimuon Final State at DØ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xuan, Nguyen Phuoc
2005-04-01
We used the upgraded DØ detector at the Tevatron at √s = 1.96 TeV to collect data in a search for a compositeness signature of quarks and leptons. This analysis uses an integrated luminosity of 400 pb -1. The high-mass dimuon mass spectrum is compared with that predicted by Drell-Yan (DY) scattering, modified by a contact interaction. This interaction is parameterized by a compositeness energy scale factor Λ. Preliminary limits on Λ are set at the 95% confidence level for constructive and destructive interference between the DY amplitude and the contact interaction for various quark and lepton chiralities.
Dielectric properties and microstructures for various MLCCs coated with additives
NASA Astrophysics Data System (ADS)
Oh, Min Wook; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong
2013-12-01
As electronic devices become smaller and have higher capacity, dielectric thin films are being used in the development of multilayer ceramic capacitors (MLCCs). Smaller BaTiO3 dielectric particles should be used to obtain the thickness of low dielectric layers. Further, MLCC properties are achieved through the uniform addition of various additives, but the existing method of adding nano additives has limitations. As such, this study evaluated the dielectric properties of BaTiO3 pellets after using the liquid coating method to add additives such as Dy, Mg, Mn, Cr, and Si to 150 nm BaTiO3 dielectric powder. Mn, Cr, and Si ions were each fixed at 0.1, 0.1, and 0.65 mol-%. Sintering was performed in a reducing atmosphere, and the microstructure and the dielectric properties were evaluated while varying Dy from 0.5 to 1.0 mol-% and Mg from 1.0 to 2.0 mol-%. Grain growth was observed for higher amounts of Dy, but were suppressed for higher amounts of Mg. With regards to changes in particle size, both the permittivity and the temperature coefficient of capacitance (TCC) increased with increasing particle size. The permittivity was highest for Si=0.65, Mn=0.1, Cr=0.1 Dy=0.75, and Mg=2.0 mol-%. These levels also satisfied the TCC properties of X7R. In the microstructure, the core-shell was the most developed.
NASA Astrophysics Data System (ADS)
Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.
2014-02-01
Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.
Thermoelectric and structural correlations in (S r1 -x -yC axN dy) Ti O3 perovskites
NASA Astrophysics Data System (ADS)
Somaily, H.; Kolesnik, S.; Dabrowski, B.; Chmaissem, O.
2017-08-01
Structural and thermoelectric properties are reported for a specially designed class of A -site substituted perovskite titanates, (S r1 -x -yC axN dy) Ti O3 . Two series synthesized with various A -site Sr-rich or Ca-rich (Sr-poor) concentrations were investigated using high-resolution neutron powder diffraction as a function of temperature and Nd doping. Each series was designed to have a nominally constant tolerance factor at room temperature. We determine the room temperature structures as tetragonal I 4 /m c m and orthorhombic P b n m for the Sr-rich and Ca-rich series, respectively. Three low-temperature orthorhombic structures, P b n m , I b m m , and P b c m were also observed for the Sr-rich series, whereas the symmetry of the Ca-rich series remains unchanged throughout the full measured temperature range. Thermoelectric properties of (S r1 -x -yC axN dy) Ti O3 were investigated and correlated with the structural variables. We succeeded in achieving a relatively high figure of merit Z T =0.07 at ˜400 K in the Sr-rich S r0.76C a0.16N d0.08Ti O3 composition which is comparable to that of the best n -type TE SrT i0.80N b0.20O3 oxide material reported to date. For a fixed tolerance factor, the Nd doping enhances the carrier density and effective mass at the expense of the Seebeck coefficient. Thermal conductivity greatly reduces upon Nd doping in the Ca-rich series. With an enhanced Seebeck coefficient at elevated temperatures and reduced thermal conductivity, we predict that S r0.76C a0.16N d0.08Ti O3 and similar compositions have the potential to become some of the best materials in their class of thermoelectric oxides.
Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor
NASA Astrophysics Data System (ADS)
Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V.
2003-08-01
A solid state diffusion method for the preparation of (K2 : Dy)Mg2(SO4)3 and (K2 : Dy,P)Mg2(SO4)3 phosphors is reported. Thermoluminescence (TL) and mechanoluminescence (ML) characteristics are studied. TL, shown by the (K2 : Dy,P)Mg2(SO4)3 phosphor is 60% as intense as the conventional CaSO4 : Dy phosphor used in the TLD of ionization radiation. It has a linear TL dose response and a negligible fading. These properties of (K2 : Dy,P)Mg2(SO4)3 should be suitable in dosimetry of ionization radiation using TL technique. ML of (K2 : Dy)Mg2(SO4)3 shows one peak which has been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radicals (anion radicals produced by γ-irradiation) released from traps during the mechanical pressure applied on the Dy activated K2Mg2(SO4)3 phosphor. This ML mechanism is proposed for γ-irradiated sulfate based phosphors. It has been found that the total light output, i.e. ML intensity, increases with concentration of dopant, strain rate and irradiation dose of the phosphor. Mechanoluminescence and ML emission spectra of (K2 : Dy)Mg2(SO4)3 were recorded for better understanding of the ML process. The TL and ML measurements have also been performed to elucidate the mechanism of ML. Some correlation between ML and TL has also been found.
NASA Astrophysics Data System (ADS)
Xu, Shuchao; Wang, Zhijun; Li, Panlai; Li, Ting; Bai, Qiongyu; Yang, Zhiping
2018-06-01
In order to achieve broad-band white emitting phosphor, Ce3+/Dy3+ codoped Ba2B2O5 were synthesized by a solid-state method, and the luminescence property and energy transfer were discussed in detail. Dy3+ doped Ba2B2O5 shows white emission, and the two narrow peaks which are assigned to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. When codoped Ce3+ as sensitizer, the broad-band white emission can be obtained by the energy transfer from Ce3+ to Dy3+ ions in Ba2B2O5, and the mechanism is the dipole-dipole interaction. And the CIE coordinates can be tuned from (0.2501, 0.2323) to (0.3422, 0.3799) by increase Dy3+ content. The emission peak blue-shift of Ce3+ ions in Ba2B2O5:Ce3+, Dy3+ was observed from the thermal spectra, and the mechanism was analyzed. A white light emitting diodes (LEDs) can be fabricated Ba2B2O5:Ce3+, Dy3+ with 380 nm chip, and the results show that the phosphor may be a potential application in this field.
Synthesis and characterization of white light-emitting Dy3+-doped Gd2O3 nanophosphors
NASA Astrophysics Data System (ADS)
Nambram, S.; Singh, S. D.; Meetei, S. D.
2016-03-01
A series of Gd2O3 nanophosphors doped with different concentration of Dy3+ has been synthesized by chemical precipitation method. X-ray diffraction study of the undoped and doped samples suggests that Dy3+ atoms remain in the crystallite cubic lattice of the host. The particle sizes are in the range of 14-19 nm. Energy-dispersive analysis of X-ray spectroscopy study and Fourier transform infrared spectroscopy studies are also performed to analyze the elements present in the samples. Photoluminescence emission peak of Dy3+ in doped samples are observed at 487, 575 and 672 nm corresponding to the 4F9/2-6H15/2, 4F9/2-6H13/2 and 4F9/2-6H11/2 transition, respectively. Effective energy transfer from Gd3+ to Dy3+ is observed, yielding efficient emission under UV excitation. The maximum emission intensity is found at 1.5 at.% Dy3+-doped Gd2O3 sample. The enhancement in the emission intensity with the increase in Dy3+ is due to the increase in energy transfer from Gd3+ of host to Dy3+ ions. The CIE ( Commission Internationale de l'é clairage) coordinates of the doped samples are found to be very close to that of standard white color (0.33, 0.33).
Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation.
Zahedifar, M; Sadeghi, E; Kashefi Biroon, M; Harooni, S; Almasifard, F
2015-11-01
Dy and Cu-doped SrF2 nanoparticles (NPs) were synthesized by using co-precipitation method and their possible application to solid state dosimetry were studied and compared to that of pure SrF2 NPs. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used for sample characterization. The highest thermoluminescence (TL) response of SrF2:Dy and SrF2:Cu NPs were found respectively at 0.5 and 0.7mol% of Dy and Cu impurities. Seven overlapping glow peaks at 384, 406, 421, 449, 569, 495, 508K and three component glow peaks at 381, 421 and 467K were identified respectively for SrF2:Dy and SrF2:Cu NPs employing Tm-Tstop and computerized glow curve deconvolution (CGCD) methods. The TL sensitivity of SrF2:Dy is approximately the same as that of LiF:Mg,Ti (TLD-100) cheeps. Linear dose response were observed for the SrF2:Dy and SrF2:Cu NPs up to the absorbed doses of 1kGy and 10kGy correspondingly. Regarding other dosimetry characteristics of the produced NPs such as fading, reproducibility and thermal treatment, Dy and Cu doped SrF2 NPs recommend for high dose TL dosimetry applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).
Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B
2011-02-09
The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.
Geng, Fengxia; Matsushita, Yoshitaka; Ma, Renzhi; Xin, Hao; Tanaka, Masahiko; Izumi, Fujio; Iyi, Nobuo; Sasaki, Takayoshi
2008-12-03
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.
Jurinovich, Sandro; Degano, Ilaria; Mennucci, Benedetta
2012-11-15
Historical textiles dyed with tannins usually show more extended degradation than fabrics dyed with other coloring materials. In order to shed light on this phenomenon we investigated the molecular interactions between tannin dyes and protein-based textiles using quantum-mechanical tools. In particular, we focused on the iron-gall complex with a fragment of α-helix wool keratin. We developed a step by step protocol which moves from the simplest ternary complexes with free amino acids (all treated quantum mechanically) to the more realistic system of the polypeptide fragment (treated at QM/MM level), passing through an intermediate model of interacting sites to evaluate the local environmental effects. The analysis of the interactions between the iron-gall complexes and free amino acids allowed us to identify possible coordination modes as well as determining their relative geometries. However, we also showed that only with the addition of the proteic environment a detailed picture of the interaction sites and binding modes can be achieved. An important role is in fact played by the microenvironment which can favor specific coordinations with respect to others due to both structural and electronic changes in the possible interaction sites.
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid
NASA Astrophysics Data System (ADS)
Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-07-01
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01351A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Scott; Yuan, Fang; Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
The Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases (RE=Pr, Sm, Gd, Dy; Pn=Sb, Bi) were successfully prepared from high temperature reactions at 1225–1300 °C. These phases maintain the same structure types as the parent RE{sub 9}Pn{sub 5}O{sub 5} phases, except for a Ca/RE mixing. The study and preparation of these phases was motivated by the desire to shift the metallic type properties of the parent RE{sub 9}Pn{sub 5}O{sub 5} phases to a level more suitable for thermoelectric applications. Electrical resistivity measurements performed on pure, bulk samples indicated all phases to be narrow band gap semiconductors or semimetals, supporting the charge balancedmore » electron count of the Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} composition. Unfortunately, all samples are too electrically resistive for any potential usage as thermoelectrics. Electronic band structure calculations performed on idealized RE{sub 9}Pn{sub 5}O{sub 5} structures revealed the presence of a pseudogap at the Fermi level, which is consistent with the observed electrical resistivity and Seebeck coefficient behavior. - Graphical abstract: Ca substitution in RE{sub 9}Pn{sub 5}O{sub 5} leads to charge-balanced Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases with semiconducting or semimetallic properties. - Highlights: • The RE{sub 9}Pn{sub 5}O{sub 5} structure may be stabilized with calcium substitution in the form of Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5}. • The Ca{sub 2}RE{sub 7}Pn{sub 5}O{sub 5} phases maintain the parent P 4/n structure, albeit with Ca/RE mixing. • The Ca{sub 2}RE{sub 7}Sb{sub 5}O{sub 5} phases behave as semiconductors while Ca{sub 2}RE{sub 7}Bi{sub 5}O{sub 5} are semimetals with electron-electron correlations. • Electronic structure calculations yield a semimetal-like density of states for both Ca{sub 2}RE{sub 7}Sb{sub 5}O{sub 5} and Ca{sub 2}RE{sub 7}Bi{sub 5}O{sub 5}.« less
Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets
Ucar, Huseyin; Parker, David S.; Nlebedim, I. C.; ...
2015-12-25
Here, we present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in Nd 2Fe 14B (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are most significant, rather than uniformly throughout the bulk sample. A 200 nm thick Dy film was sputtered onto commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from 600 - 700 C. Magnets displayed enhanced coercivities after post-annealing. Furthermore, our experimental results indicate as large as a 5 percentmore » increase in the energy product of NdFeB magnets, achieved for a total Dy weight percentage of 0.06 percent, much less than that used in commercial grade Dy-NdFeB magnets. Finally, by assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing and significantly less expensive than those made presently.« less
RNi2B2C (R = Ho, Dy, Tb and Pr) single crystals grown by the cold copper crucible method
NASA Astrophysics Data System (ADS)
Durán, A.; Munoz, E.; Bernès, S.; Escudero, R.
2000-08-01
Single crystals of RNi2B2C (R = Ho, Dy, Tb, Pr) have been grown on cold copper crucibles in a high-frequency induction furnace. As a result, shiny metallic and brittle platelike single crystals were obtained. They were examined by x-ray and scanning electron microscopy with WDX/EDX for local composition analysis and show a very good crystallographic structure and compositions. Resistivity and dc magnetic measurements were performed to study superconducting and magnetic properties. Besides known electronic properties of the RNi2B2C family, we report for the first time results for PrNi2B2C single crystals successfully obtained by this technique.
Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L.
1994-06-01
A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37more » refs., 9 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamdi, S.; Ouni, S.; Chaker, H.
A new compound DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} has been prepared by sol gel method and annealed at 1473 K in 1 atm of Ar gas flow. The X-ray diffraction (XRD) is used for phase identification. The sample shows to adopt the K{sub 2}NiF{sub 4}-type structure based on tolerance factor calculation. XRD analysis using the Rietveld method was carried out and it was found that DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} (Dy{sub 0.33}Sr{sub 1.67}Ni{sub 0.8}Cu{sub 0.2}O{sub 4-{delta}}') compound crystallizes in tetragonal symmetry with space group I4/mmm (Z=2). The lattice parameters are found to be at room temperature a=3.7696(5) A and c=12.3747(2)more » A. The final reliability indices were: R{sub B}=5.219% and {chi}{sup 2}=3.47. Four probe electrical resistivity measurements were performed versus temperature in the range 294-579 K. A semiconducting behaviour over the whole range of temperature, with a conductivity maximum of 0.4 S cm{sup -1} is observed at 510 K. - Graphical abstract: DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} exhibits a semi-conducting behaviour over the whole temperature range 294-579 K with a conductivity maximum of 0.4 S cm{sup -1} at 510 K. Highlights: > We described our attempts to synthesize the pure compound DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}}. > Product was characterized by XRD and electrical resistivity measurements. > Iodometric titration was used for the analysis of the oxygen nonstoichiometry. > Calculated tolerance factor was included in the tetragonal symmetry stability range. > Compound exhibits a semi-conducting behaviour over the whole temperature range 294-579 K.« less
Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K
2015-11-02
Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.
2012-01-01
Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934
Kumar, Valluri Ravi; Giridhar, G; Veeraiah, N
2017-02-01
In this work we synthesized SrO-ZnO-P 2 O 5 glasses mixed with Pb 3 O 4 (heavy metal oxide) and doped with different amounts of Dy 2 O 3 (0.1 to 1.0 mol%). Subsequently their emission and decay characteristics were investigated as a function of Dy 2 O 3 concentration. The emission spectra exhibited three principal emission bands in the visible region corresponding to 4 F 9 /2 → 6 H 15 /2 (482 nm), 6 H 13 /2 (574 nm) and 6 H 11 /2 (663 nm) transitions. With increase in the concentration of Dy 2 O 3 (upto 0.8 mol%) a considerable increase in the intensity of these bands was observed and, for further increase, quenching of photoluminescence (PL) output was observed. Using emission spectra, various radiative parameters were evaluated and all these parameters were found to increase with increase in Dy 2 O 3 concentration. The Y/B integral emission intensity ratio of Dy 3 + ions evaluated from these spectra exhibited a decreasing trend with increase in the Dy 2 O 3 concentration up to 0.8 mol%. Quenching of luminescence observed in the case of the glasses doped with 1.0 mol% is attributed to clustering of Dy 3 + ions. The quantitative analysis of these results together with infra-red (IR) spectral studies indicated that 0.8 mol% is the optimum concentration of Dy 3 + ions needed to achieve maximum luminescence efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Dy:Eu doped CaBAl glasses for white light applications
NASA Astrophysics Data System (ADS)
Lodi, T. A.; Sandrini, M.; Medina, A. N.; Barboza, M. J.; Pedrochi, F.; Steimacher, A.
2018-02-01
The combination of Eu3+ and Dy3+ in co-doped glassy materials provides interesting applicability for white light emission devices. In this work, Dy:Eu doped Calcium Boroaluminate (CaBAl) glasses were prepared by conventional melting quenching, with 3 wt% of Dy2O3 and Eu2O3 content varying from 0 to 3 wt%, and results of absorption spectra, photoluminescence and photoluminescence lifetime are discussed in terms of Eu2O3 content. The photoluminescence of the samples was studied under excitation of 365 and 405 nm light source. The 365 nm excitation shows favor to the Dy3+ ion emission. The results of photoluminescence lifetime at 575 nm (Dy3+) shows a decrease due to Eu2O3 addition, which suggests an energy transfer from Dy3+ (donor) to the Eu3+ (acceptor). On the other hand, under excitation of 405 nm, the photoluminescence lifetime at 575 nm (Dy3+) shows no significant changes due to Eu2O3 amount, which indicates that the energy transfer from Dy3+ to Eu3+ (under λexc = 405 nm) is negligible. However, the results of photoluminescence under 405 nm excitation present a white yellowish emission in the CIE diagram, which shifts to red with Eu2O3 addition. The combination of a Blue LED (BL) emission with the emission of the samples was also studied in the CIE diagram, in order to improve light emission and to obtain ideal White Light (WL). The results show that by modifying the emission intensity of BL, it is possible to achieve a route for smart lighting, close to the circadian light cycle.
Exploration of dysprosium: the most critical element for Japan
NASA Astrophysics Data System (ADS)
Watanabe, Y.
2012-04-01
Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.
Wilson, Helen; Carr, Chris; Hacke, Marei
2012-05-22
For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.
Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases.
Behrens, Christoph J; Zelena, Kateryna; Berger, Ralf G
2016-08-01
Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.
Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+
NASA Astrophysics Data System (ADS)
Erdoğmuş, E.
2016-05-01
Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.
NASA Astrophysics Data System (ADS)
Li, Dongqing; Guo, Hongbo; Peng, Hui; Gong, Shengkai; Xu, Huibin
2013-10-01
The cyclic oxidation behavior of Dy/Hf-doped β-NiAl coatings produced by electron beam physical vapor deposition (EB-PVD) was investigated. For the undoped NiAl coating, numerous voids were formed at the alumina scale/coating interface and large rumpling developed in the scale, leading to premature oxide spallation. The addition of Dy and Hf both improved scale adhesion and the alumina scale grown on the NiAl-Hf coating showed better adhesion than that on the NiAl-Dy coating, although the suppressing effect on interfacial void formation and the scale rumpling resistance were stronger in the NiAl-Dy coating. It is proposed that the segregation of Dy and Hf ions at the scale/coating interfaces not only prevent interfacial sulfur segregation but also may directly enhance interfacial adhesion by participating in bonding across the interfaces, and this strengthening effect is relatively stronger for Hf ionic segregation.
Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour
NASA Astrophysics Data System (ADS)
Amaral, J. B.; Couto Dos Santos, M. A.; Valerio, M. E. G.; Jackson, R. A.
2005-10-01
BaY2F8, when doped with rare earth elements, is a material of interest in the development of solid-state laser systems, especially for use in the infrared region. This paper presents the application of a computational technique, which combines atomistic modelling and crystal field calculations, in a study of rare earth doping of the material. Atomistic modelling is used to calculate the intrinsic defect structure and the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters, which are an important indicator in assessing the optical behaviour of the dopant-crystal system. Energy levels are then calculated for the Dy3+-substituted material, and comparisons with the results of recent experimental work are made.
Curry, J J; Estupiñán, E G; Henins, A; Lapatovich, W P; Shastri, S D; Hardis, J E
2013-09-28
The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T ≈ 1020 K, decreasing to 0 at T ≈ 1250 K. An enhancement factor exceeding 20 was observed for Tm at T ≈ 1040 K, decreasing to 0 at T ≈ 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].
Development of the EQ-5D-Y: a child-friendly version of the EQ-5D
Wille, Nora; Badia, Xavier; Bonsel, Gouke; Burström, Kristina; Cavrini, Gulia; Devlin, Nancy; Egmar, Ann-Charlotte; Greiner, Wolfgang; Gusi, Narcis; Herdman, Michael; Jelsma, Jennifer; Kind, Paul; Scalone, Luciana
2010-01-01
Purpose To develop a self-report version of the EQ-5D for younger respondents, named the EQ-5D-Y (Youth); to test its comprehensibility for children and adolescents and to compare results obtained using the standard adult EQ-5D and the EQ-5D-Y. Methods An international task force revised the content of EQ-5D and wording to ensure relevance and clarity for young respondents. Children’s and adolescents’ understanding of the EQ-5D-Y was tested in cognitive interviews after the instrument was translated into German, Italian, Spanish and Swedish. Differences between the EQ-5D and the EQ-5D-Y regarding frequencies of reported problems were investigated in Germany, Spain and South Africa. Results The content of the EQ-5D dimensions proved to be appropriate for the measurement of HRQOL in young respondents. The wording of the questionnaire had to be adapted which led to small changes in the meaning of some items and answer options. The adapted EQ-5D-Y was satisfactorily understood by children and adolescents in different countries. It was better accepted and proved more feasible than the EQ-5D. The administration of the EQ-5D and of the EQ-5D-Y causes differences in frequencies of reported problems. Conclusions The newly developed EQ-5D-Y is a useful tool to measure HRQOL in young people in an age-appropriate manner. PMID:20405245
Studies of the General Parton Distributions.
NASA Astrophysics Data System (ADS)
Goloskokov, Sergey
2017-12-01
We discuss possibility to study Generalized Parton Distributions (GPSs) induced processes using polarized beams at NICA. We show that important information on GPDs structure can be obtained at NICA in exclusive meson production and in Drell-Yan (D-Y) process that determined by the double GPDs contribution.
NASA Astrophysics Data System (ADS)
Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.
2014-02-01
Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.
NASA Astrophysics Data System (ADS)
Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.
2018-04-01
The influence of post-deposition annealing on the structure, particle morphology and photoluminescence properties of dysprosium (Dy3+) doped La0.5Gd1.5SiO5 thin films grown on Si(111) substrates at different substrate temperatures using pulsed laser deposition (PLD) technique were studied. The X-ray diffractometer results showed an improved crystallinity after post-annealing. The topography and morphology of the post-annealed films were studied using atomic force microscopy and field emission scanning electron microscopy respectively. The elemental composition in the surface region of the films were analyzed using energy dispersive X-ray spectroscopy. The photoluminescence studies showed an improved luminescent after post-annealing. The cathodoluminescence properties of the films are also reported. The CIE colour coordinates calculated from the photoluminescence and cathodoluminescence data suggest that the films can have potential application in white light emitting diode (LED) and field emission display (FED) applications.
Investigations on structural, optical and magnetic properties of Dy-doped zinc ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Vinosha, P. Annie; Deepapriya, S.; Rodney, John. D.; Das, S. Jerome
2018-04-01
A persuasive and thriftily feasible homogeneous co-precipitation route was adopted to fabricate dysprosium (Dy) doped zinc ferrite (Zn1-xDyxFe2O4)nanoparticles in order to examine their structural, optical and magnetic properties. Theas-synthesized Zn1-xDyxFe2O4 was studied for its momentous applications in photo-degradation of organic Methylene Blue (MB) dye. The paper marksthe connotation of zinc ferrite nanocatalyst in Photo-Fenton degradation. The chemical composition of dysprosium has a decisive feature of this research work. From X-ray diffraction analysis (XRD), spinel phase formation of theas-synthesized Zn1-xDyxFe2O4 nanoparticles was observedand the crystallite size was foundto increase as the doping concentration increased. Theabsorption bands peaked between 600-400 cm-l waspragmatic by Fourier Transform Infrared spectral analysis (FTIR). Transmission Electron Microscopy (TEM) micrograph elucidated the morphology and the speck size of as-synthesized nanoparticles. Surface area and pore size were determined by Brunauer-Emmett-Teller (BET) technique.
NASA Astrophysics Data System (ADS)
Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun
2006-02-01
The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Han, Fei
A new polymorph of the RE 2Ru 3Ge 5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc 2Fe 3Si 5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge densitymore » wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm 2Ru 3Ge 5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the onedimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (T CDW) observed in the Pr and Sm analogues are ~200 and ~175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.« less
Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit
2014-06-28
The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.
Terry, Rylan; Vinton, Daniel; McMillen, Colin D; Kolis, Joseph W
2018-02-19
The structure of Cs 3 RESi 6 O 15 , where RE=Dy-Lu, Y, In, is unusual in that it contains octahedrally coordinated rare-earth ions; their relative orientation dictates the structure, as they rotate about the c-axis supported by the cyclic Si 6 O 15 framework. The repeat unit of the rotation is eight units generating a very long (ca. 57 Å) unit cell axis. This unusual repeat unit is created by the structural flexibility of the hexasilicate ring, which is in turn affected by the size of the rare earth ion as well as the size of alkali ion residing within the silicate layers. Previous work showed for the smaller Sc 3+ ion, the rotation of the octahedra is not sufficient to achieve closure at an integral repeat unit and an incommensurate structure results. The products are prepared as large, high quality single crystals using a high-temperature (650 °C) hydrothermal method with CsOH and F - mineralizers. The presence of fluoride is essential to the formation of the product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
Wu, J.; Nishimura, S.; Lorusso, G.; ...
2017-02-16
The β-decay half-lives of 94 neutron-rich nuclei 144 $-$ 151Cs, 146 $-$ 154Ba, 148 $-$ 156La, 1 50 $-$ 158Ce, 153 $-$160Pr, 156 $-$ 162 Nd, 159 $-$ 163Pm, 160 $-$ 166Sm, 161 $-$ 168Eu , 165 $-$ 170Gd, 166 $-$ 172Tb, 169 $-$ 173Dy, 172 $-$ 175Ho, and two isomeric states 174 mEr, 172 mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β -decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd , and 62Sm, and N = 105 for 63Eu,more » 64Gd, 65Tb, and 66Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. In conclusion, $r$-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.« less
The study about the improvement of the quality for the fabrics made of chenille yarn
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Leon, A. L.
2016-08-01
The work is a study about the decrease of the serious defects from the fabrics such as: the deviations from quality or the high costs, discovered and seized by customers. The analyzed fabrics have in their structures three types of different chenille yarns, such as: the Article A1 (viscose fiber with cotton, Nm 3500 dyed coil), the Article A2 (textured polyester, Nm 8000 dyed coil), the Article A3 (Trevira CS polyester, Nm 3000 the pre-dyed raw materials). The technology of chenille yarn, regardless of composition and properties is the same and is performed on the twisting machines. This study has found that the most of the flaws in the fabric, noticed by customers, are caused by the production technology of the chenille yarns. In any organization which makes goods, there are concerns about the improvement of the quality through the elimination of the nonquality. It is extremely difficult to get to “zero defects” but the first step is a systematic action plan to reduce drastically the nonconformities and the defects. The continuous improvement of the effectiveness of the integrated quality and environmental management is achieved by applying the PDCA methodology: planning, development, control, action.
Ternary Dy-Er-Al magnetic refrigerants
Gschneidner, Jr., Karl A.; Takeya, Hiroyuki
1995-07-25
A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... Agreements (``CITA'') has determined that certain piece dyed three-thread fleece fabric, as specified below... behalf of Garan Manufacturing, Inc. for certain piece dyed three-thread fleece fabric, as specified below... Commercial Availability proceedings. SPECIFICATIONS: Certain Piece Dyed Three-thread Fleece Fabric HTS: 6001...
Services Training Manager’s Guide.
1986-04-01
and Cookies 27906-Dr-Air Force Food Service Program-Vegetable Preparation 27954-DF-Air Force Food Service Program-Mission Support Meals 28003-DF-USAF...Quality Audit Program 28246-DF-Sweet Doughs 59 *. 282 50-DY-Quick Breads 38712-DY-Hamburger Sandwich, The 39420-DYP-Give Your Eggs a Break3 39421-DY
Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3
Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...
2016-04-06
In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less
Luminescence properties of Dy 3+ -doped Li 2 SrSiO 4 for NUV-excited white LEDs
NASA Astrophysics Data System (ADS)
You, Panli; Yin, Guangfu; Chen, Xianchun; Yue, Bo; Huang, Zhongbing; Liao, Xiaoming; Yao, Yadong
2011-09-01
A series of single-phase full color phosphors, Dy 3+-doped Li 2SrSiO 4 was synthesized by a solid-state reaction method. The phase of the as-prepared powders was measured by X-ray diffraction pattern (XRD) and the chemical composition was characterized using energy dispersive spectroscopy (EDS). The luminescent properties of Li 2SrSiO 4:Dy 3+ were systematically investigated by concentration quenching, decay behavior and thermal stability measurements. The results suggested that the emission intensity of the Li 2SrSiO 4:Dy 3+ was much stronger than that of Li 2SrSiO 4:Eu 2+. It was worth to mention that Li 2SrSiO 4:Dy 3+ phosphor possessed excellent thermal stability for use in light-emitting diodes (LEDs) and the emission intensity measured at 300 °C was only decreased 8% comparing with that measured at room temperature. Furthermore, the Commission International del'Eclairage (CIE) chromaticity coordinates of Li 2SrSiO 4:Dy 3+ moved toward the ideal white light coordinates (0.33, 0.33). All results demonstrated that Li 2SrSiO 4:Dy 3+ might be a potential phosphor for NUV-based white light-emitting diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Y.; Cao, S. X.; Ren, W., E-mail: renwei@shu.edu.cn
2015-08-17
Multiferroic materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications. Here, we report the magnetic and ferroelectric properties of single phase perovskite manganites Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} and Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} by varying temperature and magnetic field. Our results reveal that there exist spin reversal and strong antiferromagnetic pinning effects in both compounds, as well as negative magnetization in Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3}. Moreover, upon Sr-doping, spontaneous electric polarizations have been observed and the maximum polarization value of Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} is about 1000 μC/m{supmore » 2} while Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} reaches to 2000 μC/m{sup 2}. The onset of the ferroelectric transition temperature is enhanced to be around 60 K. Our results indicate that the antiferromagnetic coupling is relevant to the ferroelectric properties of these fascinating multiferroic systems.« less
Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G
1991-04-26
The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.
The use of human hair as biodosimeter.
Tepe Çam, S; Polat, M; Seyhan, N
2014-12-01
The potential use of human hair samples as biologic dosimeter was investigated by electron spin resonance (ESR) spectroscopy. The hair samples were obtained from female volunteers and classified according to the color, age and whether they are natural or dyed. Natural black, brown, red, blonde and dyed black hair samples were irradiated at low doses (5-50Gy) and high doses (75-750Gy) by gamma source giving the dose rate of 0.25Gy/s in The Sarayköy Establishment of Turkish Atomic Energy Authority. While the peak heights and g-values (2.0021-2.0023) determined from recorded spectra of hair were color dependent, the peak-to-peak line widths were varied according to natural or dyed hair (ΔHpp: 0.522-0.744mT). In all samples, the linear dose-response curves at low doses saturated after ~300Gy. In black hair samples taken from different individuals, differences in the structure of the spectrum and signal intensities were not observed. The EPR signal intensities of samples stored at room temperature for 22 days fell to their half-values in 44h in black hair, 41h in blonde and brown hairs, 35h in dyed black hair and in 17h in red hair. The activation energies of samples annealed at high temperatures for different periods of time were correlated well with those obtained in the literature. In conclusion, hair samples can be used as a biological dosimeter considering the limitations showed in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu
2015-09-14
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan
2015-07-01
Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.
Analysis of fatigue characteristic of sm-substituted DyFeCo magneto-optical films
NASA Astrophysics Data System (ADS)
Li, Zuoyi; Wang, Ke; Yang, Xiaofei; Li, Zhen; Lin, Gengqi
2003-04-01
The fatigue characteristic of the amorphous Sm-substituted DyFeCo magneto-optical alloy films fabricated by R.F. magnetron sputtering method were investigated by accelerated pulse training method under the condition of magnetic field modulation plus laser pulse irradiation. The evaluation of fatigue characteristic is determined from the static magneto-optical signal readout level after several writing/erasing repetitions compared with initial level. The experimental dependence of fatigue characteristics is in good agreement with the model based on the JMA equation. Furthermore, the Avrami factor can be derived from the model. Experimental results show that it is very effective in studying the writing/erasing ability of magneto-optical films employed the method of combined the accelerated pulse training with the JMA equation and Sm-substituted HRE-TM alloys can act as a practical medium for MO storage at short wavelength.
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2015-10-26
Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7) s, 146.8(5) K with τ0 =9.2×10(-8) s, and 146.1(10) K with τ0 =9.9×10(-8) s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8) s for 1, Ueff =214.7 K and τ0 =9.8×10(-9) s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8) s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jepsen, Lars H; Ley, Morten B; Černý, Radovan; Lee, Young-Su; Cho, Young Whan; Ravnsbæk, Dorthe; Besenbacher, Flemming; Skibsted, Jørgen; Jensen, Torben R
2015-08-03
Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.
Optimization of rare-earth-doped fluorides for infrared lasers
NASA Astrophysics Data System (ADS)
Peterson, Rita Dedomenico
2000-11-01
The rare-earth-doped fluoride crystals Tm,Dy:BaY2F8 (Tm,Dy:BYF), Yb,Pr:NaYF4 (Yb,Pr:NYF), and Nd:NYF show considerable promise as infrared laser materials, operating at 3 μm, 1.3 μm, and 1.06 μm respectively. Lasing has been reported previously on all three ionic transitions, but not in these crystals. Optimization of these materials for laser applications requires a more complete spectroscopic characterization than is currently available, particularly with regard to the key parameters of fluorescence lifetime and stimulated emission cross section. To further the optimization process, polarized absorption and emission have been measured for Tm,Dy:BYF, Yb,Pr:NYF, and Nd:NYF, and relevant fluorescence lifetimes have been measured or estimated. For Tm,Dy:BYF and Yb,Pr:NYF which rely upon sensitization, energy transfer parameters were calculated. Results were used in a mathematical model to determine the conditions in which lasing may be obtained. The long upper laser level lifetime in Tm,Dy:BYF translates into low threshold pump intensity, but the ability to reach threshold depends strongly on active ion concentration. The short lifetime in Yb,Pr:NYF leads to much higher threshold pump intensities, but lasing is still attainable if resonator loss is minimized. In Nd:NYF lasing was demonstrated, with a maximum of 60 mW output from an absorbed pump power of 345 mW, and a slope efficiency of 21%. Thresholds were high owing to resonator losses near 9%. Two chief issues involving the optimization of these laser materials were identified and explored. First, identification of the orientation for which emission cross section is highest is complicated in Tm,Dy:BYF by the presence of strong magnetic dipole radiation on the 3 μm transition. This effect makes it necessary to account for the polarization of both the electric and magnetic fields of the emitted radiation when determining an optimal crystal orientation, an accounting further complicated by the low symmetry of the monoclinic BYF host crystal. Second, the effect of host crystal on fluorescence lifetime was considered by comparing lifetime values for the same ionic manifolds in BYF, NYF, and other host crystals. NYF has especially low phonon energies, which leads to longer lifetimes on the longer wavelength transitions which are susceptible to multiphonon relaxation. This advantage is especially needed for lasing at 1.3 μm in Pr where the upper level lifetime is very short. On the shorter wavelength transitions in Tm and Nd, however, the role of phonons is negligible and lifetimes are somewhat shorter than in other fluoride hosts.
Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan
2018-02-05
A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.
NASA Astrophysics Data System (ADS)
Dellong, D.; Klingelhoefer, F.; Kopp, H.; Gutscher, M. A.
2016-12-01
It is generally accepted that a STEP fault (Subduction Tear Edge Propagator) has accommodated the roll back of the Ionian Slab along the eastern Sicily Margin since 6 to 7 Ma. However the location of this lithospheric scale tear fault, and its surface expression is controversial. Constrain by numerous bathymetric imaging and shallow sub-surface multi-channels seismic (MCS) studies, variety of fault geometry was proposed. Moreover the role of the Malta Escarpment in this geodynamic system also remain the object of debates. It may be linked to the opening of the Ionian basin during a phase of strike-slip rifting since more than 180 Ma. Here we present the results of modelling of two wide-angle seismic profiles from the DIONYSUS survey (R/V Meteor, Oct. 2014). The first profile (DY-P3) was recorded by 25 Ocean- Bottom-Seismometers (OBS) and 3 land stations, and the second profile (DY-P1) by 52 OBS. Forward modelling of both profiles reveals a zone of abrupt crustal thinning from about 30 km below the Hyblean plateau and East-Sicily continental domain, to values of 8-15 km over a short lateral distance of 20-30 km. In the northern profile (DY-P3) the crust east of this abrupt thinning is of transitional thickness (15 km) and characterized by seismic velocities and velocity gradients similar to thinned continental crust. In the southern profile (DY-P1) this crust is 6-8 km thick, and the velocity gradients are close to those of oceanic crust. On this profile about 50-60 km eastward from the base of the Malta Escarpment, a lateral change of crustal velocities was modelled. Here a recent shallow transtensional deformation has been observed in MCS data at the position of this structure and linked to an elongated basin visible in the bathymetry and was linked to the STEP fault location. The results of the wide-angle seismic modelling suggest an ancient origin for the Malta Escarpment, formed as a transform margin during opening of the Ionian Basin about 180 Ma ago. The geometry of the modern day STEP fault is largely obscured in the northern profile because of the superposition of the structures with the ancient Tethyan transform Margin. In the southern wide-angle seismic profile these two structures are distinct and this allow us to conclude that the Malta Escarpment offshore SE Sicily has not been re-activated by the recent STEP-fault activity.
500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Kromer, M.; Fox, O. D.; Zheng, W.; Challis, P.; Clubb, K. I.; Filippenko, A. V.; Folatelli, G.; Graham, M. L.; Hillebrandt, W.; Kirshner, R. P.; Lee, W. H.; Pakmor, R.; Patat, F.; Phillips, M. M.; Pignata, G.; Röpke, F.; Seitenzahl, I.; Silverman, J. M.; Simon, J. D.; Sternberg, A.; Stritzinger, M. D.; Taubenberger, S.; Vinko, J.; Wheeler, J. C.
2015-10-01
SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ˜ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B) = 0.92 mag), shallow Si II λ 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0^{+4.8}_{-3.8} × 10^{42} erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-08-07
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.
NASA Astrophysics Data System (ADS)
Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.
2009-04-01
We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.
Ternary Dy-Er-Al magnetic refrigerants
Gschneidner, K.A. Jr.; Takeya, Hiroyuki
1995-07-25
A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Nóbrega, E. P.; Ribeiro, P. O.
We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphousmore » magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.« less
Magnetic ordering at anomalously high temperatures in Dy at extreme pressures
Lim, J.; Fabbris, G.; Haskel, D.; ...
2015-01-15
In an attempt to destabilize the magnetic state of the heavy lanthanide Dy, extreme pressures were applied in an electrical resistivity measurement to 157 GPa over the temperature range 1.3 - 295 K. The magnetic ordering temperature T o and spin-disorder resistance R sd of Dy, as well as the superconducting pair-breaking effect ΔT c in Y(1 at.% Dy), are found to track each other in a highly non-monotonic fashion as a function of pressure. Above 73 GPa, the critical pressure for a 6% volume collapse in Dy, all three quantities increase sharply (dT o=dP≃5.3 K/GPa), T o appearing tomore » rise above ambient temperature for P > 107 GPa. In contrast, T o and ΔT c for Gd and Y(0.5 at.% Gd), respectively, show no such sharp increase with pressure (dT o=dP≃ 0.73 K/GPa). Altogether, these results suggest that extreme pressure transports Dy into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less
Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B
2015-01-01
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662
Qin, Yaru; Zhang, Haifeng; Sun, Hao; Pan, Yangdan; Ge, Yu; Li, Yahong; Zhang, Yi-Quan
2017-11-02
The utilization of 2-ethoxy-6-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}phenol (H 2 L) as a chelating ligand, in combination with the employment of alcohols (EtOH and MeOH) as auxiliary ligands, in 4 f-metal chemistry afforded two series of dinuclear lanthanide complexes of compositions [Ln 2 L 2 (NO 3 ) 2 (EtOH) 2 ] (Ln=Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7)) and [Ln 2 L 2 (NO 3 ) 2 (MeOH) 2 ] (Ln=Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Ho (13), Er (14)). The structures of 1-14 were determined by single-crystal X-ray crystallography. Complexes 1-7 are isomorphous. The two lanthanide(III) ions in 1-7 are doubly bridged by two deprotonated aminophenoxide oxygen atoms of two μ 2 :η 0 :η 1 :η 2 :η 1 :η 1 :η 0 -L 2- ligands. One nitrogen atom, two oxygen atoms of the NO 3 - anion, two methoxide oxygen atoms of two ligand sets, and one oxygen atom of the terminally coordinated EtOH molecule complete the distorted dodecahedron geometry of each lanthanide(III) ion. Compounds 8-14 are isomorphous and their structures are similar to those of 1-7. The slight difference between 1-7 and 8-14 stems from purposefully replacing the EtOH ligands in 1-7 with MeOH in 8-14. Direct-current magnetic susceptibility studies in the 2-300 K range reveal weak antiferromagnetic interactions for 3, 4, 7, 10, 11, and 14, and ferromagnetic interactions at low temperature for 5, 6, 12, and 13. Complexes 5 and 12 exhibit single-molecule magnet (SMM) behavior with energy barriers of 131.3 K for 5 and 198.8 K for 12. The energy barrier is significantly enhanced by dexterously regulating the terminal ligands. To rationalize the observed difference in the magnetic behavior, complete-active-space self-consistent field (CASSCF) calculations were performed on two Dy 2 complexes. Subtle variation in the angle between the magnetic axes and the vector connecting two dysprosium(III) ions results in a weaker influence on the tunneling gap of individual dysprosium(III) ions by the dipolar field in 12. This work proposes an efficient strategy for synthesizing Dy 2 SMMs with high energy barriers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gonçalves, B L; Gonçalves, J L; Rosim, R E; Cappato, L P; Cruz, A G; Oliveira, C A F; Corassin, C H
2017-07-01
The aim of the present study was to evaluate the effect of different sources of Saccharomyces cerevisiae (SC) biomass (20.0 g/d) obtained from sugarcane (cell wall, CW; dried yeast, DY; autolyzed yeast, AY) and the beer industry (partially dehydrated brewery yeast, BY) on milk production, fat and protein percentages, and aflatoxin M 1 (AFM 1 ) excretion in milk from dairy cows receiving 480 µg aflatoxin B 1 (AFB 1 ) per day. A completely randomized design was used with 2 lactating cows assigned to each of 10 dietary treatments, as follows: negative controls (no AFB 1 or SC-based biomass), positive controls (AFB 1 alone), DY alone, DY + AFB 1 , BY alone, BY + AFB 1 , CW alone, CW + AFB 1 , AY alone, and AY + AFB 1 . The cows in the aflatoxin treatment group received AFB 1 from d 1 to 6, while the SC biomass was administered with the AFB 1 bolus from d 4 to 6. Aflatoxin B 1 or SC-based products did not affect milk production or milk composition during the experimental period. Aflatoxin M 1 was detected in the milk from all aflatoxin treatment group cows, reaching maximum levels at d 3 and varying from 0.52 ± 0.03 to 1.00 ± 0.04 µg/L. At end of the treatment period, CW, AY, DY, and BY removed 78%, 89%, 45%, and 50% of AFM 1 from the milk, respectively, based on the highest level found on d 3. Results indicate a potential application of industrial fermentation by-products, especially CW and AY, as a feed additive in the diets of dairy cows to reduce the excretion of AFM 1 in milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Luminescence characteristics of C5+ ions and 60Co irradiated Li2BaP2O7:Dy3+ phosphor
NASA Astrophysics Data System (ADS)
Wani, J. A.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.
2015-04-01
In this work a study on some thermoluminescence characteristics of Li2BaP2O7:Dy phosphor is presented. The phosphor was synthesized by solid state diffusion method and characterized for its phase purity by X-ray diffraction (XRD). FT-IR spectrum was also carried out to confirm the presence of phosphate family and vibrations corresponding to P-O-P group. Spectroscopic investigation was approached through photoluminescence (PL) and thermoluminescence (TL). PL emission spectrum of Dy3+ ions corresponding to 4F9/2 → 6H13/2 (483 nm) and 4F9/2 → 6H15/2 (574 nm) transitions is revealed under 351 nm excitation wavelength. This characteristic emission confirms the presence of Dy3+ ions in the Li2BaP2O7 host matrix. To induce TL properties in Li2BaP2O7:Dy phosphor was irradiated with C5+ ion beams and gamma rays (60Co). A nearly simple glow curve was observed for Li2BaP2O7:Dy under two different excitation sources. TL response is almost linear over a wide range. Average absorbed dose (D bar) and mean linear energy transfer (LET ‾) of C5+ ion beams in Li2BaP2O7:Dy have also been calculated. Values of parameters like E and S known as trap depth and frequency factor respectively were obtained by using TLanal computer program. Also SRIM based calculations were performed to study the effect of C5+ ion beams on the samples of Li2BaP2O7:Dy. SRIM calculations show that Ba2+ vacancies are highest in number. Till date no such luminescence information on Li2BaP2O7:Dy phosphor is available.
Identification of double-yolked duck egg using computer vision.
Ma, Long; Sun, Ke; Tu, Kang; Pan, Leiqing; Zhang, Wei
2017-01-01
The double-yolked (DY) egg is quite popular in some Asian countries because it is considered as a sign of good luck, however, the double yolk is one of the reasons why these eggs fail to hatch. The usage of automatic methods for identifying DY eggs can increase the efficiency in the poultry industry by decreasing egg loss during incubation or improving sale proceeds. In this study, two methods for DY duck egg identification were developed by using computer vision technology. Transmittance images of DY and single-yolked (SY) duck eggs were acquired by a CCD camera to identify them according to their shape features. The Fisher's linear discriminant (FLD) model equipped with a set of normalized Fourier descriptors (NFDs) extracted from the acquired images and the convolutional neural network (CNN) model using primary preprocessed images were built to recognize duck egg yolk types. The classification accuracies of the FLD model for SY and DY eggs were 100% and 93.2% respectively, while the classification accuracies of the CNN model for SY and DY eggs were 98% and 98.8% respectively. The CNN-based algorithm took about 0.12 s to recognize one sample image, which was slightly faster than the FLD-based (about 0.20 s). Finally, this work compared two classification methods and provided the better method for DY egg identification.
Identification of double-yolked duck egg using computer vision
Ma, Long; Sun, Ke; Tu, Kang; Pan, Leiqing; Zhang, Wei
2017-01-01
The double-yolked (DY) egg is quite popular in some Asian countries because it is considered as a sign of good luck, however, the double yolk is one of the reasons why these eggs fail to hatch. The usage of automatic methods for identifying DY eggs can increase the efficiency in the poultry industry by decreasing egg loss during incubation or improving sale proceeds. In this study, two methods for DY duck egg identification were developed by using computer vision technology. Transmittance images of DY and single-yolked (SY) duck eggs were acquired by a CCD camera to identify them according to their shape features. The Fisher’s linear discriminant (FLD) model equipped with a set of normalized Fourier descriptors (NFDs) extracted from the acquired images and the convolutional neural network (CNN) model using primary preprocessed images were built to recognize duck egg yolk types. The classification accuracies of the FLD model for SY and DY eggs were 100% and 93.2% respectively, while the classification accuracies of the CNN model for SY and DY eggs were 98% and 98.8% respectively. The CNN-based algorithm took about 0.12 s to recognize one sample image, which was slightly faster than the FLD-based (about 0.20 s). Finally, this work compared two classification methods and provided the better method for DY egg identification. PMID:29267387
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... centimeters (52 inches). Finish: (Piece) dyed. Fabric 2 HTS Subheading: 6004.10.00. Fiber Content: 35% rayon...). Finish: (Piece) dyed. Fabric 3 HTS Subheading: 6001.22.00. Fiber Content: 79% rayon made from bamboo/15...: (Piece) dyed. (2) Certain knit fabrics of polyester fiber, of the specifications detailed below...
Bag, Prasenjit; Chakraborty, Amit; Rogez, Guillaume; Chandrasekhar, Vadapalli
2014-07-07
The reaction of Ln(III) nitrate and Mn(ClO4)2·6H2O salts in the presence of a multidentate sterically unencumbered ligand, (E)-2,2'-(2-hydroxy-3-((2-hydroxyphenylimino)methyl)-5-methylbenzylazanediyl)diethanol (LH4) leads to the isolation of four isostructural pentanuclear hetereometallic complexes [Mn(III)2Gd3(LH)4(NO3)(HOCH3)]ClO4·NO3 (1), [Mn(III)2Dy3(LH)4(NO3)(HOCH3)]ClO4·NO3 (2), [Mn(III)2Tb3(LH)4(NO3)(HOCH3)]ClO4·NO3 (3), and [Mn(III)2Ho3(LH)4(NO3)(HOCH3)]ClO4·NO3 (4) with an open-book type structural topology. 1-4 are dicationic and crystallize in the achiral space group, P21/n. A total of four triply deprotonated ligands, [LH](3-), are involved in holding the pentameric metal framework, {Mn(III)2Ln3}. In these complexes both the lanthanide and the manganese(III) ions are doubly bridged, involving phenolate or ethoxide oxygen atoms. The magnetochemical analysis reveals the presence of global antiferromagnetic interactions among the spin centers at low temperatures in all the four compounds. AC susceptibility measurements show the presence of temperature dependent out-of-phase ac signal for compounds 2 and 4 indicating an SMM behavior.
Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro
2012-11-28
The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.
Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type
NASA Astrophysics Data System (ADS)
Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer
2016-11-01
The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Qiang; Wang, Chuang; Li, Yanyan
2015-11-15
Highlights: • Ca{sub 3−x}Sc{sub 2}Si{sub 3}O{sub 12}:xDy{sup 3+} (0.01 ≤ x ≤ 0.03) was successfully synthesized under a reducing atmosphere. • The thermal stability of the Ca{sub 2.975}Sc{sub 2}Si{sub 3}O{sub 12}:0.025Dy{sup 3+} is superior to commercial phosphors in theory and experiment. • The optimal chromaticity coordinates of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is (x = 0.3425, y = 0.3343) upon 350 nm excitation. - Abstract: The white emission phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} was synthesized by the solid-state reaction. Phase analysis and characteristic luminescence properties are investigated by X-ray diffraction and photoluminescence spectra measurement. Ca{sub 3}Sc{sub 2}Si{submore » 3}O{sub 12}:Dy{sup 3+} phosphor shows strong absorption in 350–410 nm region and exhibits white emission with CIE chromaticity coordinates of (0.3425, 0.3343). Its emission intensity at 250 °C remained 74% of that measured at room temperature. Moreover, the activation energy is also calculated through the Arrhenius equation. The result shows that the thermostability of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is superior than that of commercial phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce{sup 3+}. The outstanding luminescent properties indicate that Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} could be a potential white light emission phosphor.« less
Sun, Ming-Shen; Zhang, Li; Guo, Ning; Song, Yan-Zheng; Zhang, Feng-Ju
2018-01-01
To evaluate and compare the uniformity of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided ablation of laser in situ keratomileusis (LASIK) by EX500 excimer laser for myopia. Totally 145 cases (290 consecutive eyes )with myopia received LASIK with a target of emmetropia. The ablation for 86 cases (172 eyes) was guided manually based on Oculyzer topography (study group), while the ablation for 59 cases (118 eyes) was guided automatically by Topolyzer Vario topography (control group). Measurement of adjustment values included data respectively in horizontal and vertical direction of cornea. Horizontally, synclastic adjustment between manually actual values (dx manu ) and Oculyzer topography guided data (dx ocu ) accounts 35.5% in study group, with mean dx manu /dx ocu of 0.78±0.48; while in control group, synclastic adjustment between automatically actual values (dx auto ) and Oculyzer topography data (dx ocu ) accounts 54.2%, with mean dx auto /dx ocu of 0.79±0.66. Vertically, synclastic adjustment between dy manu and dy ocu accounts 55.2% in study group, with mean dy manu /dy ocu of 0.61±0.42; while in control group, synclastic adjustment between dy auto and dy ocu accounts 66.1%, with mean dy auto /dy ocu of 0.66±0.65. There was no statistically significant difference in ratio of actual values/Oculyzer topography guided data in horizontal and vertical direction between two groups ( P =0.951, 0.621). There is high consistency in angle Kappa adjustment guided manually by Oculyzer and guided automatically by Topolyzer Vario topography during corneal refractive surgery by WaveLight EX500 excimer laser.
Bhunia, Asamanjoy; Gamer, Michael T; Ungur, Liviu; Chibotaru, Liviu F; Powell, Annie K; Lan, Yanhua; Roesky, Peter W; Menges, Fabian; Riehn, Christoph; Niedner-Schatteburg, Gereon
2012-09-17
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.
Search for neutrinoless double-electron capture of 156Dy
NASA Astrophysics Data System (ADS)
Finch, S. W.; Tornow, W.
2015-12-01
Background: Multiple large collaborations are currently searching for neutrinoless double-β decay, with the ultimate goal of differentiating the Majorana-Dirac nature of the neutrino. Purpose: Investigate the feasibility of resonant neutrinoless double-electron capture, an experimental alternative to neutrinoless double-β decay. Method: Two clover germanium detectors were operated underground in coincidence to search for the de-excitation γ rays of 156Gd following the neutrinoless double-electron capture of 156Dy. 231.95 d of data were collected at the Kimballton underground research facility with a 231.57 mg enriched 156Dy sample. Results: No counts were seen above background and half-life limits are set at O (1016-1018) yr for the various decay modes of 156Dy. Conclusion: Low background spectra were efficiently collected in the search for neutrinoless double-electron capture of 156Dy, although the low natural abundance and associated lack of large quantities of enriched samples hinders the experimental reach.
Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices
NASA Astrophysics Data System (ADS)
Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai
2018-04-01
Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.
Liu, Yang; Lai, Qiliang; Xu, Xue-Wei; Wu, Yue-Hong; Cheng, Hong; Zhang, Xiao-Hua; Wang, Long; Shao, Zongze
2017-08-01
A polyphasic taxonomic study was undertaken to clarify the exact position of type strain DY6-4T of Xuhuaishuia manganoxidans. A combination of physiological properties of X. manganoxidans DY6-4T was consistent with those of type strain 22DY15T of Brevirhabdus pacifica. The 16S rRNA gene sequence analyses indicated that X. manganoxidans DY6-4T and B. pacifica 22DY15T shared 100 % similarity and formed a monophyletic group. The close relationship between the two strains was underpinned by the results of chemotaxonomic characteristics, including the fatty acids, quinone and polar lipids. The digital DNA-DNA hybridization and average nucleotide identity values between the two strains were 99.90 and 99.98 %, respectively. Based on these results, we propose that Xuhuaishuia manganoxidans is a later heterotypic synonym of Brevirhabdus pacifica.
Judd-Ofelt Analysis of Dy3+-Activated Aluminosilicate Glasses Prepared by Sol-Gel Method
NASA Astrophysics Data System (ADS)
Sengthong, Buonyavong; Van Tuyen, Ho; An, Nguyen Thi Thai; Van Do, Phan; Hai, Nguyen Thi Quy; Chau, Pham Thi Minh; Quang, Vu Xuan
2018-04-01
Aluminosilicate (AS) glasses doped with different Dy3+ concentrations were synthesized via sol-gel method. Absorption, photoluminescence spectra and lifetime of this material have been studied. From analytical results of absorption spectra, the Judd-Ofelt (JO) parameters of prepared samples have been determined. These JO parameters combined with photoluminescence spectra have been used to evaluate transition probabilities ( A R), branching ratios ( β) and the calculated oscillator strengths of AS:Dy3+ glasses. The radiative branching ratio of 4F9/2 → 6H13/2 transition has a minimum value at 62.2% for β R which predicts that this transition in AS:Dy3+ glasses can give rise to lasing action. JO parameters show that the Ω2 increases with the increasing of Dy3+ ion concentration due to the increased polarizability of the average coordination medium and decreased average symmetry.
Synthesis, characterization and properties of Dy3+-activated single host borosilicate phosphors
NASA Astrophysics Data System (ADS)
Yu, Hong; Chen, Shanyong; Chen, Jinlei
2017-12-01
New phosphors Sr3B2SiO8: Dy3+ have been successfully synthesized via solid-state reaction process. Emission/excitation spectra, photoluminescence decay behaviors were investigated in detail. Under the excitation of 351 nm, the emission spectrum consisting of the characteristic transitions of Dy3+ which mainly peaking at 480, 487 nm and 574 nm corresponding to the4F9/2→6H15/2 and4F9/2→6H13/2, respectively, the intensity of the blue emission stronger than the yellow one which indicated that Dy3+ ions take the site without inversion symmetry. The chromaticity coordinates of Sr3-xB2SiO8: x Dy3+ fixed in the white region. The results showed the kind of phosphor may be act potential applications in the fields of UV-excited white LEDs.
Eco-dyeing with biocolourant based on natural compounds
Gong, Jixian; Ren, Yanfei; Zhang, Jianfei
2018-01-01
Biomass pigments have been regarded as promising alternatives to conventional synthetic dyestuffs for the development of sustainable and clean dyeing. This investigation focused on in situ dyeing of fabrics with biopigments derived from tea polyphenols via non-enzymatic browning reaction. The average particle size of dyed residual liquor with natural tea polyphenol was 717.0 nm (ranging from 615.5 to 811.2 nm), and the Integ value of dyed wool fabrics was the greatest compared to those of counterparts. In addition, the Integ values of dyed fabrics with residual liquor were much bigger than those with the first reaction solutions when dyed by identical dyeing liquor. As a result, the dyeing process could be carried out many times because the concentration of the residual liquor was relatively superior. All dyed fabrics acquired admirable rubbing as well as washing fastness, and the relevant dyeing mechanism has been analysed in the paper. PMID:29410827
East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system
NASA Astrophysics Data System (ADS)
Tian, Baoqiang; Fan, Ke; Yang, Hongqing
2017-12-01
The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of the winter 2-m air temperature (T-2m) in most parts of China, as well as the intensity of the Aleutian low and Siberian high in winter. The new schemes provide a theoretical basis for improving the prediction of winter climate in China.
Suturina, Elizaveta A.; Mason, Kevin
2018-01-01
Luminescence spectroscopy has been used to monitor the selective and reversible binding of pH sensitive, macrocyclic lanthanide complexes, [LnL1], to the serum protein α1-AGP, whose concentration can vary significantly in response to inflammatory processes. On binding α1-AGP, a very strong induced circularly-polarised europium luminescence signal was observed that was of opposite sign for human and bovine variants of α1-AGP – reflecting the differences in the chiral environment of their drug-binding pockets. A mixture of [EuL1] and [TbL1] complexes allowed the ratiometric monitoring of α1-AGP levels in serum. Moreover, competitive displacement of [EuL1] from the protein by certain prescription drugs could be monitored, allowing the determination of drug binding constants. Reversible binding of the sulphonamide arm as a function of pH, led to a change of the coordination environment around the lanthanide ion, from twisted square antiprism (TSAP) to a square antiprismatic geometry (SAP), signalled by emission spectral changes and verified by detailed computations and the fitting of NMR pseudocontact shift data in the sulphonamide bound TSAP structure for the Dy and Eu examples. Such analyses allowed a full definition of the magnetic susceptibility tensor for [DyL1]. PMID:29732083
Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3.
Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk
2017-01-25
Rare-earth-doped ferromagnetic manganites La 0.63 RE 0.07 Sr 0.30 MnO 3 (RE = Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd 3+ ions, whereas Kramers ions Dy 3+ and non-Kramers ions Ho 3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb 3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb 3+ doping leads also to a notably increased coercivity compared to other La 0.63 RE 0.07 Sr 0.30 MnO 3 systems.
XAS Characterization of the Zn Site of Non-structural Protein 3 (NS3) from Hepatitis C Virus
NASA Astrophysics Data System (ADS)
Ascone, I.; Nobili, G.; Benfatto, M.; Congiu-Castellano, A.
2007-02-01
XANES spectra of non structural protein 3 (NS3) have been calculated using 4 Zn coordination models from three crystallographic structures in the Protein Data Base (PDB): 1DY9, subunit B, 1CU1 subunit A and B, and 1JXP subunit B. Results indicate that XANES is an appropriate tool to distinguish among them. Experimental XANES spectra have been simulated refining crystallographic data. The model obtained by XAS is compared with the PDB models.
26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... fuel or kerosene if— (1) The person otherwise liable for tax is a taxable fuel registrant; (2) In the...
26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... fuel or kerosene if— (1) The person otherwise liable for tax is a taxable fuel registrant; (2) In the...
26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... fuel or kerosene if— (1) The person otherwise liable for tax is a taxable fuel registrant; (2) In the...
26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... fuel or kerosene if— (1) The person otherwise liable for tax is a taxable fuel registrant; (2) In the...
Credit WCT. Photographic copy of photograph, in 1963 a "Y" ...
Credit WCT. Photographic copy of photograph, in 1963 a "Y" branch connector was introduced at the Dd test station in order to add a second test cell (named Dy) to the Dd train of coolers and ejectors. This view shows the diffuser used to connect the Dy test chamber with the "Y" branch. This Dy chamber was the second one installed at this station; it was later moved and incorporated into a larger horizontal test station retaining the Dy designation. (JPL negative no. 384-11176-B, 17 May 1976) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle.
Hayes, A; Williams, D A
1996-02-01
Effects of voluntary exercise on the isometric contractile, fatigue, and histochemical properties of hindlimb dystrophic (mdx and 129ReJ dy/dy) skeletal muscles were investigated. Mice were allowed free access to a voluntary running wheel at 4 wk of age for a duration of 16 (mdx) or 5 (dy/dy) wk. Running performance of mdx mice (approximately 4 km/day at 1.6 km/h) was inferior to normal mice (approximately 6.5 km/day at 2.1 km/h). However, exercise improved the force output (approximately 15%) and the fatigue resistance of both C57BL/10 and mdx soleus muscles. These changes coincided with increased proportions of smaller type I fibers and decreased proportions of larger type IIa fibers in the mdx soleus. The extensor digitorum longus of mdx, but not of normal, mice also exhibited improved resistance to fatigue and conversion towards oxidative fiber types. The dy/dy animals were capable of exercising, yet ran significantly less than normal animals (approximately 0.5 km/day). Despite this, running increased the force output of the plantaris muscle (approximately 50%). Taken together, the results showed that exercise can have beneficial effects on dystrophic skeletal muscles.
Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng
2015-10-28
A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.
NASA Astrophysics Data System (ADS)
Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.
2017-02-01
We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.
Yang, Lei; Hort, Norbert; Laipple, Daniel; Höche, Daniel; Huang, Yuanding; Kainer, Karl Ulrich; Willumeit, Regine; Feyerabend, Frank
2013-11-01
The present work investigates the corrosion behaviour, the element distribution in the corrosion layer and the cytocompatibility of alloy Mg-10Dy. The corrosion experiments were performed in a cell culture medium (CCM) under cell culture conditions close to the in vivo environment. The element distribution on the surface as well as in cross-sections of the corrosion layer was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The cytocompatibility of alloy Mg-10Dy with primary human osteoblasts was evaluated by MTT, cell adhesion and live/dead staining tests. The results show that the corrosion layer was enriched in Dy, while the P and Ca content gradually decreased from the surface to the bottom of the corrosion layer. In addition, large amounts of MgCO3·3H2O formed in the corrosion layer after 28 days immersion. Both extracts and the Dy-enriched corrosion layer of alloy Mg-10Dy showed no cytotoxicity to primary human osteoblasts. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong
2018-01-01
It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.
Luminescence analysis of SrGa2 Si2 O8 : RE3+ (RE = Dy, Tm) phosphors.
R Kadukar, Monali; Dhoble, S J; Sahu, A K; Nayar, V; Sailaja, S; Reddy, B Sudhakar
2017-03-01
This article reports on the luminescence properties of rare earth (Dy 3 + and Tm 3 + )ions doped SrGa 2 Si 2 O 8 phosphor were studied. SrGa 2 Si 2 O 8 phosphors weresynthesizedby employing solid state reaction method.From the measured X-ray diffraction (XRD) pattern of the samplemonoclinic phase structure has been observed. Thermoluminescenceand Mechanoluminescence properties of the γ-ray irradiated samples have been studied. Photoluminescence spectra of Dy 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 348 nm,and it shows two emission bands at 483 and 574 nm due to 4 F 9 /2 → 6 H 15 /2 and 4 F 9 /2 → 6 H 13 /2 transitions respectively. Whereas the photoluminescence spectra of Tm 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 359 nm and it exhibits two emission bands at 454 and 472 nm due to 1 D 2 → 3 F 4 and 1 G 4 → 3 H 6 transitions respectively. In thermoluminescence study, γ-irradiatedthermoluminescence glow curve of SrGa 2 Si 2 O 8 :Dy 3 + phosphor shows two well defined peaks at 293 °C (peak1)and 170 °C (peak2) whereas thermoluminescence glow curve of SrGa 2 Si 2 O 8 :Tm 3 + phosphor shows peaks at 292 °C (peak1) and 184 °C (peak2) indicating that two sets of traps are being activated within the particular temperature range and the trapping parameters associated with the prominent glow peaks of SrGa 2 Si 2 O 8 :Dy 3 + and SrGa 2 Si 2 O 8 :Tm 3 + are calculated using Chen's peak shape and initial rise method.From the Mechanoluminescence study, only one glow peak has been observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Press, A T; Butans, M J; Haider, T P; Weber, C; Neugebauer, S; Kiehntopf, M; Schubert, U S; Clemens, M G; Bauer, M; Kortgen, A
2017-11-13
Simultaneous assessment of excretory liver and kidney function is still an unmet need in experimental stress models as well as in critical care. The aim of the study was to characterize two polymethine-dyes potentially suitable for this purpose in vivo. Plasma disappearance rate and elimination measurements of simultaneously injected fluorescent dyes DY-780 (hepato-biliary elimination) and DY-654(renal elimination) were conducted using catheter techniques and intravital microscopy in animals subjected to different organ injuries, i.e. polymicrobial sepsis by peritoneal contamination and infection, ischemia-reperfusion-injury and glycerol-induced acute kidney-injury. DY-780 and DY-654 showed organ specific and determined elimination routes in both healthy and diseased animals. They can be measured simultaneously using near-infrared imaging and spectrophotometry. Plasma-disappearance rates of DY-780 and DY-654 are superior to conventional biomarkers in indicating hepatic or kidney dysfunction in different animal models. Greatest impact on liver function was found in animals with polymicrobial sepsis whereas glomerular damage due to glycerol-induced kidney-injury had strongest impact on DY-654 elimination. We therefore conclude that hepatic elimination and renal filtration can be assessed in rodents measuring plasma-disappearance rates of both dyes. Further, assessment of organ dysfunction by polymethine dyes correlates with, but outperforms conventional biomarkers regarding sensitivity and the option of spatial resolution if biophotonic strategies are applied. Polymethine-dye clearance thereby allows sensitive point-of-care assessment of both organ functions simultaneously.
NASA Astrophysics Data System (ADS)
Bakshi, A. K.; Patwe, S. J.; Bhide, M. K.; Sanyal, B.; Natarajan, V.; Tyagi, A. K.; Kher, R. K.
2008-01-01
Thermoluminescence (TL), electron spin resonance (ESR) and x ray diffraction studies of CaSO4 : Dy phosphor subjected to post preparation high temperature treatment were carried out. Analysis of the TL glow curve indicated that the dosimetric glow peak at 240 °C reduces, whereas the low temperature satellite peak increases with the increase in the annealing temperature in the range 650-1000 °C. The influence of the annealing atmosphere on the TL glow curve structure was also observed. Reduction of the photoluminescence intensity of the annealed phosphor indicated that the environment of Dy3+ ions might have undergone some change due to high temperature treatment. Reduction in the ESR signal intensity corresponding to O_{3}^{-} and SO_{3}^{-} radicals was observed initially with the increase in the annealing temperaure; subsequently their intensity increased with temperature. Signals due to the SO_{4}^{-} radical vanished, when the phosphor was annealed beyond 800 °C. A signal corresponding to SH2- radicals was also observed in the ESR spectra for samples subjected to annealing in the temperature regime 800-1000 °C. XRD of the in situ annealed phosphor showed a change in the unit cell parameters. An endothermic peak at 860 °C in the DTA spectrum was observed.
NASA Astrophysics Data System (ADS)
Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.
2017-11-01
Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.
Thermoelectric and Magnetic Properties of Ca0.98RE0.02MnO3- δ (RE = Sm, Gd, and Dy)
NASA Astrophysics Data System (ADS)
Bhaskar, Ankam; Liu, Chia-Jyi; Yuan, J. J.
2012-09-01
Polycrystalline samples of Ca0.98RE0.02MnO3- δ (RE = Sm, Gd, and Dy) have been prepared by conventional solid-state reactions and their properties measured at 300 K to 700 K. All samples were single phase with orthorhombic structure. The average valence and oxygen content of Ca0.98RE0.02MnO3- δ were determined by iodometric titration. Doping at the Ca site by rare-earth metals causes a strong decrease of electrical resistivity due to the creation of charge carrier content by Mn3+ in the Mn4+ matrix, as evidenced by iodometric titration results. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. Among the doped samples, Ca0.98Dy0.02MnO3- δ had the highest dimensionless figure of merit of 0.073 at 612 K, representing an improvement of about 115% with respect to the undoped CaMnO3- δ sample at the same temperature. All the samples exhibited an antiferromagnetic transition with Néel temperature of around 120 K. Magnetization measurements indicated that Ca0.98RE0.02 MnO3- δ samples exhibited a high-spin state of Mn3+.
NASA Astrophysics Data System (ADS)
Liu, Jun-Liang; Wu, Jie-Yi; Huang, Guo-Zhang; Chen, Yan-Cong; Jia, Jian-Hua; Ungur, Liviu; Chibotaru, Liviu F.; Chen, Xiao-Ming; Tong, Ming-Liang
2015-11-01
Single-molecule magnets (SMMs) are regarded as a class of promising materials for spintronic and ultrahigh-density storage devices. Tuning the magnetic dynamics of single-molecule magnets is a crucial challenge for chemists. Lanthanide ions are not only highly magnetically anisotropic but also highly sensitive to the changes in the coordination environments. We developed a feasible approach to understand parts of the magneto-structure correlations and propose to regulate the relaxation behaviors via rational design. A series of Co(II)-Dy(III)-Co(II) complexes were obtained using in situ synthesis; in this system of complexes, the relaxation dynamics can be greatly improved, accompanied with desolvation, via single-crystal to single-crystal transformation. The effective energy barrier can be increased from 293 cm-1 (422 K) to 416 cm-1 (600 K), and the tunneling relaxation time can be grown from 8.5 × 10-4 s to 7.4 × 10-2 s. These remarkable improvements are due to the change in the coordination environments of Dy(III) and Co(II). Ab initio calculations were performed to better understand the magnetic dynamics.
NASA Astrophysics Data System (ADS)
Zeng, Yuyang; Tian, Fanghua; Chang, Tieyan; Chen, Kaiyun; Yang, Sen; Cao, Kaiyan; Zhou, Chao; Song, Xiaoping
2017-02-01
We report the magnetocaloric effect in a Tb1-x Dy x Co2 compound which exhibits a wide working temperature window around the Curie temperature (T C) and delivers a large refrigerant capacity (RC) with near-zero thermal hysteresis. Specifically, the wide full width at half maxima ({δ\\text{WFHM}} ) can reach up to 62 K and the RC value changes from 216.5 to 274.3 J Kg-1 when the external magnetic field increases to 5 T. Such magnetocaloric effects are attributed to a magnetic and structural transition from a paramagnetic and cubic phase to a ferromagnetic (M S along [1 1 1] direction) and rhombohedral phase or ferromagnetic (M S along [0 0 1] direction) and tetragonal phase.
Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour.
Lin, Shuang-Yan; Zhao, Lang; Ke, Hongshan; Guo, Yun-Nan; Tang, Jinkui; Guo, Yang; Dou, Jianmin
2012-03-21
Two linear tetranuclear lanthanide complexes of general formula [Ln(4)(L)(2)(C(6)H(5)COO)(12)(MeOH)(4)], where HL = 2,6-bis((furan-2-ylmethylimino)methyl)-4-methylphenol, () and Ln(III) = Dy(III) (1) and Gd(III) (2), have been synthesized and characterized. The crystal structural analysis demonstrates that two Schiff-base ligands inhibit the growth of benzoate bridged 1D chains, leading to the isolation of discrete tetranuclear complexes due to their steric hindrances. Every Ln(III) ion is coordinated by eight donor atoms in a distorted bicapped trigonal-prismatic arrangement. Alternating current (ac) susceptibility measurements of complex 1 reveal a frequency- and temperature-dependent out-of-phase signal under zero dc field, typical of single-molecule magnet (SMM) behaviour with an anisotropic barrier Δ(eff) = 17.2 K.
Zou, Hua-Hong; Wang, Rong; Chen, Zi-Lu; Liu, Dong-Cheng; Liang, Fu-Pei
2014-02-14
A series of Ln4 clusters, [Ln4L2(μ3-OH)2(μ4-NO3)(NO3)4(OCH3)(H2O)]·xMeCN·yMeOH (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), L = 2-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-6-methoxyphenol), have been synthesized by the reaction of Ln(NO)3 and a Schiff-base ligand formed in situ. The six complexes display similar structures, with an overall metal core comprising two edge-sharing triangular Ln3 units linked by a μ4-NO3(-) bridge. The luminescence spectrum of complex 2 shows the characteristic emission of the Tb(III) ions. The magnetic susceptibility studies reveal that the Ln(III) ions are very weakly interacting in all six compounds. Frequency dependence of the ac-susceptibility was found for 3, suggesting a typical single-molecule magnet (SMM) behavior with an anisotropic barrier of 28 K.
Magnetic separation of Dy(III) ions from homogeneous aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulko, B., E-mail: Barbara.Pulko@tu-dresden.de; Yang, X.; Lei, Z.
2014-12-08
The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl{sub 3} and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl{sub 3} is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pairmore » clusters.« less
Chorazy, Szymon; Wang, Junhao; Ohkoshi, Shin-Ichi
2016-09-14
A cyanido-bridged layered {[Dy(III)(4-OHpy)2(H2O)3][Co(III)(CN)6]}·0.5H2O (1) (4-OHpy = 4-hydroxypyridine) framework with dual photo-luminescence and magnetic properties was prepared. 1 exhibits visible emission whose color, yellow to greenish-blue, is switchable by selected wavelengths of UV excitation light. Magnetic data revealed that 1 shows not only the slow magnetic relaxation of a typical Dy(III) single-ion origin but also the relaxation process caused by the magnetic dipole-magnetic dipole interactions between the neighbouring Dy(III) centers.
Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application
NASA Astrophysics Data System (ADS)
Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.
2015-06-01
In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.
NASA Astrophysics Data System (ADS)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.
Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunada, Y.; Campbell, K.P.; Bernier, S.M.
1994-09-01
Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy,more » and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.« less
Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho
2015-09-01
Radioisotope hybrid nanoparticles (NPs) of Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 were synthesized by neutron irradiation of Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs respectively using the HANARO research reactor. The Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs were synthesized by calcination in air flow at 500 degrees C for 8 h of the hybrid NPs that has been prepared by the sol-gel reaction of tetraethyl silicate in the presence of the complex precursors. Mn-55, Sm-150, and Dy-163 were selected for use as radiotracers were selected because these elements can be easily gamma-activated by neutrons (activation limits: 1 picogram (Dy), 1-10 picogram (Mn), 10-100 picogram (Sm)). The successful synthesis of the radioisotope hybrid NPs was confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDS), Scanning Electron Microscopy (SEM), and Gamma Spectroscopy analysis. The synthesized the radioisotope hybrid NPs could be used as radiotracers in the scientific, environmental, engineering, and industrial fields.
de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean
2016-01-01
Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769
Nakajima, Tomohiko; Tsuchiya, Tetsuo
2015-09-30
It has been pointed out that agricultural crops and other natural plants may be damaged by outdoor lighting systems. Therefore, lighting that does not affect plant growth is needed. To address this problem, we have prepared a new whitlockite-like phosphate Dy-phosphor Ca8MgY1-x-yLaxDyy(PO4)7, which exhibits a yellow-white Dy(3+) luminescence that has a maximum internal quantum efficiency of 65.6% under a 387 nm excitation light for x = 0.10 and y = 0.05. The x dependence of IQE showed two maxima at x = 0.10-0.15 and 0.80-0.85, which could be due to the partial allowance of f-f forbidden transitions by local lattice distortion around the Dy(3+) ions originating from the La incorporation at near end members of Ca8MgY1-x-yLaxDyy(PO4)7. Concentration quenching occurred for x > 0.05. A white light-emitting diode (LED) was fabricated from a UV LED emitting at 385 nm and a Ca8MgY1-x-yLaxDyy(PO4)7 phosphor (Dy-WLED) for which the CIE color coordinates and correlated color temperature were CIE(0.350,0.378) and 4919 K, respectively. Plant cultivation experiments on Chlorella photosynthetic growth and blooming of the short-day plant Cosmos were carried out using the prepared Dy-WLED and reference commercial LEDs. We found that the Dy-WLED substantially reduced the photosynthesis of Chlorella and inhibited bloom impediment in Cosmos. These effects originated especially from the reduction of red-near-IR emissions. Thus, we conclude that the Dy-WLED is a very promising candidate for plant habitat-conscious white LEDs for outdoor lights that can protect both natural plant habitats and crop yields.
Jiang, Lin; Liu, Yue; Liu, Xin; Tian, Jinlei; Yan, Shiping
2017-09-26
Three series of Ni II -Ln III complexes were synthesized with the general formulae [(μ 3 -CO 3 ) 2 {Ni(HL)(CH 3 -CH 2 OH)Ln(CH 3 COO)} 2 ]·2CH 3 CH 2 OH (1-6) (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); H 3 L = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-prop-anol), [Ni(HL)Ln(dbm) 3 ]·CH 3 OH 2 ·2CH 2 Cl 2 (7-10) (Ln = Tb (7), Eu (8), Gd (9), Ho (10); Hdbm = 1,3-diphenyl-1,3-propanedione) and [Ni(HL)(H 2 O)(tfa)Ln(hfac) 2 ] (11-15) (Ln = Tb (11), Dy (12), Eu (13), Gd (14), Ho (15); Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione, tfa - = trifluoroacetate) using compartmental Schiff base ligands in conjunction with auxiliary ligands. For the NiLn series, the tetranuclear structure could be considered as two Ni II -Ln III dinuclear subunits bridged by two carbonates derived from atmospheric carbon dioxide. The Ln III ions of complexes 1-6 were octa-coordinated with distorted triangular dodecahedral geometry, while the Ln III ions of the dinuclear complexes 7-15 were nona-coordinated with distorted muffin geometry. The magnetic properties of the three series complexes were studied using dc and ac magnetic measurements. For the Ni II -Gd III complexes, the dc magnetic susceptibility measurements suggested the existence of the anticipated ferromagnetic interaction between Ni II and Gd III ions. The fitting of the χ M T vs. T data processed by PHI software provided the parameters g = 2.08 (J = +0.87 cm -1 ) for 9 and g = 2.02 (J = +1.83 cm -1 ) for 14. The interaction exchange was magneto-structurally correlated to the Ni-O-Gd angle (α) and Ni(μ-O)Gd dihedral angle (β). With an applied dc field, complexes 1 (Tb), 2 (Dy), 7 (Tb) and 12 (Dy) exhibited single magnetic relaxation with SMM parameters of U eff /k = 13.60 K, 11.52 K, 7.69 K and 5.14 K, respectively. Analysis of the Cole-Cole plots for complexes 2 and 7 suggested that a single relaxation process was mainly involved in the relaxation process, with α values in the range of 0.37-0.17 and 0.14-0.11, respectively.
NASA Astrophysics Data System (ADS)
Ditta, Allah; Khan, Muhammad Azhar; Junaid, Muhammad; Khalil, R. M. Arif; Warsi, Muhammad Farooq
2017-02-01
Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni0.4Co0.6Fe2O4) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm3) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13-26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm-1 (υ2) to 600 cm-1 (υ1) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.
Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B
2015-09-21
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Analytical Tools for Investigating and Modeling Agent-Based Systems
2005-06-01
of Black Holes Cluster 10 : Juan M. Maldacena (1924), Journal of High Energy Physics Field theory models for tachyon and gauge field string dy...namics; Super-Poincare Invariant Superstring Field The- ory; Level Four Approximation to the Tachyon Potential in Superstring Field Theory; SO(32) Spinors
Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei
NASA Astrophysics Data System (ADS)
Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.
2014-12-01
We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.
Yang, Lei; Huang, Yuanding; Feyerabend, Frank; Willumeit, Regine; Kainer, Karl Ulrich; Hort, Norbert
2012-09-01
Mg-Dy alloys have shown to be promising for medical applications. In order to investigate the influence of ageing treatment on their mechanical and corrosion properties, three Mg-xDy alloys (x=10, 15, 20 wt%) were prepared. Their microstructure, mechanical and corrosion behavior were investigated. The results indicate that ageing at 250 °C has little influence on the mechanical and corrosion properties. In contrast, ageing at 200 °C significantly increases the yield strength, and reduces the ductility. After ageing at 200 °C, the corrosion rate of Mg-20Dy alloy increases largely in 0.9 wt% NaCl solution, but remains unchanged in cell culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; ...
2016-12-06
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less