Anand, V K; Tennant, D A; Lake, B
2015-11-04
Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility χ(ac)(T), dc magnetic susceptibility χ(T), isothermal magnetization M(H) and heat capacity C(p)(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent χ(ac)(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca(2+) substitution for magnetic Dy(3+) is similar to the previous study on nonmagnetic isovalent Y(3+) substituted Dy(2-x)Y(x) Ti2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca(2+) substitution for Dy(3+) ions.
Phonon-mediated spin-flipping mechanism in the spin ices Dy 2 Ti 2 O 7 and Ho 2 Ti 2 O 7
Ruminy, M.; Chi, S.; Calder, S.; ...
2017-02-21
To understand emergent magnetic monopole dynamics in the spin ices Ho 2Ti 2O 7 and Dy 2Ti 2O 7, it is necessary to investigate the mechanisms by which spins flip in these materials. Presently there are thought to be two processes: quantum tunneling at low and intermediate temperatures and thermally activated at high temperatures. We identify possible couplings between crystal field and optical phonon excitations and construct a strictly constrained model of phonon-mediated spin flipping that quantitatively describes the high-temperature processes in both compounds, as measured by quasielastic neutron scattering. We support the model with direct experimental evidence of themore » coupling between crystal field states and optical phonons in Ho 2Ti 2O 7.« less
Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7
NASA Astrophysics Data System (ADS)
Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus
Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.
Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice
NASA Astrophysics Data System (ADS)
Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.
2013-01-01
Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.
Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.
Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S
2009-10-16
Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.
Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7
Lin, L.; Xie, Y. L.; Wen, J. -J.; ...
2015-12-14
The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less
Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)
NASA Astrophysics Data System (ADS)
Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.
2018-03-01
Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.
NASA Astrophysics Data System (ADS)
Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.
2013-03-01
Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
Husimi-cactus approximation study on the diluted spin ice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi; Okabe, Yutaka; Nefedev, Konstantin
2018-04-01
We investigate dilution effects on the classical spin-ice materials such as Ho2Ti2O7 and Dy2Ti2O7 . In particular, we derive a formula of the thermodynamic quantities as functions of the temperature and a nonmagnetic ion concentration based on a Husimi-cactus approximation. We find that the formula predicts a dilution-induced crossover from the cooperative to the conventional paramagnets in a ground state, and that it also reproduces the "generalized Pauling's entropy" given by Ke et al. To verify the formula from a numerical viewpoint, we compare these results with Monte Carlo simulation calculation data, and then find good agreement for all parameter values.
Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange
NASA Astrophysics Data System (ADS)
Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic
2017-10-01
Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.
Plateau on temperature dependence of magnetization of nanostructured rare earth titanates
NASA Astrophysics Data System (ADS)
Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Demokritov, S. O.; Perov, D. V.
2018-05-01
Magnetic properties of nanocomposite materials containing particles of rare earth titanates of R2Ti2O7 type, where R is a rare earth ion, including "spin ice" materials are investigated. The descending branches of hysteresis loop have been studied in detail in temperature range from 2 to 50 K. It has been shown that nanocomposites with Yb2Ti2O7, Dy2Ti2O7 and Er2Ti2O7 particles have one intersection point of the descending branches in some temperature range unlike many other nanocomposites. It is shown that magnetization has only weak temperature dependence near this point. It has been obtained that nanocomposites with Pr2Ti2O7 and Nd2Ti2O7 particles have no hysteresis loop. All above findings point out to unusual magnetic structures of the studied samples.
Three-dimensional Kasteleyn transition: spin ice in a [100] field.
Jaubert, L D C; Chalker, J T; Holdsworth, P C W; Moessner, R
2008-02-15
We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that the approach to saturated magnetization is, in the low-temperature limit, an example of a 3D Kasteleyn transition, which is topological in the sense that magnetization is changed only by excitations that span the entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and compare our results with recent data from experiments on Dy2Ti2O7.
Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice
NASA Astrophysics Data System (ADS)
Chen, Gang
We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).
Restoration of the third law in spin ice thin films
Bovo, L.; Moya, X.; Prabhakaran, D.; Soh, Yeong-Ah; Boothroyd, A.T.; Mathur, N.D.; Aeppli, G.; Bramwell, S.T.
2014-01-01
A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents – magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples. PMID:24619137
Restoration of the third law in spin ice thin films.
Bovo, L; Moya, X; Prabhakaran, D; Soh, Yeong-Ah; Boothroyd, A T; Mathur, N D; Aeppli, G; Bramwell, S T
2014-03-12
A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents - magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples.
Neutron scattering investigations of frustated magnets
NASA Astrophysics Data System (ADS)
Fennell, Tom
This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinenko, V. I., E-mail: zvi@iph.krasn.ru; Pavlovskii, M. S.
We have analyzed the low-temperature thermodynamic properties of spin ice in the staggered and direct (acting along the [111] axis) fields for rare-earth oxides with the chalcolamprite structure and general formula Re{sub 2}{sup 3+}Me{sub 2}{sup 4+}O{sub 7}{sup 2-}. Calculations have been performed in the cluster approximation. The results have been compared with experimental temperature dependences of heat capacity and entropy for Dy{sub 2}Ti{sub 2}O{sub 7} compound for different values of the external field in the [111] direction. The experimental data and calculated results have also been compared for the Pr{sub 2}Ru{sub 2}O{sub 7} compound with the antiferromagnetic ordering of magneticmore » moments of ruthenium ions, which gives rise to the staggered field acting on the system of rare-earth ions. The calculated temperature dependences of heat capacity and entropy are in good agreement with experimental data.« less
Supercooled spin liquid state in the frustrated pyrochlore Dy 2Ti 2O 7
Kassner, Ethan R.; Eyvazov, Azar B.; Pichler, Benjamin; ...
2015-06-30
A “supercooled” liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel–Tammann–Fulcher (VTF) trajectory, a Havriliak–Negami (HN) form for the dielectric function ε(ω,T), and a general Kohlrausch–Williams–Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy 2Ti 2O 7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic statemore » at low temperatures has proven very difficult to identify unambiguously. Here, we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain an improved understanding of the time- and frequency-dependent magnetization dynamics of Dy 2Ti 2O 7. We demonstrate a virtually universal HN form for the magnetic susceptibility χ(ω,T), a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with the VTF trajectory. Low-temperature Dy 2Ti 2O 7 therefore exhibits the characteristics of a supercooled magnetic liquid. Lastly, one implication is that this translationally invariant lattice of strongly correlated spins may be evolving toward an unprecedented magnetic glass state, perhaps due to many-body localization of spin.« less
Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.
Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P
2012-08-31
We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
Magnetic Coulomb phase in the spin ice Ho2Ti2O7.
Fennell, T; Deen, P P; Wildes, A R; Schmalzl, K; Prabhakaran, D; Boothroyd, A T; Aldus, R J; McMorrow, D F; Bramwell, S T
2009-10-16
Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.
Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5
Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...
2016-07-12
The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less
NASA Astrophysics Data System (ADS)
Chen, Gang
We study the proximate magnetic orders and the related quantum phase transition out of quantum spin ice (QSI). We apply the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the magnetic monopoles for QSI. The monopole condensation transition represents a unconventional quantum criticality with unusual scaling laws. The magnetic monopole condensation leads to the magnetic states that belong to the ``2-in 2-out'' spin ice manifold and generically have an enlarged magnetic unit cell. We demonstrate that the antiferromagnetic state with the ordering wavevector Q = 2p(001) is proximate to QSI while the ferromagnetic state with the ordering wavevector Q = (000) is not proximate to QSI. This implies that if there exists a direct transition from QSI to the ferromagnetic state, the transition must be strongly first order. We apply the theory to the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7. chggst@gmail.com.
Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning
2016-01-01
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375
NASA Astrophysics Data System (ADS)
Garbout, A.; Férid, M.
2018-06-01
Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.
Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...
2016-02-03
We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less
Long-Range Anti-ferromagnetic Order in Sm2Ti2O7
NASA Astrophysics Data System (ADS)
Mauws, Cole; Sarte, Paul; Hallas, Alannah; Wildes, Andrew; Quilliam, Jeffrey; Luke, Graeme; Gaulin, Bruce; Wiebe, Christopher
The spin ice state has been a key topic in frustrated magnetism for decades. Largely due to the presence of monopole-like excitations, leading to interesting physics. There has been a consistent effort in the field at synthesising new spin ice phases that possess smaller moments in the hopes of increasing the density of magnetic monopoles. As well as investigating the phase when quantum fluctuations dominate over dipolar interactions. Initially Sm2Ti2O7 was thought to be a candidate for a quantum spin ice, possessing a low moment of 1.5 μB in the high-spin case and crystal fields may reduce it to a true spin-1/2 system. However anti-ferromagnetic interactions as well as a lambda-like heat capacity anomaly pointed towards long-range antiferromagnetic order. An isotopically enriched samarium-154 single crystal was taken to the D7 polarized diffuse scattering spectrometer at the ILL. Long-range antiferromagnetic order was observed and indexed onto the all-in all-out structure. This agrees with theoretical predictions of Ising pyrochlore systems with sufficiently large anti-ferromagnetic coupling. NSERC, CFI, CIFAR, CRC.
NASA Astrophysics Data System (ADS)
Ross, Kate
In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.
Neutron spectroscopic study of crystal field excitations in Tb 2Ti 2O 7 and Tb 2Sn 2O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Fritsch, Katharina; Hao, Z.
2014-04-01
We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb 2Ti 2O 7 and Tb 2Sn 2O 7. These two materials possess related, but different ground states, with Tb 2Sn 2O 7 displaying "soft" spin ice order below T N approx 0.87 K, while Tb 2Ti 2O 7 enters a hybrid, glassy-spin ice state below T g approx 0.2 K. Our neutron measurements, performed at T = 1.5 K and 30 K, probe the crystal field states associated with the J = 6 states of Tb 3+ within the appropriate Fd3-barmmore » pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb 3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low temperature phase behavior and spin dynamics in Tb 2Ti 2O 7 and Tb 2Sn 2O 7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of approx 2 increase in the crystal field bandwidth of the 2J +1 = 13 states in Tb 2Ti 2O 7 compared with Tb 2Sn 2O 7. Our results are consistent with previous measurements on crystal field states in Tb 2Sn 2O 7, wherein the ground state doublet corresponds primarily to mJ = {vert_bar}+-5> and the first excited state doublet to mJ = {vert_bar}+-4>. In contrast, our results on Tb 2Ti 2O 7 differ markedly from earlier studies, showing that the ground state doublet corresponds to a significant mixture of mJ = {vert_bar}+-5>, mJ = {vert_bar}+-4> and mJ = {vert_bar}+-2>, while the first excited state doublet corresponds to a mixture of mJ = {vert_bar}+-4>, mJ = {vert_bar}+-5> and mJ = {vert_bar}+-1>. We discuss these results in the context of proposed mechanisms for the failure of Tb 2Ti 2O 7 to develop conventional long range order down to 50 mK.« less
Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14
Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.
2016-01-01
The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012
Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...
2015-06-01
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less
Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide
NASA Astrophysics Data System (ADS)
Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.
2018-05-01
Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.
Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.
2016-01-01
The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080
Tokiwa, Y; Yamashita, T; Udagawa, M; Kittaka, S; Sakakibara, T; Terazawa, D; Shimoyama, Y; Terashima, T; Yasui, Y; Shibauchi, T; Matsuda, Y
2016-02-25
The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.
Crystal field excitations from Yb3 + ions at defective sites in highly stuffed Yb2Ti2O7
NASA Astrophysics Data System (ADS)
Sala, G.; Maharaj, D. D.; Stone, M. B.; Dabkowska, H. A.; Gaulin, B. D.
2018-06-01
The pyrochlore magnet Yb2Ti2O7 has been proposed as a quantum spin ice candidate, a spin liquid state expected to display emergent quantum electrodynamics with gauge photons among its elementary excitations. However, Yb2Ti2O7 's ground state is known to be very sensitive to its precise stoichiometry. Powder samples, produced by solid-state synthesis at relatively low temperatures, tend to be stoichiometric, while single crystals grown from the melt tend to display weak "stuffing" wherein ˜2 % of the Yb3 +, normally at the A site of the A2B2O7 pyrochlore structure, reside as well at the B site. In such samples Yb3 + ions should exist in defective environments at low levels and be subjected to crystalline electric fields very different from those at the stoichiometric A sites. Neutron scattering measurements of Yb3 + in four compositions of Yb2 +xTi2 -xO7 -y show the spectroscopic signatures for these defective Yb3 + ions and explicitly demonstrate that the spin anisotropy of the Yb3 + moment changes from X Y -like for stoichiometric Yb3 + to Ising-like for "stuffed" B site Yb3 + or for A site Yb3 + in the presence of oxygen vacancies.
Synthesis, structural and magnetic characterization of polycrystalline Yb{sub 2}Ti{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juyal, Abhishek, E-mail: abijuyal@iitk.ac.in; Mukhopadhyay, Soumik; Barman, Kalyani
2015-06-24
The discovery of the Yb{sub 2}Ti{sub 2}O{sub 7} is among the most significant findings in magnetic materials in over a decade. The spin-ice model is based on an ingenious analogy to Pauling’s model of geometrical frustration in water ice, which is confirmed by various experiments. Here we present the characteristics of Yb2Ti2O7 studied by X-ray diffraction and magnetic measurements. Polycrystalline sample of Yb{sub 2}Ti{sub 2}O{sub 7} was prepared by sol-gel synthesis followed by thermal annealing at 1400 ° C for 36 hours. We calculated the change in the magnetic entropy from isothermal magnetization curves. We find no evidence of plateaumore » at Pauling residual entropy. Temperature dependence of the inverse magnetic susceptibility reveals Curie-Wiess temperature Θ{sub cw} = 156mK and paramagnetic moment μ{sub eff} ≈ 3.58 µ{sub B}, indicating weak ferromagnetic interaction. Using Arrott plot we conclude that Yb{sub 2}Ti{sub 2}O{sub 7} possibly enters a magnetic ground state below Tc~140 mK.« less
NASA Technical Reports Server (NTRS)
Flood, D. J.
1973-01-01
Measurements were made of the magnetic entropy and magnetization of powered samples of the compounds Dy2Ti2O7 and Gd3Al5O12. The magnetization was measured for temperatures at and below 4.2 K, in applied fields ranging to 7.0 tesla. Isothermal changes in magnetic entropy were measured for temperatures from 1.2 to 20 K, in applied fields up to 10 tesla. The results of the measurements are consistent with a doublet ground state for Dy2Ti2O7, and an eight-fold degenerate ground state for Gd3Al5O12. Absolute values of magnetic entropy have been obtained at the lower temperatures, permitting the isotherms to be properly located in the S-H plane with the use of adiabatic magnetization data. The iso-field lines in the S-T plane were determined. The results indicate that Dy2Ti2O7 can absorb a maximum of 71 + or - 4 joules/kg of heat at 4.2 K, while Gd3Al5O12 can absorb 233 + or - joules/kg at the same temperature. The large difference between the two is most likely a result of crystal field interactions in the dysoprosium compound. Both materials can be cycled adiabatically between 4.2 and 20 K.
White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.
Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T
2017-06-01
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.
Quasiparticle Excitations with Berry Curvature in Insulating Magnets and Weyl Semimetals
NASA Astrophysics Data System (ADS)
Hirschberger, Maximilian Anton
The concept of the geometric Berry phase of the quantum mechanical wave function has led to a better theoretical understanding of natural phenomena in all fields of fundamental physics research. In condensed matter physics, the impact of this theoretical discovery has been particularly profound: The quantum Hall effect, the anomalous Hall effect, the quantum spin Hall effect, magnetic skyrmions, topological insulators, and topological semimetals are but a few subfields that have witnessed rapid developments over the three decades since Michael Berry's landmark paper. In this thesis, I will present and discuss the results of three experiments where Berry's phase leads to qualitatively new transport behavior of electrons or magnetic spin excitations in solids. We introduce the theoretical framework that leads to the prediction of a thermal Hall effect of magnons in Cu(1,3-bdc), a simple two-dimensional layered ferromagnet on a Kagome net of spin S = 1/2 copper atoms. Combining our experimental results measured down to very low temperatures T = 0.3 K with published data from inelastic neutron scattering, we report a quantitative comparison with the theory. This confirms the expected net Berry curvature of the magnon band dispersion in this material. Secondly, we have studied the thermal Hall effect in the frustrated pyrochlore magnet Tb2Ti2O7, where the thermal Hall effect is large in the absence of long-range magnetic order. We establish the magnetic nature of the thermal Hall effect in Tb2Ti2O7, introducing this material as the first example of a paramagnet with non-trivial low-lying spin excitations. Comparing our results to other materials with zero thermal Hall effect such as the classical spin ice Dy2Ti 2O7 and the non-magnetic analogue Y2Ti2O 7, we carefully discuss the experimental limitations of our setup and rule out spurious background signals. The third and final chapter of this thesis is dedicated to electrical transport and thermopower experiments on the half-Heusler material GdPtBi. A careful doping study of the negative longitudinal magnetoresistance (LMR) establishes GdPtBi as a new material platform to study the physical properties of a simple Weyl metal with only two Weyl points (for magnetic field along the crystallographic 〈111〉 direction). The negative LMR is associated with the theory of the chiral anomaly in solids, and a direct consequence of the nonzero Berry curvature of the energy band structure of a Weyl semimetal. We compare our results to detailed calculations of the electronic band structure. Moving beyond the negative LMR, we report for the first time the effect of the chiral anomaly on the longitudinal thermopower in a Weyl semimetal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811
Strain engineered pyrochlore at high pressure
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; ...
2017-05-22
Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less
A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.
The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Y.; Cao, S. X.; Ren, W., E-mail: renwei@shu.edu.cn
2015-08-17
Multiferroic materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications. Here, we report the magnetic and ferroelectric properties of single phase perovskite manganites Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} and Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} by varying temperature and magnetic field. Our results reveal that there exist spin reversal and strong antiferromagnetic pinning effects in both compounds, as well as negative magnetization in Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3}. Moreover, upon Sr-doping, spontaneous electric polarizations have been observed and the maximum polarization value of Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} is about 1000 μC/m{supmore » 2} while Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} reaches to 2000 μC/m{sup 2}. The onset of the ferroelectric transition temperature is enhanced to be around 60 K. Our results indicate that the antiferromagnetic coupling is relevant to the ferroelectric properties of these fascinating multiferroic systems.« less
First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7
NASA Astrophysics Data System (ADS)
Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin
2017-12-01
We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-24
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-28
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
A spin-liquid with pinch-line singularities on the pyrochlore lattice.
Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic
2016-05-26
The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.
A spin-liquid with pinch-line singularities on the pyrochlore lattice
Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic
2016-01-01
The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400
Ma, Qian; Lu, Mengkai; Yang, Ping; Zhang, Aiyu; Cao, Yongqiang
2014-06-01
In this study, a series of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) down-converting phosphors were synthesized using a modified sol-gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors with an average size of 200-300 nm obtained at 1100°C have an orthorhombic aeschynite-type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f-f transitions of RE(3+), including 489 nm ((5) D4 → (7) F6) and 545 nm ((5) D4 → (7) F5) for Tb(3+), 476 and 482 nm ((4) F9/2 → (6) H15/2) and 571 nm ((4) F9/2 → (6) H13/2) for Dy(3+), and 545 nm ((5) F4 + (5) S2 → (5) I8) for Ho(3+), respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications. Copyright © 2013 John Wiley & Sons, Ltd.
Thermal conductivity of Ho2Ti2O7 along the [111] direction.
Toews, W H; Zhang, Songtian S; Ross, K A; Dabkowska, H A; Gaulin, B D; Hill, R W
2013-05-24
Thermal transport measurements have been made on the spin-ice material Ho(2)Ti(2)O(7) in an applied magnetic field with both the heat current and the field parallel to the [111] direction for temperatures from 50 mK to 1.2 K. A large magnetic field >6 T is applied to suppress the magnetic contribution to the thermal conductivity in order to extract the lattice conductivity. The low field thermal conductivity thus reveals a magnetic field dependent contribution to the conductivity which both transfers heat and scatters phonons. We interpret these magnetic excitations as monopolelike excitations and describe their behavior via existing Debye-Hückel theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Zr 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less
Gaudet, J.; Maharaj, D. D.; Sala, G.; ...
2015-10-27
Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less
Boyle, Timothy J; Bunge, Scott D; Clem, Paul G; Richardson, Jacob; Dawley, Jeffrey T; Ottley, Leigh Anna M; Rodriguez, Mark A; Tuttle, Bruce A; Avilucea, Gabriel R; Tissot, Ralph G
2005-03-07
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.
NASA Astrophysics Data System (ADS)
Singh, Dhananjay Kumar; Manam, Jairam
2017-07-01
A series of perovskite CaTiO3:Dy3+ nanophosphors have been prepared via solid state reaction method in order to investigate the structural, spectral and photometric properties. The structural, morphological and spectral properties of prepared nanophosphors were systematically characterized by XRD, FESEM, EDX, Photoluminescence, PL decay time and UV-Visible spectroscopy. The novel CaTiO3:Dy3+ nanophosphors exhibited single phase orthorhombic structure with space group Pbnm. The high magnification FESEM images of prepared sample demonstrated the particle size in the range 220-240 nm. The photoluminescence properties of Dy3+ doped CaTiO3 nanophosphors were investigated through excitation, emission spectra and decay time by varying the concentration of activator (Dy3+). Under the excitation of 386 nm UV light, Dy3+ activated CaTiO3 nanophosphors exhibited its characteristic excellent intense emissions in blue and yellow region around the wavelength 484 and 575 nm due to the transition 4F9/2→6H15/2 and 4F9/2 → 6H13/2 respectively. The photometric parameters such as CIE-coordinate and correlated color temperature (CCT) was also calculated. The CIE- coordinate (0.28, 0.32) was found near white light and CCT value was found to be 9222.31 K for optimum composition Ca0.96TiO3:0.04Dy3+ which was useful for cold light emission. The affirmative experimental results indicated that the prepared nanophosphors could be the favorable candidate for lighting applications.[Figure not available: see fulltext.
Chemical pressure effects on magnetism in the quantum spin liquid candidates Yb2X2O7 (X =Sn, Ti, Ge)
NASA Astrophysics Data System (ADS)
Dun, Z. L.; Lee, M.; Choi, E. S.; Hallas, A. M.; Wiebe, C. R.; Gardner, J. S.; Arrighi, E.; Freitas, R. S.; Arevalo-Lopez, A. M.; Attfield, J. P.; Zhou, H. D.; Cheng, J. G.
2014-02-01
The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, Yb2X2O7 (X =Sn, Ti, and Ge), show transitions with a ferromagnetic nature at 0.13 and 0.25 K for Yb2Sn2O7 and Yb2Ti2O7, respectively, and an antiferromagnetic ordering at 0.62 K for Yb2Ge2O7. These systematical results (i) provided information about the nature of the unconventional magnetic ground state in Yb2Ti2O7; (ii) realized a distinct antiferromagnetic ordering state in Yb2Ge2O7; and (iii) demonstrated that the application of chemical pressure through the series of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb3+ ions and lead to very different magnetic ground states.
NASA Astrophysics Data System (ADS)
Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.
2015-12-01
The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.
NASA Astrophysics Data System (ADS)
Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang
2017-12-01
In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.
NASA Astrophysics Data System (ADS)
Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.
2017-10-01
We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.
NASA Astrophysics Data System (ADS)
Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.
2014-07-01
The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.
NASA Astrophysics Data System (ADS)
Gómez-García, J. Francisco; Bucio, Lauro; Tavizon, Gustavo
2018-01-01
In this work, we present both structural and magnetic (DC magnetization and AC susceptibility) studies of the Dy3-xYxTaO7 solid solution. The structural characterization of samples was performed by Rietveld refinements of the X-ray diffraction data. All compounds crystallized in a weberite-related structure in the orthorhombic C2221 space group (No. 20); the variations of the lattice parameters obey the Vegard´s law in the whole range of composition. DC magnetic measurements of the Dy3-xYxTaO7 system showed a Curie-Weiss paramagnetic behaviour, with antiferromagnetic interactions at T>150 K. Below 3 K a spin glass behaviour in the 0 ≤ x ≤ 1 range of the solid solution was observed. The stoichiometric Dy3TaO7 compound showed spin glass behaviour although there is no evidence of structural disorder. For some Y3+ doped compounds (x = 0.33, 0.66 and 1.0), chemical disorder reduced the freezing temperature (Tg) values with a ×1/3 dependence. Cole-Cole analysis of the AC magnetic field response showed similar phenomenological parameters for the stoichiometric (x = 0) and the Y3+ doped compounds with spin glassiness, suggesting an analogous mechanism for these compounds. For the Dy3-xYxTaO7 system, in which the spin glass behaviour seems to exhibit a critical concentration, a magnetic phase diagram is proposed.
NASA Astrophysics Data System (ADS)
Zhao, Z. Y.; Wang, Y. L.; Lin, L.; Liu, M. F.; Li, X.; Yan, Z. B.; Liu, J.-M.
2015-11-01
DyMn2O5 is an extraordinary example in the family of multiferroic manganites and it accommodates both the 4f and 3d magnetic ions with strong Dy-Mn (4f-3d) coupling. The electric polarization origin is believed to arise not only from the Mn spin interactions but also from the Dy-Mn coupling. Starting from proposed scenario on ferrielectricity in DyMn2O5 where the exchange-strictions associated with the Mn3+-Mn4+-Mn3+ blocks and Dy3+-Mn4+-Dy3+ blocks generate the two ferroelectric sublattices, we perform a set of characterizations on the structure, magnetism, and electric polarization of Dy1-xYxMn2O5 in order to investigate the roles of Dy-Mn coupling in manipulating the ferrielectricity. It is revealed that the non-magnetic Y substitution of Dy suppresses gradually the Dy3+ spin ordering and the Dy-Mn coupling. Consequently, the ferroelectric sublattice generated by the exchange striction associated with the Dy3+-Mn4+-Dy3+ blocks is destabilized, but the ferroelectric sublattice generated by the exchange striction associated with the Mn3+-Mn4+-Mn3+ blocks remains less perturbed, enabling the ferrielectricity-ferroelectricity transitions with the Y substitution. A phenomenological ferrielectric domain model is suggested to explain the polarization reversal induced by the Y substitution. The present work presents a possible scenario of the multiferroic mechanism in not only DyMn2O5 but probably also other RMn2O5 members with strong 4f-3d coupling.
Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems.
Bluschke, M; Frano, A; Schierle, E; Minola, M; Hepting, M; Christiani, G; Logvenov, G; Weschke, E; Benckiser, E; Keimer, B
2017-05-19
Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18 K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.
Spin relaxation in geometrically frustrated pyrochlores
NASA Astrophysics Data System (ADS)
Dunsiger, Sarah Ruth
This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be analogous to water ice, a system theoretically predicted to have finite entropy at zero temperature. It is possible to qualitatively explain the unusual changes in T1-1 as a function of applied magnetic field which are also observed using muSR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Mereacre, Valeriu; Singh, Prashant
A family of isostructural undecanuclear 3d–4f coordination clusters of formula [Fe III 7Ln III 4O 4(OH) 3(tea) 2(Htea) 3(Piv) 7(H 2O) 2(NO 3) 3], where Ln = Y (1), Gd (2), Tb (3), Dy (4); PivH ≡ pivalic acid and H 3tea ≡ triethanolamine, was synthesised in this paper. The central Fe7 core of the coordination cluster can be described in terms of two {Fe 4O 2} butterfly motifs sharing a common body Fe atom. The two Fe 4 mean-planes subtend a dihedral angle of ca. 72°. The Tb (3) and Dy (4) compounds show Single Molecule Magnet (SMM) behaviourmore » as confirmed by ac-susceptibility and μ-SQUID measurements. Furthermore, 57Fe Mössbauer spectra of 1–4 confirm the presence of high-spin Fe III sites. The spectra of all complexes in the high temperature range (30–300 K) show broad overlapping doublets which were assigned to the body and wing-tip pairs of metal ions within the Fe 7 core. The low temperature Mössbauer spectra show dependence on the nature of the rare-earth metal as a result of its interaction with the iron sites. Finally, we observed a transition from fast (2), to intermediate (1) and very slow (frozen) (3, 4) spin fluctuation phenomena in these compounds.« less
Prodius, Denis; Mereacre, Valeriu; Singh, Prashant; ...
2018-03-01
A family of isostructural undecanuclear 3d–4f coordination clusters of formula [Fe III 7Ln III 4O 4(OH) 3(tea) 2(Htea) 3(Piv) 7(H 2O) 2(NO 3) 3], where Ln = Y (1), Gd (2), Tb (3), Dy (4); PivH ≡ pivalic acid and H 3tea ≡ triethanolamine, was synthesised in this paper. The central Fe7 core of the coordination cluster can be described in terms of two {Fe 4O 2} butterfly motifs sharing a common body Fe atom. The two Fe 4 mean-planes subtend a dihedral angle of ca. 72°. The Tb (3) and Dy (4) compounds show Single Molecule Magnet (SMM) behaviourmore » as confirmed by ac-susceptibility and μ-SQUID measurements. Furthermore, 57Fe Mössbauer spectra of 1–4 confirm the presence of high-spin Fe III sites. The spectra of all complexes in the high temperature range (30–300 K) show broad overlapping doublets which were assigned to the body and wing-tip pairs of metal ions within the Fe 7 core. The low temperature Mössbauer spectra show dependence on the nature of the rare-earth metal as a result of its interaction with the iron sites. Finally, we observed a transition from fast (2), to intermediate (1) and very slow (frozen) (3, 4) spin fluctuation phenomena in these compounds.« less
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.
VizieR Online Data Catalog: Rotational frequencies of TiO isotopologues (Lincowski+, 2016)
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2017-03-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538GHz. This study is the first complete spectroscopic characterization of these species in their X3Δr ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J+1<->J were measured for each species, typically in all 3 spin-orbit ladders Ω=1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I=5/2 and 7/2, respectively. For the Ω=1 and 3 components, the hyperfine structure was found to follow a classic Lande pattern, while that for Ω=2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis. (1 data file).
Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2016-12-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.
Thermal barrier coatings for turbine components
Subramanian, Ramesh; Sabol, Stephen M.; Goedjen, John G.; Sloan, Kelly M.; Vance, Steven J.
2002-01-01
A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.
Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...
2017-03-08
Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less
Evidence for SrHo2O4 and SrDy2O4 as model J1-J2 zigzag chain materials
NASA Astrophysics Data System (ADS)
Fennell, A.; Pomjakushin, V. Y.; Uldry, A.; Delley, B.; Prévost, B.; Désilets-Benoit, A.; Bianchi, A. D.; Bewley, R. I.; Hansen, B. R.; Klimczuk, T.; Cava, R. J.; Kenzelmann, M.
2014-06-01
Neutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site-dependent anisotropic single-ion magnetism in both materials, and diffraction measurements show the presence of strong one-dimensional spin correlations. Our measurements indicate that competing interactions of the zigzag chain, combined with frustrated interchain interactions, play a crucial role in stabilizing spin-liquid type correlations in this series.
Thermodynamics of radiation induced amorphization and thermal annealing of Dy 2Sn 2O 7 pyrochlore
Chung, Cheng-Kai; Lang, Maik; Xu, Hongwu; ...
2018-06-14
Thermodynamics and annealing behavior of swift heavy ion amorphized Dy 2Sn 2O 7 pyrochlore were studied. Its amorphization enthalpy, defined as the total energetic difference between the irradiation amorphized and undamaged Dy 2Sn 2O 7 states, was determined to be 283.6 ± 6.5 kJ/mol by high temperature oxide melt drop solution calorimetry. It has been an enigma that stannate and some other pyrochlores do not follow the general r A/r B-radiation resistance relation seen in most pyrochlore systems. In this paper, we use the amorphization enthalpy, which reflects all the complex chemical and structural characteristics, as a more effective parametermore » to correlate the radiation damage resistance of pyrochlores with their compositions. It successfully explains the superior radiation damage resistance of the stannate pyrochlores compared with titanate pyrochlores. Differential scanning calorimetry (DSC) reveals a strong exothermic event starting at 978 K, which is attributed to long-range recrystallization based on X-ray diffraction (XRD) analysis, similar to the effect previously observed in Dy 2Ti 2O 7. A second pronounced heat event beginning at ~1148 K, which results from local structural rearrangement, is clearly decoupled from the first event for irradiated Dy 2Sn 2O 7. Both the heat releases measured by DSC on heating to 1023 and 1473 K, and the excess enthalpies of the annealed samples indicate that the recovery to the original, ordered state was not fully achieved up to even 1473 K, despite XRD showing the apparent restoration of crystalline pyrochlore structure. The remaining metastability may be attributed to local disorder in the form of weberite-like short-range domains in the recrystallized material. Intriguingly, the second event for different pyrochlores generally starts at similar temperatures while the onset of the long range recrystallization is compositionally dependent. Finally, the amorphization and thermal annealing behavior observed in irradiated Dy 2Sn 2O 7 may provide insights into the general mechanisms of radiation damage and recovery of pyrochlores relevant to their nuclear applications.« less
Four-state non-volatile memory in a multiferroic spin filter tunnel junction
NASA Astrophysics Data System (ADS)
Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di
2016-12-01
We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.
Dielectric properties and microstructures for various MLCCs coated with additives
NASA Astrophysics Data System (ADS)
Oh, Min Wook; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong
2013-12-01
As electronic devices become smaller and have higher capacity, dielectric thin films are being used in the development of multilayer ceramic capacitors (MLCCs). Smaller BaTiO3 dielectric particles should be used to obtain the thickness of low dielectric layers. Further, MLCC properties are achieved through the uniform addition of various additives, but the existing method of adding nano additives has limitations. As such, this study evaluated the dielectric properties of BaTiO3 pellets after using the liquid coating method to add additives such as Dy, Mg, Mn, Cr, and Si to 150 nm BaTiO3 dielectric powder. Mn, Cr, and Si ions were each fixed at 0.1, 0.1, and 0.65 mol-%. Sintering was performed in a reducing atmosphere, and the microstructure and the dielectric properties were evaluated while varying Dy from 0.5 to 1.0 mol-% and Mg from 1.0 to 2.0 mol-%. Grain growth was observed for higher amounts of Dy, but were suppressed for higher amounts of Mg. With regards to changes in particle size, both the permittivity and the temperature coefficient of capacitance (TCC) increased with increasing particle size. The permittivity was highest for Si=0.65, Mn=0.1, Cr=0.1 Dy=0.75, and Mg=2.0 mol-%. These levels also satisfied the TCC properties of X7R. In the microstructure, the core-shell was the most developed.
Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4
NASA Astrophysics Data System (ADS)
Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.
2017-10-01
We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.
NASA Astrophysics Data System (ADS)
Jirák, Z.; Hejtmánek, J.; Knížek, K.; Veverka, M.
2008-07-01
Two perovskite cobaltites, LaCoO3 and DyCoO3 , which are border compounds with respect to the Ln size, were investigated by the electric resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La-based compounds were complemented by magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding Co3+ sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low-temperature resistivity, which is of Arrhenius type ρ˜exp(EA/kT) for the hole (Co4+) -doped samples, while an unusual dependence ρ˜1/Tν (n=8-10) is observed for the electron (Co2+) -doped samples. At higher temperatures, additional hole carriers are massively populated in the Co3+ background, leading to a resistivity drop. This transition become evident at ˜300K and 450 K and culminates at TI-M=540 and 780 K for the La- and Dy-based samples, respectively. The electronic behaviors of the cobaltites in dependence on temperature are explained considering local excitations from the diamagnetic low-spin (LS) Co3+ to close-lying paramagnetic high-spin (HS) Co3+ states and subsequent formation of a metallic phase of the IS Co3+ character through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such intermediate (IS) phase.
Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7
NASA Astrophysics Data System (ADS)
Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.
2016-10-01
We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.
MOR vs SSZ origin of the Aladaǧ ophiolite (S-Turkey): implications from clinopyroxene geochemistry
NASA Astrophysics Data System (ADS)
Saka, Samet; Uysal, Ibrahim; Seitz, Michael; Melih Akmaz, Recep
2017-04-01
The Aladaǧ ophiolite is located in the eastern Taurides, north of the city of Adana, southern Turkey. From bottom to top it is composed of mantle peridotites, ultramafic-mafic cumulates, isotropic (massive) gabbro and diabase dykes. Mantle peridotites, represented by varying degrees of serpentinized dunite, harzburgite and lherzolite, are divided into two subgroups according to spinel Cr# and Lanthanum Group Element (LGE) contents. Group-1 mantle peridotites contain spinel with low Cr# [100×Cr/(Cr+Al) = 13-47] values and relatively high heavy LGE contents whereas Group-2 mantle peridotites contain spinel with relatively higher Cr# (44-74) values and lower heavy LGE contents. Clinopyroxene in the Aladaǧ mantle peridotites are diopside in composition. Clinopyroxenes from the Group-1 samples have TiO2 contents up to 0.37 wt.% and Na2O contents up to 0.89 wt.%. Conversely, the Group-2 clinopyroxenes were relatively depleted compared to the Group-1 clinopyroxenes in terms of TiO2 (<0,1 wt.%) and Na2O (<0.56 wt.%) contents. The Al2O3 contents are between 0.36-5.75 wt.% for the Group-1 clinopyroxenes and this value is relatively low and range between 0.06-2.68 wt.% for the Group-2 clinopyroxenes. Chondrite-normalized LGE patterns of clinopyroxene in the Group-1 and the Group-2 samples differ from each other. While the Group-1 clinopyroxenes show almost flat HLGE to MLGE patterns (DyN/LuN= 0.35-1.30 avg; 0.75), the Group-2 clinopyroxenes are represented by a more significant depletion from HLGE to MLGE (DyN/LuN= 0.04-0.41 avg; 0.19). Ti and Dy contents of clinopyroxene from the Group-1 samples range between 320-2536 ppm and 0.43-2.4 ppm, respectively. However, the Group-2 clinopyroxenes contain rather lower Ti and Dy contents compared to Group-1 clinopyroxenes, varying from 34 to 289 ppm and 0.02 to 0.20 ppm, respectively. The major oxide composition and LGE patterns as well as Ti and Dy contents of the clinopyroxenes indicate that Group-1 samples are relatively lower-degree partial melting residue left after melting in the mid-ocean ridges, while the Group-2 samples are higher degree partial melting residue at suprasubduction zone. The high Ti versus Dy and Zr contents of Group-1 clinopyroxenes support that they are dry melting residues at mid-ocean ridge setting; however, lower Ti contents for a given Zr contents of Group-2 clinopyroxenes imply that these clinopyroxenes are formed as a result of hydrous partial melting. This study was supported by #114Y094 TUBITAK project
Influence the dopant concentration on the photocatalytic activity: Dy3+, Eu3+ doped TiO2
NASA Astrophysics Data System (ADS)
Zikriya, Mohamed; Nadaf, Y. F.; Pramod, A. G.; Renuka, C. G.
2018-05-01
Titanium dioxide (TiO2) nanoparticles were synthesis by means of hydrothermal process from metatitanic acid. The impacts reaction temperature, stirring process and aging time on the morphology, the transfer of nanoparticles particles were characterized. The morphology of the nanoparticles was described in detail with scanning electron microscopy. In the dynamic of hydrothermal method, stirring can cut down the reaction time of change from particles to nanoparticles. As can be seen from the XRD patterns, the diffraction peaks get broadened as the Eu3+ focus is increased, proposing an orderly abatement in the grain size. The Crystallite size was calculated for pure, Dy3+ and Eu3+ doped TiO2 from diffraction plane by Sherrer's formula and it was found that 13 nm to 18 nm. From SEM images the majorities of TiO2 particles are oblate spheroid or spheroid and look looser, and some macropores could be seen on a few particles.
NASA Astrophysics Data System (ADS)
Garcia-Castro, A. C.; Vergniory, M. G.; Bousquet, E.; Romero, A. H.
2016-01-01
The electronic structure of SrTiO3 and SrHfO3 (001) surfaces with oxygen vacancies is studied by means of first-principles calculations. We reveal how oxygen vacancies within the first atomic layer of the SrTiO3 surface (i) induce a large antiferrodistortive motion of the oxygen octahedra at the surface, (ii) drive localized magnetic moments on the Ti 3 d orbitals close to the vacancies, and (iii) form a two-dimensional electron gas localized within the first layers. The analysis of the spin texture of this system exhibits a splitting of the energy bands according to the Zeeman interaction, lowering of the Ti 3 dx y level in comparison with dx z and dy z, and also an in-plane precession of the spins. No Rashba-like splitting for the ground state or for the ab initio molecular dynamics trajectory at 400 K is recognized as suggested recently by A. F. Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Instead, a sizable Rashba-like splitting is observed when the Ti atom is replaced by a heavier Hf atom with a much larger spin-orbit interaction. However, we observe the disappearance of the magnetism and the surface two-dimensional electron gas when full structural optimization of the SrHfO3 surface is performed. Our results uncover the sensitive interplay of spin-orbit coupling, atomic relaxations, and magnetism when tuning these Sr-based perovskites.
NASA Astrophysics Data System (ADS)
Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing
2018-03-01
Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.
Lu, Wen-Chung; Tseng, Li-Chun; Chang, Kao-Shuo
2017-09-11
This study is the first to employ combinatorial hydrothermal synthesis and facile spin-coating technology to fabricate TiO 2 -reduced graphene oxide (rGO) nanorod composition spreads. The features of this study are (1) the development of a self-designed spin-coating wedge, (2) the systemic investigation of the structure-property relationship of the system, (3) the high-throughput screening of the optimal ratio from a wide range of compositions for photocatalytic and photoelectrochemical (PEC) applications, and (4) the effective coupling between the density gradient TiO 2 nanorod array and the thickness gradient rGO. The formation of rGO in the fabricated TiO 2 -rGO sample was monitored through Fourier transform infrared spectrometry. Transmission electron microscopy images also suggested that the TiO 2 nanorod surfaces were covered with a thin layer of amorphous rGO. The rutile TiO 2 plane evolution along the composition variation was verified through X-ray diffraction. 7% TiO 2 -93% rGO on the nanorod composition spread exhibited the most promising photocatalytic ability; the corresponding photodegradation kinetics, denoted by the photodegradation rate constant (k), was determined to be approximately 12.7 × 10 -3 min -1 . The excellent performance was attributed to the effective coupling between the TiO 2 and rGO, which improved the charge carrier transport, thus inhibiting electron-hole pair recombination. A cycling test implied that 7% TiO 2 -93% rGO is a reliable photocatalyst. A photoluminescence spectroscopy study also supported the superior photocatalytic ability of the sample, which was attributed to its markedly poorer recombination behavior. In addition, without further treatment, the sample exhibited excellent PEC stability; the photocurrent density was more than three times higher than that exhibited by the density gradient TiO 2 nanorods.
NASA Astrophysics Data System (ADS)
Gao, Lingyuan; Demkov, Alexander A.
2018-03-01
Using first-principles calculations we predict the existence of a spin-polarized two-dimensional electron gas (2DEG) at the interface of a ferromagnetic insulator EuO and oxygen-deficient SrTi O3 . The carriers are generated by oxygen vacancies in SrTi O3 near the interface and have predominantly Ti-t2 g orbital character. At the interface, the split-off dx y-derived conduction band of SrTi O3 is fully spin-polarized and the in-gap vacancy-induced state, found below the conduction-band edge, is aligned ferromagnetically with EuO. The calculations suggest a possible mechanism for generating spin-polarized 2DEG for spintronic applications.
Evidence for the Confinement of Magnetic Monopoles in Quantum Spin Ice.
Sarte, Paul Maximo; Aczel, Adam; Ehlers, Georg; Stock, Christopher; Gaulin, Bruce D; Mauws, Cole; Stone, Matthew B; Calder, Stuart; Nagler, Stephen; Hollett, Joshua; Zhou, Haidong; Gardner, Jason S; Attfield, J Paul; Wiebe, Christopher R
2017-09-25
Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids [Dirac 1931 Proc. Roy. Soc. A 133 60]. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials [Castelnovo, Moessner & Sondhi 2008 Nature 326 411]. Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. These excitations are well-described by a simple model of monopole pairs bound by a linear potential [Coldea et al. Science 327 177] with an effective tension of 0.7(1) K/Angstrom. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. © 2017 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Saurdi, I.; Shafura, A. K.; Mamat, M. H.; Ishak, A.; Rusop, M.
2018-05-01
In this paper, the Nb-doped TiO2 films were deposited on glass substrate and their electrical and structural properties were investigated. The results revealed that the resistivity of Nb-doped TiO2 films of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.% were 2.78 × 105, 1.35 × 105 Ω.cm, 5.89 × 104 Ω.cm, 9.20 × 102 Ω.cm and 9.56 × 103 Ω.cm, respectively. Where, the lowest resistivity of 9.20 × 102 Ω.cm was obtained at 5at.% Nb-doped TiO2 films. The resistivity of Nb-doped TiO2 films decreases as the Nb concentration increased from 0 at.% to 5 at.%. However, the resistivity decrease at 7 at.% Nb-doped TiO2 films. Meanwhile, from the FESEM images the Nb-doped TiO2 films with 0 at.%, 1 at.%, 3 at.% and 5 at.% Nb had a rough and porous structures were observed. However, the Nb-doped TiO2 at 7 at.% has a agglomerated and denser structures.
Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno
2013-06-17
Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius plot to be 12.2(7) and 6.1(3) K for 1Tb and 2Tb, respectively, and 18.1(6) and 14.5(4) K for 1Dy and 2Dy, respectively, under a dc bias field of 1000 Oe. Compound 1Dy showed relatively slow relaxation of magnetization reorientation even at zero dc applied field with Δ/kB = 6.6(4) K.
Luminescence characteristics of C5+ ions and 60Co irradiated Li2BaP2O7:Dy3+ phosphor
NASA Astrophysics Data System (ADS)
Wani, J. A.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.
2015-04-01
In this work a study on some thermoluminescence characteristics of Li2BaP2O7:Dy phosphor is presented. The phosphor was synthesized by solid state diffusion method and characterized for its phase purity by X-ray diffraction (XRD). FT-IR spectrum was also carried out to confirm the presence of phosphate family and vibrations corresponding to P-O-P group. Spectroscopic investigation was approached through photoluminescence (PL) and thermoluminescence (TL). PL emission spectrum of Dy3+ ions corresponding to 4F9/2 → 6H13/2 (483 nm) and 4F9/2 → 6H15/2 (574 nm) transitions is revealed under 351 nm excitation wavelength. This characteristic emission confirms the presence of Dy3+ ions in the Li2BaP2O7 host matrix. To induce TL properties in Li2BaP2O7:Dy phosphor was irradiated with C5+ ion beams and gamma rays (60Co). A nearly simple glow curve was observed for Li2BaP2O7:Dy under two different excitation sources. TL response is almost linear over a wide range. Average absorbed dose (D bar) and mean linear energy transfer (LET ‾) of C5+ ion beams in Li2BaP2O7:Dy have also been calculated. Values of parameters like E and S known as trap depth and frequency factor respectively were obtained by using TLanal computer program. Also SRIM based calculations were performed to study the effect of C5+ ion beams on the samples of Li2BaP2O7:Dy. SRIM calculations show that Ba2+ vacancies are highest in number. Till date no such luminescence information on Li2BaP2O7:Dy phosphor is available.
Vibrational and elastic properties of Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu)
NASA Astrophysics Data System (ADS)
Akbudak, S.; Kushwaha, A. K.
2018-04-01
In this study, an eight-parameter bond-bending force constant model was used to calculate the zone center phonon frequencies, elastic constants, and related properties of the stannate compounds Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu) with a pyrochlore structure. We found that the Snsbnd O bond strengths dominate the Ln-O and Osbnd O bonds. We also found that all of the materials are ductile and anisotropic in nature. The anisotropic nature of the compounds increases in the order of: La2Sn2O7 < Sm2Sn2O7 < Gd2Sn2O7 < Dy2Sn2O7 < Ho2Sn2O7 < Er2Sn2O7 < Yb2Sn2O7 < Lu2Sn2O7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamahara, H., E-mail: yamahara@bioxide.t.u-tokyo.ac.jp; Seki, M.; Adachi, M.
2015-08-14
Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe{sub 3−x}Ti{sub x}O{sub 4} thin films have been obtained on spinel MgAl{sub 2}O{sub 4} substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films (x = 0.8) show p-type conduction, while Ti-poor films (x = 0.6–0.75) show n-type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmedmore » by the X-ray absorption spectra. All of the Fe{sub 3−x}Ti{sub x}O{sub 4} films (x = 0.6–0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.« less
Imani, Roghayeh; Dillert, Ralf; Bahnemann, Detlef W; Pazoki, Meysam; Apih, Tomaž; Kononenko, Veno; Repar, Neža; Kralj-Iglič, Veronika; Boschloo, Gerrit; Drobne, Damjana; Edvinsson, Tomas; Iglič, Aleš
2017-05-01
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO 2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO 2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd 3+ ions introduce impurity energy levels inside the bandgap of anatase TiO 2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO 2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO 2 nanobeads and TiO 2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO 2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Ortho-to-para Ratio of Water Molecules Desorbed from Ice Made from Para-water Monomers at 11 K
NASA Astrophysics Data System (ADS)
Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki
2018-04-01
Water has two nuclear-spin isomers: ortho- and para-H2O. Some observations of interstellar space and cometary comae have reported the existence of gaseous H2O molecules with anomalous ortho-to-para ratios (OPRs) less than the statistical value of three. This has been often used to estimate the formation temperature of ice on dust, which is inferred to be below 50 K. The relation between the nuclear-spin dynamics of H2O in ice at low temperatures and the OPR of gaseous H2O desorbed from the ice has yet to be explored in a laboratory. Consequently, the true meaning of the observed OPRs remains debated. We measure the OPR of H2O photodesorbed from ice made from para-H2O monomers at 11 K, which was prepared by the sublimation of Ne from a para-H2O/Ne matrix. The photodesorbed H2O molecules from the ice have the statistical OPR value of three, demonstrating the immediate nuclear-spin-state mixing of H2O toward the statistical value of ice even at 11 K. The OPR of H2O thermally desorbed from the ice also shows the expected statistical value. Our results indicate that the OPR of H2O desorbed from interstellar ice should be the statistical value regardless of the formation process of the ice, which cannot be used to deduce the ice-formation temperature. This study highlights the importance of interstellar gas-phase processes in understanding anomalous abundance ratios of nuclear-spin isomers of molecules in space.
A physicochemical research of the Dy-Sn-O system
NASA Astrophysics Data System (ADS)
Malinovskaya, Tatyana; Lysak, Ilya; Zhek, Valentina; Kuznetsova, Svetlana
2017-11-01
A physicochemical research of the processes of phase composition formation in the materials of the Dy-Sn-O system was performed. Phase composition was taking place in the course of thermal treatment of dysprosium (III) and tin (IV) codeposition products. These were codeposited from nitrate solutions at pH 7, and 25% ammonia water was used as the precipitant. Using thermal and X-ray diffraction analysis, it was found that in the above system at 90 wt. % of Dy2O3 and 10 wt. % of SnO2, when the precursors were heated above 600°C there are no solid solutions. In the meanwhile, at temperatures below 1000°C there is only one phase, Dy2O3. At temperatures above 1000°C, the system becomes bi-phase and includes Dy2O3 and Dy2Sn2O7.
NASA Astrophysics Data System (ADS)
Baez, M. L.; Borzi, R. A.
2017-02-01
We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.
Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M
2014-07-15
Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. Copyright © 2014 Elsevier B.V. All rights reserved.
Theoretical investigation of the magnetoelectric properties of Bi2NiTiO6
NASA Astrophysics Data System (ADS)
Patra, Lokanath; Ravindran, P.
2018-04-01
We report the first principle investigations on the structural, electronic, magnetic and ferroelectric properties of a Pb free double perovskite multiferroic Bi2NiTiO6 using density functional theory within the general gradient approximation (GGA) and GGA+U method. Our results show that Bi2NiTiO6 will be an insulator with G-type magnetic ordering in its ground state with Ni2+ in a high spin state and a spin moment of 1.741μB. The paraelectric phase stabilizes in nonmagnetic state with Ni2+ in low spin configuration showing that spin state transition plays an important role in strong magnetoelectric coupling in Bi2NiTiO6. The bonding characteristics of the constituents are analyzed with the help of partial density of states and Born effective charges. The presence of Ti ions at Ni sites suppresses the disproportionation observed in case of BiNiO3 and results in a noncentrosymmetric crystal structure. The coexistence of Bi 6s lone pair and Ti4+ d0 ions which brings covalency produces a polarization of 32 µCcm-2.
NASA Astrophysics Data System (ADS)
Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao
2018-06-01
Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.
Zhang, Wentao; Yu, Meng; Dai, Siyi; Chen, Xianfei; Long, Jianping
2017-09-01
Sr 4 Al 2 O 7 :Eu 3+ and Sr 4 Al 2 O 7 :Dy 3+ phosphors with alkali metal substitution were prepared using a sol-gel method. The effects of a charge compensator R on the structure and luminescence of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr 4 Al 2 O 7 . Under ultraviolet excitation, all Sr 4 Al 2 O 7 :Eu 3+ ,R + samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu 3+ ions. All Sr 4 Al 2 O 7 :Dy 3+ ,R + phosphors showed two emission peaks at 492 and 582 nm, due to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions, respectively. The luminescence intensity of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light-emitting diodes with a near-ultraviolet chip. Copyright © 2017 John Wiley & Sons, Ltd.
Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores
NASA Astrophysics Data System (ADS)
Applegate, Ryan
This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC) expansions to study thermodynamic properties of Yb 2Ti2O7. We show that high field fitting of inelastic neutron scattering experiments is an excellent method in determining the exchange constants of these materials. We calculate the heat capacity, entropy and magnetization as a function of temperature and field along a few high symmetry field directions. We compare our theoretical predictions to experiments and find remarkable agreement. These studies highlight the importance of localized model Hamiltonians in understanding magnetic properties of complex materials.
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-08-01
In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.
NASA Astrophysics Data System (ADS)
Zerentürk, A.; Açıkgöz, M.; Kazan, S.; Yıldız, F.; Aktaş, B.
2017-02-01
In this paper, we present the results of X-band EPR spectra of Co2+ ion doped rutile (TiO2) which is one of the most promising memristor material. We obtained the angular variation of spectra in three mutually perpendicular planes at liquid helium (7-13 K) temperatures. Since the impurity ions have ½ effective spin and 7/2 nuclear spin, a relatively simple spin Hamiltonian containing only electronic Zeeman and hyperfine terms was utilized. Two different methods were used in theoretical analysis. Firstly, a linear regression analysis of spectra based on perturbation theory was studied. However, this approach is not sufficient for analyzing Co+2 spectra and leads to complex eigenvectors for G and A tensors due to large anisotropy of eigenvalues. Therefore, all spectra were analyzed again with exact diagonalization of spin Hamiltonian and the high accuracy eigenvalues and eigenvectors of G and A tensors were obtained by taking into account the effect of small sample misalignment from the exact crystallographic planes due to experimental conditions. Our results show that eigen-axes of g and A tensors are parallel to crystallographic directions. Hence, our EPR experiments proves that Co2+ ions substitute for Ti4+ ions in lattice. The obtained principal values of g tensor are gx=2.110(6), gy=5.890(2), gz=3.725(7) and principal values of hyperfine tensor are Ax=42.4, Ay=152.7, Az=26 (in 10-4/cm).
TiO2 Nanowires/Poly(Methyl Methacrylate) Based Hybrid Photodetector: Improved Light Detection.
Saha, S; Mondal, A; Choudhur, B; Goswami, T; Sarkar, M B; Chattopadhyay, K K
2016-03-01
Hybrid photodetector with a maximum external quantum efficiency of ~3.08% in the UV region at 370 nm, was fabricated by spin-coated poly(methyl methacrylate) (PMMA) polymer onto glancing angle deposited (GLAD) vertically aligned TiO2 nanowire (NW) arrays. The TiO2 NWs/PMMA detector shows excellent rectification and constant 1.3 times photo-responsivity in the reverse bias condition from -1 V to -10 V. The photodiode possesses a low ideality factor of 5.1 as compared to bared TiO2 NWs device of 7.1. The hybrid device produces sharp turn-on of -0.8 s and turn-off transient of -0.9 s respectively.
Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali
2016-11-01
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f 6 5d 1 ', '4f7' has been corrected to '4f 7 ', 'Ba1.95' has been corrected to 'Ba 1.95 ' and 'Ba1.93' has been corrected to 'Ba 1.93 ' respectively.]. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Losito, I.; Amorisco, A.; Palmisano, F.; Zambonin, P. G.
2005-02-01
X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide-poly(vinylidenefluoride) (TiO 2-PVDF) films developed for applications in the photocatalytic degradation of pollutants. The composites were deposited on glass substrates by casting or spin coating from TiO 2-PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO 2-PVDF surface composition were used to optimize preparation conditions (composition of the TiO 2/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability. The use of spin-coating deposition and the increase of TiO 2 amount in the DMF suspensions were found to improve the titanium surface content, although high TiO 2/PVDF ratios led to film instability. PVDF-TiO 2 films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO 2 and the role played by the PVDF film during the degradation process.
Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan
2018-02-05
A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.
Magnetic Behavior of a Dy8 Molecular Nanomagnet
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Stamatatos, Theocharis
2015-03-01
As part of a study of quantum tunneling in a newly synthesized family of dysprosium-based molecular magnets that exhibit a chiral spin structure, we report initial investigations of the magnetic response of a Dy8 cluster with the formula (Et4N)4[Dy8O(nd)8(NO3)10(H2O)2] .2MeCN. The molecular complex contains triangular arrangements of exchange coupled Dy(III) ions. The compound forms an approximate snub-square Archimedean lattice unit. The measured magnetization of this network of four triangles suggests the presence of multiple spin chiral vortexes. Single crystal susceptibility and magnetization measurements indicate the presence of a hard-axis direction and an easy plane. These principal orientations have been investigated in magnetic fields up to 5 Tesla for temperatures between 1.8 and 100 K using a SQUID-based Quantum Design MPMS magnetometer. Complex easy plane magnetic hysteresis loops emerge at lower temperatures measured using Hall probe magnetometry at sub 1 K temperatures. The analysis of these measurements will be discussed and compared with results of theoretical calculations. Work supported by ARO W911NF-13-1-1025 (CCNY), NSF-DMR-1309202 (NYU); the synthesis of the Dy8 cluster was supported by NSERC (Discovery grant to Th.C.S.).
Synchrotron X-ray studies of epitaxial ferroelectric thin films and nanostructures
NASA Astrophysics Data System (ADS)
Klug, Jeffrey A.
The study of ferroelectric thin films is a field of considerable scientific and technological interest. In this dissertation synchrotron x-ray techniques were applied to examine the effects of lateral confinement and epitaxial strain in ferroelectric thin films and nanostructures. Three materials systems were investigated: laterally confined epitaxial BiFeO3 nanostructures on SrTiO3 (001), ultra-thin commensurate SrTiO 3 films on Si (001), and coherently strained films of BaTiO3 on DyScO3 (110). Epitaxial films of BiFeO3 were deposited by radio frequency magnetron sputtering on SrRuO3 coated SrTiO 3 (001) substrates. Laterally confined nanostructures were fabricated using focused ion-beam processing and subsequently characterized with focused beam x-ray nanodiffraction measurements with unprecedented spatial resolution. Results from a series of rectangular nanostructures with lateral dimensions between 500 nm and 1 mum and a comparably-sized region of the unpatterned BiFeO3 film revealed qualitatively similar distributions of local strain and lattice rotation with a 2-3 times larger magnitude of variation observed in those of the nanostructures compared to the unpatterned film. This indicates that lateral confinement leads to enhanced variation in the local strain and lattice rotation fields in epitaxial BiFeO3 nanostructures. A commensurate 2 nm thick film of SrTiO3 on Si was characterized by the x-ray standing wave (XSW) technique to determine the Sr and Ti cation positions in the strained unit cell in order to verify strain-induced ferroelectricity in SrTiO3/Si. A Si (004) XSW measurement at 10°C indicated that the average Ti displacement from the midpoint between Sr planes was consistent in magnitude to that predicted by a density functional theory (DFT) calculated ferroelectric structure. The Ti displacement determined from a 35°C measurement better matched a DFT-predicted nonpolar structure. The thin film extension of the XSW technique was employed to measure the polar displacement of the Ba cations in a 50 nm thick coherently strained BaTiO3 film on DyScO3 (110). An analysis assuming a bulk-like ratio between the Ti and Ba displacements found that the polar shift of Ba cations was larger than in bulk BaTiO3, which was consistent with strain-induced enhancement of ferroelectric polarization in BaTiO3/DyScO3 (110).
Ferrielectricity in DyMn2O5: A golden touchstone for multiferroicity of RMn2O5 family
NASA Astrophysics Data System (ADS)
Liu, J.-M.; Dong, S.
2015-06-01
The RMn2O5 manganite compounds represent one class of multiferroic family with magnetic origins, which has been receiving continuous attention in the past decade. So far, our understanding of the magnetic origins for ferroelectricity in RMn2O5 is associated with the nearly collinear antiferromagnetic structure of Mn ions, while the exchange striction induced ionic displacements are the consequence of the spin frustration competitions. While this scenario may be applied to almost all RMn2O5 members, its limitation is either clear: the temperature-dependent behaviors of electric polarization and its responses to external stimuli are seriously materials dependent. These inconsistences raise substantial concern with the state-of-the-art physics of ferroelectricity in RMn2O5. In this mini-review, we present our recent experimental results on the roles of the 4f moments from R ions which are intimately coupled with the 3d moments from Mn ions. DyMn2O5 is a golden figure for illustrating these roles. It is demonstrated that the spin structure accommodates two nearly collinear sublattices which generate respectively two ferroelectric (FE) sublattices, enabling DyMn2O5 an emergent ferrielectric (FIE) system rarely identified in magnetically induced FEs. The evidence is presented from several aspects, including FIE-like phenomena and magnetoelectric responses, proposed structural model, and experimental check by nonmagnetic substitutions of the 3d and 4f moments. Additional perspectives regarding possible challenges in understanding the multiferroicity of RMn2O5 as a generalized scenario are discussed.
NASA Astrophysics Data System (ADS)
Dun, Z. L.; Trinh, J.; Lee, M.; Choi, E. S.; Li, K.; Hu, Y. F.; Wang, Y. X.; Blanc, N.; Ramirez, A. P.; Zhou, H. D.
2017-03-01
We present a systematic study of the structural and magnetic properties of two branches of the rare-earth tripod-kagome-lattice (TKL) family A2R3Sb3O14 (A = Mg, Zn; R = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation A-R, as in MgPr for Mg2Pr3Sb3O14 ), which complements our previously reported work on MgDy, MgGd, and MgEr [Z. L. Dun et al., Phys. Rev. Lett. 116, 157201 (2016), 10.1103/PhysRevLett.116.157201]. The present susceptibility (χdc, χac) and specific-heat measurements reveal various magnetic ground states, including the nonmagnetic singlet state for MgPr, ZnPr; long-range orderings (LROs) for MgGd, ZnGd, MgNd, ZnNd, and MgYb; a long-range magnetic charge ordered state for MgDy, ZnDy, and potentially for MgHo; possible spin-glass states for ZnEr, ZnHo; the absence of spin ordering down to 80 mK for MgEr, MgTb, ZnTb, and ZnYb compounds. The ground states observed here bear both similarities as well as striking differences from the states found in the parent pyrochlore systems. In particular, while the TKLs display a greater tendency towards LRO, the lack of LRO in MgHo, MgTb, and ZnTb can be viewed from the standpoint of a balance among spin-spin interactions, anisotropies, and non-Kramers nature of single-ion state. While substituting Zn for Mg changes the chemical pressure, and subtly modifies the interaction energies for compounds with larger R ions, this substitution introduces structural disorder and modifies the ground states for compounds with smaller R ions (Ho, Er, Yb).
Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2.
Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue
2015-01-01
The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhen; Overbury, Steven; Dai, Sheng
Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually notmore » reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.« less
Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, C. L.; Peng, H.; Su, W. B.; Wang, H. C.; Li, J. C.; Zhang, J. L.; Mei, L. M.
2012-11-01
Sr1- x Dy x TiO3 ( x = 0.02, 0.05, 0.10) ceramics were prepared by the reduced solid-state reaction method, and their thermoelectric properties were investigated from room temperature to 973 K. The resistivity increases with temperature, showing metallic behavior. The Seebeck coefficients tend to saturate at high temperatures, presenting narrow-band behavior, as proved by ab initio calculations of the electronic structure. The magnitudes of the Seebeck coefficient and the electrical resistivity decrease with increasing Dy content. At the same time, the thermal conductivity decreases because the lattice thermal conductivity is reduced by Dy substitution. The maximum value of the figure of merit reaches 0.25 at 973 K for the Sr0.9Dy0.1TiO3 sample.
Unstable spin-ice order in the stuffed metallic pyrochlore Pr 2+xIr 2-xO 7-δ
MacLaughlin, D. E.; Bernal, O. O.; Shu, Lei; ...
2015-08-24
Specific heat, elastic neutron scattering, and muon spin rotation experiments have been carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr 2+xIr 2-xO 7-δ. Elastic neutron scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at 0.93 kelvin, with an ordered moment of 1.7(1) Bohr magnetons per Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstroms and 0.7 nanosecond, respectively. Muon spin rotation experiments yield an upper bound 2.6(7) milliteslas on the local field B 4f loc at the muon site, which is nearly twomore » orders of magnitude smaller than the expected dipolar field for long-range spin-ice ordering of 1.7-Bohr magneton moments (120–270 milliteslas, depending on the muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr 3+ ions by the positive-muon-induced lattice distortion. For this to be the only effect, however, ~160 Pr moments out to a distance of ~14 angstroms must be suppressed. An alternative scenario—one consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat—invokes slow correlated Pr-moment fluctuations in the ordered state that average B 4f loc on the μSR time scale (~10 -7 second), but are static on the time scale of the elastic neutron scattering experiments (~10 -9 second). In this picture, the dynamic muon relaxation suggests a Pr 3+ 4f correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.« less
Molinari, Alessandra; Samiolo, Luca; Amadelli, Rossano
2015-05-01
Using the EPR spin trapping technique, we prove that simultaneous reactions take place in illuminated suspensions of TiO2 in aqueous carbonate solutions (pH ≈ 7). The adsorbed HCO3(-) is reduced to formate as directly made evident by the detection of formate radicals (˙CO2(-)). In addition, the amount of OH˙ radicals from the photo-oxidation of water shows a linear dependence on the concentration of bicarbonate, indicating that electron scavenging by HCO3(-) increases the lifetime of holes. In a weakly alkaline medium, photo-oxidation of HCO3(-)/CO3(2-) to ˙CO3(-) interferes with the oxidation of water. A comparative analysis of different TiO2 samples shows that formation of ˙CO2(-) is influenced by factors related to the nature of the surface, once expected surface area effects are accounted for. Modification of the TiO2 surface with noble metal nanoparticles does not have unequivocal benefits: the overall activity improves with Pd and Rh but not with Ru, which favours HCO3(-) photo-oxidation even at pH = 7. In general, identification of radical intermediates of oxidation and reduction reactions can provide useful mechanistic information that may be used in the development of photocatalytic systems for the reduction of CO2 also stored in the form of carbonates.
Synthesis, Crystal Structure, and Magnetic Properties of the YbFeTi2O7 Compound
NASA Astrophysics Data System (ADS)
Drokina, T. V.; Petrakovskii, G. A.; Molokeev, M. S.; Velikanov, D. A.
2018-03-01
We report on the synthesis conductions and results of experimental investigations of the crystal structure and magnetic properties of a new magnetic compound YbFeTi2O7. According to the X-ray diffractometry data, the crystal structure of the investigated compound is described by the rhombic space group Pcnb with unit cell parameters of a = 9.8115(1) Å, b = 13.5106(2) Å, and c = 7.31302(9) Å and atomic disordering in the distribution of iron ions Fe3+ over five structural sites. The magnetic measurements in the lowtemperature region revealed a kink in the temperature dependence of the magnetic moment and its dependence on the sample magnetic prehistory. The experimental results obtained suggest that with a decrease in temperature the sample passes from the paramagnetic state to the spin-glass-like magnetic state characterized by a freezing temperature of T f = 4.5 K at the preferred antiferromagnetic exchange coupling in the sample spin system. The chemical pressure variation upon replacement of rare-earth ion R by Yb in the RFeTi2O7 system does not change the crystal lattice symmetry and magnetic state.
Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique
2018-06-04
Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.
A Heat-Stimulated Luminous Fiber Using Heat-Sensitive Green TF-G Pigment
Jin, Yang; An, Xiaolong; Ge, Mingqiao
2018-01-01
In this study, we fabricated a heat-stimulated luminous fiber (HSLF) by wet spinning. The HSLF consists of Sr2ZnSi2O7: Eu2+, Dy3+ (SZSO), Y2O2S: Eu3+, Mg2+, Ti4+ (YOS), and heat-sensitive green TF-G pigment (HSGP). SZSO and YOS serve as a source of luminescence to yield a long afterglow system. HSGP is a heat-stimulating agent which develops the link between luminescence and temperature for HSLF. The luminescence of the HSLF is dull below 30 °C, but vivid above 30 °C. The luminescence of HSLFs can be stimulated by low heat (human body temperature). Emission spectra were recorded at 20 °C and 30 °C to investigate the heat-stimulated luminescent performance of HSLFs. HSLF is a smart material which can discern the exciting light to change color because of the photo-thermal effect. This characteristic provides optimum conditions for SZSO and YOS to store energy. The results demonstrated that most luminescence from SZSO and YOS could be absorbed by HSGP at 20 °C, but the luminescence could be liberated at 30 °C. The heat-stimulated phenomenon could also be verified by afterglow and the naked eye. PMID:29543723
Dysprosium complexes with mono-/di-carboxylate ligands-From simple dimers to 2D and 3D frameworks
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.
2014-11-01
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)-1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)-1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated.
NASA Astrophysics Data System (ADS)
Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon
2015-04-01
To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.
Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara
2018-05-01
In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.
Multivalent Mn-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.
2012-07-01
Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.
Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh
2017-05-10
In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.
NASA Astrophysics Data System (ADS)
Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana
2016-07-01
In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my
In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3
NASA Astrophysics Data System (ADS)
Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.
2015-06-01
We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.
NASA Astrophysics Data System (ADS)
Betancourt, J.; Paudel, T. R.; Tsymbal, E. Y.; Velev, J. P.
2017-07-01
Two-dimensional electron gases (2DEGs) at oxide interfaces have been a topic of intensive research due to their high carrier mobility and strong confinement. Additionally, strong correlations in the oxide materials can give rise to new and interesting physics, such as magnetism and metal-insulator transitions at the interface. Using first-principles calculations based on density functional theory, we demonstrate the presence of a highly spin-polarized 2DEG at the interface between the Mott insulator GdTi O3 and a band insulator SrTi O3 . The strong correlations in the dopant cause ferromagnetic alignment of the interface Ti atoms and result in a fully spin-polarized 2DEG. The 2DEG consists of two types of carriers distinguished by their orbital character. The majority of the interface charge is strongly localized on the Ti dx y orbitals at the interface and a smaller fraction resides on the delocalized Ti dx z ,y z states.
Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection
NASA Astrophysics Data System (ADS)
Nadzirah, Sh.; Hashim, U.; Rusop, M.
2018-05-01
A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.
Electrical properties of spin coated ultrathin titanium oxide films on GaAs
NASA Astrophysics Data System (ADS)
Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala
2015-04-01
In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.
Performance analysis of flexible DSSC with binder addition
NASA Astrophysics Data System (ADS)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur
2016-04-01
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.
Effect on Electron Structure and Magneto-Optic Property of Heavy W-Doped Anatase TiO2
Hou, Qingyu; Zhao, Chunwang; Guo, Shaoqiang; Mao, Fei; Zhang, Yue
2015-01-01
The spin or nonspin state of electrons in W-doped anatase TiO2 is very difficult to judge experimentally because of characterization method limitations. Hence, the effect on the microscopic mechanism underlying the visible-light effect of W-doped anatase TiO2 through the consideration of electronic spin or no-spin states is still unknown. To solve this problem, we establish supercell models of W-doped anatase TiO2 at different concentrations, followed by geometry optimization and energy calculation based on the first-principle planewave norm conserving pseudo-potential method of the density functional theory. Calculation results showed that under the condition of nonspin the doping concentration of W becomes heavier, the formation energy becomes greater, and doping becomes more difficult. Meanwhile, the total energy increases, the covalent weakens and ionic bonds strengthens, the stability of the W-doped anatase TiO2 decreases, the band gap increases, and the blue-shift becomes more significant with the increase of W doping concentration. However, under the condition of spin, after the band gap correction by the GGA+U method, it is found that the semimetal diluted magnetic semiconductors can be formed by heavy W-doped anatase TiO2. Especially, a conduction electron polarizability of as high as near 100% has been found for the first time in high concentration W-doped anatase TiO2. It will be able to be a promising new type of dilute magnetic semiconductor. And the heavy W-doped anatase TiO2 make the band gap becomes narrower and absorption spectrum red-shift. PMID:25955308
Muon Spin Relaxation/Rotation Studies of Novel Magnetic Systems
NASA Astrophysics Data System (ADS)
Luke, Graeme
Muon spin relaxation/rotation is a powerful technique for probing magnetism in materials. As a real space probe, the muon complements neutron scattering's reciprocal space sensitivity. Muons probe magnetic fluctuations in a frequency window between inelastic neutron scattering and nuclear magnetic resonance. In this presentation I will describe our recent work on geometrically frustrated materials including the pyrochlore lattice compounds Yb2Ti
Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R
2017-08-04
The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.
Adsorption of CO on oxide and water ice surfaces - Implications for the Martian atmosphere
NASA Technical Reports Server (NTRS)
Leu, M.-T.; Blamont, J. E.; Anbar, A. D.; Keyser, L. F.; Sander, S. P.
1992-01-01
The adsorption of carbon monoxide (CO) on water ice and on the oxides Fe2O3, Fe3O4, Al2O3, SiO2, CaO, MgO, and TiO2 (rutile and anatase) has been investigated in a flow reactor. A mass spectrometer was employed as a detector to monitor the temporal concentrations of CO. Adsorption coefficients as large as 1 x 10 exp -4 were measured for CO on TiO2 solids in helium at 196 K. The fractional surface coverage for CO on TiO2 solids in helium was also determined to be approximately 10 percent at 196 K. The upper limits of the fractional surface coverage for the other oxides (Fe2O3, Fe3O4, Al2O3, SiO2, CaO, and MgO) and water ice were also measured to be less than 1 percent. The implications for the stability of CO2 in the Martian atmosphere and the 'CO hole' observed by the Phobos/ISM experiment are discussed.
NASA Astrophysics Data System (ADS)
Kadowaki, Hiroaki; Wakita, Mika; Fåk, Björn; Ollivier, Jacques; Ohira-Kawamura, Seiko; Nakajima, Kenji; Takatsu, Hiroshi; Tamai, Mototake
2018-06-01
The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition (x = -0.007 < xc ˜ -0.0025), being a putative quantum spin-liquid (QSL), and the other two (x = 0.000,0.003) show electric quadrupole ordering (QO) below Tc ˜ 0.5 K. The QSL sample shows continuum excitation spectra with an energy scale 0.1 meV as well as energy-resolution-limited (nominally) elastic scattering. As x is increased, pseudospin wave of the QO state emerges from this continuum excitation, which agrees with that of powder samples and consequently verifies good x control for the present single crystal samples.
He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo
2018-06-13
The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Yang, Ming; Feng, Yuan Ping; Rusydi, Andrivo
2017-11-01
Perovskite oxide interfaces have attracted tremendous research interest for their fundamental physics and promising all-oxide electronic applications. Here, based on first-principles calculations, we propose a surface La interstitial promoted interface insulator-metal transition in LaAl O3 /SrTi O3 (110). Compared with surface oxygen vacancies, which play a determining role on the insulator-metal transition of LaAl O3 /SrTi O3 (001) interfaces, we find that surface La interstitials can be more experimentally realistic and accessible for manipulation and more stable in an ambient atmospheric environment. Interestingly, these surface La interstitials also induce significant spin-splitting states with a Ti dy z/dx z character at a conducting LaAl O3 /SrTi O3 (110) interface. On the other hand, for insulating LaAl O3 /SrTi O3 (110) (<4 unit cells LaAl O3 thickness), a distortion between La (Al) and O atoms is found at the LaAl O3 side, partially compensating the polarization divergence. Our results reveal the origin of the metal-insulator transition in LaAl O3 /SrTi O3 (110) heterostructures, and also shed light on the manipulation of the superior properties of LaAl O3 /SrTi O3 (110) for different possibilities in electronic and magnetic applications.
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
NASA Astrophysics Data System (ADS)
Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.
2018-03-01
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.
Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel 1
NASA Technical Reports Server (NTRS)
Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichova, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; Mastrodemos, Nicholas;
2011-01-01
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 +/- 0.025deg/dy (41.335 0.005 h) prior to the 2000 perihelion passage, 210.448 +/- 0.016deg/dy (41.055 +/- 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 +/- 0.030deg/dy (40.783 +/- 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 +/- 0.012deg/dy (40.827 +/- 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 +/- 0.3 min during the 2000 passage and by 13.7 +/- 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 +/- 0.003deg/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations. The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4-15) pole and longitude system. The possibility of a 180deg error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42. We find that a net torque in the range of 0.3-2.5 x 10(exp 7) kg/sq m/sq s acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than approx. 1deg per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.
Some studies on TiO2 films deposited by sol-gel technique
NASA Astrophysics Data System (ADS)
Narasimha Rao, K.; Vishwas, M.; Kumar Sharma, Sudhir; Arjuna Gowda, K. V.
2008-08-01
TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.
Characterization of TiO2 films obtained by a wet chemical process
NASA Astrophysics Data System (ADS)
Sedik, Asma; Ferraria, Ana M.; Carapeto, Ana P.; Bellal, Bouzid; Trari, Mohamed; Outemzabet, Ratiba
2017-12-01
TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm-1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.
Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3
Chi, Songxue; Ye, Feng; Zhou, H. D.; ...
2014-10-24
A flop of electric polarization from Pmore » $$\\|$$c (P c) to P$$\\|$$ a (P a) is observed in MnTiO 3 as a spin flop transtion is triggered by a c-axis magnetic field, H $$\\|$$c=7 T. The critical magnetic field for P a is significantly reduced in Mn 1-xNi xTiO 3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn 2+ and Ni 2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, H c, aligns the spins along c for T RN. The rotation of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less
Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.
Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D
2010-05-03
The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohshimo, Keijiro; Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai 980-8576; Norimasa, Naoya
Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The Ti{sub n}O{sub 2n−1}{sup +} cations and Ti{sub n}O{sub 2n}{sup −} anions were predominantly observed at high injection energies, in addition to Ti{sub n}O{sub 2n}{sup +} for cations and Ti{sub n}O{sub 2n+1}{sup −} for anions. Collision cross sections of Ti{sub n}O{sub 2n}{sup +} and Ti{sub n}O{sub 2n+1}{sup −} formore » n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from Ti{sub n}O{sub 2n}{sup +} and Ti{sub n}O{sub 2n+1}{sup −} by collisions were also explained by analysis of spin density distributions.« less
Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong
2012-01-01
Nano-sized titanium dioxide (TiO2) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO2 nanoparticles (nano-TiO2) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO2 particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO2 dose- dependent. The smaller the particle size of nano-TiO2 the higher the cell damage. The rutile form of nano-TiO2 showed less phototoxicity than anatase nano-TiO2. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO2 can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO2 is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. PMID:22705594
NASA Astrophysics Data System (ADS)
Kumamoto, Narumi; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki
2018-02-01
We have synthesized Dy-doped 12CaO • 7Al2O3 (Dy:C12A7) single crystals with various Dy concentrations by the floating zone (FZ) method and investigated the photoluminescence (PL) and X-ray induced radioluminescence (RL) properties. The PL emissions are observed around 480-490, 570-590, 650-690, and 750 nm due to the 4f-4f transitions of Dy3+ under excitation around 350-400 and 450 nm. The decay time constant (580 nm emission under 340-390 nm excitation) was approximately 0.54-0.58 ms. The RL also showed line emissions at 487, 580, 668, and 757 nm due to the 4f-4f transitions of Dy3+ while the decay time was approximately 0.49-0.53 ms.
Direct measurement of the spin gap in a quasi-one-dimensional clinopyroxene: NaTiSi 2 O 6
Silverstein, Harlyn J.; Smith, Alison E.; Mauws, Cole; ...
2014-10-13
True inorganic Spin-Peierls materials are extremely rare, but NaTiSi 2O 6 was at one time considered an ideal candidate due to it having well separated chains of edge-sharing TiO 6 octahedra. At low temperatures, this material undergoes a phase transition from C2/c to Pmore » $$\\bar{1}$$ symmetry, where Ti 3+-Ti 3+ dimers begin to form within the chains. However, it was quickly realized with magnetic susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition. Since then, considerable experimental and theoretical endeavours have been taken to find the true ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. Lastly, we observed a gap of 53(3) meV, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi 2O 6 as having an orbital-assisted Peierls ground state.« less
Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers
NASA Astrophysics Data System (ADS)
Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.
2016-01-01
Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.
NASA Astrophysics Data System (ADS)
Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu
2018-02-01
Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.
NASA Astrophysics Data System (ADS)
Lyalina, L. M.; Zolotarev, A. A.; Selivanova, E. A.; Savchenko, Ye. E.; Krivovichev, S. V.; Mikhailova, Yu. A.; Kadyrova, G. I.; Zozulya, D. R.
2016-12-01
Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, is a new mineral found in nepheline syenite pegmatite in the Sakharjok alkaline massif, Western Keivy, Kola Peninsula, Russia. The pegmatite mainly consists of nepheline, albite, alkali pyroxenes, amphiboles, biotite and zeolites. Batievaite-(Y) is a late-pegmatitic or hydrothermal mineral associated with meliphanite, fluorite, calcite, zircon, britholite-group minerals, leucophanite, gadolinite-subgroup minerals, titanite, smectites, pyrochlore-group minerals, zirkelite, cerianite-(Ce), rutile, behoite, ilmenite, apatite-group minerals, mimetite, molybdenite, and nickeline. Batievaite-(Y) is pale-cream coloured with white streak and dull, greasy or pearly luster. Its Mohs hardness is 5-5.5. No cleavage or parting was observed. The measured density is 3.45(5) g/cm3. Batievaite-(Y) is optically biaxial positive, α 1.745(5), β 1.747(5), γ 1.752(5) (λ 589 nm), 2 V meas. = 60(5)°, 2 V calc. = 65°. Batievaite-(Y) is triclinic, space group P-1, a 9.4024(8), b 5.5623(5), c 7.3784(6) Å, α 89.919(2), β 101.408(2), γ 96.621(2)°, V 375.65(6) Å3 and Z = 1. The eight strongest lines of the X-ray powder diffraction pattern [ d(Å)(I)( hkl)] are: 2.991(100)(11-2), 7.238(36)(00-1), 3.061(30)(300), 4.350(23)(0-1-1), 9.145(17)(100), 4.042(16)(11-1), 2.819(16)(3-10), 3.745(13)(2-10). The chemical composition determined by electron probe microanalysis (EPMA) is (wt.%): Nb2O5 2.25, TiO2 8.01, ZrO2 2.72, SiO2 29.96, Al2O3 0.56, Fe2O3 0.43, Y2O3 11.45, La2O3 0.22, Ce2O3 0.33, Nd2O3 0.02, Gd2O3 0.07, Dy2O3 0.47, Er2O3 1.07, Tm2O3 0.25, Yb2O3 2.81, Lu2O3 0.45, CaO 24.98, MnO 1.31, MgO 0.01, Na2O 1.13, K2O 0.02, F 2.88, Cl 0.19, H2O 6.75 (determined on the basis of crystal structure data), O = (F,Cl) -1.25, total 97.09 wt.%. The empirical formula based on the EPMA and single-crystal structure analyses is (Y0.81Ca0.65Mn0.15Zr0.12Yb0.11Er0.04Fe3+ 0.04Ce0.02Dy0.02Lu0.02La0.01Tm0.01)Σ2.00((H2O)0.75Ca0.70□0.55)Σ2.00Ca2.00(□0.61Na0.25( H2O)0.14)Σ1.00(Ti0.76Nb0.15Zr0.09)Σ1.00[(Si3.91Al0.09)Σ4.00O14]((OH)1.56F0.44)Σ2.00((H2O)1.27F0.73)Σ2.00. The infrared spectrum of the mineral contains the following bands (cm-1): 483, 584, 649, 800, 877, 985, 1630, 1646, 1732, 3426. Batievaite-(Y) belongs to the rosenbuschite group minerals and is the Na-deficient Y-analogue of hainite. The mineral is named in honour of the Russian geologist Iya Dmitrievna Batieva (1922-2007) in recognition of her remarkable contribution into the geology and petrology of metamorphic and alkaline complexes of the Kola Peninsula.
Enhancement of white light emission from novel Ca3Y2Si3O12:Dy3+ phosphors with Ce3+ ion codoping
NASA Astrophysics Data System (ADS)
Bandi, Vengala Rao; Nien, Yung-Tang; Chen, In-Gann
2010-07-01
The luminescent properties of the Ce3+ or Dy3+ singly doped and Ce3+/Dy3+ codoped in Ca3Y2Si3O12 novel phosphors were investigated, which are prepared by a sol-gel method. Ce3+ doped phosphor showed a brighter and broader violet-blue color emission band with a maximum peak centered at 389 nm, which is attributed to the parity and spin allowed 5d-4f transition. Photoluminescence spectra reveals that the white color emission is originated from the mixtures of two characteristic emission bands of Dy3+ ion, viz., the 473 nm blue emission (F49/2-H615/2) and the 580 nm yellow emission (F49/2-H613/2). codoping of Ce3+ has enhanced the luminescence of Dy3+ quite significantly upon the UV excitation wavelength (242 nm) and the optimized codopant concentration of Ce3+ is found to be 3 mol %. The mechanism involved in the energy transfer between Ce3+ and Dy3+ has been elucidated by an energy level diagram. The structure and morphology of the prepared samples have been analyzed by x-ray diffraction and transmission electron microscope.
NASA Astrophysics Data System (ADS)
Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui
2017-10-01
We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2013-06-12
The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai; Gao, Shanmin; Wang, Qingyao
2015-04-27
A simple one-step calcination route was used to prepare Ti3+ self-doped TiO2/g-C3N4 heterojunctions by mixture of H2Ti3O7 and melamine. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) technologies were used to characterize the structure, crystallinity, morphology, and chemical state of the as-prepared samples. The absorption of the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions shifted to a longer wavelength region in comparison with pristine TiO2 and g-C3N4. The photocatalytic activities of the heterojunctions were studied by degrading methylene blue under a 30more » W visible-light-emitting diode irradiation source. The visible-light photocatalytic activities enhanced by the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions were observed and proved to be better than that of pure TiO2 and g-C3N4. The photocatalysis mechanism was investigated and discussed. The intensive separation efficiency of photogenerated electron-hole in the prepared heterojunction was confirmed by photoluminescence (PL) spectra. The removal rate constant reached 0.038 min(-1) for the 22.3 wt % Ti3+ self-doped TiO2/g-C3N4 heterojunction, which was 26.76 and 7.6 times higher than that of pure TiO2 and g-C3N4, respectively. The established heterojunction between the interfaces of TiO2 nanoparticles and g-C3N4 nanosheets as well as introduced Ti3+ led to the rapid electron transfer rate and improved photoinduced electron-hole pair's separation efficiency, resulting in the improved photocatalytic performance of the Ti3+ self-doped TiO2/g-C3N4 heterojunctions.« less
Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.
Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong
2018-02-01
In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
NASA Astrophysics Data System (ADS)
Park, Kyeongsoon; Lee, Ga Won
2011-10-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
2011-01-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature. PMID:21974984
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process.
Park, Kyeongsoon; Lee, Ga Won
2011-10-05
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13
NASA Astrophysics Data System (ADS)
Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.
1995-11-01
The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.
Performance analysis of flexible DSSC with binder addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com
2016-04-19
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less
Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses
Jilili, J.; Cossu, F.; Schwingenschlögl, U.
2015-01-01
We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states. PMID:26323361
Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2018-05-01
Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.
Zhao, Chunlin; Wu, Jiagang
2018-01-31
The intensive demands of microelectronics and energy-storage applications are driving the increasing investigations on the colossal permittivity (CP) materials. In this study, we designed a new system of Dy and Nb co-doped TiO 2 ceramics [(Dy 0.5 Nb 0.5 ) x Ti 1-x O 2 ] with the formation of secondary phases, and then the enhancement of overall dielectric properties (ε r ∼ 5.0-6.5 × 10 4 and tan δ < 8%) was realized in the broad composition range of 0.5 ≤ x ≤ 5%. More importantly, effects of secondary phases on microstructure, dielectric properties, and stability were explored from the views of defect-dipoles and internal barrier layer capacitance (IBLC) effect. According to the defect-dipoles theory, the CP should mainly originate from Nb 5+ , and the Dy 3+ largely contributes to the decreased dielectric loss. Both CP and low dielectric loss were obtained for co-doping with Dy 3+ and Nb 5+ . Besides, the Dy enrichment induced the formation of secondary phases, which were regarded as the low loss unit dispersed into the ceramic matrix, and largely facilitate the decreased dielectric loss. In particular, the analysis of temperature-dependent complex impedance spectra indicated that a stronger IBLC effect caused by the increased grain boundary resistance can also contribute to the optimized CP and low dielectric loss under appropriate contents of secondary phases.
Microscopic effects of Dy doping in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.
2018-05-01
Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.
NASA Astrophysics Data System (ADS)
Huang, Shuai; Li, Guogang
2014-07-01
Li2SrGeO4:RE3+ (RE = Tb/Dy/Ce) phosphors were prepared by the conventional solid-state reaction. X-ray diffraction (XRD), photoluminescence (PL) spectra, and lifetimes were utilized to characterize samples. Under the excitation of ultraviolet (231 nm for Tb3+ and 351 nm for Dy3+), the Li2SrGeO4:Tb3+ and Li2SrGeO4:Dy3+ phosphors show their respective characteristic emissions of Tb3+ (5D3,4 → 7FJ‧, J‧ = 3, 4, 5, 6) and Dy3+ (4F9/2 → 6H15/2 and 4F9/2 → 6H13/2), respectively. Ce3+ activated Li2SrGeO4 phosphors exhibit broad band blue emission due to the 5d-4f transition of Ce3+. Co-doping Ce3+ into the LSG: Ce3+/Dy3+ samples enhances the luminescence intensity of Tb3+ and Dy3+ significantly under the excitation wavelength at 340 nm through energy transfer from Ce3+ to Tb3+/Dy3+. In addition, the energy transfer mechanism between Ce3+ and Tb3+/Dy3+ has been demonstrated to be a resonant type via a dipole-quadrupole interaction.
[H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].
Pershin, S M
2014-01-01
Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.
Further characterization of spectral features attributable to titanium on the moon
NASA Technical Reports Server (NTRS)
Burns, R. G.; Parkin, K. M.; Loeffler, B. M.; Leung, I. S.; Abu-Eid, R. M.
1976-01-01
The following transitions are observed in the electronic absorption spectra of lunar titanaugites: Fe(2+) spin-allowed and spin-forbidden crystal field; Ti(3+) spin allowed and Jahn-Teller split crystal field; Ti(3+)-Ti(4+) CT; Fe(2+)-Ti(4+) CT; and O(2-)-Fe(2+), Ti(3+), Ti(4+) CT. Of these, the transitions involving Ti(3+) are unique to lunar or nonferric-bearing titanaugites. All titanaugites have the Fe(2+) crystal field and Fe(2+)-Ti(4+) CT transitions in common. These features in the diffuse reflectance spectra of lunar materials give rise to the '1.0 band' and to the observed absorption around 0.5-0.6 micron, respectively. Since regolith contains a variety of phases with coexisting Fe(2+), Ti(3+), and Ti(4+) ions, several metal-metal charge transfer processes are possible.
Agarwal, A; Seth, V P; Gahlot, P; Goyal, D R; Arora, M; Gupta, S K
2004-11-01
Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the X-band (approximately 9.13 GHz) at room temperature. Spin Hamiltonian parameters, gparallel, gperpendicular, Aparallel, Aperpendicular, the dipolar hyperfine coupling parameter (P) and the Fermi contact interaction parameter (K) have been calculated. The increase in Deltagparallel/Deltagperpendicular with increase in TiO2 content in series I shows that the octahedral symmetry of V4+O6 complex is reduced, whereas in series II the octahedral symmetry is improved with increase in x. The decrease in P, in both the series, indicates that the 3dxy orbit expands with increase in mol% of TiO2. The molecular orbital coefficients, alpha2 and gamma2 have been calculated by recording the optical transmission spectra in the range 500-850 nm. alpha2 and gamma2 increase with increase in x in both the series, which indicates that, the covalency of the vanadium oxygen bonds decreases. The dc conductivity sigma, decreases and activation energy, W increases with increase in TiO2:Na2O ratio whereas with increase in TiO2:B2O3 ratio the variation in sigma and W is within experimental error.
Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating
NASA Astrophysics Data System (ADS)
Gareso, P. L.; Musfitasari; Juarlin, Eko
2018-03-01
Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu; Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415; Anderson, Thomas J.
2012-10-15
A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which becamemore » weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.« less
NASA Astrophysics Data System (ADS)
Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe
2017-07-01
Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
NASA Astrophysics Data System (ADS)
Yang, Zhongkang; Long, Nanye; Wang, Yuhong; Zhou, Xin; Liu, Yi; Sun, Liguang
2017-02-01
The contents of Ti, Al and Fe 2 O 3 in a lacustrine sediment core (DY6) collected from Dongdao Island, South China Sea (SCS), were determined to be much higher than those in the three major sediment end-members (coral sand, guano and plants), and their likely sources include terrigenous dust and volcanic ash. At 61 cm (˜AD 1300), the contents of Ti, Al and Fe 2 O 3 have an abnormally high spike, which cannot be explained by terrigenous dust. The Sr and Nd isotope compositions at 61 cm are in excellent agreement with those in volcanic materials, but they are significantly different from those in terrigenous dust, implying a possible material input from historical volcanic eruptions in the lacustrine sediment DY6. The documented great Samalas volcanic eruption at AD 1257 in Indonesia is likely the candidate for this volcanic eruption.
Fieser, Megan E.; Palumbo, Chad T.; La Pierre, Henry S.; Halter, Dominik P.; Voora, Vamsee K.; Ziller, Joseph W.
2017-01-01
A new series of Ln3+ and Ln2+ complexes has been synthesized using the tris(aryloxide)arene ligand system, ((Ad,MeArO)3mes)3–, recently used to isolate a complex of U2+. The triphenol precursor, (Ad,MeArOH)3mes, reacts with the Ln3+ amides, Ln(NR2)3 (R = SiMe3), to form a series of [((Ad,MeArO)3mes)Ln] complexes, 1-Ln. Crystallographic characterization was achieved for Ln = Nd, Gd, Dy, and Er. The complexes 1-Ln can be reduced with potassium graphite in the presence of 2.2.2-cryptand (crypt) to form highly absorbing solutions with properties consistent with Ln2+ complexes, [K(crypt)][((Ad,MeArO)3mes)Ln], 2-Ln. The synthesis of the Nd2+ complex [K(crypt)][((Ad,MeArO)3mes)Nd], 2-Nd, was unambiguously confirmed by X-ray crystallography. In the case of the other lanthanides, crystals were found to contain mixtures of 2-Ln co-crystallized with either a Ln3+ hydride complex, [K(crypt)][((Ad,MeArO)3mes)LnH], 3-Ln, for Ln = Gd, Dy, and Er, or a hydroxide complex, [K(crypt)][((Ad,MeArO)3mes)Ln(OH)], 4-Ln, for Ln = Dy. A Dy2+ complex with 18-crown-6 as the potassium chelator, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)Dy], 5-Dy, was isolated as a co-crystallized mixture with the Dy3+ hydride complex, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)DyH], 6-Dy. Structural comparisons of 1-Ln and 2-Ln are presented with respect to their uranium analogs and correlated with density functional theory calculations on their electronic structures. PMID:29163894
Vogel, M; Herbers, C; Koch, B
2008-09-11
We use (2)H NMR to investigate the segmental motion of poly(ethylene oxide) (PEO) in neat and nanocomposite materials that do and do not contain salt. Specifically, in addition to a neat low-molecular-weight PEO, we study mixtures of this polymer with TiO 2 nanoparticles and LiClO 4. To characterize the polymer dynamics over a wide range of time scales, we combine (2)H NMR spin-lattice relaxation, line-shape, and stimulated-echo analyses. The results consistently show that the presence of nanoparticles hardly affects the behavior of the polymer, while addition of salt leads to substantial changes; e.g., it reduces the crystallinity. For neat PEO and a PEO-TiO 2 mixture, stimulated-echo spectroscopy enables measurement of rotational correlation functions for the crystalline phase. Analysis of the decays allows us to determine correlation times, to demonstrate the existence of a nonexponential relaxation, which implies a high complexity of the polymer dynamics in the crystal, and to show that the reorientation can be described as a large-angle jump. For a PEO-TiO 2-LiClO 4 mixture, we use (2)H and (7)Li NMR to study the polymer and the lithium dynamics, respectively. Analysis of the (7)Li spin-lattice relaxation reveals a high lithium ionic mobility in this nanocomposite polymer electrolyte. The (7)Li stimulated-echo decay is well described by a stretched exponential extending over about 6 orders of magnitude, indicating that a broad and continuous distribution of correlation times characterizes the fluctuations of the local lithium ionic environments.
ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.
Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il
2012-01-01
It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.
TiO2 Nanostructure Synthesized by Sol-Gel for Dye Sensitized Solar Cells as Renewable Energy Source
NASA Astrophysics Data System (ADS)
Ramelan, A. H.; Wahyuningsih, S.; Saputro, S.; Supriyanto, E.; Hanif, Q. A.
2017-02-01
The use of renewable materials as a constituent of a smart alternative energy such as the use of natural dyes for light harvesting needs to be developed. Synthesis of anatase titanium dioxide (TiO2) and fabrication Dye-Sensitized Solar Cell (DSSC) using dye-based of anthocyanin from purple sweet potato (Ipomoea batatas L.) as a photosensitizer had been done. Synthesis TiO2 through sol-gel process with the addition of triblock copolymer Pluronic F127 template was controlled at pH 3 whereas calcination was carried out at a temperature of 500 °C, 550 °C and 600 °C. The obtained TiO2 were analyzed by XRD, SAA, and SEM. The conclusion is anatase TiO2 obtained until annealing up to 600 °C. Self-assembly Pluronic F127 triblock copolymer capable of restraining the growth of TiO2 crystals. Retention growth of TiO2 mesoporous produces material character that can be used as builders photoanode DSSC with natural sensitizer anthocyanin from purple sweet potatoes. Based on the analysis of X-ray diffraction patterns and surface area analyser, the higher the calcination temperature the greater the size of the anatase crystals is obtained, however, the smaller its surface area. Purple sweet potato anthocyanin’s dyed on to TiO2 was obtained a good enough performance for DSSC’s and gain the optimum performance from DSSC’s system built with mesoporous TiO2 annealed 550 °C using flavylium form anthocyanin.
Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7
NASA Astrophysics Data System (ADS)
Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.
2017-11-01
We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.
Structural silicon nitride materials containing rare earth oxides
Andersson, Clarence A.
1980-01-01
A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuzi, Siti Aishah Ahmad, E-mail: aishah-fuzi@yahoo.com; Jumali, Mohammad Hafizuddin Hj, E-mail: hafizhj@ukm.edu.my; Al-Asbahi, Bandar Ali Abdulqader, E-mail: alasbahibandar@gmail.com
2015-09-25
This work investigated the effect on 5 wt% addition of TiO{sub 2} nanoparticles (NPs) on the optical absorption characteristics of Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT). Both materials were mixed using solution blending method and then spin coated onto ITO-coated glass substrate at 1000 rpm for 30s. The optical properties of the nanocomposite were determined using UV-Vis spectroscopy. Compares to pristine film, the absorption peak of the nanocomposite film improved and shifted to longer wavelength indicating reduction in the direct and indirect band gaps. Better optophysical properties of F8BT/TiO{sub 2} nanocomposites is believed due to compatible band structures and efficient charge trapping effect displayedmore » by the NPs.« less
Evolutionary search for novel superhard phases, or can TiO2 be the hardest oxide? (Invited)
NASA Astrophysics Data System (ADS)
Oganov, A. R.; Lyakhov, A. O.
2010-12-01
Synthesis of novel superhard materials, frequently achieved with high-pressure experimental techniques, is a difficult task. Study of such materials, usually first obtained in very small quantities, is complicated, and this field is full of controversies and artefacts (see, e.g. [1]). Hardness was long believed to be an exceedingly difficult property to model or predict; however, a number of simple models have recently been proposed and shown to yield surprisingly accurate results (see reviews in [2]). We have found [3] a way to further improve these models, by augmenting them with bond-valence model and graph theory. Combining such models with our structure prediction method [4], we have developed a powerful [5] approach for computational design of novel superhard materials. Using this method, we recently addressed [3] the previously proposed [6] possibility that C3N4 may be harder than diamond, and the claim [7] that TiO2-cotunnite is the hardest oxide with the Vickers hardness of 38 GPa. Our results unequivocally suggest that the latter suggestion is incorrect. No TiO2 polymorph can attain hardness greater than 17 GPa [3], i.e. all possible structures of TiO2 are softer than common corundum (Al2O3). Furthermore, TiO2-cotunnite is dynamically unstable at atmospheric pressure [8]. REFERENCES: [1] Oganov A.R., Solozhenko V.L., Kurakevych O.O., Gatti C., Ma Y., Chen J., Liu Z., and Hemley R.J., http://arxiv.org/abs/ 0908.2126 (2009). [2] Theory of Superhard Materials (Special Issue), J. Superhard Materials, issue 3 (2010). [3] Lyakhov A.O., Oganov A.R., in prep. (2010). [4] Oganov A.R., Glass C.W., J. Chem. Phys. 124, 244704 (2006). [5] Oganov A.R., Lyakhov A.O., J. Superhard Mater. 32, 143-147 (2010). [6] Liu A.Y., Cohen M.L., Science 245, 841-842 (1989). [7] Dubrovinsky L.S., Dubrovinskaia N.A., et al., Nature 410, 653-654 (2001). [8] Kim D.Y., et al., Appl. Phys. Lett. 90, 171903 (2007).
NASA Astrophysics Data System (ADS)
Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa
2018-05-01
Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.
Multifunctional epitaxial systems on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968
2016-09-15
Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad
2016-09-01
The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.
NASA Astrophysics Data System (ADS)
Zhang, Hongrui; Yan, Xi; Zhang, Hui; Wang, Fei; Gu, Youdi; Ning, Xingkun; Khan, Tahira; Li, Rui; Chen, Yuansha; Liu, Wei; Wang, Shufang; Shen, Baogen; Sun, Jirong
2018-04-01
Spin-polarized two-dimensional electron gas (2DEG) at the interface of two insulating perovskite oxides has been a focus of intensive studies in recent years. So far all attempts to construct magnetic 2DEG are based on the selection of an appropriate buffer layer or cap layer in SrTi O3 -based heterostructures, and the magnetic effect thus produced on 2DEG is indirect and weak. Here, we fabricated the 2DEG based on Fe-doped SrTi O3 that is superparamagnetic rather than diamagnetic like SrTi O3 . In addition to good metallicity, considerable Kondo effect, and negative magnetoresistance, the most striking observation of the present work is the occurrence of the anomalous Hall effect up to room temperature. This is transport evidence for the existence of spin-polarized 2DEG at high temperatures. As suggested by the monotonic increase of Curie temperature with carrier density, the magnetic exchange between magnetic ions could be mediated by the itinerant electrons of the 2DEG. The present work opens an avenue for the exploration of spin-polarized 2DEG.
Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal
NASA Astrophysics Data System (ADS)
Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng
2017-09-01
A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.
Fabrication and characterization of TiO2/SiO2 based Bragg reflectors for light trapping applications
NASA Astrophysics Data System (ADS)
Dubey, R. S.; Ganesan, V.
Distributed Bragg reflectors (DBRs) have received an intensive attention due to their increasing demand in optoelectronic and photonic devices. Such reflectors are capable to prohibit the light propagation within the specified wavelength range of interest. In this paper, we present the fabrication of TiO2/SiO2 stacks based Bragg reflectors by using a simple and in-expensive sol-gel spin coating technique. The prepared single-layer thin films of TiO2 and SiO2 onto glass substrates were characterized for their optical constants. By tuning the process parameters, one-seven DBR stacks of TiO2/SiO2 were prepared. The corresponding shift of the Bragg reflection peak was observed with the increased number of DBR stacks and as much as about 90% reflectance is observed from the 7DBR stacks. The experimentally measured reflectance was compared with the simulated one, which showed good in agreement. FESEM measurement has confirmed the formation of bright and dark strips of TiO2 and SiO2 films with their thicknesses 80 and 115 nm respectively. The simulation study was explored to a design of thin film silicon solar cell using 7DBR stacks. An enhancement in light absorption in the visible wavelength range is observed which coincides with the experimental result of the reflectance. The use of DBR at the bottom of the solar cell could felicitate the better light harvesting with the occurrence of Fabry-Perot resonances in the absorbing layer.
NASA Astrophysics Data System (ADS)
Dubey, R. S.; Ganesan, V.
2017-11-01
Passive devices made of SiO2/TiO2 bilayers have been demanded for the molding of electromagnetic waves in optical waveguides, microcavities, solar cells, sensors and so on. Here, we present the fabrication and characterization of SiO2/TiO2 multilayer structures as reflectors. The refractive indices were found to be 1.43 & 2.0 with thicknesses 230 & 70 nm corresponding to the SiO2 and TiO2 films respectively. AFM surface topography study showed little bit large surface roughness of the TiO2 as compared to SiO2 film due to its large grain size. The corresponding reflectance enhancement was noticed with the increased number of bilayers of SiO2/TiO2 films. Furthermore, six alternate layers of SiO2/TiO2 demonstrated the as much as 78% reflectance in the near-infrared wavelength range.
Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho
2016-06-28
An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.
S. W. Huang; Lee, J. M.; Jeng, H. -T.; ...
2016-07-21
Oxygen is known to play an important role in the multiferroicity of rare earth manganites; however, how this role changes with rare earth elements is still not fully understood. To address this question, we have used resonant soft x-ray scattering spectroscopy to study the F-type (0; ; 0) diffraction peak from the antiferromagnetic order in DyMnO 3 and TbMnO 3. We focus on the measurements at O K-edge of these two manganites, supplemented by the results at Mn L2- and Dy M5-edge of DyMnO 3. We show that the electronic states of di erent elements are coupled more strongly inmore » DyMnO 3 than in TbMnO 3, presumably due to the stronger lattice distortion and the tendency to develop E-type antiferromagnetism in the ferroelectric state that promote the orbital hybridization. We also show that the anomaly in the correlation length of (0; ; 0) peak in DyMnO 3 signifies the exchange interaction between Mn and rare earth spins, which is absent in TbMnO 3. Our findings reveal the prominent role of oxygen orbitals in the multiferroicity of rare earth manganites and the distinct energetics between them.« less
NASA Astrophysics Data System (ADS)
Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min
2017-11-01
Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).
Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui
2016-06-28
An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.
Relieving geometrical frustration through doping in the Dy1-x Ca x BaCo4O7 swedenborgites.
Nath Panja, Soumendra; Kumar, Jitender; Dengre, Shanu; Nair, Sunil
2016-12-07
The geometrically frustrated antiferromagnet DyBaCo 4 O 7 is investigated through a combination of x-ray diffraction, magnetization and dielectric measurements. Systematic doping in the series Dy 1-x Ca x BaCo 4 O 7 causes a lifting of the geometrical frustration resulting in a structural transition from a trigonal P31c to an orthorhombic Pbn2 1 symmetry at x = 0.4. This structural transition can also be accessed as a function of temperature, and all our orthorhombic specimens exhibit this transition at elevated temperatures. The temperature at which this structural transition occurs is observed to scale linearly with the mean ionic radius of the R site ion. However, CaBaCo 4 O 7 which has an equal number of Co 2+ and Co 3+ ions clearly violates this quasilinear relationship, indicating that charge ordering could also play a critical role in stabilizing the orthorhombic distortion in this system. Using thermoremanent magnetization measurements to circumvent the problem of the large paramagnetic background arising from Dy 3+ ions, we chart out the phase diagram of the Dy 1-x Ca x BaCo 4 O 7 series.
Emission analysis of RE3+ (RE = Sm, Dy):B2O3-TeO2-Li2O-AlF3 glasses.
Raju, C Nageswara; Sailaja, S; Kumari, S Pavan; Dhoble, S J; Kumar, V Ramesh; Ramanaiah, M V; Reddy, B Sudhakar
2013-01-01
This article reports on the optical properties of 0.5% mol of Sm(3+), Dy(3+) ion-doped B2O3-TeO2-Li2O-AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd-Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm(3+) and Dy(3+):LiAlFBT glasses showed a bright reddish-orange emission at 598 nm ((4)G5/2 → (6)H7/2) and an intense yellow emission at 574 nm ((4)F9/2 → (6)H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm(3+) and Dy(3+):LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.
Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh.; Lee, Dae Hun; Hong, Nguyen Hoa
A bilayered TiO2/CuO photoelectrode was fabricated on a fluorine-doped tin oxide FTO substrate by spin-coating and pulsed laser deposition methods. The prepared bilayered system was assessed as a photoelectrode for solar water splitting. The fabricated TiO2/CuO photoelectrode exhibited a higher photocurrent density (0.022mA/cm2 at 1.23V vs. RHE) compared to bare TiO2 photoelectrode (0.013mA/cm2 at 1.23V vs. RHE). This photocurrent density enhancement was attributed to the improved charge separation combined with the improved sunlight harvesting efficiency of a bilayered structure.
Liu, Ruina; Li, Licun; Wang, Xiaoling; Yang, Peipei; Wang, Chao; Liao, Daizheng; Sutter, Jean-Pascal
2010-04-21
A model example for size effects on the dynamic susceptibility behavior is provided by the chain compound [{Dy(hfac)(3)NitPhIm(2)}Dy(hfac)(3)] (NitPhIm = 2-[4-(1-imidazole)phenyl]nitronyl nitroxide radical). The Arrhenius plot reveals two relaxation regimes attributed to SMM (Delta = 17.1 K and tau(0) = 17.5 x 10(-6) s) and SCM (Delta = 82.7 K and tau(0) = 8.8 x 10(-8) s) behaviors. The ferromagnetic exchange among the spin carriers has been established for the corresponding Gd derivative.
Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro
2015-03-01
The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.
NASA Astrophysics Data System (ADS)
Mukherjee, P.; Sackville Hamilton, A. C.; Glass, H. F. J.; Dutton, S. E.
2017-10-01
A systematic study of the structural and magnetic properties of three-dimensionally frustrated lanthanide garnets Ln 3 A 2 X 3O12, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In, Te, X = Ga, Al, Li is presented. Garnets with Ln = Gd show magnetic behaviour consistent with isotropic Gd3+ spins; no magnetic ordering is observed for T ⩾ 0.4 K. Magnetic ordering features are seen for garnets with Ln = Tb, Dy, Ho in the temperature range 0.4 < T < 2.5 K, however the nature of the magnetic ordering varies for the different Ln as well as for different combinations of A and X. The magnetic behaviour can be explained by tuning of the magnetic interactions and changes in the single-ion anisotropy. The change in magnetic entropy is evaluated from isothermal magnetisation measurements to characterise the magnetocaloric effect in these materials. Among the Gd garnets, the maximum change in magnetic entropy per mole (15.45 J K-1 molGd-1 ) is observed for Gd3Sc2Ga3O12 at 2 K, in a field of 9 T. The performance of Dy3Ga5O12 as a magnetocaloric material surpasses the other garnets with Ln = Tb, Dy, Ho.
NASA Astrophysics Data System (ADS)
KałuŻyński, P.; Maciak, E.; Herzog, T.; Wójcik, M.
2016-09-01
In this paper we propose low cost and easy in development fully working dye-sensitized solar cell module made with use of a different sensitizing dyes (various anthocyanins and P3HT) for increasing the absorption spectrum, transparent conducting substrates (vaccum spattered chromium and gold), nanometer sized TiO2 film, iodide and methyl viologen dichloride based electrolyte, and a counter electrode (vaccum spattered platinum or carbon). Moreover, some of the different technologies and optimization manufacturing processes were elaborated for energy efficiency increase and were presented in this paper.
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhang, Yan; Zeng, Jing; Zhang, Fuqiang; Zhou, Kechao; Bowen, Chris R.; Zhang, Dou
2017-12-01
In this article ice templating is used to fabricate novel TiO2/chitosan/reduced graphene oxide (rGO) composites with a highly aligned macroporous structure for photocatalytic applications. The structure of the composites was readily tailored using the composite composition, for example the lamellar pore width decreased from 50-45 to 5-10 μm, while the lamellar thickness increased from 2-3 to 20-25 μm, with an increase of the TiO2 content from 45 to 77 vol%. Lamellar pore channels between the layers exhibited a more uniform distribution when the rGO content was 1.0 wt%. The increase in viscosity of the composites with high TiO2 contents led to the formation of smaller ice crystals and smaller lamellar pore sizes to enable the production of composite structures with improved mechanical strength. The TiO2/chitosan/rGO composites exhibited excellent photocatalytic degradation of methyl orange and the photocatalytic efficiency was optimized by control of the active material content and microstructure. The hybrid composites with 1.0 wt% rGO showed a degradation percentage of 97%, which makes these novel TiO2/chitosan/rGO freeze cast structures attractive materials as high performance and high strength substrates for photocatalytic degradation applications.
Effect of molarity on sol-gel routed nano TiO2 thin films
NASA Astrophysics Data System (ADS)
Lourduraj, Stephen; Williams, Rayar Victor
The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.
Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda
2017-04-01
With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.
Development of TiO2 containing hardmasks through PEALD deposition
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda
2017-03-01
With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saurdi, I., E-mail: saurdy788@gmail.com; Ishak, A.; UiTM Sarawak Kampus Kota Samarahan Jalan Meranek, Sarawak
2016-07-06
The TiO{sub 2} films were deposited on glass substrate at different thicknesses with different deposition frequencies (1, 2, 3 and 4 times) using spin coating technique and their structural properties were investigated. Subsequently, the nanocomposited aligned ZnO nanorods and TiO{sub 2} were formed by deposited the TiO{sub 2} on top of aligned ZnO Nanorod on ITO-coated glass at different thicknesses using the same method of TiO{sub 2} deposited on glass substrate. The nanocomposited aligned ZnO nanorod/TiO{sub 2} were coated with different thicknesses of 900µm, 1815µm, 2710µm, 3620µm and ZnO without TiO{sub 2}. The dye-sensitized solar cells were fabricated from themore » nanocomposited aligned ZnO nanorod/TiO{sub 2} with thickness of 900µm, 1815µm, 2710µm and 3620µm and ZnO without TiO{sub 2} and their photovoltaic properties of the DSSCs were investigated. From the solar simulator measurement the solar energy conversion efficiency (η) of 2.543% under AM 1.5 was obtained for the ZnO nanorod/TiO{sub 2} photoanode-2710µm Dye-Sensitized solar cell.« less
Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods
2014-01-01
Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quandt, Norman; Roth, Robert; Syrowatka, Frank
2016-01-15
Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{submore » 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.« less
Program for Research on Conducting Polymers
1991-07-17
Excitations in Polyaniline (Synthetic Metals). 29. Transient Photoconductivity in Oriented Irans-Polyacetylene Prepared by the Naarmann-Theophilou Method...State Physics). 33. X-Ray Scattering from Crystalline Polyaniline (Polymer Commun.). 34. Photogenerated Carriers in La2CuO4,YBa2Cu3O7-8 and TI2Ba2Ca...1- x)GdxCu208: Polarizability-Induced Pairing of Polarons (Synthetic Metals). 35. Spectroscopic Studies of Polyaniline in Solution and in Spin-Cast
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk
2015-12-28
The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Coulomb spin liquid in anion-disordered pyrochlore Tb 2Hf 2O 7
Sibille, Romain; Lhotel, Elsa; Hatnean, Monica Ciomaga; ...
2017-10-12
Here, the charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb 2Hf 2O 7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cationsmore » remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.« less
Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2
Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung
2016-01-01
A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120
Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid
NASA Astrophysics Data System (ADS)
Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji
2018-06-01
Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.
Visible light-induced OH radicals in Ga2O3: an EPR study.
Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel
2013-08-21
Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.
Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas
2014-11-15
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less
Layer configurations comparison of bilayer-films for EGFET pH sensor application
NASA Astrophysics Data System (ADS)
Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-05-01
The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.
Chow, Chun Y; Bolvin, Hélène; Campbell, Victoria E; Guillot, Régis; Kampf, Jeff W; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen; Pecoraro, Vincent L; Mallah, Talal
2015-07-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga 4 Ln 2 (shi 3- ) 4 (Hshi 2- ) 2 (H 2 shi - ) 2 (C 5 H 5 N) 4 (CH 3 OH) x (H 2 O) x ]· x C 5 H 5 N· x CH 3 OH· x H 2 O (where H 3 shi = salicylhydroxamic acid and Ln = Gd III 1 ; Tb III 2 ; Dy III 3 ; Er III 4 ; Y III 5 ; Y III 0.9 Dy III 0.1 6 ). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled Dy III ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy 2 than for the Er 2 complex.
Wang, Yeoung-Sheng; Shen, Jyun-Hong; Horng, Jao-Jia
2014-06-15
When hexavalent chromium (Cr(VI)) is added to a TiO2 photocatalytic reaction, the decolorization and mineralization efficiencies of azo dyes Acid Orange 7 (AO7) are enhanced even though the mechanism is unclear. This study used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as the scavenger and the analysis of Electron Spin Resonance (ESR) to investigate this enhancement effect by observing the hydroxyl radical (OH) generation of the Cr(VI)/TiO2 system under UV and visible light (Vis) irradiation. With Cr(VI), the decolorization efficiencies were approximately 95% and 62% under UV and Vis, and those efficiencies were 25% less in the absence of Cr(VI). The phenomena of the DMPO-OH signals during the ESR analysis under Vis 405 and 550 nm irradiation were obviously the enhancement effects of Cr(VI) in aerobic conditions. In anoxic conditions, the catalytic effects of Cr(VI) could not be achieved due to the lack of a redox reaction between Cr(VI) and the adsorbed oxygen at the oxygen vacancy sites on the TiO2 surfaces. The results suggest that by introducing the agents of redox reactions such as chromate ions, we could lower the photoenergy of TiO2 needed and allow Vis irradiation to activate photocatalysis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.
2016-08-01
Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.
Ozawa, T; Miura, Y; Ueda, J
1996-01-01
The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap the ClO2 radical. This result indicates that an unpaired electron of the ClO2 radical is localized on oxygen atom, because nitroso spin-traps cannot form the stable spin adduct with oxygen-centered radical.
Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S
2011-12-01
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.
High-κ TiO{sub 2} thin film prepared by sol-gel spin-coating method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara, E-mail: ksrkrao@physics.iisc.ernet.in
2015-06-24
High-k TiO{sub 2} thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of ≅ 0.6 nm. The oxide capacitance (C{sub ox}), flat band capacitance (C{sub FB}), flat band voltage (V{sub FB}), oxide trapped charge (Q{sub ot}), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, − 0.91 V, 4.7x10{sup −12} C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observedmore » in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm{sup 2} for −1 V and 5.7e-7 A/cm{sup 2} for +1 V) for CMOS applications.« less
Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation.
Zahedifar, M; Sadeghi, E; Kashefi Biroon, M; Harooni, S; Almasifard, F
2015-11-01
Dy and Cu-doped SrF2 nanoparticles (NPs) were synthesized by using co-precipitation method and their possible application to solid state dosimetry were studied and compared to that of pure SrF2 NPs. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used for sample characterization. The highest thermoluminescence (TL) response of SrF2:Dy and SrF2:Cu NPs were found respectively at 0.5 and 0.7mol% of Dy and Cu impurities. Seven overlapping glow peaks at 384, 406, 421, 449, 569, 495, 508K and three component glow peaks at 381, 421 and 467K were identified respectively for SrF2:Dy and SrF2:Cu NPs employing Tm-Tstop and computerized glow curve deconvolution (CGCD) methods. The TL sensitivity of SrF2:Dy is approximately the same as that of LiF:Mg,Ti (TLD-100) cheeps. Linear dose response were observed for the SrF2:Dy and SrF2:Cu NPs up to the absorbed doses of 1kGy and 10kGy correspondingly. Regarding other dosimetry characteristics of the produced NPs such as fading, reproducibility and thermal treatment, Dy and Cu doped SrF2 NPs recommend for high dose TL dosimetry applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perovskite solar cell with an efficient TiO₂ compact film.
Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong
2014-09-24
A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.
All-spinel oxide Josephson junctions for high-efficiency spin filtering.
Mesoraca, S; Knudde, S; Leitao, D C; Cardoso, S; Blamire, M G
2018-01-10
Obtaining high efficiency spin filtering at room temperature using spinel ferromagnetic tunnel barriers has been hampered by the formation of antiphase boundaries due to their difference in lattice parameters between barrier and electrodes. In this work we demonstrate the use of LiTi 2 O 4 thin films as electrodes in an all-spinel oxide CoFe 2 O 4 -based spin filter devices. These structures show nearly perfect epitaxy maintained throughout the structure and so minimise the potential for APBs formation. The LiTi 2 O 4 in these devices is superconducting and so measurements at low temperature have been used to explore details of the tunnelling and Josephson junction behaviour.
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Kumar, Amit; Denev, Sava; Brooks, Charles; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin M.; Fennie, Craig J.; Gopalan, Venkatraman
2009-03-01
Calcium titanate, CaTiO3 is not a ferroelectric in its bulk form. However, first principles calculations predict that biaxially tensile strained CaTiO3 thin films should become ferroelectric. Here, we indeed confirm that strained CaTiO3 films become ferroelectric with a Curie temperature of ˜125K. Optical second harmonic generation (SHG) measurements, polarization studies, and in-situ electric-field measurements for a number of films with different strain values will be presented: CaTiO3/DyScO3(110), CaTiO3/SrTiO3 (100),CaTiO3/GdScO3/NdGaO3(110), CaTiO3/LaSrAlO3(001) as well as for a single crystal CaTiO3. From these studies, we conclude that strained CaTiO3 films are ferroelectric with a point group symmetry of mm2, and show reversible domain switching characteristics under an electric field. We also present results of variable temperature piezoelectric force microscopy for imaging the polar domains in the ferroelectric phase. These results suggest that strain is a valuable tool for inducing polar, long range ferroelectric order in even non-polar ceramic materials such as CaTiO3.
Zhang, Qi; Wang, Hua; Fan, Xinfei; Chen, Shuo; Yu, Hongtao; Quan, Xie
2016-01-01
In order to improve the permeate flux of photocatalytic membranes, we present an approach for coupling TiO2 with ceramic hollow fiber membranes. The ceramic hollow fiber membranes with high permeate flux were fabricated by a controlled wet-spinning process using polyethersulfone (PESf) and ceramic powder as precursors and 1-methyl-2-pyrrolidinone as solvent, and the subsequent TiO2 coating was performed by a dip-coating process using tetra-n-butyl titanate as precursor. It has been found that the PESf/ceramic powder ratio could influence the structure of the membranes. Here the as-prepared TiO2 hollow fiber membranes had a pure water flux of 4,450 L/(m(2)·h). The performance of the TiO2 hollow fiber membrane was evaluated using humic acid (HA) as a test substance. The results demonstrated that this membrane exhibited a higher permeate flux under UV irradiation than in the dark and the HA removal efficiency was enhanced. The approach described here provides an operable route to the development of high-permeable photocatalytic membranes for water treatment.
Role of capsule endoscopy in suspected celiac disease: A European multi-centre study
Luján-Sanchis, Marisol; Pérez-Cuadrado-Robles, Enrique; García-Lledó, Javier; Juanmartiñena Fernández, José-Francisco; Elli, Luca; Jiménez-García, Victoria-Alejandra; Egea-Valenzuela, Juan; Valle-Muñoz, Julio; Carretero-Ribón, Cristina; Fernández-Urién-Sainz, Ignacio; López-Higueras, Antonio; Alonso-Lázaro, Noelia; Sanjuan-Acosta, Mileidis; Sánchez-Ceballos, Francisco; Rosa, Bruno; González-Vázquez, Santiago; Branchi, Federica; Ruano-Díaz, Lucía; Prieto-de-Frías, César; Pons-Beltrán, Vicente; Borque-Barrera, Pilar; González-Suárez, Begoña; Xavier, Sofía; Argüelles-Arias, Federico; Herrerías-Gutiérrez, Juan-Manuel; Pérez-Cuadrado-Martínez, Enrique; Sempere-García-Argüelles, Javier
2017-01-01
AIM To analyze the diagnostic yield (DY), therapeutic impact (TI) and safety of capsule endoscopy (CE). METHODS This is a multi-centre, observational, analytical, retrospective study. A total of 163 patients with suspicion of celiac disease (CD) (mean age = 46.4 ± 17.3 years, 68.1% women) who underwent CE from 2003 to 2015 were included. Patients were divided into four groups: seronegative CD with atrophy (Group-I, n = 19), seropositive CD without atrophy (Group-II, n = 39), contraindication to gastroscopy (Group-III, n = 6), seronegative CD without atrophy, but with a compatible context (Group-IV, n = 99). DY, TI and the safety of CE were analysed. RESULTS The overall DY was 54% and the final diagnosis was villous atrophy (n = 65, 39.9%), complicated CD (n = 12, 7.4%) and other enteropathies (n = 11, 6.8%; 8 Crohn’s). DY for groups I to IV was 73.7%, 69.2%, 50% and 44.4%, respectively. Atrophy was located in duodenum in 24 cases (36.9%), diffuse in 19 (29.2%), jejunal in 11 (16.9%), and patchy in 10 cases (15.4%). Factors associated with a greater DY were positive serology (68.3% vs 49.2%, P = 0.034) and older age (P = 0.008). On the other hand, neither sex nor clinical presentation, family background, positive histology or HLA status were associated with DY. CE results changed the therapeutic approach in 71.8% of the cases. Atrophy was associated with a greater TI (92.3% vs 45.3%, P < 0.001) and 81.9% of the patients responded to diet. There was one case of capsule retention (0.6%). Agreement between CE findings and subsequent histology was 100% for diagnosing normal/other conditions, 70% for suspected CD and 50% for complicated CD. CONCLUSION CE has a high DY in cases of suspicion of CD and it leads to changes in the clinical course of the disease. CE is safe procedure with a high degree of concordance with histology and it helps in the differential diagnosis of CD. PMID:28216978
NASA Astrophysics Data System (ADS)
Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho
2015-09-01
A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.
NASA Astrophysics Data System (ADS)
Perez, Luis
Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.
Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.
2013-12-01
Thermoelectric properties of SrTiO3 ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO3 ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO3 ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr0.8La0.18Yb0.02TiO3 ceramics were prepared, whose ZT value at 1 023 K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr0.8La0.2TiO3 (ZT = 0.26).
Orbital liquid in three-dimensional mott insulator: LaTiO3
Khaliullin; Maekawa
2000-10-30
We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.
NASA Astrophysics Data System (ADS)
Sellami, N.; Sattonnay, G.; Grygiel, C.; Monnet, I.; Debelle, A.; Legros, C.; Menut, D.; Miro, S.; Simon, P.; Bechade, J. L.; Thomé, L.
2015-12-01
The structural transformations induced by ionization processes in Gd2Ti2O7 and Y2Ti2O7 pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd2Ti2O7 than in Y2Ti2O7. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd2Ti2O7 and Y2Ti2O7.
Two-dimensional electron gas in tricolor oxide interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak
2014-03-01
Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.
NASA Astrophysics Data System (ADS)
Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.
2018-02-01
Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
Langley, Stuart K; Moubarakia, Boujemaa; Murray, Keith S
2010-06-07
A heterometallic, heptadecanuclear cluster of formula [Mn(III)9Dy(III)8O8(OH)8(tea)2(teaH)2(teaH2)4(Ac)4(NO3)2(H2O)4](NO3)7·8H2O (1) is reported. The core of 1 displays two edge sharing Mn(III)5Dy(III)5 supertetrahedra and represents one of the largest Mn/4f cluster compound so far reported. Magnetic studies show that 1 displays probable SMM behaviour as observed via non-zero values in the χM''vs T plot.
Ferroelectricity with Ferromagnetic Moment in Orthoferrites
NASA Astrophysics Data System (ADS)
Tokunaga, Yusuke
2010-03-01
Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).
Spin response of magnetic dipole transitions in 156Gd and 164Dy
NASA Astrophysics Data System (ADS)
Frekers, D.; Bohle, D.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Watson, J.; Yen, S.
1989-03-01
Intermediate energy proton scattering has been used to probe the spin part of the recently discovered low-lying isovector magnetic dipole transitions in the rotational rare earth nuclei 156Gd and 164Dy. A large spin response is found in 164Dy, whereas in 156Gd the results are consistent with the picture of a predominantly convective excitation. The results are discussed in the context of the IBA-2 model and recent RPA calculations.
NASA Astrophysics Data System (ADS)
Yoshiba, Shuhei; Tanitsu, Katsuya; Suda, Yoshiyuki; Kamisako, Koichi
2017-06-01
Passivation films or antireflection coatings are generally prepared using costly vacuum or high-temperature processes. Thus, we report the preparation of TiO x -SiO x composite films by novel spin coatable solutions for the synthesis of low-cost passivation coating materials. The desired films were formed by varying the mixing ratios of TiO x and SiO x , and the resulting films exhibited excellent surface passivation properties. For the p-type wafer, an optimal effective surface recombination velocity (S eff) of 93 cm/s was achieved at \\text{TiO}x:\\text{SiO}x = 6:4, while a surface recombination current density (J 0s) of 195 fA/cm2 was obtained. In contrast, for the n-type wafer, an S eff of 27 cm/s and a J 0s of 38 fA/cm2 were achieved at \\text{TiO}x:\\text{SiO}x = 8:2. This excellent surface passivation effect could be attributed to the low interface state density and high positive fixed charge density. Furthermore, the thickness of the interfacial SiO x layer was determined to be important for obtaining the desired surface passivation effect.
NASA Astrophysics Data System (ADS)
Saurdi, I.; Shafura, A. K.; Mamat, M. H.; Ishak, A.; Rusop, M.
2018-05-01
In this work, the titanium oxide (TiO2) films were deposited on glass substrate at different deposition frequencies (1, 2, 3 and 4 times) and therefore different of thicknesses been produced by using spin coating technique and their electrical and structural properties were investigated. The thicknesses of TiO2 films at different deposition frequencies (1, 2, 3 and 4 times) were 900μm, 1815μm, 2710μm and 3620μm respectively. Meanwhile, the resistivities of TiO2 films at different deposition frequencies (1, 2, 3 and 4 times) were 5.41 × 106Ωcm, 2.28 × 106Ωcm, 2.78 × 105Ωcm and 8.37 × 106Ωcm, respectively. The ZnO/TiO2 composite for ZnO nanorod and TiO2 been produced by deposited the TiO2 on top of ZnO nanorod at different deposition frequencies on ITO-coated glass substrate. The fabricated dye-sensitized solar cells of ZnO nanorod without TiO2, ZnO/TiO2 with a TiO2 thickness 900μm, ZnO/TiO2 with a TiO2 thickness 1815μm, ZnO/TiO2 with a TiO2 thickness 2710μm, ZnO/TiO2 with a TiO2 thickness 3620μm on top of ZnO nanorod were investigated. From the solar simulator measurement under AM 1.5 the solar energy conversion efficiency (η) of ZnO nanorod without TiO2, ZnO/TiO2- 900μm, ZnO/TiO2-1815μm, ZnO/TiO2-2710μm and ZnO/TiO2-3620μm were 0.99%, 1.87%, 2.11%, 2.54%, 2.27%, respectively. The DSSCs ZnO/TiO2 show better of efficiency as compared to ZnO nanorod without TiO2. Furthermore, the enhancement of ZnO/TiO2-2710μm DSSC also closely related with the improvement of electrical and structural properties of TiO2 at 3 deposition frequencies as compared with TiO2 at 1, 2 and 4 deposition frequencies.
Bag, Prasenjit; Chakraborty, Amit; Rogez, Guillaume; Chandrasekhar, Vadapalli
2014-07-07
The reaction of Ln(III) nitrate and Mn(ClO4)2·6H2O salts in the presence of a multidentate sterically unencumbered ligand, (E)-2,2'-(2-hydroxy-3-((2-hydroxyphenylimino)methyl)-5-methylbenzylazanediyl)diethanol (LH4) leads to the isolation of four isostructural pentanuclear hetereometallic complexes [Mn(III)2Gd3(LH)4(NO3)(HOCH3)]ClO4·NO3 (1), [Mn(III)2Dy3(LH)4(NO3)(HOCH3)]ClO4·NO3 (2), [Mn(III)2Tb3(LH)4(NO3)(HOCH3)]ClO4·NO3 (3), and [Mn(III)2Ho3(LH)4(NO3)(HOCH3)]ClO4·NO3 (4) with an open-book type structural topology. 1-4 are dicationic and crystallize in the achiral space group, P21/n. A total of four triply deprotonated ligands, [LH](3-), are involved in holding the pentameric metal framework, {Mn(III)2Ln3}. In these complexes both the lanthanide and the manganese(III) ions are doubly bridged, involving phenolate or ethoxide oxygen atoms. The magnetochemical analysis reveals the presence of global antiferromagnetic interactions among the spin centers at low temperatures in all the four compounds. AC susceptibility measurements show the presence of temperature dependent out-of-phase ac signal for compounds 2 and 4 indicating an SMM behavior.
NASA Astrophysics Data System (ADS)
Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai
2017-01-01
Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.
NASA Astrophysics Data System (ADS)
Jafari, Fatemeh; Behjat, Abbas; Khoshroo, Ali R.; Ghoshani, Maral
2015-02-01
Poly(3, 4-ethylendioxythiophene)-poly(styrene sulfonate) mixed with TiO2 nanoparticles (PEDOT:PSS/TiO2) was used as a catalyst for tri-iodide reduction in dye-sensitized solar cells based on natural photosensitizers. A PEDOT:PSS/TiO2 film was coated on a conductive glass substrate by the spin coating method. The solar cells were fabricated, having the PEDOT:PSS/TiO2 film as a counter electrode and Pomegranate juice dye-sensitized TiO2 as an anode. The morphology of PEDOT:PSS/TiO2 films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Cyclic voltammetry (CV) was employed to characterize the catalytic activity of the PEDOT:PSS/TiO2 film. Based on the analysis of CV, the enhancements for the electrochemical and photochemical performance of the PEDOT:PSS/TiO2 electrode are attributed to the fact that the dispersed TiO2 nanoparticles in the PEDOT:PSS matrix provide an improved catalytic activity and a facilitated diffusion for tri-iodide ions. The energy conversion efficiency is significantly improved after TiO2 nanoparticle incorporation. This improvement might be attributed to an increase in the counter electrode catalytic activity. The highest efficiency of 0.73% was obtained by using 100 nm TiO2 nanoparticles in the counter electrode.
La2/3Sr1/3MnO3-La0.1Bi0.9MnO3 heterostructures for spin filtering
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Varela, M.; Fontcuberta, J.; Herranz, G.; Fusil, S.; Bouzehouane, K.; Barthélémy, A.; Fert, A.
2006-04-01
We have grown heterostructures associating half-metallic La2/3Sr1/3MnO3 (LSMO) bottom electrodes and ferromagnetic La0.1Bi0.9MnO3 (LBMO) tunnel barriers. The layers in the heterostructures have good structural properties and top LBMO films (4 nm thick) have a very low roughness when deposited onto LSMO/SrTiO3(1.6 nm) templates. The LBMO films show an insulating behavior and a ferromagnetic character that are both preserved down to very low thicknesses. They are thus suitable for being used as tunnel barriers. Spin-dependent transport measurements performed on tunnel junctions defined from LSMO/SrTiO3/LBMO/Au samples show a magnetoresistance of up to ~90% at low temperature and bias. This evidences a spin-filtering effect by the LBMO layer, with a spin-filtering efficiency of ~35%.
NASA Astrophysics Data System (ADS)
Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid
2017-05-01
In current work, Nd15-xDyxFe77.5B7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol-gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd-Fe-B nanoparticles have been studied. The coercivity of Nd-Fe-B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd-Fe-B nanoparticle synthesized by sol-gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH)max), lowest-order uniaxial magnetocrystalline anisotropy constant (Ku1), and Curie temperature (Tc) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd-Fe-B nanoparticles with (BH)max =40.38 MGOe, Hc=1663.9 kA/m, Br=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd-Fe-B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd-Fe-B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was -0.36, -0.46, -0.41, -0.34, -0.29, -0.24, -0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd-Fe-B magnet. Microstructure analysis showed a homogeneous distribution of Dy in produced samples. The possible reason for observed magnetic behavior is improving the intrinsic material parameter and optimizing the microstructure by a uniform enhancement of magnetocrystalline anisotropy by formation the nanocrystalline compound (Nd,Dy)2Fe14B.
Riedel, Marc; Lisdat, Fred
2018-01-10
Inspired by natural photosynthesis, coupling of artificial light-sensitive entities with biocatalysts in a biohybrid format can result in advanced photobioelectronic systems. Herein, we report on the integration of sulfonated polyanilines (PMSA1) and PQQ-dependent glucose dehydrogenase (PQQ-GDH) into inverse opal TiO 2 (IO-TiO 2 ) electrodes. While PMSA1 introduces sensitivity for visible light into the biohybrid architecture and ensures the efficient wiring between the IO-TiO 2 electrode and the biocatalytic entity, PQQ-GDH provides the catalytic activity for the glucose oxidation and therefore feeds the light-driven reaction with electrons for an enhanced light-to-current conversion. Here, the IO-TiO 2 electrodes with pores of around 650 nm provide a suitable interface and morphology needed for the stable and functional assembly of polymer and enzyme. The IO-TiO 2 electrodes have been prepared by a template approach applying spin coating, allowing an easy scalability of the electrode height and surface area. The successful integration of the polymer and the enzyme is confirmed by the generation of an anodic photocurrent, showing an enhanced magnitude with increasing glucose concentrations. Compared to flat and nanostructured TiO 2 electrodes, the three-layered IO-TiO 2 electrodes give access to a 24-fold and 29-fold higher glucose-dependent photocurrent due to the higher polymer and enzyme loading in IO films. The three-dimensional IO-TiO 2 |PMSA1|PQQ-GDH architecture reaches maximum photocurrent densities of 44.7 ± 6.5 μA cm -2 at low potentials in the presence of glucose (for a three TiO 2 layer arrangement). The onset potential for the light-driven substrate oxidation is found to be at -0.315 V vs Ag/AgCl (1 M KCl) under illumination with 100 mW cm -2 , which is more negative than the redox potential of the enzyme. The results demonstrate the advantageous properties of IO-TiO 2 |PMSA1|PQQ-GDH biohybrid architectures for the light-driven glucose conversion with improved performance.
Maqbool, Qysar; Srivastava, Aasheesh
2017-10-09
Coloured TiO 2 is coveted for its ability to extract energy from the visible region of electromagnetic spectrum. Here a facile synthesis of black anatase titania microspheres (B-TiO 2 ) through a two-step process is reported. In the first step, amorphous white TiO 2 microspheres (W-TiO 2 ) are obtained by hydrolysing titanium tetraisopropoxide by ammonia vapours in ethanol. In the second step, the W-TiO 2 is thermally annealed at 500 °C to obtain B-TiO 2 . The diffuse reflectance analysis showed that B-TiO 2 absorbs across visible spectrum with absorption extending well into NIR region. Raman scattering together with EPR analysis showed compelling evidence of the existence of oxygen deficiency within the crystal in B-TiO 2 that induces black colouration in the sample. The defects present in the black anatase sample were confirmed to be single-electron-trapped (or paramagnetic) oxygen vacancies (V o ⋅) by XPS and EPR studies. The magnetic susceptibility studies showed existence of antiferromagnetic interactions between these unpaired electron spins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional magneto-optical light modulation in EuTiO3
NASA Astrophysics Data System (ADS)
Bussmann-Holder, Annette; Roleder, Krystian; Stuhlhofer, Benjamin; Logvenov, Gennady; Simon, Arndt; KöHler, Jürgen
EuTiO3 is antiferromagnetic at low temperature, namely below TN = 5.7K. In the high temperature paramagnetic phase the strongly nonlinear coupling between the lattice and the nomnially silent Eu 4f7 spins induces magnetic correlations which become apparent in muon spin rotation experiments and more recently in birefringence measurments in an external magnetic field. It is shown here, that high quality films of insulating EuTiO3 deposited on a thin SrTiO3 substrate are versatile tools for light modulation. The operating temperature is close to room temperature and admits multiple device engineering. By using small magnetic fields the birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100K. The results can be understood in terms of paramagnon phonon interaction where spin activity is achieved via the local spin-phonon double-well potential.
High-pressure synthesis and characterizations of the R2Pt2O7 pyrochlores.
NASA Astrophysics Data System (ADS)
Cai, Yunqi; Cui, Qi; Cheng, Jinguang; Dun, Zhiling; Zhou, Haidong; Ma, Jie; Cruz, C. Dela; Yan, Jiaqiang; Li, Xiang; Zhou, Jianshi
Pyrochlore R2B2O7 where R3 + stands for rear-earth ion and B4 + for a nonmagnetic cation such as Sn4 +or Ti4 +consist of an important family of geometrically frustrated magnets, which have been the focus of extensive investigations over last decades. To further enlarge the R2B2O7, we have chosen to stabilize the Pt-based cubic pyrochlores under HPHT conditions for two reasons: (1) Pt4 + is in a low-spin state which ionic radius is located in between Ti4 + (0.605\\x85) and Sn4 + (0.69\\x85), and (2) Pt4 + has a spatially much more extended 5d orbitals and thus enhanced Pt 5d-O 2p hybridizations that might modify the local anisotropic exchange interactions. Such an effect has never been taken into account in the previous studies. In this work, we will present the detailed characterizations on the pyrochlores R2Pt2O7 obtained under HPHT conditions. This work is supported by the National Science Foundation of China (Grant Nos.11304371, 11574377), part of the work was supported by the CEM, and NSF MRSEC, under Grant DMR-1420451, and Grant No. NSF-DMR-1350002.
Growth and giant coercive field of spinel-structured Co3- x Mn x O4 thin films
NASA Astrophysics Data System (ADS)
Kwak, Yongsu; Song, Jonghyun; Koo, Taeyeong
2016-08-01
We grew epitaxial thin films of CoMn2O4 and Co2MnO4 on Nb-doped SrTiO3(011) and SrTiO3(001) single crystal substrates using pulsed laser deposition. The magnetic Curie temperature ( T c ) of the Co2MnO4 thin films was ~176 K, which is higher than that of the bulk whereas CoMn2O4 thin films exhibited a value of T c (~151 K) lower than that of the bulk. For the Co2MnO4 thin films, the M - H loop showed a coercive field of ~0.7 T at 10 K, similar to the value for the bulk. However, the M -H loop of the CoMn2O4(0 ll) thin film grown on a Nb-doped SrTiO3(011) substrate exhibited a coercive field of ~4.5 T at 30 K, which is significantly higher than those of the Co2MnO4 thin film and bulk. This giant coercive field, only observed for the CoMn2O4(0 ll) thin film, can be attributed to the shape anisotropy and strong spin-orbit coupling.
Optical and electrical properties of sol-gel spin coated titanium dioxide thin films
NASA Astrophysics Data System (ADS)
Sahoo, Anusuya; Jayakrishnan, A. R.; Kamakshi, K.; Silva, J. P. B.; Sekhar, K. C.; Gomes, M. J. M.
2017-08-01
In this work; TiO2 thin films were deposited on glass and stainless steel substrates by sol-gel spin coating method. The films deposited on glass were annealed at different temperatures (Ta) in the range of 200 to 500 0C and that are deposited on steel substrate were annealed at 800 0C. The optical properties of TiO2 thin films were studied by using UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The transmittance on the average was found to ≥ 80 % and is found to sensitive to Ta. The PL spectra exhibited the strong emission band associated with band- to- band transition around 390 nm and the two weak bands at 480 and 510 nm associated to the oxygen defects and surface defects respectively. The current-voltage (I-V) characteristics of the Al/TiO2/steel capacitors were studied and analysed with application of various current mechanisms. Analysis reveals that the conduction in Al/TiO2/steel capacitors is governed by Poole-Frenkel mechanism.
Microstructural evolutions and stress studies of titania films derived by "spin-deposition" methods
NASA Astrophysics Data System (ADS)
Eun, Tai Hee
Titania (TiO2) films were fabricated by a "spin-deposition" process. Titanium alkoxides react with moisture in the air, leading to the formation of metal hydroxides which subsequently form an oxide network during deposition. The microstructure of film is easily controlled by the selection of titanium alkoxides and solvents. Films from titanium n-butoxide (Ti(OC 4H9n)4) in toluene exhibited a dense microstructure devoid of cracks. In contrast, films produced from titanium isopropoxide (Ti(OC3H7i)4) in the toluene regularly contained micro-cracks. Titanium isopropoxide in either isopropanol or n-propanol produces highly porous films. After annealing at 300°C, the film derived from titanium n-butoxide in toluene possessed 2˜3 nm nanocrystallites of titanium monoxide (TiO, cubic) in amorphous matrices. TEM and FTIR investigations indicate that the intermediates formed from the oligomers of titanium n-butoxide lead to the formation of the TiO. By annealing at 400°C, the TiO nanoparticles transformed to the TiO2 (anatase). At annealing higher than 450°C, the film was completely crystallized into a polycrystalline of ˜5 nm anatase. In water-rich environments, all amorphous titania films crystallized within 24 hours at 100°C. The crystallization of films is confirmed by XRD and FTIR studies. Amorphous titania films have remnant bridging and terminal hydroxy groups. Removal of these hydroxy groups is promoted by water vapor, which induces the crystallization of amorphous titania to anatase. The mechanism of crystallization in a water-rich environment was proposed based on the FTIR study. Stress evolution in titania films spin-deposited on silicon with solutions of titanium n-butoxide in toluene was investigated by an in-situ wafer curvature method. Tensile stresses were induced due to the densification by removal of water molecules attached to Ti-O-Ti linkages from 200°C to 300°C. The effect of crystallization on stress in the film was studied by comparing results of oxygen and nitrogen anneals. Compositional stress in anatase (a non-stoichiometric oxide) was measured by cyclic reduction-oxidation experiments performed at 700°C. The state of stress observed under reduction conditions was tensile in nature while compressive stresses evolved under oxidizing conditions. The measured value of the compositional stress of the film is 29.6 MPa.
NASA Astrophysics Data System (ADS)
Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing
2012-09-01
Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.
Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min
2017-10-01
To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.
Gaszner, B; Simor, T; Hild, G; Elgavish, G A
2001-11-01
The 23Na NMR shift-reagent complexes (Dy(PPP)2, Dy(TTHA), and Tm(DOTP)) bind stoichiometric amounts of Ca2+. Thus, in perfused rat heart systems, a supplementation of Ca2+ is required to maintain the requisite extracellular free calcium concentration ([Ca(o)]f) and to approximate a physiological level of contractile function. The amount of reagent-bound Ca2+ in a heart perfusate that contains a shift-reagent depends on: (1) Ca2+ binding by excess ligand used during the preparation of the shift-reagent; and (2) the Ca2+ binding affinity of the shift-reagent. To address point 1), we introduced a 1H and 31P NMR spectroscopic titration method to quantify directly the concentration of the excess ligand. We also used this method to minimize the amount of excess ligand (L) and thus the amount of Ca*L complex. To address point (2), we determined the stepwise Kd (microm) values of the Ca complexes of the three shift-reagents.: Dy(PPP)2, Kd=0.09, Kd2=7.9; Dy(TTHA), Kd1=10.66, Kd2=10.12; and Tm(DOTP), K(d1)=0.502, Kd2=4.98. The Kd values of the Ca complexes of the phosphonate and triphosphate based shift-reagents, Tm(DOTP) and Dy(PPP)2, respectively, are lower than those of the polyaminocarboxylate-based Dy(TTHA), indicating stronger Ca binding affinities for the former two types of complexes. We have also shown a positive correlation between [Ca(o)]f and left ventricular developed pressure (LVDP) in perfused rat hearts. Dy(TTHA) has shown no effect on LVDP v[Ca(o)]f. The LVDP values in the presence of the phosphonate and triphosphate based shift-reagents, however, were significantly higher than expected from the [Ca(o)]f levels alone. Thus a positive inotropic effect, independent of [Ca(o)]f, is evident in the presence of Tm(DOTP) or Dy(PPP)2. Copyright 2001 Academic Press.
Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae
2017-10-25
The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.
Spin State Control using Oxide Interfaces in LaCoO3-based Heterostructures
NASA Astrophysics Data System (ADS)
Lee, Sangjae; Disa, Ankit; Walker, Frederick; Ahn, Charles
The flexibility of the spin degree of freedom of the Co 3d orbitals in LaCoO3 suggests that they can be changed through careful design of oxide heterostructures. Interfacial coupling and dimensional confinement can be used to control the magnetic exchange, crystal fields, and Hund's coupling, through orbital and charge reconstructions. These parameters control the balance between multiple spin configurations, thereby modifying the magnetic ordering of LaCoO3. We study (LaCoO3)m /(LaTiO3)2 heterostructures grown by molecular beam epitaxy, which allow interfacial charge transfer from Ti to Co, in addition to structural and dimensional constraints. The electronic polarization at the interface and consequent structural distortions suppress the ferromagnetism in the LaCoO3 layers. This effect extends well beyond the interface, with ferromagnetic order absent up to LaCoO3 layer thickness of m =10. We compare the properties of the LaCoO3/LaTiO3heterostructureswithLaCoO3/SrTiO3, to untangle how charge transfer and structural modifications control the spin and magnetic configuration in cobaltates.
Li, Shunfang; Zhao, Xingju; Shi, Jinlei; Jia, Yu; Guo, Zhengxiao; Cho, Jun-Hyung; Gao, Yanfei; Zhang, Zhenyu
2016-09-28
Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.
Spin-orbit interaction in Kondo regime of δ-doped LaTiO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Rastogi, A.; Hossain, Z.; Budhani, R. C.
2014-03-01
The formation of a 2-dimensional electron gas (2DEG) at the interface of LaTiO3/SrTiO3 (LTO/STO) has evoked a keen interest in the condensed matter physics community due to the observation of many collective electronic phenomena in the 2DEG. In order to address some puzzling issues related to the mechanism of 2DEG formation at the LTO/STO interface and to identify the dominant scattering process that control the nature of Magnetoresistance (MR) in this system, we have used a novel approach of delta (δ) doping with iso-structural perovskite LaCrO3 at the interface, which dramatically alters the properties of 2DEG. We have observed a reduction in the sheet carrier density with doping thickness, prominence of the resistivity upturn at low temperatures seen in LTO/STO 2DEG, shift of resistivity minimum towards higher temperature, enhancement of weak anti-localization (WAL) below 10K and strong anisotropic magnetoresistance. The observed in-plane MR is attributed to Kondo-type scattering by localized Ti3+ moments which gets normalized by spin-orbit interaction at T < 10K. With increasing the Cr3+ ions concentration at the interface, WAL effect becomes more prominent below 10K.
Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Yan; Ding Shaohua; Zheng Xuefang
2007-07-15
Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. 1 crystallizes with monoclinic symmetry, space group P2(1)/n [a=7.995(4) A, b=10.945(5) A, c=8.164(4) A, {alpha}=90{sup o}, {beta}=93.619(6){sup o}, {gamma}=90{sup o}, V=713.0(5) A{sup 3}, Z=8]. It displays a three-dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains. 2 crystallizes with monoclinic symmetry, space group C2/c, [a=13.5605(17) A, b=6.7676(8) A, c=18.318(2) A, {alpha}=90{sup o}, {beta}=102.265(2){sup o}, {gamma}=90{supmore » o}, V=1642.7 (4) A{sup 3}, Z=4]. Its layered framework is attained by the europium atoms connected by the sulfate groups arranged in a helical manner. - Graphical abstract: Two new lanthanum sulfates DySO{sub 4}(OH) 1 and Eu{sub 2} (SO{sub 4}){sub 3} (H{sub 2}O){sub 8} 2 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. It displays a three dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains.« less
NASA Astrophysics Data System (ADS)
Tang, M. H.; Zhang, J.; Xu, X. L.; Funakubo, H.; Sugiyama, Y.; Ishiwara, H.; Li, J.
2010-10-01
(1-x)Pb(Zr0.4,Ti0.6)O3-(x)Bi(Zn0.5,Ti0.5)O3 (PZT-BZT) (x =0, 0.03, 0.05, 0.08, and 0.1) films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition using spin-coating. All samples showed highly (111) oriented perovskite phase and no other phase was observed. The ferroelectric properties of PZT-BZT films were systematically investigated as a function of the content x of the BZT solution. It is found that BZT doping in PZT films could greatly enhance the remnant polarization (Pr), as well as improve the fatigue property. In a 3 wt % BZT-doped PZT film, the 2Pr and the coercive field (Ec) are 90 μC/cm2 and 95 kV/cm at 10 kHz, respectively, at an electric field of 500 kV/cm, and the leakage current density is less than 1×10-7 A/cm2. The impact of BZT doping on the structure of PZT has been investigated by x-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Liau, Leo Chau-Kuang; Lin, Yun-Guo
2015-01-01
Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silyukov, Oleg I., E-mail: olegsilyukov@yandex.ru; Abdulaeva, Liliia D.; Burovikhina, Alena A.
2015-03-15
Layered HLnTiO{sub 4} (Ln=La, Nd) compounds belonging to Ruddlesden–Popper phases were found to form partially hydrated compounds Ln{sub 2}Ti{sub 2}O{sub 7}·xH{sub 2}O during thermal dehydration as well as defect oxides Ln{sub 2}□Ti{sub 2}O{sub 7} as final products. Further heating of metastable defect Ln{sub 2}□Ti{sub 2}O{sub 7} substances leads to the formation of pyrochlore-type oxides Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}, with subsequent transformation under higher temperatures to stable layered 110-type perovskites Ln{sub 2}Ti{sub 2}O{sub 7}. The occurring structure transformations lead to an increase of photocatalytic activity in the order of HLnTiO{sub 4}
Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates.
Guo, Yun-Nan; Chen, Xiao-Hua; Xue, Shufang; Tang, Jinkui
2012-04-02
Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of a carbonato ligand affords two novel Dy(6) and Dy(8) clusters, namely, [Dy(6)(ovph)(4)(Hpvph)(2)Cl(4)(H(2)O)(2)(CO(3))(2)]·CH(3)OH·H(2)O·CH(3)CN (2) and [Dy(8)(ovph)(8)(CO(3))(4)(H(2)O)(8)]·12CH(3)CN·6H(2)O (3). Compound 2 is composed of three petals of the Dy(2) units linked by two carbonato ligands, forming a triangular prism arrangement, while compound 3 possesses an octanuclear core with an unprecedented tub conformation, in which Dy(ovph) fragments are attached to the sides of the carbonato core. The static and dynamic magnetic properties are reported and discussed. In the Dy(6) aggregate, three Dy(2) "skeletons", having been well preserved (see the scheme), contribute to the single-molecule-magnet behavior with a relatively slow tunneling rate, while the Dy(8) cluster only exhibits a rather small relaxation barrier.
Chow, Chun Y.; Bolvin, Hélène; Campbell, Victoria E.; Guillot, Régis; Kampf, Jeff W.; Wernsdorfer, Wolfgang; Gendron, Frédéric; Autschbach, Jochen
2015-01-01
We report here the synthesis and the investigation of the magnetic properties of a series of binuclear lanthanide complexes belonging to the metallacrown family. The isostructural complexes have a core structure with the general formula [Ga4Ln2(shi3–)4(Hshi2–)2(H2shi–)2(C5H5N)4(CH3OH)x(H2O)x]·xC5H5N·xCH3OH·xH2O (where H3shi = salicylhydroxamic acid and Ln = GdIII1; TbIII2; DyIII3; ErIII4; YIII5; YIII0.9DyIII0.16). Apart from the Er-containing complex, all complexes exhibit an antiferromagnetic exchange coupling leading to a diamagnetic ground state. Magnetic studies, below 2 K, on a single crystal of 3 using a micro-squid array reveal an opening of the magnetic hysteresis cycle at zero field. The dynamic susceptibility studies of 3 and of the diluted DyY 6 complexes reveal the presence of two relaxation processes for 3 that are due to the excited ferromagnetic state and to the uncoupled DyIII ions. The antiferromagnetic coupling in 3 was shown to be mainly due to an exchange mechanism, which accounts for about 2/3 of the energy gap between the antiferro- and the ferromagnetic states. The overlap integrals between the Natural Spin Orbitals (NSOs) of the mononuclear fragments, which are related to the magnitude of the antiferromagnetic exchange, are one order of magnitude larger for the Dy2 than for the Er2 complex. PMID:29218180
One-dimensional TiO2 nanomaterials: preparation and catalytic applications.
Wu, Yu; Yu, Jie; Liu, Hong-Mei; Xu, Bo-Qing
2010-10-01
This work reports on the syntheses of one-dimensional (1D) H2Ti3O7 materials (nanotubes, nanowires and their mixtures) by autoclaving anatase titania (Raw-TiO2) in NaOH-containing ethanol-water solutions, followed by washing with acid solution. The synthesized nanosized materials were characterized using XRD, TEM/HRTEM, BET and TG techniques. The autoclaving temperature (120-180 degrees C) and ethanol-to-water ratio (V(EtOH)/V(H2O) = 0/60 approximately 30/30) were shown to be critical to the morphology of H2Ti3O7 product. The obtained H2Ti3O7 nanostructures were calcined at 400-900 degrees C to prepare 1D-TiO2 nanomaterials. H2Ti3O7 nanotubes were converted to anatase nanorods while H2Ti3O7 nanowires to TiO2(B) nanowires after the calcination at 400 degrees C. The calcination at higher temperatures led to gradual decomposition of the wires to rods and phase transformation from TiO2(B) to anatase then to rutile. Photocatalytic degradation of methyl orange was conducted to compare the photocatalytic activity of these 1D materials. These 1D materials were used as new support to prepare Au/TiO2 catalysts for CO oxidation at 0 degrees C and 1,3-butadiene hydrogenation at 120 degrees C. For the CO oxidation reaction, Au particles supported on anatase nanorods derived from the H2Ti3O7 nanotubes (Au/W-180-400) were 1.6 times active that in Au/P25-TiO2, 4 times that in Au/Raw-TiO2, and 8 times that on TiO2(B) nanowires derived from the H2Ti3O7 nanotubes (Au/M-180-400). For the hydrogenation of 1,3-butadiene, however, the activity of Au particles in Au/M-180-400 was 3 times higher than those in Au/W-180-400 but similar to those in Au/P25-TiO2. These results demonstrate that the potential of 1D-TiO2 nanomaterials in catalysis is versatile.
NASA Astrophysics Data System (ADS)
Basavaraj, R. B.; Nagabhushana, H.; Lingaraju, K.; Prasad, B. Daruka
2017-05-01
In this paper we report for the first time Dy3+ (1-7 mol %) doped CdSiO3 nanophosphors prepared via facile ultrasound supported sonochemical route using EGCG (epigallocatechin gallate). The final product was well characterized by PXRD, FTIR, SEM, TEM and PL. The powder X-ray diffraction (PXRD) profiles showed monoclinic phase with highly crystalline nature. The sonication time, concentration of the surfactant play vital role in tuning the morphology. The crystallite size was calculated from PXRD patterns as well as by TEM image and it was found to 20-30 nm. The Fourier transform infrared spectroscopy (FTIR) results confirmed the presence of Si-O-Si and Si-O stretching vibrations in CdSiO3. Photoluminescence properties of Dy3+ (1-7 mol %) doped CdSiO3 excited under near ultra violet wavelength (350 nm) was studied in order to investigate the possibility of its use in white light emitting diode applications. The emission spectra consists of intra 4f transitions of Dy3+, namely 4F9/2 → 6H15/2 (480 nm), and 4F9/2 → 6H13/2 (574 nm) respectively. The 3 mol% Dy3+ doped phosphor showed maximum intensity. The Commission Internationale de I'Eclairage (CIE) and correlated color temperature (CCT) was evaluated. Further, the quantum efficiency and color purity results of the product showed high efficiency and it was highly useful in white light emitting diodes (wLEDs) applications.
Physics of SrTiO3-based heterostructures and nanostructures: a review.
Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy
2017-08-30
1 Overview 1 1.1 Introduction 1 1.1.1 Oxide growth techniques are rooted in search for high-Tc superconductors 2 1.1.2 First reports of interface conductivity 2 1.2 2D physics 2 1.3 Emergent properties of oxide heterostructures and nanostructures 3 1.4 Outline 3 2 Relevant properties of SrTiO3 3 2.1 Structural properties and transitions 3 2.2 Ferroelectricity, Paraelectricity and Quantum Paraelectricity 4 2.3 Electronic structure 5 2.4 Defects 6 2.4.1 Oxygen vacancies 6 2.4.2 Terraces 7 2.5 Superconductivity 7 3 SrTiO3-based heterostructures and nanostructures 8 3.1 Varieties of heterostructures 8 3.1.1 SrTiO3 only 9 3.1.2 LaAlO3/SrTiO3 9 3.1.3 Other heterostructures formed with SrTiO3 10 3.2 Thin-film growth 10 3.2.1 Substrates 10 3.2.2 SrTiO3 surface treatment 11 3.2.3 Pulsed Laser Deposition 11 3.2.4 Atomic Layer Deposition 13 3.2.5 Molecular Beam Epitaxy 14 3.2.6 Sputtering 15 3.3 Device Fabrication 15 3.3.1 "Conventional" photolithography - Thickness Modulation, hard masks, etc. 15 3.3.2 Ion beam irradiation 16 3.3.3 Conductive-AFM lithography 16 4 Properties and phase diagram of LaAlO3/SrTiO3 16 4.1 Insulating state 16 4.2 Conducting state 17 4.2.1 Confinement thickness (the depth profile of the 2DEG) 17 4.3 Metal-insulator transition and critical thickness 18 4.3.1 Polar catastrophe ( electronic reconstruction) 18 4.3.2 Oxygen Vacancies 19 4.3.3 Interdiffusion 20 4.3.4 Polar Interdiffusion + oxygen vacancies + antisite pairs 20 4.3.5 Role of surface adsorbates 21 4.3.6 Hidden FE like distortion - Strain induced instability 21 4.4 Structural properties and transitions 21 4.5 Electronic band structure 22 4.5.1 Theory 22 4.5.2 Experiment 23 4.5.3 Lifshitz transition 24 4.6 Defects, doping, and compensation 25 4.7 Magnetism 25 4.7.1 Experimental evidence 25 4.7.2 Two types of magnetism 27 4.7.3 Ferromagnetism 27 4.7.4 Metamagnetism 28 4.8 Superconductivity 28 4.9 Optical properties 29 4.9.1 Photoluminesce experiments 29 4.9.2 Second Harmonic Generation 29 4.10 Coexistence of superconductivity and magnetism 30 4.11 Magnetic and conducting phases 30 5 Quantum transport in LaAlO3/SrTiO3 heterostructures and microstructures 31 5.1 2D transport 31 5.2 Inhomogeneous Transport 31 5.3 Anisotropic Magnetoresistance 32 5.4 Spin-orbit coupling 32 5.5 Anomalous Hall Effect 34 5.6 Shubnikov-de Haas (SdH) Oscillation 35 5.7 Quantum Hall Effect 37 5.8 Spintronic Effects 38 6 Quantum transport in LaAlO3/SrTiO3 nanostructures 39 6.1 Quasi-1D Superconductivity 39 6.2 Universal conductance fluctuations 40 6.3 Dissipationless Electronic Waveguides 40 6.4 Superconducting Quantum Interference Devices (SQUID) 41 6.5 Electron pairing without superconductivity 41 6.6 Tunable Electron-Electron Interaction 42 7 Outlook 43 7.1 Outstanding physics questions 43 7.1.1 Polar catastrophe (not) 43 7.1.2 Coexistence of phases 43 7.1.3 Novel superconducting states (e.g., FFLO, other pairing symmetries) 43 7.1.4 Magnetism mechanism 43 7.1.5 Exotic phases (eg. Majorana physics) 43 7.1.6 Luttinger liquids 44 7.2 Future applications 44 7.2.1 Spintronics 44 7.2.2 Quantum simulation 44 7.2.3 Qubits/quantum computing 44 7.2.4 Sensing 44 8 Figures 45 9 Reference 6. © 2017 IOP Publishing Ltd.
Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh
2015-06-07
Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less
NASA Astrophysics Data System (ADS)
Beula, R. Jeba; Devadason, Suganthi; Vidhya, B.
2018-06-01
Sol-gel-assisted spin-coating method was used to prepare TiO2 photoelectrodes doped with four different concentrations of indium 0.025, 0.05, 0.075 and 0.1 M. The crystalline phase and average crystallite size of the pure- and indium-doped TiO2 films were found using X-ray diffractometer. Raman analysis was performed for the pure- and In-doped TiO2 films to confirm the structure of anatase phase. UV-visible and photoluminescence spectrophotometer were used to analyze the optical properties of the films. A shift towards a lower wavelength in the absorption spectrum and widening of band gap were noted for the doped TiO2 films. Reduction in the peak intensity was observed in the PL spectra to indicate the inhibiting action of electron-hole recombination. A maximum (2.71%) light to current efficiency is noted for the dye-sensitized solar cells (DSSC) fabricated based on 0.025M In-doped TiO2 electrode.
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.
2017-04-01
Doping of mesoporous ZnO-ZrO2 nanoparticles with transition metal and lanthanides (Cr, Nd, Dy) were used as a catalyst to develop an ultrasensitive fluorometric method for the conversion of non fluorescent coumarin to highly fluorescent 7-hydroxycoumarin using H2O2 or light. It was found that doped- ZnO-ZrO2 mixed oxide can catalyze the decomposition of H2O2 to produce •OH radicals, which in turn convert coumarin to 7-hydroxycoumarin. At contrast, the doping has deleterious effect on conversion of coumarin by light due to high band gap and high concentrations of doping increase the recombination rate of electron and holes. Doped mixed oxides prepared by impregnation method and characterized by studying their structural, surface and optical properties. Chromium doped ZnO-ZrO2 had the highest rate of formation of hydroxyl radical due to decomposition of H2O2 and therefore 7-hydroxycoumarin due to surface area, small crystal size and high redox potential.
Thermal barrier coating having high phase stability
Subramanian, Ramesh
2001-01-01
A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar
2018-05-01
Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.
Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)
NASA Astrophysics Data System (ADS)
Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin
2017-01-01
Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.
Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O
Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...
2017-05-01
Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less
Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G.; Glasbrenner, J. K.; Flint, R.
Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less
NASA Astrophysics Data System (ADS)
Ito, T. U.; Koda, A.; Shimomura, K.; Higemoto, W.; Matsuzaki, T.; Kobayashi, Y.; Kageyama, H.
2017-01-01
Excited configurations of hydrogen in the oxyhydride BaTiO3 -xHx (x =0.1 -0.5 ), which are considered to be involved in its hydrogen transport and exchange processes, were investigated by positive muon spin relaxation spectroscopy using muonium (Mu) as a pseudoisotope of hydrogen. Muons implanted into the BaTiO3 -xHx perovskite lattice were mainly found in two qualitatively different metastable states. One was assigned to a highly mobile interstitial protonic state, which is commonly observed in perovskite oxides. The other was found to form an entangled two spin-1/2 system with the nuclear spin of an H- ion at the anion site. The structure of the (H,Mu) complex agrees well with that of a neutralized center containing two H- ions at a doubly charged oxygen vacancy, which was predicted to form in the SrTiO3 -δ perovskite lattice by a computational study [Y. Iwazaki et al., APL Mater. 2, 012103 (2014), 10.1063/1.4854355]. Above 100 K, interstitial Mu+ diffusion and retrapping to a deep defect were observed, which could be a rate-limiting step of macroscopic Mu/H transport in the BaTiO3 -xHx lattice.
NASA Astrophysics Data System (ADS)
Zhang, Yu Xin; Kuang, Min; Hao, Xiao Dong; Liu, Yan; Huang, Ming; Guo, Xiao Long; Yan, Jing; Han, Gen Quan; Li, Jing
2014-12-01
A facile and large-scale strategy of mesoporous birnessite-type manganese dioxide (MnO2) nanosheets on one-dimension (1D) H2Ti3O7 and anatase/TiO2 (B) nanowires (NWs) is developed for high performance supercapacitors. The morphological characteristics of MnO2 nanoflakes on H2Ti3O7 and anatase/TiO2 (B) NWs could be rationally designed with various characteristics (e.g., the sheet thickness, surface area). Interestingly, the MnO2/TiO2 NWs exhibit a more optimized electrochemical performance with specific capacitance of 120 F g-1 at current density of 0.1 A g-1 (based on MnO2 + TiO2) than MnO2/H2Ti3O7 NWs. An asymmetric supercapacitor of MnO2/TiO2//activated graphene (AG) yields a better energy density of 29.8 Wh kg-1 than MnO2/H2Ti3O7//AG asymmetric supercapacitor, while maintaining desirable cycling stability. Indeed, the pseudocapacitive difference is related to the substrates, unique structure and surface area. Especially, the anatase/TiO2 (B) mixed-phase system can provide good electronic conductivity and high utilization of MnO2 nanosheets.
Tang, Jin; Ke, Yajiao; He, Wei; Zhang, Xiangqun; Zhang, Wei; Li, Na; Zhang, Yongsheng; Li, Yan; Cheng, Zhaohua
2018-05-25
Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO 3 (R = Er or Dy) with an exchange-coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO 3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange-coupled Fe/RFeO 3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10-300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare-earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO 3 heterostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wongaree, Mathana; Chiarakorn, Siriluk; Chuangchote, Surawut; Sagawa, Takashi
2016-11-01
The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO 2 ) nanofibers as visible light active photocatalysts. The CNT/TiO 2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO 2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO 2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO 2 nanofibers have high specific surface area (116 m 2 /g), significantly higher than that of TiO 2 nanofibers (44 m 2 /g). The photocatalytic performance of the CNT/TiO 2 nanofibers was investigated by decolorization of 1 × 10 -5 M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO 2 nanofibers (calcined CNT/TiO 2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO 2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO 2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO 2 nanofibers (52 %) was higher than by other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO 2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO 2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.
Hosseini, Soraya; Jahangirian, Hossein; Webster, Thomas J; Soltani, Salman Masoudi; Aroua, Mohamed Kheireddine
2016-01-01
Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.
Hosseini, Soraya; Jahangirian, Hossein; Webster, Thomas J; Soltani, Salman Masoudi; Aroua, Mohamed Kheireddine
2016-01-01
Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol–gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV–visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm−2 at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm−2 from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal. PMID:27574426
Qi, Fangwei; Huang, Feifei; Wang, Tao; Tian, Ying; Lei, Ruoshan; Ye, Renguang; Zhang, Junjie; Zhang, Long; Xu, Shiqing
2017-11-01
Enhanced 3 μm luminescence of Dy 3+ based on the effective process of Yb 3+ :F 5/2 2→Dy 3+ :H 5/2 6 with a higher energy transfer coefficient of 7.36×10 -39 cm 6 /s in fluoaluminate glass modified by TeO 2 was obtained. The energy transfer efficiency from Yb 3+ to Dy 3+ in Dy 3+ /Yb 3+ codoped glass was as high as 80%, indicating the effective energy transfer of Yb 3+ . The higher temperature of the glass transition (T g ) and larger characteristic temperatures (ΔT,K gl ) revealed better thermal properties of the prepared glasses compared with the traditional fluoaluminate glasses, which is of great benefit to fiber drawing. The lower hydroxyl content (15.7 ppm) indicated better fluorescence properties of the glass. It was noted that the longer lifetime of 572 μs and higher emission cross section of 5.22×10 -21 cm 2 along with the bandwidth of 245 nm around 3 μm proved potential applications in mid-IR laser materials of the present glass.
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.
King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F
2014-02-27
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.
Canaj, Angelos B; Siczek, Milosz; Otręba, Marta; Lis, Tadeusz; Lorusso, Giulia; Evangelisti, Marco; Milios, Constantinos J
2016-11-22
A solvothermal reaction between Ln(NO 3 ) 3 ·6H 2 O (Ln: Gd, Tb and Dy), 2-hydroxy-1-naphthaldehyde, 2-OH-naphth, and ethylenediamine, en, in MeOH in the presence of a base, NEt 3 , led to the formation of the 1D coordination polymers [Ln(L)(MeO)(MeOH) 0.5 ] n ·MeOH (Ln = Gd (1·MeOH), Tb(2), Dy (3·MeOH); H 2 L = 1,1'-((1E,1'E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-ol), the Schiff-base ligand derived from the condensation of 2-OH-naphth and en), while a similar reaction in an excess of NaN 3 yielded 1D coordination polymers [Ln(L)(N 3 ) 0.75 (MeO) 0.25 (MeOH)] n (Ln = Gd (4), Tb (5), Dy (6)). Finally, upon replacing ethylenediamine with o-phenylenediamine, o-phen, we managed to isolate the discrete dimers [Dy 2 (L') 3 (MeOH)]·2MeOH (7·2MeOH) and [Gd 2 (L') 3 (MeOH)]·2MeOH (8·2MeOH) (H 2 L' = 1,1'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis (naphthalen-2-ol), the Schiff-base ligand from the condensation of 2-OH-naphth and o-phen). Polymers 1-3 describe one-dimensional chains, containing alternating seven- and eight-coordinate Ln III metal centers, polymers 4-6 contain eight-coordinate lanthanide ions, while in both 7 and 8 the two Ln III centers are eight- and seven-coordinate, adopting square antiprismatic and "piano-stool" geometry, respectively. The magnetocaloric properties of the three Gd III analogues were determined from magnetic measurements, yielding the magnetic entropy change -ΔS m = 21.8, 23.0 and 16.0 J kg -1 K -1 at T = 3.0 K on demagnetization of 7 T to 0, for 1, 4 and 8, respectively. The study of the magnetic properties also revealed that all three Dy III analogues (3, 6 and 7) display out-of-phase signals, therefore suggesting slow magnetic relaxation, while such behaviour was not established in the Tb III analogues.
Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores
NASA Astrophysics Data System (ADS)
Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.
2018-03-01
Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.
Li, Yingfei; Tian, Na; Fan, Xiaodong; You, Caiyin; Pei, Wenli; Cheng, Zhenxiang
2017-12-13
Low coercivity is the main disadvantage of RE-Fe-B permanent magnets containing highly abundant rare earths (RE: La, Ce) from the application point of view, even though they exhibit many cost and resource advantages. In this work, an industrial mixed rare earth alloy (RE 100 = La 30.6 Ce 50.2 Pr 6.4 Nd 12.8 ) with a high amount of the more abundant elements was adopted to fabricate RE-Fe-B permanent magnets by means of mechanical alloying accompanied by post-annealing. A synergetic effect towards enhancing the coercivity was observed after co-doping with Dy 2 O 3 and Ca, with the coercivity increasing from 2.44 kOe to 11.43 kOe for co-dopant percentages of 7 wt.% Dy 2 O 3 + 2.3 wt.% Ca. Through analysis of the phase constituents and microstructure, it was determined that part of the Dy atoms entered the matrix of RE 2 Fe 14 B phase to enhance the magnetocrystalline anisotropy; due to the reductive effect of Ca on Dy 2 O 3 , nanocrystals of Dy-rich RE 2 Fe 14 B were present throughout the matrix, which could increase the resistance to domain wall movement. These are the dominant factors behind the improvement of the coercivity of the RE-Fe-B magnets with highly abundant RE elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Wu, Y. Q.; Dennis, K. W.
2006-04-15
Effects of a TiC addition on microstructure and magnetic properties in [MRE{sub 2.2}Fe{sub 14}B]{sub (100-2x)/17.2}+Ti{sub x}C{sub x}(MRE=Nd+Y+Dy,x=1-5) ribbons, melt spun at a wheel speed of 16 m/s, were systematically studied. X-ray diffraction and differential thermal analysis data revealed that the addition of TiC improves the glass formability in the mixed rare earth alloys without Co, resulting in partially amorphous alloys. TEM observations showed that the average grain size in the as spun samples decreases from 200 to 20 nm with increasing x from 1 to 5, confirming that the addition of TiC can significantly improve microstructure. For an optimized [MRE{submore » 2}(Fe,Co){sub 14}B]{sub (100-2x)/17.2}+Ti{sub x}C{sub x} sample with x=2, spun at 25 m/s and annealed at 750 deg. C for 15 min, the room-temperature magnetic properties of H{sub cj}=11.8 kOe, M{sub r}=7.2 kGs, and (BH){sub max}=11.3 MGOe were obtained. Temperature coefficients for M{sub r} and H{sub cj} of -0.06 and -0.37%/ deg. C, respectively, also were measured in the temperature range of 27-100 deg. C. The new magnet alloy exhibits more uniform magnetic properties and a usable energy product to nearly 300 deg. C.« less
In situ monitoring of atomic layer epitaxy via optical ellipsometry
NASA Astrophysics Data System (ADS)
Lyzwa, F.; Marsik, P.; Roddatis, V.; Bernhard, C.; Jungbauer, M.; Moshnyaga, V.
2018-03-01
We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden-Popper thin films of SrO(SrTiO3) n=4 were grown by means of metalorganic aerosol deposition in the atomic layer epitaxy mode on SrTiO3(1 0 0), LSAT(1 0 0) and DyScO3(1 1 0) substrates. The measured time dependences of ellipsometric angles, Δ(t) and Ψ(t), were described by using a simple optical model, considering the sequence of atomic layers SrO and TiO2 with corresponding bulk refractive indices. As a result, valuable online information on the atomic layer epitaxy process was obtained. Ex situ characterization techniques, i.e. transmission electron microscopy, x-ray diffraction and x-ray reflectometry verify the crystal structure and confirm the predictions of optical ellipsometry.
Xiong, Xiaobo; Yuan, Ximing; Song, Jiangqi; Yin, Guoxiang
2016-06-01
Eu(2+), Dy(3+) co-doped strontium-magnesium silicate phosphors, Sr2MgSi2O7:Eu(2+), Dy(3+) (SMSEDs), have shown great potential in optoelectronic device due to their unique luminescent property. However, their potential applications in forensic science, latent fingermark detection in particular, are still being investigated. In this contribution, SMSEDs were successfully employed to latent fingermarks on a variety of non-porous and semi-porous surfaces, including aluminum foil, porcelain, glass, painted wood, colored paper, and leather. All the results illustrated that this luminescent powder, as a long-lasting phosphorescence material (LLP), was an ideal time-resolved detection reagent of fingermark for elimination of background interferences from various difficult substrates, and offered a good contrast to allow their identification without the need to enhance the results compared to nanosized organic fluorescent powder. © The Author(s) 2016.
Förg, Katharina; Höppe, Henning A
2015-11-28
Lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho) were synthesised as colourless (Ln = Tb, Dy) and light pink (Ln = Ho) crystalline powders by reaction of Tb4O7/Dy2O3/Ho2O3 with H3PO3 at 380 °C. All compounds crystallise isotypically (P2(1)/c (no. 14), Z = 4, a(Tb) = 1368.24(4) pm, b(Tb) = 710.42(2) pm, c(Tb) = 965.79(3) pm, β(Tb) = 101.200(1)°, 3112 data, 160 parameters, wR2 = 0.062, a(Ho) = 1363.34(5) pm, b(Ho) = 709.24(3) pm, c(Ho) = 959.07(4) pm, β(Ho) = 101.055(1)°, 1607 data, 158 parameters, wR2 = 0.058). The crystal structure comprises two different infinite helical chains of corner-sharing phosphate tetrahedra. In-between these chains the lanthanide ions are located, coordinated by seven oxygen atoms belonging to four different polyphosphate chains. Vibrational, UV/Vis and fluorescence spectra of Ln[H(PO3)4] (Ln = Tb, Dy, Ho) as well as Dy[H(PO3)4]:Ln (Ln = Ce, Eu) and the magnetic and thermal behaviour of Tb[H(PO3)4] are reported.
Yan, J.-Q.; Cao, H. B.; McGuire, M. A.; ...
2013-06-10
The spin and orbital ordering in Dy₁₋ xTb xVO₃ (x=0 and 0.2) was studied by measuring x-ray powder diffraction, magnetization, specific heat, and neutron single-crystal diffraction. The results show that G-OO/C-AF and C-OO/G-AF phases coexist in Dy 0.8Tb 0.20VO 3 in the temperature range 2–60 K, and the volume fraction of each phase is temperature and field dependent. The ordering of Dy moments at T* = 12 K induces a transition from G-OO/C-AF to a C-OO/G-AF phase. Magnetic fields suppress the long-range order of Dy moments and thus the C-OO/G-AF phase below T*. The polarized moments induced at the Dymore » sublattice by external magnetic fields couple to the V 3d moments, and this coupling favors the G-OO/C-AF state. Also discussed is the effect of the Dy-V magnetic interaction and local structure distortion on the spin and orbital ordering in Dy₁₋ xTb xVO₃.« less
Ri, Jin Hyok; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou
2017-11-30
A sea urchin-like rutile TiO 2 microsphere (RMS) film was fabricated on Ti foil via a hydrothermal process. The resulting rutile TiO 2 hierarchical microspheres with a diameter of 5-6 μm are composed of nanorods with a diameter of ∼200 nm and a length of 1-2 μm. The sea urchin-like hierarchical structure leads to the Ti foil-based RMS film possessing much better light-scattering capability in the visible region than the bare Ti foil. By using it as an underlayer of a nanosized anatase TiO 2 film (bTPP3) derived from a commercially available paste (TPP3), the corresponding bilayer Ti foil-based quasi-solid-state dye-sensitized solar cell (DSSC) only gives a conversion efficiency of 4.05%, much lower than the single bTPP3 film-based one on Ti foil (5.97%). By spin-coating a diluted TPP3 paste (sTPP3) on the RMS film prior to scraping the bTPP3 film, the resulting RMS/sTPP3/bTPP3 film-based DSSC achieves a significantly enhanced efficiency (7.27%). The electrochemical impedance spectra (EIS) show that the RMS/sTPP3/bTPP3 film possesses better electron transport capability and longer electron lifetime than the bTPP3 film. This work not only provides the first example of directly growing rutile TiO 2 hierarchically structured microsphere film on Ti foil suitable for replacing the rigid, heavy and expensive transparent conductive oxide (TCO) glass substrate to serve as a light-scattering underlayer of Ti foil-based quasi-solid-state DSSCs, but also paves a new route to develop Ti foil-based flexible DSSCs with high efficiency, low cost and a wide application field through optimizing the composition and structure of the photoanode.
Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives
NASA Astrophysics Data System (ADS)
Kishi, Hiroshi; Mizuno, Youichi; Chazono, Hirokazu
2003-01-01
Multilayer ceramic capacitor (MLCC) production and sales figures are the highest among fine-ceramic products developed in the past 30 years. The total worldwide production and sales reached 550 billion pieces and 6 billion dollars, respectively in 2000. In the course of progress, the development of base-metal electrode (BME) technology played an important role in expanding the application area. In this review, the recent progress in MLCCs with BME nickel (Ni) electrodes is reviewed from the viewpoint of nonreducible dielectric materials. Using intermediate-ionic-size rare-earth ion (Dy2O3, Ho2O3, Er2O3, Y2O3) doped BaTiO3 (ABO3)-based dielectrics, highly reliable Ni-MLCCs with a very thin layer below 2 μm in thickness have been developed. The effect of site occupancy of rare-earth ions in BaTiO3 on the electrical properties and microstructure of nonreducible dielectrics is studied systematically. It appears that intermediate-ionic-size rare-earth ions occupy both A- and B-sites in the BaTiO3 lattice and effectively control the donor/acceptor dopant ratio and microstructural evolution. The relationship between the electrical properties and the microstructure of Ni-MLCCs is also presented.
Enhanced self-repairing capability of sol-gel derived SrTiO3/nano Al2O3 composite films
NASA Astrophysics Data System (ADS)
Yao, Manwen; Peng, Yong; Xiao, Ruihua; Li, Qiuxia; Yao, Xi
2016-08-01
SrTiO3/nano Al2O3 inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO3 films doped by equivalent amount of sol-Al2O3 have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO3 films doped with sol-Al2O3. The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodic oxidation reaction in origin, which can repair the internal and/or surface defects of the films.
NASA Astrophysics Data System (ADS)
Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-03-01
This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.
Origin of the decoherence of the extended electron spin state in Ti-doped β-Ga2O3.
Mentink-Vigier, F; Binet, L; Gourier, D; Vezin, H
2013-08-07
The mechanism of decoherence of the electron spin of Ti(3+) in β-Ga2O3 was investigated by pulsed electron paramagnetic resonance. At 4.2 K, both instantaneous and spectral diffusion contribute to the decoherence. For electron spin concentrations ≈10(25) m(-3) in the studied samples, calculations indicate that electron-electron couplings and electron couplings with (69)Ga and (71)Ga nuclei yield similar contributions to the spectral diffusion, but that electron-nuclei interactions could become the dominant cause of spectral diffusion for only slightly lower spin concentrations. Above 20 K, an additional contribution to the decoherence as well as to the spin-lattice relaxation arises from a two-optical-phonon Raman process, which becomes the leading decoherence mechanism for T > 39 K. Rabi oscillations with a damping time of about 79 ns at 4.2 K could also be observed. The damping of the Rabi oscillations, independent of the oscillation frequency, is suspected to arise from electron-nuclei interactions.
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-02-18
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-01-01
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438
Yan, Z. B.; Liu, J. -M.
2013-01-01
The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asib, N. A. M., E-mail: amierahasib@yahoo.com; Afaah, A. N.; Aadila, A.
Titanium dioxide (TiO{sub 2}) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO{sub 2} seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO{sub 2} seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO{sub 2} seed layer of 0.100 M. PL spectramore » of the TiO{sub 2}: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO{sub 2} seed layer.« less
Biocorrosion of TiO2 nanoparticle coating of Ti-6Al-4V in DMEM under specific in vitro conditions
NASA Astrophysics Data System (ADS)
Höhn, Sarah; Virtanen, Sannakaisa
2015-02-01
A TiO2 nanoparticle coating was prepared on a biomedical Ti-6Al-4V alloy using "spin-coating" technique with a colloidal suspension of TiO2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO2. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti-6Al-4V shows a complete coverage by a Ca-phosphate layer in contrast to the non-coated Ti-6Al-4V alloy. Hence, the TiO2-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO2-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti-6Al-4V alloy is significant for at least 28 days of immersion in DMEM.
NASA Astrophysics Data System (ADS)
Qiu, Fei; Xu, Zhimou
2009-08-01
In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.
Identification of lunar rock types and search for polar ice by gamma ray spectroscopy
NASA Astrophysics Data System (ADS)
Metzger, A. E.; Drake, D. M.
1990-01-01
This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.
Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.
Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo
2015-03-14
H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, G., E-mail: manuel.herrera@enp.unam.mx; Departamento de Química Inorgánica, Universidad de Valencia, 46100 Burjasot, Valencia; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D. F.
2014-03-01
The layered-structural ceramics, such as lanthanum titanate (La{sub 2}Ti{sub 2}O{sub 7}), have been known for their good temperature and low dielectric loss at microwave frequencies that make them good candidate materials for high frequency applications. However, few studies have been conducted on the synthesis optimization by sol gel reaction, in particular by acrylamide polymerization route. The interest in La{sub 2}Ti{sub 2}O{sub 7} ceramic has been greatly increased recently due to the effect of oriented grains. This anisotropy of the microstructure leads to anisotropy in dielectric, electrical and mechanical properties. In this study, grain oriented lanthanum titanate was produced by themore » sol–gel acrylamide polymerization route. The characterizations of the samples were achieved by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). X-ray diffraction indicates that the formation of monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} nanocrystals is a necessary first step to obtain orthorhombic LaTiO{sub 3} nanocomposites (with space group Pbnm). In this work we identified that the monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} with space group P2{sub 1} transforms its structure into one with the orthorhombic space group Cmc2{sub 1} at approximately 1073 K. The microstructure associated consisted of flaky monoclinic La{sub 2}Ti{sub 2}O{sub 7} nanocomposites in comparison with round-shaped LaTiO{sub 3} nanocomposites. - Highlights: • The flaky-like La{sub 2}Ti{sub 2}O{sub 7} compound was synthesized by sol–gel acrylamide route. • Simultaneous monitoring of the DTA and XRD with temperature was performed. • Phase transformation characterization of La{sub 2}Ti{sub 2}O{sub 7} has been carried out. • The variation of the La{sub 2}Ti{sub 2}O{sub 7} and LaTiO{sub 3} grain morphology has been compared.« less
Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Bao-gai; Ma, Qing-lan; School of Electronics and Information, Nantong University, Jiangsu 226019
Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of themore » absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.« less
Synthesis and Characterization of TiO2/SiO2 Thin Film via Sol-Gel Method
NASA Astrophysics Data System (ADS)
Halin, D. S. C.; Abdullah, M. M. A. B.; Mahmed, N.; Malek, S. N. A. Abdul; Vizureanu, P.; Azhari, A. W.
2017-06-01
TiO2/SiO2 thin films were prepared by sol-gel spin coating method. Structural, surface morphology and optical properties were investigated for different annealing temperatures at 300°C, 400°C and 500°C. X-ray diffraction pattern show that brookite TiO2 crystalline phase with SiO2 phase presence at 300°C. At higher temperatures of 400-500°C, the only phase presence was brookite. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films annealed at 300°C shows an agglomeration of small flaky with crack free. When the temperature of annealing increase to 400-500°C, the films with large flaky and large cracks film were formed which was due to surface tension between the film and the air during the drying process. The UV-Vis spectroscopy shows that the film exhibits a low transmittance around 30% which was due to the substrate is inhomogeneously covered by the films. In order to improve the coverage of the film on the substrate, it has to repeatable the spin coating to ensure the substrate is fully covered by the films.
NASA Astrophysics Data System (ADS)
Parida, S. C.; Jacob, K. T.; Venugopal, V.
2002-10-01
The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system DyFeO were developed at 1250 K.
Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells
Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak
2014-01-01
Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936
Structure, strain, and control of ground state property in LaTiO3/LaAlO3 superlattice
NASA Astrophysics Data System (ADS)
Lee, Alex Taekyung; Han, Myung Joon
2014-03-01
We examined the ground state property of LaTiO3/LaAlO3 superlattice through density functional band calculations. Total energy calculations, including the structural distortions, U dependence, and the exchange correlation functional dependence, clearly showed that the spin and orbital ground state can be controlled systematically by the epitaxial strain. In the wide range of strain, the ferromagnetic-spin and antiferro-orbital order are stabilized, which is notably different from the previously reported ground state in the titanate systems. By applying +2.8% of tensile strains, we showed that the antiferromagnetic-spin and ferro-orbital ordered phase become stabilized.
NASA Astrophysics Data System (ADS)
Poullain, Gilles; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid
2017-01-01
TbxDy1-xFe2/Pt/Pb(Zrx, Ti1-x)O3 thin films were grown on Pt/TiO2/SiO2/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient αΗΜΕ was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large αΗΜΕ of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Wang, Yong Ping
2016-05-01
The native defects and magnetic properties in undoped rutile TiO2 are studied using local density approximation (LDA) and LDA adding Hubbard parameters (U) schemes. The band gap is adjusted to experimental value of 3.0 eV by combination of UTi d=4.2 eV and UO p=4.8 eV. This LDA+U methodology overcomes the band-gap problem and renders the approach more predictive. The formation energies of oxygen vacancy (VO), oxygen interstitial (Oi), titanium vacancy (VTi), titanium interstitial (Tii), oxygen anti-sites (OTi), and titanium anti-sites (TiO) are investigated by the LDA and LDA+U methods. In addition, some ground state configurations can be obtained by optimization of total spin. It is found that native defects can induce spin polarization and produce magnetic moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Erin; Cobb, Angelica; Duke, Anna
Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr 1-δBa δ) 2MgSi 2O 7:Eu 2+,Dy 3+ (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu 2+ 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelengthmore » while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr 0.625Ba 0.375) 2MgSi 2O 7:Eu 2+,Dy 3+ and the green-emitting SrAl 2O 4:Eu 2+,Dy 3+ in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.« less
Enhanced ultraviolet photo-response in Dy doped ZnO thin film
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.
2018-02-01
In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.
Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu
2017-12-21
Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.
Electronic structure of layered ferroelectric high-k titanate La2Ti2O7
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.
2009-02-01
The electronic structure of binary titanate La2Ti2O7 has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La2Ti2O7 are determined as αTi = 872.4 and αO = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences ΔTi = (BE O 1s - BE Ti 2p3/2) = 71.6 eV and ΔLa = (BE La 3d5/2 - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.
NASA Astrophysics Data System (ADS)
Biegalski, M. D.; Vlahos, E.; Sheng, G.; Li, Y. L.; Bernhagen, M.; Reiche, P.; Uecker, R.; Streiffer, S. K.; Chen, L. Q.; Gopalan, V.; Schlom, D. G.; Trolier-McKinstry, S.
2009-06-01
The in-plane dielectric and ferroelectric properties of coherent anisotropically strained SrTiO3 thin films grown on orthorhombic (101) DyScO3 substrates were examined as a function of the angle between the applied electric field and the principal directions of the substrate. The dielectric permittivity revealed two distinct maxima as a function of temperature along the [100]p and [010]p SrTiO3 pseudocubic directions. These data, in conjunction with optical second-harmonic generation, show that the switchable ferroelectric polarization develops first predominantly along the in-plane axis with the larger tensile strain before developing a polarization component along the perpendicular direction with smaller strain as well, leading to domain twinning at the lower temperature. Finally, weak signatures in the dielectric and second-harmonic generation response were detected at the SrTiO3 tilt transition close to 165 K. These studies indicate that anisotropic biaxial strain can lead to new ferroelectric domain reorientation transitions that are not observed in isotropically strained films.
Ion beam irradiation of lanthanum and thorium-doped yttrium titanates
NASA Astrophysics Data System (ADS)
Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.
2007-05-01
Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.
Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3
Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...
2016-04-06
In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria
NASA Astrophysics Data System (ADS)
Ali, Sh.; Ntaflos, Th.
2009-04-01
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria Sh. Ali and Th. Ntaflos Dept. of Lithospheric Research, University of Vienna, Austria Neogene volcanism in the Alpine Pannonian Transition Zone occurred in a complex geodynamic setting. It can be subdivided into a syn-extentional phase that comprises Middle Miocene dominantly potassic, intermediate to acidic volcanism and a post-extensional phase, which is characterized by eruption of alkaline basaltic magmas during the Pliocene to Quartenary in the Styrian Basin. These alkaline basaltic magmas occur as small eruptive centers dominating the geomorphology of the southeastern part of the Styrian Basin. The eruptive centers along the SE Styrian Basin from North to South are: Oberpullendorf, Pauliberg, Steinberg, Strandenerkogel, Waltrafelsen and Klöch. The suite collected volcanic rocks comprise alkali basalts, basanites and nephelinites. Pauliberg: consists of alkali basalts that exhibit a narrow range of SiO2 (44.66-47.70 wt %) and wide range of MgO (8.52-13.19-wt %), are enriched in TiO2 (3.74-4.18 wt %). They are enriched in incompatible trace elements such as Zr (317-483 ppm), Nb (72.4-138 ppm) and Y (30.7-42 ppm). They have Nb/La ratio of 1.89 (average) and Cen/Ybn=15.22-23.11. Oberpullendorf: it also consists of alkali basalts with higher SiO2 (50.39 wt %) and lower TiO2 (2.80 wt %) if compared with the Pauliberg suite. Incompatible trace elements are lower than in Pauliberg; Zr =217 ppm, Nb=49.8 ppm, Y=23.6 ppm and Nb/La=1.93. The Oberpullendorf alkalibasalts are relative to Pauliberg lavas more depleted in LREE (Cen/Ybn=12.78). Steinberg: it consists of basanites with SiO2=44.49-46.85 wt %, MgO=6.30-9.13-wt %, and TiO2 =2.09-2.26 wt %. They are enriched in incompatible trace elements such as Zr (250-333 ppm), Nb (94-130 ppm), Y (24.7-31.9 ppm) and Nb/La=1.59 (average). The Cen/Ybn ratio varies between 18.17 and 22.83 indicating relative steep REE chondrite normalized patterns. Strandenerkogel: it consists of nephelinites with narrow compositional ranges; SiO2 =40.99-42.44 wt %, MgO=6.63-6.92 wt % and TiO2=2.03-2.07 wt %. They are enriched in incompatible trace elements such as Zr (362-382 ppm), Nb (139-153 ppm) and Y (39.5-40.7 ppm). They have Nb/La ratio of 1.20 and are strongly enriched in LREE (Cen/Ybn=25.04-28.11). Waltrafelsen: there are like in Strandenerkogel and have SiO2=42.42 wt %, MgO=6.55 wt %, and TiO2=2.01 wt %. The incompatible trace elements such as Zr (362 ppm), Nb (145 ppm) and Y (38.3 ppm) are similar to that of Stranerkogel. They have Nb/La ratio of 1.27 and are strongly enriched in LREE (Cen/Ybn=24.92). Klöch: it consists of basanites with similar to Steinberg composition (SiO2=45.34-46.60 wt %, MgO=8.98-10.11 wt %, and TiO2= 2.28-2.37 wt %. Incompatible trace elements such as Zr (252-273 ppm), Nb (94.2-101 ppm) and Y (24.4-27.2 ppm) are high. They have Nb/La ratio of 1.71 (average). Their REE abundances compared to Steinberg are slightly lower (Cen/Ybn=18.19-20.17). The Nb/La ratio of all the studied rock varieties is greater than one indicates an OIB-like asthenospheric mantle source for the basaltic magma. All the studied rock varieties except alkali basalts of Pauliberg have Tbn/Ybn ratios which are comparable to those of the alkali basalts of Hawaii ((Tbn/Ybn range from 1.89 to 2.45); the Hawaiian basalts are considered to have been derived from a garnet-lherzolite mantle source (Frey et al. 1991; McKenzie & O'Nions, 1991). The chondrite normalized HREE abundances indicate the presence of garnet as a residual phase in the melt source region as can be inferred from the Dy/Yb ratio (average 2.93) which is greater than that of chondritic Dy/Yb ratio (1.57) All the studied rock varieties display alkaline affinity and negative K-anomaly. The negative K-anomaly suggests either a source character, (e.g. frozen HIMU-like veins or pockets in the depleted lherzolite)? or it is consistent with the presence of a K-bearing hydrous phase in the residual mantle. References FREY, F. A., GARCIA, M. O., WISE, W. S., KENNEDY, A., GURRIET, P. & ALBAREDE, F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkali basalts. Journal of Geophysical Research 96, 14347-75. MCKENZIE, D. P. & O'NIONS, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-91.
NASA Astrophysics Data System (ADS)
Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.
2017-02-01
We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.
NASA Astrophysics Data System (ADS)
Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang
2016-12-01
Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.
Electronic structure of charge- and spin-controlled Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3.
Iwasawa, H; Yamakawa, K; Saitoh, T; Inaba, J; Katsufuji, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M
2006-02-17
We present the electronic structure of Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3 investigated by high-resolution photoemission spectroscopy. In the vicinity of the Fermi level, it was found that the electronic structure was composed of a Cr 3d local state with the t(2g)3 configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.
Composition-structure-properties relationship of strontium borate glasses for medical applications.
Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel
2015-07-01
We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. © 2014 Wiley Periodicals, Inc.
Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application
NASA Astrophysics Data System (ADS)
Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun
2011-03-01
TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.
NASA Astrophysics Data System (ADS)
Xu, Shuchao; Wang, Zhijun; Li, Panlai; Li, Ting; Bai, Qiongyu; Yang, Zhiping
2018-06-01
In order to achieve broad-band white emitting phosphor, Ce3+/Dy3+ codoped Ba2B2O5 were synthesized by a solid-state method, and the luminescence property and energy transfer were discussed in detail. Dy3+ doped Ba2B2O5 shows white emission, and the two narrow peaks which are assigned to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. When codoped Ce3+ as sensitizer, the broad-band white emission can be obtained by the energy transfer from Ce3+ to Dy3+ ions in Ba2B2O5, and the mechanism is the dipole-dipole interaction. And the CIE coordinates can be tuned from (0.2501, 0.2323) to (0.3422, 0.3799) by increase Dy3+ content. The emission peak blue-shift of Ce3+ ions in Ba2B2O5:Ce3+, Dy3+ was observed from the thermal spectra, and the mechanism was analyzed. A white light emitting diodes (LEDs) can be fabricated Ba2B2O5:Ce3+, Dy3+ with 380 nm chip, and the results show that the phosphor may be a potential application in this field.
Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A
2012-05-01
Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin
2015-12-01
Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.
Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho
2015-09-01
Radioisotope hybrid nanoparticles (NPs) of Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 were synthesized by neutron irradiation of Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs respectively using the HANARO research reactor. The Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs were synthesized by calcination in air flow at 500 degrees C for 8 h of the hybrid NPs that has been prepared by the sol-gel reaction of tetraethyl silicate in the presence of the complex precursors. Mn-55, Sm-150, and Dy-163 were selected for use as radiotracers were selected because these elements can be easily gamma-activated by neutrons (activation limits: 1 picogram (Dy), 1-10 picogram (Mn), 10-100 picogram (Sm)). The successful synthesis of the radioisotope hybrid NPs was confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDS), Scanning Electron Microscopy (SEM), and Gamma Spectroscopy analysis. The synthesized the radioisotope hybrid NPs could be used as radiotracers in the scientific, environmental, engineering, and industrial fields.
Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses
NASA Astrophysics Data System (ADS)
Srihari, T.; Jayasankar, C. K.
2017-07-01
Niobium phosphate glasses (P2O5+Nb2O5+K2O + Al2O3+Dy2O3) doped with different concentrations of Dy3+ ions have been synthesized by melt quenching technique and characterized through structural and optical measurements to evaluate the fluorescence properties and find their suitability for white light emitting diodes (LEDs). Phonon energy and vibrational groups of the host matrix have been analyzed from Raman spectra. Judd-Ofelt analysis has been applied for 1.0 mol% Dy2O3-doped glass and inturn radiative properties have been evaluated for excited states of the Dy3+ ion. The higher value of stimulated emission cross-section (σe = 6.4 × 10-21 cm2) for the 4F9/2 → 6H13/2 level confirms its potentiality to be used as yellow laser. The decay curves exhibit non-exponential nature at higher concentrations (≥1 mol %) of Dy3+ ion. From the decay curve analysis, the quantum efficiency for the 4F9/2 level of 1.0 mol % Dy3+-doped glass is found to be 92%. The yellow to blue intensity ratios and chromaticity color co-ordinates are found to vary with Dy3+ ion concentrations/excitation wavelengths and are within the white light region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N.; Rozhkova, E.; Rajh, T.
Modification of TiO{sub 2} nanoparticles with dopamine enables harvesting of visible light and promotes spatial separation of charges. The formation of reactive oxygen species (OH, {sup 1}O{sub 2}, O{sub 2}{sup -}, HO{sub 2}, H{sub 2}O{sub 2}) upon illumination of TiO{sub 2}/dopamine was studied using complementary spin-trap EPR and radical-induced fluorescence techniques. The localization of holes on dopamine suppresses oxidation of adsorbed water molecules at the surface of nanoparticles, and thus formation of OH radicals. At the same time, dopamine does not affect electronic properties of photogenerated electrons and their reaction with dissolved oxygen to produce superoxide anions. Superoxide anions aremore » proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of {sup 1}O{sub 2} detected.« less
Effects of stuffing on the atomic and electronic structure of the pyrochlore Yb2Ti2O7
NASA Astrophysics Data System (ADS)
Ghosh, Soham S.; Manousakis, Efstratios
2018-06-01
There are reasons to believe that the ground state of the magnetic rare-earth pyrochlore Yb2Ti2O7 is on the boundary between competing ground states. We have carried out ab initio density functional calculations to determine the most stable chemical formula as a function of the oxygen chemical potential and the likely location of the oxygen atoms in the unit cell of the "stuffed" system. We find that it is energetically favorable in the stuffed crystal (with an Yb replacement on a Ti site) to contain oxygen vacancies which dope the Yb 4 f orbitals and qualitatively change the electronic properties of the system. In addition, with the inclusion of the contribution of spin-orbit coupling (SOC) on top of the GGA + U approach, we investigated the electronic structure and the magnetic moments of the most stable stuffed system. In our determined stuffed structure the valence bands as compared to those of the pure system are pushed down and a change in hybridization between the O 2 p orbitals and the metal ion states is found. Our first-principle findings should form a foundation for effective models describing the low-temperature properties of this material whose true ground state remains controversial.
Kumar, Valluri Ravi; Giridhar, G; Veeraiah, N
2017-02-01
In this work we synthesized SrO-ZnO-P 2 O 5 glasses mixed with Pb 3 O 4 (heavy metal oxide) and doped with different amounts of Dy 2 O 3 (0.1 to 1.0 mol%). Subsequently their emission and decay characteristics were investigated as a function of Dy 2 O 3 concentration. The emission spectra exhibited three principal emission bands in the visible region corresponding to 4 F 9 /2 → 6 H 15 /2 (482 nm), 6 H 13 /2 (574 nm) and 6 H 11 /2 (663 nm) transitions. With increase in the concentration of Dy 2 O 3 (upto 0.8 mol%) a considerable increase in the intensity of these bands was observed and, for further increase, quenching of photoluminescence (PL) output was observed. Using emission spectra, various radiative parameters were evaluated and all these parameters were found to increase with increase in Dy 2 O 3 concentration. The Y/B integral emission intensity ratio of Dy 3 + ions evaluated from these spectra exhibited a decreasing trend with increase in the Dy 2 O 3 concentration up to 0.8 mol%. Quenching of luminescence observed in the case of the glasses doped with 1.0 mol% is attributed to clustering of Dy 3 + ions. The quantitative analysis of these results together with infra-red (IR) spectral studies indicated that 0.8 mol% is the optimum concentration of Dy 3 + ions needed to achieve maximum luminescence efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica
Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{submore » 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2}-SP) and belts (TiO{sub 2}-B) for midterm (7 continuous days) separately. (B) Then, cells from each cell culture were harvested and seeded on the top of the chorioallantoic membrane (CAM) for 5 days and (C) invasion and proliferation of cells were analyzed in CAM sections. - Highlights: • Hydrodynamic size of TiO2- SP was smaller than TiO2-B in cell culture media • TiO2- SP induced higher decrease in cell size than TiO2-B • TiO2-SP induced a transient cytokine release and TiO2-B a downregulation • TiO2-B caused higher proliferative capability than TiO2-SP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
İlhan, Mustafa, E-mail: mustafa.ilhan@marmara.edu.tr; Ekmekçi, Mete Kaan
2015-03-15
The undoped and CdTa{sub 2}O{sub 6}:Dy{sup 3+} (0.2≤x≤2.0 mol%) phosphors were synthesized at 1100 °C for 12 h by the conventional solid state reaction method. The synthesized CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed the presence of excitation peaks between 310 and 440 nm due to the 4f–4f transitions of Dy{sup 3+}. The emission of Dy{sup 3+} ions at 353.0 nm excitation was observed at 487.1 nm (blue) and 577.8 nm (yellow) due to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2}more » transitions and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions, respectively. The PL analysis results also showed that the emissions increase with the increasing Dy{sup 3+} ion content. The emissions increased with the doping concentration of up to 1 mol%, and above this level decreased due to concentration quenching effect. The CIE chromaticity color coordinates (x,y) of the CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors were found to be in the white light region of the chromaticity diagram. - Graphical abstract: Emission spectra at λ{sub ex}=353.0 nm and CIE chromaticity coordinate diagram of CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphors. - Highlights: • Pure and CdTa{sub 2}O{sub 6}:Dy{sup 3+} was produced by solid state reaction method. • CdTa{sub 2}O{sub 6}:Dy{sup 3+} phosphor exhibited blue and yellow emissions due to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions. • The CCT value for 1.0 mol% CdTa{sub 2}O{sub 6}:Dy{sup 3+} was 5133 K which was located in the cool white daylight region. • Dy{sup 3+} doped CdTa{sub 2}O{sub 6} phosphor has potential in the production of white LEDs.« less
Jadhav, Arvind H; Zhang, Hongliang; Agyemang, Frank O; Hiremath, Vishwanath; Lee, Kyuyoung; Chandradass, Jeyaseelan; Seo, Jeong Gil; Kim, Hern
2015-10-01
Electro-spun fabricated TiO2 nanofibers were prepared by simple electro-spinning method, in subsequent step silver (Ag) was deposited using precipitation method and obtained Ag-TiO2 composite nanofibers. The properties and morphology of these prepared composite nanofibers were characterized by XRD, SEM, EDX, and TGA. The prepared electro-spun composite nanofibers were applied as catalyst for the photodegradation of Congo-red under immited solar light in aqueous solution. Result reveals that, Ag loaded TiO2 composite nanofibers were effectively increased photodegradation of Congo red compared with pure TiO2 nanofibers in analogous condition. As a result, 92.0% decomposition of Congo red was obtained by using 5 wt% of Ag loaded TiO2 composite nanofibers at room temperature in short reaction time using 300 W of solar light. In addition, photodegradation of Congo red was also studied under different experimental conditions such as amount of Ag loaded in TiO2 nanofibers and contact time. Moreover, we also studied sintering effect on TiO2 nanofibers and their consequent effect on photodegradation reaction. After completion of reaction, the nanofibers can be easily separated by filtration process and reused several times without significant loss of activity. Overall study reveals that, Ag-TiO2 composite nanofibers were strongly enhanced the surface activity for the photo catalytic degradation of Congo red under ambient condition.
Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion
NASA Astrophysics Data System (ADS)
Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.
2017-04-01
The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.
An, Wei; Liu, Ping
2016-09-07
When using the TiO 2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd 7-3D/TiO 2(110) at low coverage to Pd 7-2D/TiO 2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO 2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O 2 dissociation and CO oxidation via bifunctional synergy.
NASA Astrophysics Data System (ADS)
Köksal, Okan; Baidya, Santu; Pentcheva, Rossitza
2018-01-01
Using density functional theory calculations including an on-site Coulomb term, we explore electronic and possibly topologically nontrivial phases in 3 d transition-metal oxide honeycomb layers confined in the corundum structure (α -Al2O3 ) along the [0001] direction. In most cases the ground state is a trivial antiferromagnetic Mott insulator, often with distinct orbital or spin states compared to the bulk phases. With imposed symmetry of the two sublattices the ferromagnetic phases of (X2O3)1/(Al2O3)5(0001) with X = Ti, Mn, Co, and Ni exhibit a characteristic set of four bands, two that are relatively flat and two with a Dirac crossing at K , associated with the single-electron occupation of eg' (Ti) or eg (Mn, Co, Ni) orbitals. Our results indicate that the Dirac point can be tuned to the Fermi level using strain. Applying spin-orbit coupling (SOC) leads to a substantial anomalous Hall conductivity with values up to 0.94 e2/h . Moreover, at aAl2O3=4.81 Å we identify a particularly strong effect of SOC with an out-of-plane easy axis for (Ti2O3 )1/(Al2O3 )5(0001) which stabilizes the system dynamically. Due to the unusually high orbital moment of -0.88 μB that nearly compensates the spin moment of 1.01 μB , this system emerges as a candidate for the realization of the topological Haldane model of spinless fermions. Parallels to the perovskite analogs (La X O3 )2/(LaAlO3)4(111) are discussed.
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-01-01
(Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839
C60 and U ion irradiation of Gd 2Ti xZr 2-xO 7 pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik
2015-08-01
Gd 2Ti xZr 2-xO 7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C 60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd 2Ti 2O 7 and Gd 2TiZrO 7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.
Rational Design of a Lanthanide-Based Complex Featuring Different Single-Molecule Magnets.
Pointillart, F; Guizouarn, T; Lefeuvre, B; Golhen, S; Cador, O; Ouahab, L
2015-11-16
The rational synthesis of the 2-{1-methylpyridine-N-oxide-4,5-[4,5-bis(propylthio)tetrathiafulvalenyl]-1H-benzimidazol-2-yl}pyridine ligand (L) is described. It led to the tetranuclear complex [Dy4(tta)12(L)2] (Dy-Dy2-Dy) after coordination reaction with the precursor Dy(tta)3⋅2 H2O (tta(-) = 2-thenoyltrifluoroacetonate). The X-ray structure of Dy-Dy2-Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out-of-phase signal of the magnetic susceptibility with two distinct sets of data. The high- and low-frequency components were attributed to the two terminal mononuclear single-molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy-Dy2-Dy is a self-assembly of two known mononuclear SMMs bridged by a known dinuclear SMM. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian
2015-03-21
A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.
2016-07-01
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.
Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method
NASA Astrophysics Data System (ADS)
Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.
2012-02-01
We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.
Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K
2015-11-02
Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.
Luminescence properties of Dy 3+ -doped Li 2 SrSiO 4 for NUV-excited white LEDs
NASA Astrophysics Data System (ADS)
You, Panli; Yin, Guangfu; Chen, Xianchun; Yue, Bo; Huang, Zhongbing; Liao, Xiaoming; Yao, Yadong
2011-09-01
A series of single-phase full color phosphors, Dy 3+-doped Li 2SrSiO 4 was synthesized by a solid-state reaction method. The phase of the as-prepared powders was measured by X-ray diffraction pattern (XRD) and the chemical composition was characterized using energy dispersive spectroscopy (EDS). The luminescent properties of Li 2SrSiO 4:Dy 3+ were systematically investigated by concentration quenching, decay behavior and thermal stability measurements. The results suggested that the emission intensity of the Li 2SrSiO 4:Dy 3+ was much stronger than that of Li 2SrSiO 4:Eu 2+. It was worth to mention that Li 2SrSiO 4:Dy 3+ phosphor possessed excellent thermal stability for use in light-emitting diodes (LEDs) and the emission intensity measured at 300 °C was only decreased 8% comparing with that measured at room temperature. Furthermore, the Commission International del'Eclairage (CIE) chromaticity coordinates of Li 2SrSiO 4:Dy 3+ moved toward the ideal white light coordinates (0.33, 0.33). All results demonstrated that Li 2SrSiO 4:Dy 3+ might be a potential phosphor for NUV-based white light-emitting diodes.
NASA Astrophysics Data System (ADS)
Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.
2017-07-01
The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and alkaline earths, and are thus highly mobile during weathering.
Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Lang, Maik; Tracy, Cameron L.
2015-07-01
Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with themore » growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to structural constraints, i.e., reconstructing a low symmetry versus a high symmetry phase.« less
Fluctuations and All-In-All-Out Ordering in Dipole-Octupole Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Lhotel, E.; Petit, S.; Guitteny, S.; Florea, O.; Ciomaga Hatnean, M.; Colin, C.; Ressouche, E.; Lees, M. R.; Balakrishnan, G.
2015-11-01
By means of neutron scattering and magnetization measurements down to 90 mK, we determine the magnetic ground state of the spin-ice candidate Nd2Zr2O7. We show that, despite ferromagnetic interactions, Nd2Zr2O7 undergoes a transition around 285 mK towards an all-in-all-out antiferromagnetic state, with a strongly reduced ordered magnetic moment. We establish the (H ,T ) phase diagram in the three directions of the applied field and reveal a metamagnetic transition around 0.1 T, associated with an unexpected shape of the magnetization curves. We propose that this behavior results from the peculiar nature of the Nd3 + doublet, a dipolar-octupolar doublet, different from the standard Kramers doublet studied to date, thus revealing the importance of multipolar correlations in the properties of pyrochlore oxides.
NASA Astrophysics Data System (ADS)
Kang, Xiaolan; Han, Ying; Song, Xuezhi; Tan, Zhenquan
2018-03-01
Herein, we report a facile and economical photoassisted strategy for synthesizing the highly active N, F-codoped oxygen-deficient TiO2 with coexposed {001} and {101} facets. NH4TiOF3 mesocrystals were used to act as the resource of dopants and the intermediate to fabricate TiO2 with highly active {001} facets. Comprehensive analysis based on X-ray photoelectron spectroscopy, transmission electron microscopy and electron spin resonances manifested that F, N and oxygen vacancies were simultaneously introduced to TiO2 through the photoassisted process. The test of phenol and Rhodamine B (RhB) degradation under visible light demonstrates that the as-prepared N, F codoped oxygen-deficient TiO2 exhibits higher photocatalytic activity than its references. The increased photocatalytic performances results from the synergetic effect of the induced Vo's and N, F codoping in TiO2 with co-exposed {001} and {101} facets, favoring the visible light utilization as well as the separation of photogenerated carriers. This strategy is expected to provide a new insight into the design of high performance photocatalysts.
Electronic structure of layered titanate Nd 2Ti 2O 7
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.
2008-10-01
The electronic structure of the binary titanate Nd 2Ti 2O 7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd 2Ti 2O 7 are determined as αTi = 873.5 and αO = 1042.2 eV. Chemical bonding effects have been discussed with the binding energies differences ΔTi = (BE O 1s - BE Ti 2p 3/2) = 71.5 eV and ΔNd = (BE Nd 3d 5/2 - BE O 1s) = 452.5 eV as key parameters in comparison with those in other titanium- and neodymium-bearing oxides.
EPR investigation of the trivalent chromium complexes in SrTiO3
NASA Astrophysics Data System (ADS)
Azamat, D. V.; Dejneka, A.; Lančok, J.; Jastrabik, L.; Trepakov, V. A.; Bryknar, Z.; Neverova, E. V.; Badalyan, A. G.
2014-02-01
The trivalent chromium centers were investigated by means of electron paramagnetic resonance (EPR) in SrTiO3 single crystals grown using the Verneuil technique. It was shown that the charge compensation of the Cr3+-VO dominant centers in octahedral environment is due to the remote oxygen vacancy located on the axial axis of the center. In order to provide insight into spin-phonon relaxation processes the studies of axial distortion of Cr3+-VO centers have been performed as function of temperature. The analysis of the trigonal Cr3+ centers found in SrTiO3 indicates the presence of the nearest-neighbor strontium vacancy. The next-nearest-neighbor exchange-coupled pairs of Cr3+ in SrTiO3 has been analyzed from the angular variation of the total electron spin of S=2 resonance lines.
Carpenter, M A
2015-07-08
Resonant ultrasound spectroscopy (RUS) provides a window on the pervasive influence of strain coupling at phase transitions in perovskites through determination of elastic and anelastic relaxations across wide temperature intervals and with the application of external fields. In particular, large variations of elastic constants occur at structural, ferroelectric and electronic transitions and, because of the relatively long interaction length provided by strain fields in a crystal, Landau theory provides an effective formal framework for characterizing their form and magnitude. At the same time, the Debye equations provide a robust description of dynamic relaxational processes involving the mobility of defects which are coupled with strain. Improper ferroelastic transitions driven by octahedral tilting in KMnF3, LaAlO3, (Ca,Sr)TiO3, Sr(Ti,Zr)O3 and BaCeO3 are accompanied by elastic softening of tens of % and characteristic patterns of acoustic loss due to the mobility of twin walls. RUS data for ferroelectrics and ferroelectric relaxors, including BaTiO3, (K,Na)NbO3,Pb(Mg1/3Nb2/3)O3 (PMN), Pb(Sc1/2Ta1/2)O3 (PST), (Pb(Zn1/3Nb2/3)O3)0.955(PbTiO3)0.045 (PZN-PT) and (Pb(In1/2Nb1/2)O3)0.26(Pb(Mg1/3Nb2/3)O3)0.44(PbTiO3)0.30 (PIN-PMN-PT) show similar patterns of softening and attenuation but also have precursor softening associated with the development of polar nano regions. Defect-induced ferroelectricity occurs in KTaO3, without the development of long range ordering. By way of contrast, spin-lattice coupling is much more variable in strength, as reflected in a greater range of softening behaviour for Pr0.48Ca0.52MnO3 and Sm0.6Y0.4MnO3 as well as for the multiferroic perovskites EuTiO3,BiFeO3, Bi0.9Sm0.1FeO3, Bi0.9Nd0.1FeO3, (BiFeO3)0.64(CaFeO2.5)0.36, (Pb(Fe0.5Ti0.5)O3)0.4(Pb(Zr0.53Ti0.47)O3)0.6. A characteristic feature of transitions in which there is a significant Jahn-Teller component is softening as the transition point is approached from above, as illustrated by PrAlO3, and this is suppressed by application of an external magnetic field in the colossal magnetoresistive manganite Pr0.48Ca0.52MnO3 or by reducing grain size in La0.5Ca0.5MnO3. Spin state transitions for Co(3+) in LaCoO3, NdCoO3 and GdCoO3 produce changes in the shear modulus that scale with a spin state order parameter, which is itself coupled with the order parameter(s) for octahedral tilting in a linear-quadratic manner. A new class of phase transitions in perovskites, due to orientational or conformational ordering of organic molecules on the crystallographic A-site of metal organic frameworks, is illustrated for [(CH3)2NH2]Co(HCOO)3 and [(CH2)3NH2]Mn(HCOO)3 which also display elastic and anelastic anomalies due to the influence of intrinsic and extrinsic strain relaxation behaviour.
Ibrahim, Masooma; Moreno-Pineda, Eufemio; Anson, Christopher E.; Powell, Annie K.
2018-01-01
The reaction of [α-P2W15O56]12− with MnII and DyIII in an aqueous basic solution led to the isolation of an all inorganic heterometallic aggregate Na10(OH2)42[{Dy(H2O)6}2Mn4P4W30O112(H2O)2]·17H2O (Dy2Mn4-P2W15). Single-crystal X-ray diffraction revealed that Dy2Mn4-P2W15 crystallizes in the triclinic system with space group P1¯, and consists of a tetranuclear manganese(II)-substituted sandwich-type phosphotungstate [Mn4(H2O)2(P2W15O56)2]16− (Mn4-P2W15), Na, and DyIII cations. Compound Dy2Mn4-P2W15 exhibits a 1D ladder-like chain structure based on sandwich-type segments and dysprosium cations as linkers, which are further connected into a three-dimensional open framework by sodium cations. The title compound was structurally and compositionally characterized in solid state by single-crystal XRD, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TGA), and elemental analyses. Further, the absorption and emission electronic spectra in aqueous solutions of Dy2Mn4-P2W15 and Mn4-P2W15 were studied. Also, magnetic properties were studied and compared with the magnetic behavior of [Mn4(H2O)2(P2W15O56)2]16−. PMID:29342122
Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan
2013-01-01
Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.
Associating Specific Materials with Topological Insulation Behavior
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen
2014-03-01
The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.
Theory of the Spin Galvanic Effect at Oxide Interfaces
NASA Astrophysics Data System (ADS)
Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto
2017-12-01
The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.
NASA Astrophysics Data System (ADS)
Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun
2006-02-01
The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.
Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.
2016-10-01
Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less
Optical and luminescence properties of Dy3+ doped sodium silicate glass
NASA Astrophysics Data System (ADS)
Srisittipokakun, N.; Kaewkhao, J.
2017-07-01
The aim of the present work is to study the optical and luminescence properties of Dy2O3 doped Na2O-BaO-Bi2O3-SiO2 glasses. The Dy3+ ion is chosen as dopant because it emits three visible bands, blue (470-485 nm; 4F9/2→6H15/2), yellow (570-580 nm; 4F9/2→6H13/2) and red (640-655 nm; 4F9/2→6H11/2) luminescence and finds its applications in the fields of laser, white LEDs, telecommunication technology and display devices. NaBaBiSiDy glasses with the compositions of (30-x)SiO2: 10Bi2O3: 30Na2O: 30BaO: xDy2O3 where x=0.0, 0.1, 0.5, 1.0, 1.5 and 2.0 mol% were prepared by melt-quenching technique and characterized by using density, optical absorption photoluminescence (PL) and decay rate measurements as function of different concentrations. The density (ρ), molar volume (VM) and refractive index obtained were found to increase with increase in the concentration of Dy2O3 in the glass matrix. The chromaticity coordinates were calculated from emission spectra and analyzed with CIE color diagram and appear in the white light region under ultraviolet excitation.
Langley, Stuart K; Ungur, Liviu; Chilton, Nicholas F; Moubaraki, Boujemaa; Chibotaru, Liviu F; Murray, Keith S
2014-05-05
The synthesis and structural characterization of four related heterometallic complexes of formulas [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)4](NO3)2·MeOH·H2O (1a) and [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·H2O (1b), [Dy(III)2Co(III)2(OMe)2(dea)2(O2CPh)4(MeOH)4](NO3)2 (2), [Dy(III)2Co(III)2(OMe)2(mdea)2(O2CPh)4(NO3)2] (3), and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)4](NO3)2·0.5MeOH·H2O (4a) and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·1.5H2O (4b) are reported (teaH3 = triethanolamine, deaH2 = diethanolamine, mdeaH2 = N-methyldiethanolamine, and bdeaH2 = N-n-butyldiethanolamine). Compounds 1 (≡ 1a and 1b) and 4 (≡ 4a and 4b) both display two unique molecules within the same crystal and all compounds display a butterfly type core, with the Dy(III) ions occupying the central body positions and the diamagnetic Co(III) ions the outer wing-tip sites. Compounds 1-4 were investigated via direct current and alternating current magnetic susceptibility measurements, and it was found that each complex displayed single-molecule magnet (SMM) behavior. All four compounds display unique coordination and geometric environments around the Dy(III) ions and it was found that each displays a different anisotropy barrier. Ab initio calculations were performed on 1-4 and these determined the low lying electronic structure of each Dy(III) ion and the magnetic interactions for each cluster. It was found that there was a strong correlation between the calculated energy gap between the ground and first excited states of the single-ion ligand-field split Dy(III) levels and the experimentally observed anisotropy barrier. Furthermore, the transverse g factors found for the Dy(III) ions, defining the tunnelling rates within the ground Kramers doublets, are largest for 1, which agrees with the experimental observation of the shortest relaxation time in the high-temperature domain for this complex. The magnetic exchange between the Dy(III) ions revealed overall antiferromagnetic interactions for each compound, derived from the dominant dipolar exchange resulting in nonmagnetic ground states for 1-4. The diamagnetic ground states coupled with small tunneling gaps resulted in quantum tunneling time scales at zero field of between 0.1 and >1.5 s.
NASA Astrophysics Data System (ADS)
Xin, Xukai
Dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs) are two promising alternative, cost-effective concepts for solar-to-electric energy conversion that have been offered to challenge conventional Si solar cells over the past decade. The configuration of a DSSC or a QDSSC consists of sintered TiO2 nanoparticle films, ruthenium-based dyes or quantum dots (QDs) (i.e., sensitizers), and electrolytes. Upon the absorption of photons, the dyes or QDs generate excitons (i.e., electron-hole pairs). Subsequently, the electrons inject into the TiO2 photoanode to generate photocurrent; scavenged by a redox couple, holes transport to the cathode. The overall power conversion efficiency (PCE) of a DSSC or QDSSC is dictated by the light harvest efficiency, quantum yield for charge injection, and charge collection efficiency at the electrodes. The goal of our research is to understand the fundamental physics and performance of DSSCs and QDSSCs with improved PCE at the low cost based on rational engineering of TiO2 nanostructures, sensitizers, and electrodes through an integrated experimental and modeling study. In this presentation, I will discuss three aspects that I have accomplished over the last several years. (1) Effects of surface treatment and structural modification of photoanode on the performance of DSSCs. First, our research indicates that the surface treatment with both TiCl4 and oxygen plasma yields the most efficient dye-sensitized TiO2-nanoparticle solar cells. A maximum PCE is achieved with a 21 microm thick TiO2 film; the PCE further increases to 8.35% after TiCl4 and O 2 plasma treatments, compared to the untreated TiO2 ( PCE = 3.86%). Second, we used a layer of TiO2 nanoparticle film coated on the FTO glass, and a bilayer of TiO2nanoparticle/freestanding TiO2 nanotube film deposited on the FTO glass as photoanodes. The J˜V parameter analysis acquired by equivalent circuit model simulation reveals that nanotubular structures are advantageous and impart better charge transport in nanotubes. However, the photocurrent generation is reduced due to the small surface area, which in turn results in low dye loading. Third, we fabricate ZnO and TiO2 nanoflowers by the chemical bath deposition (CBD) method. The PCEs of DSSCs crafted with ZnO and TiO 2 nanoflowers are low comparing to those with TiO2 nanoparticles. (2) The use of earth abundant, environmentally friendly quaternary Copper Zinc Tin Sulfide (CZTS) as a low-cost alternative to noble metal Pt as the counter electrode (CE). With a simple wet chemistry synthesis of CZTS and a viable spin-coating fabrication of CE, the resulting CZTS film after selenization exhibits an impressive electrocatalytic performance as CEs to promote the regeneration of iodide from triiodide in electrolyte, yielding an impressive PCE of 7.37%, remarkably comparable to that with the Pt CE ( PCE = 7.04%). The use of CZTS as CE may expand the possibilities for developing low-cost and scalable DSSCs, thereby dispensing with the need for expensive and rare Pt. (3) Simulation of the light harvesting ability of TiO 2 nanotube solar cells coated with CdSe and PbSe QDs and the charge injection at the interfaces of TiO2 substrate and quantum dots. We find that for short nanotubes, there is a diffractive photonic effect where the absorption is maximized for the lattice pitch close to the wavelength of light being absorbed. The ab initio simulation results reveal appreciable overlaps of the wave-functions in the QDs and the TiO 2 substrate, which render the electron transfer on a time scale shorter than the electron-hole recombination time in the QDs.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Ansari, M. Afzal; Sathik, N. P. M.; Ali, Rahbar; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Spin distributions of nine evaporation residues 164Yb(x n ) , 163Tm(p x n ) , Er,167168(2 p x n ) , Ho-161163(α p x n ) , 164Dy(α 2 p x n ) , and 160Dy(2 α x n ) produced through complete- and incomplete-fusion reactions have been measured in the system 16O+154Sm at projectile energy =6.1 MeV /nucleon using the in-beam charged-particle (Z =1 ,2 )-γ-ray coincidence technique. The results indicate the occurrence of incomplete fusion involving the breakup of 16O into 4He+12C and/or 8Be+8Be followed by fusion of one of the fragments with target nucleus 154Sm. The pattern of measured spin distributions of the evaporation residues produced through complete and incomplete fusion are found to be entirely different from each other. It has been observed from these present results that the mean input angular momentum for the evaporation residues produced through complete fusion is relatively lower than that of evaporation residues produced through incomplete-fusion reactions. The pattern of feeding intensity of evaporation residues populated through complete- and incomplete-fusion reactions has also been studied. The evaporation residues populated through complete-fusion channels are strongly fed over a broad spin range and widely populated, while evaporation residues populated through incomplete-fusion reactions are found to have narrow range feeding only for high spin states. Comparison of present results with earlier data suggests that the value of mean input angular momentum is relatively higher for a deformed target and more mass asymmetric system than that of a spherical target and less mass asymmetric system by using the same projectile and the same energy. Thus, present results indicate that the incomplete-fusion reactions not only depend on the mass asymmetry of the system, but also depend on the deformation of the target.
Metallic conductance at the interface of tri-color titanate superlattices
NASA Astrophysics Data System (ADS)
Kareev, M.; Cao, Yanwei; Liu, Xiaoran; Middey, S.; Meyers, D.; Chakhalian, J.
2013-12-01
Ultra-thin tri-color (tri-layer) titanate superlattices ([3 u.c. LaTiO3/2 u.c. SrTiO3/3 u.c. YTiO3], u.c. = unit cells) were grown in a layer-by-layer way on single crystal TbScO3 (110) substrates by pulsed laser deposition. High sample quality and electronic structure were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [3 u.c. LaTiO3/2 u.c. SrTiO3] bi-layers and all the tri-color structures, whereas a [3 u.c. YTiO3/2 u.c. SrTiO3] bi-layer shows insulating behavior. Considering that in the bulk YTiO3 is ferromagnetic below 30 K, the tri-color titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas with Mott carriers.
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
The Effect of Volcanic Ash Composition on Ice Nucleation Affinity
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.
2017-12-01
Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (≥ 2 wt%) in hydrometeors, and be compositionally enriched in K2O relative to MnO and TiO2, the nucleation of ice should efficiently occur. These chemical relationships are not only important for understanding ice nucleation in volcanic plumes, but also for constraining the effect of composition on the INA of other atmospheric aerosols.
Hekmat, Azadeh; Saboury, Ali Akbar; Divsalar, Adeleh; Seyedarabi, Arefeh
2013-07-01
The structural changes in DNA caused by the combined effects of TiO2 nanoparticles (TiO2 NPs) and doxorubicin (DOX) were investigated along with their corresponding inhibitory roles in the growth of T47D and MCF7 cells. The UV-visible titration studies showed that DOX+ TiO2 NPs could form a novel complex with DNA. The data also reveal that the TiO2-DOX complex forms through a 1:4 stoichiometric ratio in solution. The values of binding constants reveal that DOX+TiO2 NPs interact more strongly with DNA as compared to TiO2 NPs or DOX alone. CD data show that DOX+TiO2 NPs can noticeably cause disturbance on DNA structure compared to TiO2 NPs or DOX alone, considering that DNA is relatively thermally stable in the condition used. The anticancer property of 0.3 µM DOX+ 60 µM TiO2 NPs and 0.4 µM DOX+ 670 µM TiO2 NPs by MTT assay and DAPI stain demonstrates that this combination can tremendously diminish proliferation of T47D and MCF7cells compared to DOX or TiO2 NPs alone. The UV-Vis absorption spectroscopy, flow cytometry and fluorescence microscopy experiments show much more enhancement of DOX uptake through the use of TiO2 NPs. These results reveal that DOX+TiO2 NPs could proffer a novel strategy for the development of promising and efficient chemotherapy agents.
Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad
2018-06-13
Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.
2012-07-01
Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.
NASA Astrophysics Data System (ADS)
Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia
2015-01-01
In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.
Ogihara, Takashi; Kodera, Takayuki
2013-01-01
Ramsdellite-type lithium titanate (Li2Ti3O7) powders were synthesized by performing ultrasonic spray pyrolysis, and their chemical and physical properties were characterized by performing Scanning Electron Microscope (SEM), powder X-ray Diffraction (XRD), and Inductively Coupled Plasma (ICP) analyses. The as-prepared Li2Ti3O7 precursor powders had spherical morphologies with hollow microstructures, but an irregularly shaped morphology was obtained after calcination above 900 °C. The ramsdellite Li2Ti3O7 crystal phase was obtained after the calcination at 1100 °C under an argon/hydrogen atmosphere. The first rechargeable capacity of the Li2Ti3O7 anode material was 168 mAh/g at 0.1 C and 82 mAh/g at 20 C, and the discharge capacity retention ratio was 99% at 1 C after the 500th cycle. The cycle performance of the Li2Ti3O7 anode was also highly stable at 50 °C, demonstrating the superiority of Li2Ti3O7 anode materials reported previously. PMID:28809274
NASA Astrophysics Data System (ADS)
Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar
2016-04-01
A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.
Hu, Chun-Chih; Wu, Gong-Her; Hua, Tzu-En; Wagner, Oliver I; Yen, Ta-Jen
2018-03-14
We employ model organism Caenorhabditis elegans to effectively study the toxicology of anatase and rutile phase titanium dioxide (TiO 2 ) nanoparticles (NPs). The experimental results show that nematode C. elegans can take up fluorescein isothiocyanate-labeled TiO 2 NPs and that both anatase and rutile TiO 2 NPs can be detected in the cytoplasm of cultured primary neurons imaged by transmission electron microscopy. After TiO 2 NP exposure, these neurons also grow shorter axons, which may be related to the detected impeded worm locomotion behavior. Furthermore, anatase TiO 2 NPs did not affect the worm's body length; however, we determined that a concentration of 500 μg/mL of anatase TiO 2 NPs reduced the worm population by 50% within 72 h. Notably, rutile TiO 2 NPs negatively affect both the body size and worm population. Worms unable to enter the L4 larval stage explain a severe reduction in the worm population at TiO 2 NPs LC 50 /3d. To obtain a better understanding of the cellular mechanisms involved in TiO 2 NP intoxication, DNA microarray assays were employed to determine changes in gene expression in the presence or absence of TiO 2 NP exposure. Our data reveal that three genes (with significant changes in expression levels) were related to metal binding or metal detoxification (mtl-2, C45B2.2, and nhr-247), six genes were involved in fertility and reproduction (mtl-2, F26F2.3, ZK970.7, clec-70, K08C9.7, and C38C3.7), four genes were involved in worm growth and body morphogenesis (mtl-2, F26F2.3, C38C3.7, and nhr-247), and five genes were involved in neuronal function (C41G6.13, C45B2.2, srr-6, K08C9.7, and C38C3.7).
Optical spectroscopy of magnetoelectric and frustrated spin-dimer systems
NASA Astrophysics Data System (ADS)
Cherian, Judy George
This dissertation encompasses an optical spectroscopic study of the temperature and magnetic field dependence of two magnetic materials with significant electron-electron correlation: antiferromagnetic MnTiO3 and frustrated spin-dimer SrCu2(BO3)2 having a low-dimensional quantum spin structure. The first part deals with the nonlinear optical analysis of MnTiO3 using second harmonic generation (SHG) technique to understand its electronic structure and magnetic symmetry in the paramagnetic, antiferromagnetic and spin-flop phases. Ilmenite MnTiO3 is an antiferromagnetic oxide (T N=64 K) which possesses a spin-flop phase above the critical magnetic field of 6.4 T. It is thought to be ferrotoroidic and might have potential technological applications. We measured the second harmonic generation and linear absorbance spectra of MnTiO3 and the 1.88, 2.41, 2.63, and 3.06 eV SHG features were identified as d-d optical transitions from the 6A1g ground state to excited states namely, 4T 1g(4G), 4T2g(4 G), {4Eg,4A 1g(4G)}, and 4Eg(4D), respectively. These narrow SHG peaks, which are red-shifted from the broad linear absorption peaks, can be ascribed to the zero-phonon lines (ZPL) in MnTiO3. We also estimated the crystal field splitting energy (Delta0) and the Racah parameters B and C. The SHG circular intensity difference (CID) we report, shows a significant distinction between the antiferromagnetic phase and the paramagnetic or spin-flop phase. SHG spectra in the paramagnetic phase, created by magnetic dipole transitions, showed a non-negligible CID due to the interference between the two i-type components of the nonlinear optical susceptibility. Inversion symmetry breaking in the antiferromagnetic phase allows c-type tensors, which when coupled to the existing i-type tensors, create a significantly strong CID in the low temperature phase of MnTiO3. The CID in AFM phase remains the same through out the spectral region, compared to the CID in the paramagnetic phase which becomes negligible at the resonance frequency. The polarization dependence of the SHG in the spin-flop phase provided optical evidence that the spins canted from the c-axis toward the alpha-axis. These distinctions between the three magnetic phases could be useful for mapping 180° antiferromagnetic domains in MnTiO3. Temperature and magnetic field dependence of the optical reflectivity in SrCu2(BO3)2 was measured from 1.4 eV to 2.17 eV. Optical reflectivity spectra of SrCu2(BO3) 2 revealed a feature at 1.5 eV assigned as the energy gap for the charge-transfer excitation. With increasing temperature, the reflectivity edge became steep and shifted by 160 meV to the higher energy side. Strong spin-charge correlation in SrCu2(BO3)2 contributed to this significant shift since thermal lattice expansion alone cannot account for this anomalous behavior. Changes in optical reflectivity due to temperature (4-215 K) and applied magnetic field (0-35 T) were analyzed using a Curie-like model and it demonstrated that comparison between magnetic susceptibility and reflectivity changes at the band-edge was possible. The analysis also extracted the Weiss constant and spin-gap energy which matched up with those obtained from other prior measurements. We also observed a significant difference between temperature and magnetic field induced changes to the optical reflectivity and it was indicative of a multi-triplet excitation or cooperative interaction between dimer spin-excitations and band-edge charge carriers. Raman spectroscopy of under ultra-high magnetic field (45 T) demonstrated the significant spin-lattice coupling in SrCu2(BO 3)2. Magnetic field dependence of the frequency of Raman modes demonstrated hardening of 203 and 458 cm-1 which was due to the modulation of intradimer superexchange interaction due to lattice distortion when the Cu-Cu near-neighbor distance and the corresponding bond angle are reduced when triplet states are formed with applied field. The frequency change also displayed plateaus similar to those in magnetization, thereby demonstrating a strong magnetoelastic interaction which facilitated the field-induced lattice distortion to probe the magnetic excitations in this low-dimensional frustrated quantum magnet. In addition, the significant difference between the Raman data and magnetization with respect to the early onset of critical field in vibrational measurement is also discussed.
Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan
2017-03-06
The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co III 2 Ln III 2 (μ 3 -OH) 2 (o-tol) 4 (mdea) 2 (NO 3 ) 2 ] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea) 2- = doubly deprotonated N-methyldiethanolamine). The Co III ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln III ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier U eff of 81.2 cm -1 , while complexes 2 and 3 exhibit field induced SMM behavior, with a U eff value of 34.2 cm -1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln III -Ln III magnetic coupling and to develop an understanding of the role the diamagnetic Co III ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co III ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co III ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy III 2 } complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K I 2 Dy III 2 } (1b), {Zn II 2 Dy III 2 } (1c), and {Ti IV 2 Dy III 2 } (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here.
Magnetic and magnetocaloric properties of spin-glass material DyNi 0.67Si 1.34
Chen, X.; Mudryk, Y.; Pathak, A. K.; ...
2017-04-18
Structural, magnetic, and magnetocaloric properties of DyNi 0.67Si 1.34 were investigated using X-ray powder diffraction, magnetic susceptibility, and magnetization measurements. X-ray powder diffraction pattern shows that DyNi 0.67Si 1.34 crystallizes in the AlB 2-type hexagonal structure (space group: P6/ mmm, No. 191, a = b = 3.9873(9) Å, and c = 3.9733(1) Å). The compound is a spin-glass with the freezing temperature TG = 6.2 K. The ac magnetic susceptibility measurements confirm magnetic frustration in DyNi 0.67Si 1.34. Furthermore, the maximum value of the magnetic entropy change determined from M(H) data is –16.1 J/kg K at 10.5 K for amore » field change of 70 kOe.« less
NASA Astrophysics Data System (ADS)
Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.
1994-06-01
We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.
Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3
NASA Astrophysics Data System (ADS)
Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.
2014-10-01
In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose.
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2016-05-02
The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.
Luminescence studies on Dy3+:Tb3+ codoped borophosphate glasses for WLED applications
NASA Astrophysics Data System (ADS)
Vijayakumar, M.; Uma, V.; Maheshvaran, K.; Marimuthu, K.
2017-05-01
Dy3+:Tb3+ codoped borophosphate glasses with the chemical composition 60B2O3+(19.5-x)P2O5+10Na2O+10NaF+0.5Dy2O3+xTb2O3 (where x= 0.1, 0.5, 1 and 2 in wt %) have been synthesized following the melt quenching technique. The fall in emission intensity and lifetime value of the Dy3+ ions with increasing Tb3+ ions concentration indicates the energy transfer process takes place between the Dy3+ and Tb3+ ions. The non-exponential decay profile of the 4F9/2 state pertaining to the Dy3+ ions were well fitted with S=6 of IH model thus indicates the dipole-dipole type of interaction takes place between the Dy3+ and Tb3+ ions. Among the prepared glasses, BPD0.5T glass exhibit better colour coordinates (0.336, 0.358) and colour correlated temperature (CCT) value (5766 K) and the same is suggested as a potential candidate for cool white light applications.
Wheel-like Ln18 Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO2.
Song, Tian-Qun; Dong, Jie; Yang, An-Fei; Che, Xue-Jing; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin
2018-03-19
Two isostructural 2D MOFs ([Ln 7 (CDA) 6 (HCOO) 3 (μ 3 -OH) 6 (H 2 O) 8 ] n , abbreviated as 1-Gd and 2-Dy) were successfully synthesized under solvothermal conditions. The self-assembly of lanthanide(III) nitrate and 1,1'-cyclopropane-dicarboxylic acid (H 2 CDA) resulted in wheel-like Ln 18 cluster second building units (SBU), which are further linked to six neighboring wheels to generate a 2D ordered honeycomb array. Both 1-Gd and 2-Dy exhibit high thermal stability and decompose above 330 °C. Moreover, they have good solvent stability in ten common solvents and pH stability with pH values from 1 to 13. Magnetic studies reveal that 1-Gd exhibits weak antiferromagnetic coupling between adjacent Gd 3+ ions and has a large magnetocaloric effect of 47.30 J kg -1 K -1 (Δ H = 7.0 T at 2 K), while 2-Dy shows ferromagnetic interaction between adjacent Dy 3+ ions. Interestingly, 1-Gd and 2-Dy can catalyze the cycloaddition of CO 2 to epoxides under mild conditions and can be reused at least five rounds with negligible loss of catalytic performance.
NASA Astrophysics Data System (ADS)
Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2018-05-01
Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.
NASA Astrophysics Data System (ADS)
Lin, Hongfei; Huang, Yujiao; Li, Shaoni; Luan, Chunhui; Huang, Wei; Wang, Xiaodong; Feng, Xianshe
2017-11-01
A series of erbium ion-doped TiO2 (Er3+-TiO2) films were prepared by a sol-gel dip/spin coating method, and the effect of the dosage of erbium ion (0-2.0 mol%), the films coating layers (1-5 layers), and calcination temperature (400-700 °C) on the film structure and photocatalytic activity were investigated in detail. The films were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis (TG-DTG) and UV-Vis diffusive reflectance spectra (DRS). The results showed that the films were composed of anatase, and no other TiO2 phases (rutile and brookite). With the increase of the erbium ion dosage, the crystal size decreased. Erbium ion doping could enhance the thermal stability of TiO2 and inhibit the increase of the crystallite size. Meanwhile doping of erbium ions gave rise to three typical absorption peaks within the range of visible light (400-700 nm), locating at 490, 523, and 654 nm, attributed to the transition of 4f electrons. The higher calcination temperature led to higher crystallinity and bigger crystal grains. The photocatalytic performance of the films was evaluated by degradation of methyl orange solution under simulated solar light. The highest quality film we prepared was with 4 layers, 1.0 mol% dosage of erbium ion, and the calcination temperature of 500 °C. With this film, the degradation percentage of 7.8 mg/L methyl orange solution was up to 53.3% under simulated solar light after 6 h photoreaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jian-Qing, E-mail: djqkust@sina.com
We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing tomore » the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.« less
Thermal barrier coating having high phase stability
Subramanian, Ramesh
2002-01-01
A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal
2013-06-03
The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.
Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
You, Jeong Ho; Lee, Jun Hee
2013-10-01
Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.
Magnetic ordering at anomalously high temperatures in Dy at extreme pressures
Lim, J.; Fabbris, G.; Haskel, D.; ...
2015-01-15
In an attempt to destabilize the magnetic state of the heavy lanthanide Dy, extreme pressures were applied in an electrical resistivity measurement to 157 GPa over the temperature range 1.3 - 295 K. The magnetic ordering temperature T o and spin-disorder resistance R sd of Dy, as well as the superconducting pair-breaking effect ΔT c in Y(1 at.% Dy), are found to track each other in a highly non-monotonic fashion as a function of pressure. Above 73 GPa, the critical pressure for a 6% volume collapse in Dy, all three quantities increase sharply (dT o=dP≃5.3 K/GPa), T o appearing tomore » rise above ambient temperature for P > 107 GPa. In contrast, T o and ΔT c for Gd and Y(0.5 at.% Gd), respectively, show no such sharp increase with pressure (dT o=dP≃ 0.73 K/GPa). Altogether, these results suggest that extreme pressure transports Dy into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less
NASA Astrophysics Data System (ADS)
Thangavelu, Karthik; Asthana, Saket
2015-09-01
The effect of magnetic cation substitution on the phase stabilization, ferroelectric, dielectric and magnetic properties of a lead free Na0.5Bi0.5TiO3 (NBT) system prepared by O2 atmosphere solid state sintering were studied extensively. Cobalt (Co) was chosen as the magnetic cation to substitute at the Ti-site of NBT with optimized 2.5 mol%. Rietveld analysis of x-ray diffraction data favours the monoclinic Cc phase stabilization strongly rather than the parent R3c phase. FE-SEM micrograph supports the single phase characteristics without phase segregation at the grain boundaries. The stabilized Cc space group was explained based on the collective local distortion effects due to spin-orbit stabilization at Co3+ and Co2+ functional centres. The phonon mode changes as observed in the TiO6 octahedral modes also support the Cc phase stabilization. The major Co3+-ion presence was revealed from corresponding crystal field transitions observed through solid state diffuse reflectance spectroscopy. The enhanced spontaneous polarization (Ps) from ≅38 μC cm-2 to 45 μC cm-2 could be due to the easy rotation of polarization vector along the {(1\\bar{1}0)}{{pc}} in Cc phase. An increase in static dielectric response (ɛ) from ɛ ≅ 42 to 60 along with enhanced diffusivity from γ ≅ 1.53 to 1.75 was observed. Magneto-thermal irreversibility and their magnetic field dependent ZFC/FC curves suggest the possibility of a spin glass like behaviour below 50 K. The monoclinic Cc phase stabilization as confirmed from structural studies was well correlated with the observed ferroic properties in magnetically diluted NBT.
“Ni{sub 5}TiO{sub 7}” is Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalbandyan, V.B.
2017-05-15
It is shown that the compound known as Ni{sub 5}TiO{sub 7} and considered as a promising catalyst and oxidation product of alloys does not exist and its XRD pattern actually corresponds to Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} - Graphical abstract: XRD pattern of “Ni{sub 5}TiO{sub 7}” (top) is identical to that for Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} (bottom) based on single-crystal structural data. - Highlights: • Popular catalyst known as Ni{sub 5}TiO{sub 7} is actually Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}. • B{sub 2}O{sub 3} came from the flux used for crystal growth. • Some authors reporting this phase did notmore » use any boron compounds.« less
Production of Lunar Oxygen Through Vacuum Pyrolysis
2006-01-26
bars Titanium Dioxide Titanium forms a number of oxides: TiO2, Ti3O5, Ti2O3, and TiO. Titanium oxide is commonly found as ilmenite ( FeTiO3 ) in...1 10-Jan Zn 5m - < 1x10-4 5 ~900 - 2a 7-Mar FeTiO3 10 min 800 < 1x10-4 1.1x10-1 620 - 2b 7-Mar FeTiO3 15 min 945 < 1x10-4 2x10-2 >800 0.16% 3 18...Apr FeTiO3 ~20 min 890 6.0x10-1 8x10-1 700 0.37% 4 3-May MgSiO3 əmin 955 4.4x10-2 4.4x10-2 548 0.05% 5 6-Jun MgSiO3 ~30 min 940 1.4x10-1 2.3x10-1
NASA Astrophysics Data System (ADS)
Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin
2016-03-01
Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Abhijit; Lee, Yong Woo; Kim, Sang Woo
2015-03-21
We investigated the nature of transport and magnetic properties in SrIr{sub 0.5}Ru{sub 0.5}O{sub 3} (SIRO), which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (e.g., SrTiO{sub 3} (001), (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7} (001), and LaAlO{sub 3} (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures (T{sub MIT} ∼ 80 K on SrTiO{sub 3}, ∼90 K on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7}, and ∼100 K on LaAlO{sub 3}) in resistivity. At temperature 300 K ≥ T ≥ T{sub MIT}, SIRO is metallic and its resistivity follows a T{supmore » 3/2} power law, whereas insulating nature at T < T{sub MIT} is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO{sub 3} (001) shows negative MR at T < 25 K and positive MR at T > 25 K, with negative MR ∝ B{sup 1/2} and positive MR ∝ B{sup 2}; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO{sub 3} (001) at T < 25 K in the localized regime validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.« less
NASA Astrophysics Data System (ADS)
Ferdous, Naheed; Ertekin, Elif
2016-07-01
The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO3 and the wide band gap semiconductor TiO2, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO3, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO3, the interface is found to be rectifying with a Schottky barrier of ≈1.3-1.6 eV, in good agreement with experiment. In the minority spin, SrRuO3 exhibits a Schottky barrier alignment with TiO2 and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO3 recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.
Engineering correlation effects via artificially designed oxide superlattices.
Chen, Hanghui; Millis, Andrew J; Marianetti, Chris A
2013-09-13
Ab initio calculations are used to predict that a superlattice composed of layers of LaTiO3 and LaNiO3 alternating along the [001] direction is a S=1 Mott insulator with large magnetic moments on the Ni sites, negligible moments on the Ti sites and a charge transfer gap set by the energy difference between Ni d and Ti d states, distinct from conventional Mott insulators. Correlation effects are enhanced on the Ni sites via filling the oxygen p states and reducing the Ni-O-Ni bond angle. Small hole (electron) doping of the superlattice leads to a two-dimensional single-band situation with holes (electrons) residing on the Ni d(x2-y2) (Ti d(xy)) orbital and coupled to antiferromagnetically correlated spins in the NiO2 layer.
Engineering Correlation Effects via Artificially Designed Oxide Superlattices
NASA Astrophysics Data System (ADS)
Chen, Hanghui; Millis, Andrew J.; Marianetti, Chris A.
2013-09-01
Ab initio calculations are used to predict that a superlattice composed of layers of LaTiO3 and LaNiO3 alternating along the [001] direction is a S=1 Mott insulator with large magnetic moments on the Ni sites, negligible moments on the Ti sites and a charge transfer gap set by the energy difference between Ni d and Ti d states, distinct from conventional Mott insulators. Correlation effects are enhanced on the Ni sites via filling the oxygen p states and reducing the Ni-O-Ni bond angle. Small hole (electron) doping of the superlattice leads to a two-dimensional single-band situation with holes (electrons) residing on the Ni dx2-y2 (Ti dxy) orbital and coupled to antiferromagnetically correlated spins in the NiO2 layer.
NASA Astrophysics Data System (ADS)
Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo
2014-05-01
The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.
Bhunia, Asamanjoy; Gamer, Michael T; Ungur, Liviu; Chibotaru, Liviu F; Powell, Annie K; Lan, Yanhua; Roesky, Peter W; Menges, Fabian; Riehn, Christoph; Niedner-Schatteburg, Gereon
2012-09-17
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.
Magnetic and magnetocaloric properties of iron subs tituted holmium chromite and dysprosium chromite
Yin, Shiqi; Sharma, Vinit; McDannald, Austin; ...
2016-01-11
In this work, structural, magnetic, and magnetocaloric properties of HoCrO 3 and Fe substituted HoCrO 3 and DyCrO 3 (i.e. HoCr 0.7Fe 0.3O 3 and DyCr 0.7Fe 0.3O 3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and x-ray diffraction techniques, which were further confirmed using first-principle calculations. The dc magnetic measurements indicate that the Cr 3+ ordering temperatures for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples are 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmedmore » the Cr 3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho 3+ ordering at ~10 K in the present HoCrO 3 and HoCr 0.7Fe 0.3O 3 samples, which to our knowledge, is the first ac magnetic evidence of Ho 3+ ordering in this system. The effective magnetic moments were determined to be 11.67μB, 11.30μB, and 11.27μB for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO 3 and HoCr 0.7Fe 0.3O 3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum magnetocaloric value were determined to be 7.2 (at 20 K), 6.83 (at 20 K), 13.08 J/kg K (at 5 K) and the relative cooling power were 408, 387, and 500 J/kg for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively.« less
Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.
Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin
2010-05-01
Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.
Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno
2013-11-04
Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.
Liu, Xuanwen; You, Junhua; Wang, Renchao; Ni, Zhiyuan; Han, Fei; Jin, Lei; Ye, Zhiqi; Fang, Zhao; Guo, Rui
2017-10-12
Dy 2 Cu 2 O 5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc) 2 (OAc)(H 2 O) 2 ]•10.5H 2 O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy 2 Cu 2 O 5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m 2 /g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy 2 Cu 2 O 5 and MG.
Pan, Yi; Luo, Zhihong; Chang, Yih-Chung; Lau, Kai-Chung; Ng, C Y
2017-01-26
The ionization energies (IEs) of TiO and TiO 2 and the 0 K bond dissociation energies (D 0 ) and the heats of formation at 0 K (ΔH° f0 ) and 298 K (ΔH° f298 ) for TiO/TiO + and TiO 2 /TiO 2 + are predicted by the wave-function-based CCSDTQ/CBS approach. The CCSDTQ/CBS calculations involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation (HOC), core-valence (CV) electronic, spin-orbit (SO) coupling, and scalar relativistic (SR) effect corrections. The present calculations yield IE(TiO) = 6.815 eV and are in good agreement with the experimental IE value of 6.819 80 ± 0.000 10 eV determined in a two-color laser-pulsed field ionization-photoelectron (PFI-PE) study. The CCSDT and MRCI+Q methods give the best predictions to the harmonic frequencies: ω e (ω e + ) = 1013 (1069) and 1027 (1059) cm -1 and the bond lengths r e (r e + ) = 1.625 (1.587) and 1.621 (1.588) Å, for TiO (TiO + ) compared with the experimental values. Two nearly degenerate, stable structures are found for TiO 2 cation: TiO 2 + (C 2v ) structure has two equivalent TiO bonds, while the TiO 2 + (C s ) structure features a long and a short TiO bond. The IEs for the TiO 2 + (C 2v )←TiO 2 and TiO 2 + (C s )←TiO 2 ionization transitions are calculated to be 9.515 and 9.525 eV, respectively, giving the theoretical adiabatic IE value in good agreement with the experiment IE(TiO 2 ) = 9.573 55 ± 0.000 15 eV obtained in the previous vacuum ultraviolet (VUV)-PFI-PE study of TiO 2 . The potential energy surface of TiO 2 + along the normal vibrational coordinates of asymmetric stretching mode (ω 3 + ) is nearly flat and exhibits a double-well potential with the well of TiO 2 + (C s ) situated around the central well of TiO 2 + (C 2v ). This makes the theoretical calculation of ω 3 + infeasible. For the symmetric stretching (ω 1 + ), the current theoretical predictions overestimate the experimental value of 829.1 ± 2.0 cm -1 by more than 100 cm -1 . This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ/CBS approach is capable of providing reliable IE and D 0 predictions for TiO/TiO + and TiO 2 /TiO 2 + with error limits less than or equal to 60 meV. The CCSDTQ/CBS calculations give the predictions of D 0 (Ti + -O) - D 0 (Ti-O) = 0.004 eV and D 0 (O-TiO) - D 0 (O-TiO + ) = 2.699 eV, which are also consistent with the respective experimental determination of 0.008 32 ± 0.000 10 and 2.753 75 ± 0.000 18 eV.
NASA Astrophysics Data System (ADS)
Raeliarijaona, Aldo; Fu, Huaxiang
2017-10-01
Using density-functional calculations we investigate the possibility and underlying mechanism of generating ferromagnetism (FM) in ferroelectric BaTiO3 by native vacancies. For the same vacancy species but different charge states (e.g., VO0 vs VO2 +), our paper reveals a marked difference in magnetic behaviors. For instance, while VO0 is ferromagnetic, VO2 + is not. This sensitive dependence, which has often been overlooked, highlights the critical importance of taking into account different charge states. Furthermore, while oxygen vacancies have been often used in experiments to explain the vacancy-induced FM, our calculation demonstrates that Ti vacancies, in particular VTi3 - and VTi2 - with low formation energies, generate even stronger ferromagnetism in BaTiO3, with a magnetic moment which is 400% larger than that of VO0. Interestingly, this strong FM of VTi can be further enhanced by hole doping. Although both cation vacancies (VTiq) and anion vacancies (VO0) induce FM, their mechanisms differ drastically. FM of anion vacancies originates from the spin-polarized electrons at Ti sites, but FM of cation vacancies stems from the spin-polarized holes at O sites. This paper also sheds light on vacancy-induced FM by discovering that the spin densities of all three considered vacancy species are highly extended in real space, distributed far away from the vacancy. Moreover, we predict that the ferromagnetism caused by VTi3 - is able to survive at high temperatures, which is promising for room-temperature spintronic or multiferroic applications.
Preparation of directionally solidified BaTi2O5-Ba6Ti17O40 eutectic by the floating zone method
NASA Astrophysics Data System (ADS)
Shiga, K.; Katsui, H.; Goto, T.
2017-02-01
The BaTi2O5-Ba6Ti17O40 eutectic (BaO-68.7 mol% TiO2) was directionally solidified by the floating zone (FZ) method and crystalline phases, microstructures and orientation were investigated. Ba6Ti17O40 with faceted rod-like shape was dispersed in the BaTi2O5 matrix. The growth directions of BaTi2O5 and Ba6Ti17O40 were parallel to the b and a axis, respectively, and the orientation relations were BaTi2O5 (010)//Ba6Ti17O40(60 2 ̅) and BaTi2O5 (001)//Ba6Ti17O40 (001).
NASA Astrophysics Data System (ADS)
Shimizu, K.; Shimizu, N.; Suzuki, K.; Tatsumi, Y.; Komiya, T.; Maruyama, S.
2007-12-01
Volatile content of komatiite is a key to constrain thermal evolution of the deep Earth. We report volatile contents with major and trace element compositions of melt inclusions (MIs) in chromian spinel (Cr-spinel) from beach sands of Gorgona Island, Colombia. Gorgona Island is ~90 Ma volcanic island, where picrites and the world-youngest komatiites occur. As Cr-spinel is dense and rigid oxide mineral that crystallizes only at early stages of crystallization, it is considered to be a superior container for retaining primitive melt, even including volatiles. Volatile (H2O, CO2, S, F and Cl) and trace element (K2O, Sr, Y, Zr, Nb, Ba, La, Ce, Sm, Dy, Yb) compositions of ~80 MIs were analyzed by SIMS (Cameca-1280 and 3f, respectively) at WHOI. MIs in the Cr-spinel from Gorgona Is. are classified into three types by their host Cr-spinel compositions such as low-Ti (P-type), high-Ti with high-Cr# (BK-type) and high-Ti with low-Cr# (K-type). MIs of P-type, BK-type and K-type are mostly in compositional ranges of picrite, high TiO2 komatiite (some basalt) and low TiO2 komatiite in Gorgona Island, respectively. Water content of P-type MIs is variable, ranging from 0.05 to 0.9 wt%, whereas those of BK and K-type MIs are limited (< 0.1 wt%). On the other hand, CO2 contents of BK-type and K- type MIs are highly scattered (40 to 4200 ppm), whereas that of P-type is relatively constant at ~200 ppm. All MIs with high CO2 content (>500 ppm) do not contain (shrinkage) bubbles and many of them are low in K2O. H2O/K2O, CO2/K2O, S/K2O and F/K2O ratios are positively correlated with Y/Sr ratios, indicating degassing trends of melt at crystallization, magma mixing and/or assimilation. Undegassed H2O/K2O, CO2/K2O, S/K2O and F/K2O ratios of komatiitic (picritic) melt are estimated to be ~10 (~40), ~80 (n.d.), ~7(~3) and ~1(~0.5), respectively, which are much higher than those estimated for the depleted source mantle of the MORB [1.6, 0.7, 1.6 and 0.2, respectively; Salters, V. & Stracke, A. (2004), Composition of the depleted mantle. Geochem. Geophys. Geosys. 5 (2003GC000597)]. The results suggest that Gorgona komatiite and picrite magmas were derived from volatile-rich sources. CO2 degassing might also have contributed to eruption of high-density magmas to the surface. In addition, H2O, S, F and Cl contents in MIs in olivine from a picrite were identical to those of P-type MIs in Cr-spinel, but CO2 in olivine-hosted MIs were considerably lower (~50 ppm) than those in Cr-spinel. This indicates that entrapment pressure for MIs in Cr-spinel is likely to be greater than that for MIs in olivine. Therefore, in order to evaluate the volatile contents of undegassed magmas from oceanic islands, melt inclusions in Cr-spinel beach sand could be very useful.
NASA Astrophysics Data System (ADS)
Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.
1994-06-01
Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that <100> oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Qiang; Wang, Chuang; Li, Yanyan
2015-11-15
Highlights: • Ca{sub 3−x}Sc{sub 2}Si{sub 3}O{sub 12}:xDy{sup 3+} (0.01 ≤ x ≤ 0.03) was successfully synthesized under a reducing atmosphere. • The thermal stability of the Ca{sub 2.975}Sc{sub 2}Si{sub 3}O{sub 12}:0.025Dy{sup 3+} is superior to commercial phosphors in theory and experiment. • The optimal chromaticity coordinates of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is (x = 0.3425, y = 0.3343) upon 350 nm excitation. - Abstract: The white emission phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} was synthesized by the solid-state reaction. Phase analysis and characteristic luminescence properties are investigated by X-ray diffraction and photoluminescence spectra measurement. Ca{sub 3}Sc{sub 2}Si{submore » 3}O{sub 12}:Dy{sup 3+} phosphor shows strong absorption in 350–410 nm region and exhibits white emission with CIE chromaticity coordinates of (0.3425, 0.3343). Its emission intensity at 250 °C remained 74% of that measured at room temperature. Moreover, the activation energy is also calculated through the Arrhenius equation. The result shows that the thermostability of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is superior than that of commercial phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce{sup 3+}. The outstanding luminescent properties indicate that Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} could be a potential white light emission phosphor.« less
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.
2018-04-01
This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Litvinov, Alexey L; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N
2018-06-18
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu 4 N + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) and (Bu 3 MeP + ) 2 [M IV O(Pc 4- )] 2- (M=Ti, V) with [M IV O(Pc 4- )] 2- dianions were synthesized and characterized. Reduction of M IV O(Pc 2- ) carried out with an excess of sodium fluorenone ketyl in the presence of Bu 4 N + or Bu 3 MeP + is exclusive to the phthalocyanine centers, forming Pc 4- species. During reduction, the metal +4 charge did not change, implying that Pc is an non-innocent ligand. The Pc negative charge increase caused the C-N(pyr) bonds to elongate and the C-N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn-Teller effects are significant in the [eg(π*)] 2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q-bands were observed in the UV/Vis/NIR when M IV O(Pc 2- ) was reduced to [M IV O(Pc . 3- )] . - and [M IV O(Pc 4- )] 2- . From magnetic measurements, [Ti IV O(Pc 4- )] 2- was found to be diamagnetic and (Bu 4 N + ) 2 [V IV O(Pc 4- )] 2- and (Bu 3 MeP + ) 2 [V IV O(Pc 4- )] 2- were found to have magnetic moments of 1.72-1.78 μ B corresponding to an S=1/2 spin state owing to V IV electron spin. As a result, two latter salts show EPR signals with V IV hyperfine coupling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.
Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush
2017-11-01
We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.
Wang, H; Yu, M; Lin, C K; Lin, J
2006-08-01
Spherical SiO(2) particles have been coated with YVO(4):Dy(3+)/Sm(3+) phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO(2)@YVO(4):Dy(3+)/Sm(3+) particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO(2)@YVO(4):Dy(3+)/Sm(3+) core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy(3+) for SiO(2)@YVO(4):Dy(3+) and from Sm(3+) for SiO(2)@YVO(4):Sm(3+) due to an efficient energy transfer from YVO(4) host to them. The PL intensity of Dy(3+) and Sm(3+) increases with raising the annealing temperature and the number of coating cycles.
Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallography.
Fernandes, Arantxa; McKay, David; Sneddon, Scott; Dawson, Daniel M; Lawson, Sebastian; Veazey, Richard; Whittle, Karl R; Ashbrook, Sharon E
2016-09-15
An NMR crystallographic approach, involving the combination of 119 Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La 2 Sn 2- x Ti x O 7 ceramics. A phase change from pyrochlore (La 2 Sn 2 O 7 ) to a layered perovskite phase (La 2 Ti 2 O 7 ) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La 2 Ti 2 O 7 , with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the "bulk" perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 ("edge" sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119 Sn shifts for Sn substitution into the two proposed models of La 2 Ti 2 O 7 (monoclinic ( P 2 1 ) and orthorhombic ( Pna 2 1 )), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure.
Pico-level DNA sensing by hetero-polymetalate, Na10{Dy2W10O30(µ-S)6}·80H2O, cluster
NASA Astrophysics Data System (ADS)
Dutta, Taposhree; Ganguly, Jhuma; Sarkar, Sabyasachi
2018-04-01
The polyoxometalate dysprosium cluster, (Dy-S-W POM) , Na10[Dy2W10O30(µ-S)6]·80H2O, shows remarkable dsDNA denaturation property. In the presence of 0.22 µmol of this Dy-S-W POM, the melting temperature (Tm) of calf-thymus (CT) dsDNA is decreased to 62.35 °C. Dy-S-W POM shows bleaching of methylene blue (MB). Addition of CT-DNA in the MB bleached solution of Dy-S-W POM apparently intercalates MB. Such trapped MB by CT-DNA responds to its re-oxidation by elemental sulfur formed in the bleaching process involving Dy-S-W POM. This reduction-oxidation property of MB with Dy-S-W POM led to the detection of pico (13.20 pmol) level of DNA even by naked eye, which will be helpful for rapid trace DNA detection in forensic science and DNA-related diagnostics, complimenting time-consuming sophisticated methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M.; Dadoenkova, Yu. S.
2014-05-07
We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceivedmore » by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.
2016-07-06
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-raymore » Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.« less
Spectroscopic and optical properties of the VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system
NASA Astrophysics Data System (ADS)
Swapna; Upender, G.; Sreenivasulu, V.; Prasad, M.
2016-04-01
Studies such as optical absorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and Differential scanning calorimetry (DSC) were carried out on VO2+ ion doped TeO2-TiO2-ZnO-Nb2O5 glass system. Raman and FTIR spectra of the glasses revealed the presence of [TeO3], [TeO4] and [NbO6] structural units in the glass network. The Urbach energy (Δ E), cut-off wavelength (λ c ), optical band gap ( E opt ), optical basicity (Λ) and electron polarizability ( α) of the glasses were determined from optical absorption studies. The density ( ρ), molar volume ( V m ), oxygen molar volume ( V o ) and refractive index ( n) were also measured. Spin-Hamiltonian parameters were calculated from the EPR studies. When Nb2O5 was increased at the expense of ZnO, the density, optical band gap and Urbach energy of the glasses increased, and the electronic polarizability and optical basicity decreased. The EPR spectra clearly showed that vanadium was in the glass as VO2+ and occupied octahedral sites with tetrahedral compression. Spin-Hamiltonian parameters g‖ and g⊥ decreased as Nb2O5 content increased in the glass. The glass transition temperature ( T g ) also increased with increasing Nb2O5 content in the glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittle, Karl R., E-mail: karl.whittle@ansto.gov.a; Lumpkin, Gregory R.; Blackford, Mark G.
2010-10-15
Thin crystals of La{sub 2}O{sub 3}, LaAlO{sub 3}, La{sub 2/3}TiO{sub 3}, La{sub 2}TiO{sub 5}, and La{sub 2}Ti{sub 2}O{sub 7} have been irradiated in situ using 1 MeV Kr{sup 2+} ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La{sub 2}O{sub 3} remained crystalline to a fluence greater than 3.1x10{sup 16} ions cm{sup -2} at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisationmore » (T{sub c}) of 647 K for LaAlO{sub 3}, 840 K for La{sub 2}Ti{sub 2}O{sub 7}, 865 K for La{sub 2/3}TiO{sub 3}, and 1027 K for La{sub 2}TiO{sub 5}. The T{sub c} values observed in this study, together with previous data for Al{sub 2}O{sub 3} and TiO{sub 2}, are discussed with reference to the melting points for the La{sub 2}O{sub 3}-Al{sub 2}O{sub 3} and La{sub 2}O{sub 3}-TiO{sub 2} systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between T{sub c} and melting temperature (T{sub m}) in the two systems. More complex relationships exist between T{sub c} and crystal structure, with the stoichiometric perovskite LaAlO{sub 3} being the most resistant to amorphisation. - Graphical abstract: La{sub 2}TiO{sub 5} with atypical co-ordination for Ti, TiO{sub 5} is found to be different in radiation resistance to La{sub 2}Ti{sub 2}O{sub 7} and La{sub 2/3}TiO{sub 3}. Irradiation of La-Ti-O, and La-Al-O based systems has found that radiation damage resistance is related to the ability of the system to disorder.« less
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.
Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie
2012-01-05
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.
2015-07-01
The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less
Luo, Jin-Ling; Wang, Shi-Fa; Liu, Wei; Tian, Cheng-Xiang; Wu, Ju-Wei; Zu, Xiao-Tao; Zhou, Wei-Lie; Yuan, Xiao-Dong; Xiang, Xia
2017-08-14
Three kinds of Al-TiO 2 samples and pure TiO 2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al 2 (SO 4 ) 3 ∙18H 2 O, AlCl 3 , and Al(NO 3 ) 3 ∙9H 2 O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO 2 nanoparticles were studied. The energy gap (Eg) of Al-TiO 2 nanoparticles decreases due to Al ion doping into TiO 2 . The photocatalytic activities of the Al-TiO 2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO 2 nanoparticles prepared from Al(NO 3 ) 3 ∙9H 2 O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO 2 nanoparticles prepared with AlCl 3 , Al 2 (SO 4 ) 3 ∙18H 2 O and pure TiO 2 . The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO 2 nanoparticles.
NASA Astrophysics Data System (ADS)
Wang, Linbo; Bai, Zhonglian; Shen, Hailong; Wang, Chenxi; Liu, Tong
2017-05-01
In order to prohibit the formation of large Y-Al-O precipitates, Ti hydride nanoparticles (NPs) were prepared and used to replace Ti as raw particles to fabricate the oxide dispersion strengthened (ODS) Fe-14Cr-3Al-2W-0.35Y2O3 steels by mechanical alloying (MA) and hot isostatic pressing (HIP). As the content of Ti hydride increases from 0.1 to 0.5 and 1.0 wt%, the oxide nanoprecipitates in the ODS steels changes from Y3Al5O12 phase to Y2Ti2O7 phase (semicoherent with the matrix), and the particle size is successfully reduced. The tensile strength of the ODS steel increases remarkably with increasing Ti hydride content. The sample with 1.0 wt% Ti hydride exhibits a high strength of 1049 MPa at 25 °C and 278 MPa at 700 °C. The creation of Y2Ti2O7 nanoprecipitates by adding Ti hydride NPs opens a new way to control the structure and size of the oxide precipitates in the ODS steels.
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2015-10-26
Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7) s, 146.8(5) K with τ0 =9.2×10(-8) s, and 146.1(10) K with τ0 =9.9×10(-8) s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8) s for 1, Ueff =214.7 K and τ0 =9.8×10(-9) s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8) s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of subband structure with gate-tuning at LaAlO3/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Tang, Lucas; Smink, Sander; van Heeringen, Linde; Geessinck, Jaap; Rana, Abimanuya; Rastogi, Ankur; Maan, Jan Kees; Brinkman, Alexander; Zeitler, Uli; Hilgenkamp, Hans; McCollam, Alix
The outstanding characteristic of LaAlO3/SrTiO3 heterostructures is the formation of a high mobility 2D electron gas (2DEG) at the interface. The additional presence of superconductivity, magnetism and large spin-orbit coupling in these systems suggests that strong correlations play an important role in the electronic properties, in contrast to conventional semiconductor-based 2DEGs. Knowledge of the electronic bandstructure, and the interdependence of conduction electron density and properties is therefore essential for our understanding of these materials. We present new results of low temperature transport measurements in a high mobility LaAlO3/SrTiO3-based heterostructure, in magnetic fields up to 33 T. Shubnikov de-Haas oscillations are observed, revealing several subbands with different carrier densities. By application of an electric field in the back gate geometry, the Fermi level is tuned and thus we are able to map the smooth evolution of the subbands and their properties with carrier density. These results are in good agreement with recent theoretical work, such that we can disentangle the complex band structure, and quantify aspects such as Rashba spin-splitting and the mixing of orbital character.
Magnesiothermic reduction for direct synthesis of Ti-Nb alloy at 1073 K (800 °C)
NASA Astrophysics Data System (ADS)
Choi, Kyunsuk; Lee, Kwang Hee; Ali, Basit; Choi, Sang-Hoon; Park, Kyoung-Tae; Sohn, Il
2017-09-01
Direct fabrication of titanium (Ti) and niobium (Nb) alloys by direct magnesiothermic reduction from the respective initial metal oxides and complex oxides has been studied. TiO2, Nb2O5, and complex TiNb2O7 oxides were used as raw materials with Mg used as a reductant. To ensure a high chemical potential of the reactants to drive the spontaneous magnesiothermic reduction of the oxide mixtures, excess Mg five times higher than the required stoichiometric molar ratio was added. Samples were heated in a glove box under recycled and purified Ar atmosphere at 1073 K (800 °C) for 10 h. After the reduction of TiO2, intermediate oxide phases of Ti6O could still be observed, but reduction of Nb2O5 and TiNb2O7 showed metallic Nb and Ti-Nb to be present with negligible oxides according to the scanning electron microscope-energy dispersive spectroscopy and x ray diffraction analysis. This indicated that direct fabrication of Ti-Nb alloys through a complex TiNb2O7 oxide is possible and can be more efficient than alloying pure metallic elements of Ti and Nb.
NASA Astrophysics Data System (ADS)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation.
Nandan, Sandeep; Deepak, T G; Nair, Shantikumar V; Nair, A Sreekumaran
2015-05-28
We synthesized a uniquely shaped one-dimensional (1-D) TiO2 nanostructure having the morphology of yellow bristle grass with high surface area by the titanate route under mild reaction conditions. The electrospun TiO2-SiO2 composite nanofibers upon treatment with concentrated NaOH at 80 °C under ambient pressure for 24 h resulted in sodium titanate (Na2Ti3O7) nanostructures. The Na2Ti3O7 nanostructures have an overall 1-D fibrous morphology but the highly porous fiber surfaces were decorated with layered thorn-like features (a morphology resembling that of yellow bristle grass) resulting in high surface area (113 m(2) g(-1)) and porosity. The Na2Ti3O7 nanostructures were converted into TiO2 nanostructures of the same morphology by acidification (0.1 N HCl) followed by low temperature sintering (110 °C) processes. Dye-sensitized solar cells (DSCs) constructed out of the material (cells of area 0.20 cm(2) and thickness 12 μm) showed a power conversion efficiency (η) of 8.02% in comparison with commercial P-25 TiO2 (η = 6.1%).
Structure and luminescence properties of Dy 2O 3 doped bismuth-borate glasses
Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; ...
2017-07-05
In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2O 3-(80-x)B 2O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2O 3 (2.5 and 5 mol%) in order to inducemore » the luminescence characteristics. The effects of Bi 2O 3 and Dy 2O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3 + centres emission.« less
Effects of titanium dioxide nanoparticles on human keratinocytes
Wright, Clayton; Iyer, Anand Krishnan V.; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S.; Rojanasakul, Yon; Azad, Neelam
2016-01-01
Titanium dioxide (TiO2) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO2 nanoparticles (H2TiO7) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO2 particles varying in size (Fine, Ultrafine and H2TiO7) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO2; however, there is no consistent effect on cell viability and proliferation with either of these TiO2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO2, we did not observe any significant effect of UV-C exposure combined with TiO2 treatment on HaCaTs. Furthermore, TiO2-treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H2TiO7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO2. PMID:27310834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guangming; Mo, Kun; Miao, Yinbin
2015-06-18
In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence,more » decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi
2012-04-20
The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by othermore » molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).« less
Hurand, S.; Jouan, A.; Feuillet-Palma, C.; Singh, G.; Biscaras, J.; Lesne, E.; Reyren, N.; Barthélémy, A.; Bibes, M.; Villegas, J. E.; Ulysse, C.; Lafosse, X.; Pannetier-Lecoeur, M.; Caprara, S.; Grilli, M.; Lesueur, J.; Bergeal, N.
2015-01-01
The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. PMID:26244916
Optical and structural investigation of Dy3+-Nd3+ co-doped in magnesium lead borosilicate glasses.
Rao, T G V M; Rupesh Kumar, A; Neeraja, K; Veeraiah, N; Rami Reddy, M
2014-01-24
MgO-PbO-B2O3-SiO2-Nd2O3-Dy2O3 glasses are prepared by melt-quenching technique. The samples are characterized by X-ray diffraction (XRD), optical absorption, luminescence and Fourier transform infrared (FT-IR) spectral studied. XRD analysis evidently indicates that the prepared samples are fully amorphous nature. From the optical absorption spectra, the bonding environment surrounding the Dy(3+) and their energy level scheme in glass network is analyzed. Enhancement of Dy(3+) emission by non-radiative energy transfers from Nd(3+) has been observed here. The samples emits intensive bluish yellow color from the (4)F9/2→(6)H15/2, (6)H13/2 transition of Dy(3+) ions in these glasses which are nearer to white light and it is also supported by the chromaticity color coordinates. The FT-IR spectra reveal that network connectivity is increased with replacement of bonds B-O-B, Si-O-Si by more resistant B-O-Si bonds with gradually increasing the content of Dy(3+) ions in the glass network. Along with spectroscopic parameters some physical parameters like density, refractive index etc. are measured for the glasses. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.
2018-04-01
A series of glass samples with chemical formula {[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}1 - x(Dy2O3)x where x = 0.01, 0.02, 0.03, 0.04 and 0.05 M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO4, BO3, TeO4 and TeO3 vibrational groups. The density of the glass systems is increased with the addition of Dy2O3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy2O3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3 + ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Generation of white light The generation of the white light can be achieved by using two emission bands which comprise of the yellow and blue emission. The white light emission of the glass systems is confirmed by using the Commission International de I'Eclairage 1931 (CIE 1931) chromaticity diagram. The colour coordinate of the zinc borotellurite glass systems doped Dy2O3 is tabulated in Table 3 while Fig. 10 represents the colour chromaticity diagram of Dy2O3 doped zinc borotellurite glass systems. Based on the result obtained, the CIE coordinate for the zinc borotellurite glass doped with dysprosium oxide lies closed to the standard white light point which located at x = 0.333 and y = 0.333 [63,64]. This suggests that the zinc borotellurite glass doped with Dy2O3 may be useful for the solid state lighting application.
NASA Astrophysics Data System (ADS)
Lim, Jung Yup; Lee, Chang Soo; Lee, Jung Min; Ahn, Joonmo; Cho, Hyung Hee; Kim, Jong Hak
2016-01-01
Amphiphilic block-graft copolymers composed of poly(styrene-b-butadiene-b-styrene) (SBS) backbone and poly(oxyethylene methacrylate) (POEM) side chains are synthesized and combined with hydrophilically preformed TiO2 (Pre-TiO2), which works as a structural binder as well as titania source. This results in the formation of crack free, 6-μm-thick, organized mesoporous TiO2 (OM-TiO2) films via one-step doctor-blading based on self-assembly of SBS-g-POEM as well as preferential interaction of POEM chains with Pre-TiO2. SBS-g-POEM with different numbers of ethylene oxide repeating units, SBS-g-POEM(500) and SBS-g-POEM(950), are used to form OM-TiO2(500) and OM-TiO2(950), respectively. The efficiencies of dye-sensitized solar cells (DSSCs) with a quasi-solid-state polymer electrolyte reach 5.7% and 5.8% at 100 mW/cm2 for OM-TiO2(500) and OM-TiO2(950), respectively. The surface area of OM-TiO2(950) was greater than that of OM-TiO2(500) but the light reflectance was lower in the former, which is responsible for similar efficiency. Both DSSCs exhibit much higher efficiency than one (4.8%) with randomly-organized particulate TiO2 (Ran-TiO2), which is attributed to the higher dye loading, reduced charge recombination and improved pore infiltration of OM-TiO2. When utilizing poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) and mesoporous TiO2 spheres as the solid electrolyte and the scattering layer, the efficiency increases up to 7.5%, one of the highest values for N719-based solid-state DSSCs.
Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions
NASA Astrophysics Data System (ADS)
Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.
2012-06-01
Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.
NASA Astrophysics Data System (ADS)
Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng
2016-05-01
Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min-1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL-1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon
In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.
Determination of the orbital moment and crystal-field splitting in LaTiO3.
Haverkort, M W; Hu, Z; Tanaka, A; Ghiringhelli, G; Roth, H; Cwik, M; Lorenz, T; Schüssler-Langeheine, C; Streltsov, S V; Mylnikova, A S; Anisimov, V I; de Nadai, C; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Mizokawa, T; Taguchi, Y; Tokura, Y; Khomskii, D I; Tjeng, L H
2005-02-11
Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.
Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+
NASA Astrophysics Data System (ADS)
Erdoğmuş, E.
2016-05-01
Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.
Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2
NASA Astrophysics Data System (ADS)
Bupu, A.; Majidi, M. A.; Rusydi, A.
2017-04-01
We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.
NASA Astrophysics Data System (ADS)
Mozaffari, Shirin; Guchhait, Samaresh; Markert, John T.
2017-10-01
We report the effects of oxygen pressure during growth (PO2 ) on the electronic and magnetic properties of PrAlO3 films grown on TiO2 -terminated SrTiO3 substrates. Resistivity measurements show an increase in the sheet resistance as PO2 is increased. The saturation of the sheet resistance down to 0.3 K is consistent with Kondo theory for PO2 ≥slant 10-5 torr. Resistivity data fits indicate Kondo temperatures of 16-18 K. For the 10-4 sample, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields due to the Kondo effect. Analysis of the MR data permitted the extraction of the SO interaction critical field for the PO2=10-5 torr interface ( H_SO=1.25 T). We observed high positive MR for the least oxygenated sample, where a fraction of the n-type carriers are derived from oxygen vacancies and possible cation interdiffusion; for this 6×10-6 torr sample, Hall effect data indicate a thick conducting layer. Its extremely high MR (˜400% ) is attributed to classical behavior due to a distribution of mobilities.
Mei, Jie; Yi, Ting-Feng; Li, Xin-Yuan; Zhu, Yan-Rong; Xie, Ying; Zhang, Chao-Feng
2017-07-19
A facile strategy was developed to prepare Li 5 Cr 7 Ti 6 O 25 @CeO 2 composites as a high-performance anode material. X-ray diffraction (XRD) and Rietveld refinement results show that the CeO 2 coating does not alter the structure of Li 5 Cr 7 Ti 6 O 25 but increases the lattice parameter. Scanning electron microscopy (SEM) indicates that all samples have similar morphologies with a homogeneous particle distribution in the range of 100-500 nm. Energy-dispersive spectroscopy (EDS) mapping and high-resolution transmission electron microscopy (HRTEM) prove that CeO 2 layer successfully formed a coating layer on a surface of Li 5 Cr 7 Ti 6 O 25 particles and supplied a good conductive connection between the Li 5 Cr 7 Ti 6 O 25 particles. The electrochemical characterization reveals that Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode shows the highest reversibility of the insertion and deinsertion behavior of Li ion, the smallest electrochemical polarization, the best lithium-ion mobility among all electrodes, and a better electrochemical activity than the pristine one. Therefore, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode indicates the highest delithiation and lithiation capacities at each rate. At 5 C charge-discharge rate, the pristine Li 5 Cr 7 Ti 6 O 25 only delivers an initial delithiation capacity of ∼94.7 mAh g -1 , and the delithiation capacity merely achieves 87.4 mAh g -1 even after 100 cycles. However, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) delivers an initial delithiation capacity of 107.5 mAh·g -1 , and the delithiation capacity also reaches 100.5 mAh g -1 even after 100 cycles. The cerium dioxide modification is a direct and efficient approach to improve the delithiation and lithiation capacities and cycle property of Li 5 Cr 7 Ti 6 O 25 at large current densities.
Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.; Troitskaia, I. B.
2012-11-01
The spectroscopic parameters and electronic structure of binary titanate Pr2Ti2O7 have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr2Ti2O7 have been determined as αTi=872.8 and αO=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences ΔTi=(BE O 1s-BE Ti 2p3/2)=71.6 eV and ΔPr=BE(Pr 3d5/2)-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides.
NASA Astrophysics Data System (ADS)
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-07-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.
First-principles modeling of titanate/ruthenate superlattices
NASA Astrophysics Data System (ADS)
Junquera, Javier
2013-03-01
The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muaz, A. K. M.; Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.
2016-07-06
In this paper, the sol-gel method is used to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films at different annealing temperature. The prepared sol was deposited on the p-SiO{sub 2} substrates by spin coating technique under room temperature. The nanoparticles TiO{sub 2} solution was synthesized using Ti{OCH(CH_3)_2}{sub 4} as a precursor with an methanol solution at a molar ratio 1:10. The prepared TiO{sub 2} sols will further validate through structural, morphological and electrical properties. From the X-ray diffraction (XRD) analysis, as-deposited films was found to be amorphous in nature and tend to transform into tetragonal anatase and rutile phase asmore » the films annealed at 573 and 773 K, respectively. The diversification of the surface roughness was characterized by atomic force microscopy (AFM) indicated the roughness and thickness very dependent on the annealing temperature. The two-point probe electrical resistance and conductance of nanoparticles TiO{sub 2} thin films were determined by the DC current-voltage (IV) analysis. From the I-V measurement, the electrical conductance increased as the films annealed at higher temperature.« less
Site-specific spin crossover in F e2Ti O4 post-spinel under high pressure up to nearly a megabar
NASA Astrophysics Data System (ADS)
Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Itié, J.-P.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.
2017-07-01
X-ray diffraction studies to ˜90 GPa at room temperature show that F e2Ti O4 ferrous inverse spinel undergoes the following sequence of structural transitions: cubic (F d 3 ¯m ) →˜8 GPa tetragonal (I 41/a m d ) →˜16 GPa orthorhombic (C m c m ) →˜55 GPa orthorhombic (P m m a ) , at the indicated onset transition pressures. Within the Cmcm phase, site-specific spin crossover is initiated and involves only highly distorted octahedral sites constituting ˜25 % of all Fe locations. This is manifest as a steeper volume decrease of Δ V /V0˜3.5 % beyond ˜40 GPa and an emergent diamagnetic component discerned in 57Fe Mössbauer spectroscopy at variable cryogenic temperatures. A subsequent C m c m →P m m a Fe/Ti disorder-order reconfiguration is facilitated at sixfold coordinated (octahedral) sites. The rest of the high-spin Fe in sixfold and eightfold coordinated sites (˜75 % abundance) in the Pmma phase exhibit average saturation internal magnetic fields of Hh f˜42 T to ˜90 GPa , typical of spin-only (orbitally quenched) Fermi-contact values. By contrast, average Hh f˜20 T values, signifying unquenched orbital moments, occur below the 40 -45 GPa spin-crossover initiation regime in the Cmcm phase. Therefore, site-specific spin crossover invokes a cooperative lattice response and polyhedral distortions at the rest of the high-spin Fe sites, translating to 3 d level (sub-band) changes and consequential orbital moment quenching. Near ˜90 GPa , F e2Ti O4 is a partially spin-converted chemically ordered Pmma post-spinel having a persistent charge gap of ˜100 meV . Despite structural symmetry changes, partial spin crossover and lattice compressibility, resulting in a ˜33 % total reduction in unit-cell volume and corresponding 3 d bandwidth broadening, strong electron correlations persist at high densification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru
The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39} (AlB{sub 2}-type), Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9} (Th{sub 2}Zn{sub 17}-type), ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22} (unknown structures), DyNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), Dy{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), DyNi{sub 2}Si (YPd{sub 2}Si-type), ∼Dy{sub 40}Ni{sub 47}Si{submore » 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3} (unknown structures). Quasi–binary solid solutions were detected at 1070 (870 K) for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. No detectable solubility is observed for the other binary compounds of the Dy–Ni–Si system. The crystal structures of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, has been studied. Magnetic properties of few representative compounds are also reported. - Graphical abstract: The Dy–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analysis. The system contains the 12 known compounds DyNi{sub 10}Si{sub 2}, DyNi{sub 5}Si{sub 3}, DyNi{sub 6}Si{sub 6}, DyNi{sub 4}Si, DyNi{sub 2}Si{sub 2}, Dy{sub 2}Ni{sub 3}Si{sub 5}, DyNiSi{sub 3}, Dy{sub 3}Ni{sub 6}Si{sub 2}, DyNiSi{sub 2}, DyNiSi, Dy{sub 3}NiSi{sub 3}, Dy{sub 3}NiSi{sub 2}, and the new compounds Dy{sub 34}Ni{sub 16−27}Si{sub 50−39}, Dy{sub 2}Ni{sub 15.2−14.1}Si{sub 1.8−2.9}, ∼Dy{sub 11}Ni{sub 65}Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22}, DyNi{sub 7}Si{sub 6}, Dy{sub 3}Ni{sub 8}Si, DyNi{sub 2}Si, ∼Dy{sub 40}Ni{sub 47}Si{sub 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3}. Quasi–binary solid solutions were detected for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. The crystal structures and magnetic properties of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, are also reported. - Highlights: • Dy–Ni–Si isothermal section was obtained at 870 K/1070 K. • Twelve known ternary dysprosium nickel silicides were confirmed in Dy–Ni–Si. • Nine new dysprosium nickel silicides were detected in Dy–Ni–Si. • Seventeen new rare earth nickel silicides were detected in (Y, Gd–Tm)–Ni–Si. • Tb{sub 3}Ni{sub 8}Si, Dy{sub 3}Ni{sub 8}Si, Ho{sub 3}Ni{sub 12}Si{sub 4} and DyNi{sub 2}Si show ferromagnetic-like ordering.« less
Martel, D; Guerra, A; Turek, P; Weiss, J; Vileno, B
2016-04-01
In the field of solar fuel cells, the development of efficient photo-converting semiconductors remains a major challenge. A rational analysis of experimental photocatalytic results obtained with material in colloïdal suspensions is needed to access fundamental knowledge required to improve the design and properties of new materials. In this study, a simple system electron donor/nano-TiO2 is considered and examined via spin scavenging electron paramagnetic resonance as well as a panel of analytical techniques (composition, optical spectroscopy and dynamic light scattering) for selected type of nano-TiO2. Independent variables (pH, electron donor concentration and TiO2 amount) have been varied and interdependent variables (aggregate size, aggregate surface vs. volume and acid/base groups distribution) are discussed. This work shows that reliable understanding involves thoughtful combination of interdependent parameters, whereas the specific surface area seems not a pertinent parameter. The conclusion emphasizes the difficulty to identify the key features of the mechanisms governing photocatalytic properties in nano-TiO2. Copyright © 2016 Elsevier Inc. All rights reserved.
Sensing of contaminants in potable water using TiO{sub 2} functional film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akshatha, N.; Poonia, Monika; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in
2016-04-13
The piezoelectric based quartz crystal microbalance is employed for sensing contaminants in potable water. A spin coated thin layer of TiO{sub 2} nanoparticles was formed at the sensing area of a 5 MHz AT-cut quartz wafer. The thin film of TiO{sub 2} nanoparticles forms a mesoporous functional layer for the trapping of water borne contaminants. The morphology of the thin film of TiO{sub 2} nanoparticles was studied using field emission scanning electron microscope (FESEM). The surface morphology of the TiO{sub 2} nanoparticles reveals the mesoporous structures indicating large number of defects and porous sites. Such film was employed for the detectionmore » of water borne contaminants by detecting the piezoelectric response from a quartz crystal microbalance. We found the film to be very sensitive to the contaminants. The minimum detection limit was found to be 330 ppb. The effect of surface recharging was also studied by altering the physical conditions so that the film can be used for repetitive usage.« less
Protein Corona Prevents TiO2 Phototoxicity.
Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez
2015-01-01
TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface. These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Renping, E-mail: jxcrp@163.com; Chen, Guo; Yu, Xiaoguang
2014-12-15
A series of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, R{sup +}, and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} (R{sup +}=Li{sup +}, Na{sup +}, and K{sup +}) phosphors are synthesized by solid-state reaction method in air. All phosphors show bright red emissions centered at ∼617 nm upon excitation with UV light of 397 nm. Bi{sup 3+} is a sensitizer for the luminescence of Eu{sup 3+}, and can improve significantly the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} phosphor due to energy transfer between Bi{sup 3+} andmore » Eu{sup 3+} ions. The sensitization mechanism is investigated and discussed by energy level diagrams of Bi{sup 3+} and Eu{sup 3+} ions. R{sup +} ion is used as the charge compensator to improve the luminescence intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphors, and their PL intensities are enhanced in the sequence K{sup +}→Na{sup +}→Li{sup +}. These phosphors can be promising red emitting candidate for white LED with a ∼397 nm near UV chip excitation owing to the high brightness. - Graphical abstract: Energy transfer and charge compensation can enhance PL intensity of phosphors obviously. - Highlights: • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor is synthesized. • Energy transfer between Eu{sup 3+} and Bi{sup 3+} ions benefit PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Alkaline metal ions can further improve the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} phosphor may be promising red emitting candidate for white LED.« less
NASA Technical Reports Server (NTRS)
Flood, D. J.
1974-01-01
A measurement technique was devised which permits direct observation of the magnetic entropy of solids as a function of applied magnetic field. Measurements were made of the magnetic entropy, in the temperature range 2 to 20 K, of polycrystalline samples of dysprosium titanium oxide (Dy2Ti2O7) to determine its suitability for use as the working substance of a magnetic refrigerator. Magnetization measurements were also made at 4.2 K and below to provide additional information on the nature of the compound. The measurements indicated that crystalline electric fields perturbed the ground state of the dysprosium ions, removed the 16-fold degeneracy predicted by Hund's rules, and left only a twofold degeneracy in its place. A positive, temperature independent contribution to the magnetization was observed in the saturation region, which indicated that the doublet ground-state wave function was perturbed by a nearby unpopulated upper energy level.
Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei
2016-12-01
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.
NASA Astrophysics Data System (ADS)
Marappa, B.; Rudresha, M. S.; Nagabhsuhana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
The facile ultrasound synthesis of Y2O3:Dy3+ nanostructures by using bio-surfactant mimosa pudica leaves extract. The concentration of bio-surfactant was the key factor in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Dy3+ was characterized by SEM, TEM and HRTEM. The PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy3+ concentration on the structure morphology, UV absorption, and PL emission of Y2O3: Dy3+ nanostructures were investigated systematically. Y2O3: Dy3+ exhibits intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and CCT value is 5525 K which corresponds to vertical day light. SEM micrographs showed superstructure morphology influenced by both sonication time as well as surfactant concentration. Pl emission spectra shows three intense peaks observed at 480, 574 and 666 nm attributed to the Dy3+ transitions. The photometric properties were studied by evaluating the CIE, CCT diagrams and the results were very fruitful in making the white light emitting diodes. This method has been considered to be the cost effective and eco-friendly to synthesize nanomaterials with superior morphology suitable for display device applications.
a New Method to Prepare the Novel Anatase TiO2
NASA Astrophysics Data System (ADS)
Cui, Guanjun; Xu, Zhanxia; Wang, Yan; Zhang, Min; Yang, Jianjun
In this paper, a kind of novel anatase TiO2 nanoparticle with single-electron-trapped oxygen vacancies was prepared by hydrothermal treated nanotube titanic acid. The morphology, structure, and properties of the products were characterized by transmission electron microscope, X-ray diffraction, electron spin resonance, and photoluminescence. Photocatalytic decolorization of the Methylene Blue solution was carried out in the visible light region and showed a high photocatalytic activity.
Nanoscale Ex-Situ Thermal Impulse Sensors for Structural Fire Forensics.
Anderson, Benjamin R; Gese, Natalie; Gunawidjaja, Ray; Eilers, Hergen
2017-01-01
We develop nanoscale ex situ thermal impulse (i.e., the temperature and duration of a heating event) sensors for structural fire forensics using a mixture of two lanthanide-doped oxide precursors (precursor Eu:ZrO 2 and precursor Dy:Y 2 O 3 ) that undergo irreversible phase changes when heated. These changes are probed using photoluminescence (PL) spectroscopy with the PL spectra being dependent on the thermal impulse (TI) experienced by the sensors. By correlating the PL spectra to different in-lab TIs, we are able to produce a spectroscopic calibration for our sensors. This calibration allows us to determine an unknown TI of a heating event using only the PL spectrum of the heated TI sensors. In this study, we report on the calibration of these sensors for isothermal heating durations up to 600 s and isothermal temperatures up to 1273 K. Using this calibration, we also demonstrate their ability to determine an unknown TI and demonstrate their functionality when dispersed into paint, which is heated in the presence of drywall.
Zhang, Jufang; Yang, Hongshun; Chan, Joel Zhi Yang
2018-03-01
We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO 2 -IrO 2 /TiO 2 and IrO 2 -Ta 2 O 5 /TiO 2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P < 0.05). Electron spin resonance results showed hydroxyl free radicals and superoxide anion free radicals were present in the NEW produced by developed unit. The NEW generator is a promising sanitizing unit for consumers and the food industry to control foodborne pathogens. Current commercial NEW-producing units are quite large and are not convenient for family using. The developed portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes. © 2018 Institute of Food Technologists®.
Identical superdeformed bands in yrast 152Dy: a systematic description
NASA Astrophysics Data System (ADS)
Dadwal, Anshul; Mittal, H. M.
2018-06-01
The nuclear softness (NS) formula, semiclassical particle rotor model (PRM) and modified exponential model with pairing attenuation are used for the systematic study of the identical superdeformed bands in the A ∼ 150 mass region. These formulae/models are employed to study the identical superdeformed bands relative to the yrast SD band 152Dy(1), {152Dy(1), 151Tb(2)}, {152Dy(1), 151Dy(4)} (midpoint), {152Dy(1), 153Dy(2)} (quarter point), {152Dy(1), 153Dy(3)} (three-quarter point). The parameters, baseline moment of inertia ({{I}}0), alignment (i) and effective pairing parameter (Δ0) are calculated using the least-squares fitting of the γ-ray transitions energies in the NS formula, semiclassical-PRM and modified exponential model with pairing attenuation, respectively. The calculated parameters are found to depend sensitively on the proposed baseline spin (I 0).
NASA Astrophysics Data System (ADS)
German, Estefania; Faccio, Ricardo; Mombrú, Álvaro W.
2017-12-01
Hydrogen titanate (H2Ti3O7) and TiO2-B polymorph are potential surfaces identified experimentally in the last years, which need to be analyzed. To study their performance as surfaces for dye sensitized solar cells (DSSC), a set of dye adsorption configurations were evaluated on them, as model dye the small and organic catechol molecule was used. We have calculated adsorption geometry, energy, electronic transfer from dye to semiconductor adsorbent and frontier orbitals by means of density functional theory (DFT). Results show that vacancy-like defected H2Ti3O7 (100) and TiO2-B (100) surfaces present favorable adsorption energies. Finally, an adequate energy level alignment make both surfaces prone to be adequate for direct electron transfer upon excitation, from catechol to the conduction band of the semiconductors, with bands located in the Visible region of the electromagnetic spectrum. Additionally, the band structure alignment indicates an increase in the open circuit voltage, in reference to I2/I3- redox pair potential. All these characteristics make hydrogen titanate (H2Ti3O7) and TiO2-B polymorph promising for DSSC applications.
Conduction Mechanisms in Multiferroic Multilayer BaTiO3/NiFe2O4/BaTiO3 Memristors
NASA Astrophysics Data System (ADS)
Samardzic, N.; Bajac, B.; Srdic, V. V.; Stojanovic, G. M.
2017-10-01
Memristive devices and materials are extensively studied as they offer diverse properties and applications in digital, analog and bio-inspired circuits. In this paper, we present an important class of memristors, multiferroic memristors, which are composed of multiferroic multilayer BaTiO3/NiFe2O4/BaTiO3 thin films, fabricated by a spin-coating deposition technique on platinized Si wafers. This cost-effective device shows symmetric and reproducible current-voltage characteristics for the actuating voltage amplitude of ±10 V. The origin of the conduction mechanism was investigated by measuring the electrical response in different voltage and temperature conditions. The results indicate the existence of two mechanisms: thermionic emission and Fowler-Nordheim tunnelling, which alternate with actuating voltage amplitude and operating temperature.
Tuning of magnetism in DyMn1-xFexO3 (x<0.1) system by iron substitution
NASA Astrophysics Data System (ADS)
Mihalik, Matúš; Mihalik, Marián; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Fitta, Magdalena; Quintero, Pedro A.; Meisel, Mark W.
2018-05-01
The effect of Fe doping on the magnetism of DyMn1-xFexO3 (x<0.1) single crystals is reported. Specifically, TN of the Mn sublattice decreases from 38 K (x = 0) to 33 K (x = 0.1), TS = 17.9 K (x = 0) connected with the transition of Mn-spins into the cycloidal magnetic phase decreases to 15.9 K (x = 0.01) and vanishes for higher x concentrations, while the ordering temperature of the Dy sublattice varies between 5.9 K (x = 0.01) and 4.1 K (x = 0.02). These results indicate the ground state magnetic structure of DyMnO3 can be destabilized, and the multiferroicity is completely suppressed by very low Fe doping. Similar effects were previously observed in the multiferroic TbMn1-xFexO3 system.
NASA Astrophysics Data System (ADS)
Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich
2017-01-01
We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-06
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
NASA Astrophysics Data System (ADS)
Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping
2018-07-01
The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.
Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.
In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption were assigned.« less
Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4
Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.
2015-10-20
In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption were assigned.« less
Microstructure and dielectric properties of pyrochlore Bi2Ti2O7 thin films
NASA Astrophysics Data System (ADS)
Cagnon, Joël; Boesch, Damien S.; Finstrom, Nicholas H.; Nergiz, Saide Z.; Keane, Sean P.; Stemmer, Susanne
2007-08-01
Bi2Ti2O7 thin films were grown by radio-frequency magnetron sputtering on bare and Pt-coated sapphire substrates at low substrate temperatures (˜200 °C). Postdeposition anneals were carried out at different temperatures to crystallize the films. Nearly phase-pure Bi2Ti2O7 thin films with the cubic pyrochlore structure were obtained at annealing temperatures up to 800 °C. Impurity phases, in particular Bi4Ti3O12, formed at higher temperatures. At 1 MHz, the dielectric constants were about 140-150 with a very small tunability and the dielectric loss was about 4×10-3. The dielectric loss increased with frequency. The dielectric properties of Bi2Ti2O7 films are compared to those of pyrochlore bismuth zinc niobate films.
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...
2016-06-07
The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less
Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W
2018-05-15
Reactions of rare-earth oxides with TiO2 were performed in high temperature (650-700 °C) hydrothermal fluids. Two different mineralizer fluids were examined, 20 M KOH and 30 M CsF, and their respective products analyzed. When concentrated KOH fluids were used, single crystals of a variety of new OH- containing species were isolated and structurally characterized: RE5Ti4O15(OH) (RE = La, Er) I, Sm3TiO5(OH)3II and RE5Ti2O11(OH) (RE = Tm-Lu) III. La5Ti4O15(OH) I crystallizes in the orthorhombic space group Pnnm with unit cell dimensions of a = 30.5152(12) Å, b = 5.5832(2) Å, c = 7.7590(3) Å and V = 1321.92(9) Å3, Z = 4. Sm3TiO5(OH)3II crystallizes in the monoclinic space group P21/m with unit cell parameters of a = 5.6066(2) Å, b = 10.4622(4) Å, c = 6.1258(2) Å and β = 104.7390(10)°, V = 347.50(2) Å3, Z = 2. Lu5Ti2O11(OH) III crystallizes in the monoclinic space group C2/m with unit cell dimensions of a = 12.1252(9) Å, b = 5.8243(4) Å, c = 7.0407(5) Å, β = 106.939(3)° and V = 475.65(6) Å3, Z = 2. When concentrated fluoride solutions are used, mostly RE2Ti2O7 type compounds were isolated in either cubic or monoclinic phases. In the case of cerium, Ce2Ti4O11IV was isolated that crystallizes in the monoclinic space group C2/c with unit cell parameters of a = 13.6875(7) Å, b = 5.0955(3) Å, c = 12.8592(7) Å, β = 108.964(2)° and V = 848.18(8) Å3, Z = 4. The synthesis, structural characterization, and supporting characterization are reported for all compounds. The work highlights the complementary nature of hydroxide and fluoride fluids in studying the reactivity of refractory oxides.
Large thermal Hall effect in a frustrated pyrochlore magnet
NASA Astrophysics Data System (ADS)
Hirschberger, Max; Krizan, Jason; Cava, Robert J.; Ong, N. Phuan
2015-03-01
In frustrated magnetism, the nature of the ground state and its elementary excitations are a matter of considerable debate. We present a detailed study of the full thermal conductivity tensor κij, including the Righi-Leduc (or thermal Hall) effect, in single crystals of the frustrated quantum spin-ice pyrochlore Tb2Ti2O7. The off-diagonal response κxy / T is large in this insulating material, despite the absence of itinerant electrons experiencing the Lorentz force. Our experiments over the temperature range of 0 . 8 - 200 K and in fields up to 14 T reveal a remarkable phenomenology: A sizeable field-linear Hall effect κxy / T is observed below 100 K, and its slope with respect to magnetic field increases strongly as we cool the sample. We observe significant curvature in the field dependence of κxy / T below 15 K. At the lowest temperatures, both κxx / T and the initial slope limB-->0 [κxy / TB ] are constant in temperature, behavior reminiscent of fermionic heat conduction in dirty metals. Experimental methods and verification of the intrinsic nature of the effect will be discussed. R.J.C. and N.P.O. are supported by a MURI Grant (ARO W911NF-12-1-0461) and by the US National Science Foundation (Grant Number DMR 0819860).
Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3
Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.
2014-01-01
In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose. PMID:25346028
Doong, Ruey-An; Hsieh, Tien-Chin; Huang, Chin-Pao
2010-07-15
The photoassisted reduction of metal ions and organic dye by metal-deposited Degussa P25 TiO(2) nanoparticles was investigated. Copper and silver ions were selected as the target metal ions to modify the surface properties of TiO(2) and to enhance the photocatalytic activity of TiO(2) towards methylene blue (MB) degradation. X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to characterize the crystallinity, chemical species and morphology of metal-deposited TiO(2), respectively. Results showed that the particle size of metal-deposited TiO(2) was larger than that of Degussa P25 TiO(2). Based on XRPD patterns and XPS spectra, it was observed that the addition of formate promoted the photoreduction of metal ion by lowering its oxidation number, and subsequently enhancing the photodegradation efficiency and rate of MB. The pseudo-first-order rate constant (k(obs)) for MB photodegradation by Degussa P25 TiO(2) was 3.94 x 10(-2) min(-1) and increased by 1.4-1.7 times in k(obs) with metal-deposited TiO(2) for MB photodegradation compared to simple Degussa P25 TiO(2). The increase in mass loading of metal ions significantly enhanced the photodegradation efficiency of MB; the k(obs) for MB degradation increased from 3.94 x 10(-2) min(-1) in the absence of metal ion to 4.64-7.28 x 10(-2) min(-1) for Ag/TiO(2) and to 5.14-7.61 x 10(-2) min(-1) for Cu/TiO(2). In addition, the electrons generated from TiO(2) can effectively reduce metal ions and MB simultaneously under anoxic conditions. However, metal ions and organic dye would compete for electrons from the illuminated TiO(2). Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badran, Hussain Ali, E-mail: badran_hussein@yahoo.com; Ajeel, Khalid I.; Lazim, Haidar Gazy
Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10{sup −7} cm{sup 2}/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), ormore » Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO{sub 2} layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V{sub oc}, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO{sub 2} sol–gel, were investigated at different particle sizes, using the z-scan technique.« less
Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Mingmin; Henderson, Michael A.
2011-08-02
The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Astrophysics Data System (ADS)
Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna
2017-04-01
P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.
NASA Astrophysics Data System (ADS)
Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi
The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.
Nishikawa, Masami; Shiroishi, Wataru; Honghao, Hou; Suizu, Hiroshi; Nagai, Hideyuki; Saito, Nobuo
2017-08-17
For an Ir-doped TiO 2 (Ir:TiO 2 ) photocatalyst, we examined the most dominant electron-transfer path for the visible-light-driven photocatalytic performance. The Ir:TiO 2 photocatalyst showed a much higher photocatalytic activity under visible-light irradiation than nondoped TiO 2 after grafting with the cocatalyst of Fe 3+ . For the Ir:TiO 2 photocatalyst, the two-step photoexcitation of an electron from the valence band to the conduction band through the Ir doping level occurred upon visible-light irradiation, as observed by electron spin resonance spectroscopy. The two-step photoexcitation through the doping level was found to be a more stable process with a lower recombination rate of hole-electron pairs than the two-step photoexcitation process through an oxygen vacancy. Once electrons are photoexcited to the conduction band by the two-step excitation, the electrons can easily transfer to the surface because the conduction band is a continuous electron path, whereas the electrons photoexcited at only the doping level could not easily transfer to the surface because of the discontinuity of this path. The observed two-step photoexcitation from the valence band to the conduction band through the doping level significantly contributes to the enhancement of the photocatalytic performance.
Magnetic structure of Ba (TiO ) Cu4(PO4)4 probed using spherical neutron polarimetry
NASA Astrophysics Data System (ADS)
Babkevich, P.; Testa, L.; Kimura, K.; Kimura, T.; Tucker, G. S.; Roessli, B.; Rønnow, H. M.
2017-12-01
The antiferromagnetic compound Ba (TiO ) Cu4(PO4)4 contains square cupola of corner-sharing CuO4 plaquettes, which were proposed to form effective quadrupolar order. To identify the magnetic structure, we have performed spherical neutron polarimetry measurements. Based on symmetry analysis and careful measurements, we conclude that the orientation of the Cu2 + spins form a noncollinear in-out structure with spins approximately perpendicular to the CuO4 motif. Strong Dzyaloshinskii-Moriya interaction naturally lends itself to explain this phenomenon. The identification of the ground-state magnetic structure should serve well for future theoretical and experimental studies into this and closely related compounds.
NASA Astrophysics Data System (ADS)
Koo, Bon-Ryul; Oh, Dong-Hyeun; Ahn, Hyo-Jin
2018-03-01
Nb-doped TiO2 (Nb-TiO2) blocking layers (BLs) were developed using horizontal ultrasonic spray pyrolysis deposition (HUSPD). In order to improve the photovoltaic properties of the dye-sensitized solar cells (DSSCs), we optimized the Nb doping level of the Nb-TiO2 BLs by controlling the Nb/Ti molar ratio (0, 5, 6, and 7) of the precursor solution for HUSPD. Compared to bare TiO2 BLs, the Nb-TiO2 BLs formed a cascading band structure using the positive shift of the conduction band minimum of the Nb-TiO2 positioned between fluorine-doped tin oxide (FTO) and TiO2. This results in the increase of the potential current and the suppression of the electron recombination. Hence, it led to the improvement of the electrical conductivity, due to the increased electron concentration by the Nb doping into TiO2. Therefore, the DSSC fabricated with the Nb-TiO2 BLs at a Nb/Ti molar ratio of 6 showed superior photoconversion efficiency (∼7.50 ± 0.20%) as a result of the improved short-circuit current density. This is higher than those with the other Nb-TiO2 BLs and without BL. This improvement of the photovoltaic properties for the DSSCs can be attributed to the synergistic effects of uniform and compact BL relative to the prevention of the backward electron transport at the FTO/electrolyte interface, efficient electron transport at interfaces relative to a cascading band structure of FTO/Nb-TiO2/TiO2 multilayers and the facilitated electron transport at the BLs relative to the increased electrical conductivity of the optimized Nb-TiO2 BLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Peng, Yong; Xiao, Ruihua
SrTiO{sub 3}/nano Al{sub 2}O{sub 3} inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO{sub 3} films doped by equivalent amount of sol-Al{sub 2}O{sub 3} have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO{sub 3} films doped with sol-Al{sub 2}O{sub 3}. The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodicmore » oxidation reaction in origin, which can repair the internal and/or surface defects of the films.« less
Ke, Hongshan; Lu, Xiaohua; Wei, Wen; Wang, Wenyuan; Xie, Gang; Chen, Sanping
2017-06-27
The synthesis, characterization and properties of two unprecedented undecanuclear heterobimetallic Zn 4 Ln 7 complexes of formula [Zn 4 Ln 7 (L) 8 (O 2 ) 2 (OH) 4 (Cl) 4 (H 2 O) 4 ]·Cl·4H 2 O·4CH 3 CN (Ln = Gd (1), Dy (2)) encapsulating two peroxide anions are presented, representing a very rare example of a 3d-peroxo-Ln system and expanding the realm of metal-peroxo complexes. These eleven metal ions are arranged in a peculiar structural motif, where Zn 4 is located at the peripheral shell wrapping Ln 7 in the inner core. The Zn ions are penta-coordinate in all cases, linked to the NO 2 donor atoms from the L 2- ligand and to a hydroxyl group, and the apical position is occupied by a chloride anion. All Ln III ions in these systems are octa-coordinate with LnO 8 and LnNO 7 coordination spheres. Magnetocaloric effect (MCE) behavior has been found in the Gd analogue due to multiple low lying excited states arising from antiferromagnetic Gd-Gd exchange interactions. The Dy derivative shows frequency dependent out-of-phase signals indicating the presence of slow relaxation of magnetization below 8 K under zero applied direct current (dc) field, but without reaching a maximum, which is due to a faster quantum tunneling relaxation. The effective barrier extracted from the frequency dependent data is U eff = 11.2 K and a τ 0 of 4.18 × 10 -6 s.
Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng
2016-01-01
Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821
NASA Astrophysics Data System (ADS)
Byun, Jong Min; Park, Chun Woong; Do Kim, Young
2018-06-01
In this study, we investigated the state of Y2O3, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced Ti2O3 that formed different reaction products depending on the state of Y2O3 into the Fe-based ODS alloys. In addition, the reaction products of Ti2O3, Y, and Y2O3 powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that YTiO3 and Y2Ti2O7 were formed when Ti2O3 reacted with Y; in contrast, only Y2Ti2O7 was detected during the reaction between Ti2O3 and Y2O3. In the alloy of Fe-Cr-Y2O3 with Ti2O3, YTiO3 (formed by the reaction of Ti2O3 with Y) was detected after the MA and heat treatment processes were complete, even though Y2O3 was present in the system. Using these results, it was proved that Y2O3 decomposed into monoatomic Y and O during the MA process.
Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu
2015-10-12
Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jo, Sinae; Kang, Seunggu
2013-05-01
The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.
NASA Astrophysics Data System (ADS)
Mohammed, Al-B. F. A.; Lakshminarayana, G.; Baki, S. O.; Halimah, M. K.; Kityk, I. V.; Mahdi, M. A.
2017-11-01
Dy3+-doped borate glasses with nominal composition (60-x) B2O3-10 ZnO-10 PbO-10 Na2O-10 CaO-(x) Dy2O3 (x = 0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5 and 2.0 mol%) were prepared by the melt quenching technique. The XRD and SEM confirm the amorphous nature of the glasses and through EDAX, all the related elements were found in the synthesized glasses. The vibrations of metal cations such as Pb2+ and Zn2+, B-O-B bond bending vibrations from pentaborate groups, bending vibrations of BO3 triangles, and stretching vibrations of tetrahedral BO4- units etc. are identified from the respective FTIR and Raman spectra including the non-hygroscopic nature of the synthesized glasses. The TGA and DSC measurements were performed to study thermal properties, where ΔT >100 °C (ΔT = Tx - Tg) for all the glasses. Among all the Dy3+-doped glasses, the 0.75 mol% Dy3+-doped glass shows the highest PL intensity with four emissions, where the two transitions corresponding to 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) are observed more intense than the others. The CIE chromaticity (x,y) coordinates for BZPNCDy 0.1 mol% glass are (0.398, 0.430), close to the white light region in the CIE 1931 chromaticity diagram. The dielectric properties of the 0.75 mol% Dy3+-doped glass such as dielectric constant, dielectric loss and AC conductivity were studied in the various frequencies and temperature.
Moon, E. J.; May, A. F.; Shafer, P.; ...
2017-04-20
Here, we report the physical properties of La 0.7 Sr 0.3 MnO 3 thin films on Sr 2 IrO 4 single crystals. We also deposited the manganite films using oxide molecular beam epitaxy on flux-grown (001)-oriented iridate crystals. Temperature-dependent magnetotransport and x-ray magnetic circular dichroism measurements reveal the presence of a ferromagnetic metallic ground state in the films, consistent with films grown on SrTiO 3 and La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 . A parallel resistance model is used to separate conduction effects within the Sr 2 IrO 4 substrate and the La 0.7 Sr 0.3more » MnO 3 thin films, revealing that the measured resistance maximum does not correspond to the manganite Curie temperature but results from a convolution of properties of the near-insulating substrate and metallic film. Furthermore, the ability to grow and characterize epitaxial perovskites on Sr 2 IrO 4 crystals enables a new route for studying magnetism at oxide interfaces in the presence of strong spin-orbit interactions.« less
Magnetochromic effect in multiferroic R In 1 ₋ x Mn x O 3 ( R = Tb , Dy)
Chen, P.; Holinsworth, B. S.; O'Neal, K. R.; ...
2015-05-26
We combined high field magnetization and magneto-optical spectroscopy to investigate spin-charge coupling in Mn-substituted rare-earth indium oxides of chemical formula RIn₁₋ xMn xO₃ (R=Tb, Dy). The edge states, on-site Mn³⁺d to d excitations, and rare-earth f-manifold excitations all track the magnetization energy due to dominant Zeeman interactions. The field-induced modifications to the rare-earth excitations are quite large because spin-orbit coupling naturally mixes spin and charge, suggesting that the next logical step in the design strategy should be to bring spin-orbit coupling onto the trigonal bipyramidal chromophore site with a 4 or 5d center.
Cibim, Daniela Dellosso; Saito, Miki Taketomi; Giovani, Priscila Alves; Borges, Ana Flávia Sanches; Pecorari, Vanessa Gallego Arias; Gomes, Orisson Ponce; Nociti-Junior, Francisco Humberto
2017-01-01
The aim of this study was to assess the performance of glass ionomer cement (GIC) added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w)] were incorporated into GIC's (Ketac Molar EasyMix™) powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS), surface roughness (SR), Knoop hardness (SH), fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM) composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α ≤ 0.05). Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC's physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations. PMID:28611845
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-01-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1–10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV–3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells. PMID:27444578
Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu
2018-06-12
Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .
Out-of-equilibrium dynamics and extended textures of topological defects in spin ice
NASA Astrophysics Data System (ADS)
Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.
2016-09-01
Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .
Sattonnay, G; Tétot, R
2014-02-05
Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.