Science.gov

Sample records for dye chemistry

  1. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  2. Fiber Chemistry Effects on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dyeing efficiency of cotton knits was investigated as a function both of metal contents native to the cotton fiber as well as the presence of sugar-protein reaction products which contribute to +b. Results indicate that aged cotton fiber exhibits both a higher +b value and a tendency to incorpor...

  3. The Chemistry of Food Dyes. Palette of Color Monograph Series.

    ERIC Educational Resources Information Center

    Epp, Dianne N.

    Dyes aren't just for fabrics--colorants have been added to food for centuries to enhance its appearance. This monograph and teaching guide investigates both the compounds that give foods their natural color and synthetic colorants currently approved for use in foods. Problem-solving inquiry based activities involve high school level students in…

  4. The Chemistry of Natural Dyes. Palette of Color Monograph Series.

    ERIC Educational Resources Information Center

    Epp, Dianne N.

    From prehistoric times people have been fascinated with color; from cave paintings to the latest computers, color has been a constant companion. Textiles and craft items are made more beautiful by the alteration or application of colorants. This teaching resource investigates dyes obtained from natural sources, such as plants and animals. These…

  5. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  6. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  7. Photocatalytic water splitting with acridine dyes: Guidelines from computational chemistry

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Karsili, Tolga N. V.; Sobolewski, Andrzej L.; Domcke, Wolfgang

    2016-01-01

    The photocatalytic splitting of water into Hrad and OHrad radicals in hydrogen-bonded chromophore-water complexes has been explored with computational methods for the chromophores acridine orange (AO) and benzacridine (BA). These dyes are strong absorbers within the range of the solar spectrum. It is shown that low-lying charge-transfer excited states exist in the hydrogen-bonded AOsbnd H2O and BAsbnd H2O complexes which drive the transfer of a proton from water to the chromophore, which results in AOHradsbnd OHrad or BAHradsbnd OHrad biradicals. The AOHrad and BAHrad radicals possess bright ππ∗ excited states with vertical excitation energies near 3.0 eV which are predissociated by a low-lying repulsive πσ∗ state. The conical intersections of the πσ∗ state with the ππ∗ excited states and the ground state provide a mechanism for the photodetachment of the H-atom by a second photon. Our results indicate that AO and BA are promising chromophores for water splitting with visible light.

  8. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    PubMed

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12.

  9. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  10. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  11. Applying Statistics in the Undergraduate Chemistry Laboratory: Experiments with Food Dyes

    NASA Astrophysics Data System (ADS)

    Thomasson, Kathryn A.; Lofthus-Herschman, Sheila; Humbert, Michelle; Kulevsky, Norman

    1998-02-01

    Simple experiments have been developed using visible spectroscopy to introduce students to statistical analysis of data. Students in chemistry often gain their first substantial experience with statistics in undergraduate chemistry laboratories (Quantitative Analysis and Physical Chemistry). Simple experiments using Beer's Law of absorption spectroscopy help introduce students to applying statistics. We have chosen two food coloring dyes found in many household items: FD and C Red #40 and FD and C Blue #1. To learn to evaluate their data, the students determine the concentration of a solution at a variety of confidence limits, and treat their data for suspicious values using the Q-test. Other experiments can be done to learn the concept of pooled variance. For example, students compare solutions they make themselves to determine if they are the same to what confidence level. Furthermore, Beer's Law can be used to teach linear least squares fitting by using a serial dilution of a colored compound and measuring absorbance for each concentration. Finally, by using common household substances and a simple analysis technique, students find that statistics can be considerably less threatening, and in some cases even fun.

  12. Application of photoacoustic, photothermal and fluorescence spectroscopies in signal enhancement and the kinetics, chemistry and photophysics of several dyes

    SciTech Connect

    Isak, S.J.

    1992-06-01

    Modified photoacoustic and photothermal spectroscopies are applied in analytical studies of liquid and solid systems. Quenching of benzophenone by potassium iodide is used to demonstrate application of time resolved photothermal spectroscopies in study of fast (submicrosecond) deexcitation processes. Inherently weak X-ray photoacoustic signals at a synchrotron are enhanced by the introduction of a volatile liquid into a gas-microphone photoacoustic cell. Traditionally, photoacoustic signals have been detected either by gas coupling with a microphone or with a piezoelectric detector. However, optically detected photoacoustic signals have been used in the determination of physical properties of a liquid sample system and are successfully applied to the study of deexcitation processes of a number of dye molecules. Photothermal beam deflection photoacoustic (PBDPA), fluorescence and absorbance measurements are utilized to study the chemistry and photophysics of cresyl violet in aqueous, aqueous micellar and methanolic solutions. A concentration dependence of the fluorescence quantum yield of cresyl violet is investigated. Aspects of chemistry and photophysics relating to potential use of several diazo dyes as photothermal sensitizing dyes in photodynamic therapy are explored experimentally and discussed. Photothermal beam deflection, fluorescence and absorbance measurements are again utilized. The dyes are found to have a number of interesting chemical and photophysical properties. They are also determined to be ideal photothermal sensitizing dye candidates.

  13. A ``plasmonic cuvette'': dye chemistry coupled to plasmonic interferometry for glucose sensing

    NASA Astrophysics Data System (ADS)

    Siu, Vince S.; Feng, Jing; Flanigan, Patrick W.; Palmore, G. Tayhas R.; Pacifici, Domenico

    2014-06-01

    A non-invasive method for the detection of glucose is sought by millions of diabetic patients to improve personal management of blood glucose over a lifetime. In this work, the synergistic advantage of combining plasmonic interferometry with an enzyme-driven dye assay yields an optical sensor capable of detecting glucose in saliva with high sensitivity and selectivity. The sensor, coined a "plasmonic cuvette," is built around a nano-scale groove-slit-groove (GSG) plasmonic interferometer coupled to an Amplex-red/Glucose-oxidase/Glucose (AR/GOx/Glucose) assay. The proposed device is highly sensitive, with a measured intensity change of 1.7×105%/m (i.e., one order of magnitude more sensitive than without assay) and highly specific for glucose sensing in picoliter volumes, across the physiological range of glucose concentrations found in human saliva (20-240 μm). Real-time glucose monitoring in saliva is achieved by performing a detailed study of the underlying enzyme-driven reactions to determine and tune the effective rate constants in order to reduce the overall assay reaction time to ˜2 min. The results reported suggest that by opportunely choosing the appropriate dye chemistry, a plasmonic cuvette can be turned into a general, real-time sensing scheme for detection of any molecular target, with high sensitivity and selectivity, within extremely low volumes of biological fluid (down to femtoliters). Hereby, we present the results on glucose detection in artificial saliva as a notable and clinically relevant case study.

  14. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  15. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  16. The history, chemistry and modes of action of carmine and related dyes.

    PubMed

    Dapson, R W

    2007-08-01

    Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a "semi-synthetic" dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused

  17. Sawdust Derivative for Environmental Application: Chemistry, Functionalization and Removal of textile dye from aqueous solution.

    PubMed

    Pinto, Thais F; Bezerra, Cícero W B; Silva, Domingos S A; Silva, Edson C DA; Vieira, Adriana P; Airoldi, Claudio; Melo, Júlio C P DE; Silva, Hildo A S; Santana, Sirlane A A

    2016-09-01

    The adsorption of Violet Remazol 5R (VR 5) on wood sawdust modified with succinic anhydride (SSA) as a function of contact time, pH, and initial dye concentrations was investigated using a batch technique under ambient conditions. The SSA obtained was confirmed by IR spectroscopy, thermogravimetry and 13C NMR, and degrees of substitution (DS) were calculated. A study on the effect of the pH on the adsorption of VR 5 showed that the optimum pH was 2.0. The interactions were assayed with respect to the pseudo-first-order and pseudo-second-order kinetic models, and were found to follow closely the pseudo-second-order. The isotherm was adjusted to the Langmuir, the Freundlich and the Temkin sorption models. SSA is a promising material for the removal of dye textile from aqueous solutions, and under conditions studied the removal percentage achieved was 51.7%. PMID:27580360

  18. Accuracy of color prediction of anthraquinone dyes in methanol solution estimated from first principle quantum chemistry computations.

    PubMed

    Cysewski, Piotr; Jeliński, Tomasz

    2013-10-01

    The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.

  19. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  20. The Chemistry of Formazan Dyes: Synthesis and Characterization of a Stable Verdazyl Radical and a Related Boron-Containing Heterocycle

    ERIC Educational Resources Information Center

    Berry, David E.; Hicks, Robin G.; Gilroy, Joe B.

    2009-01-01

    This experiment describes the synthesis and characterization of a formazan dye, and its subsequent conversion to a stable verdazyl radical and a boron-nitrogen heterocycle (boratatetrazine). Each of these compounds is intensely colored and is prepared and handled under aerobic conditions, which often surprises students as free radicals are…

  1. Application of Near-IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third-Order Nonlinear Optical Materials.

    PubMed

    Mi, Yongsheng; Liang, Pengxia; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai; Yu, Lian

    2016-02-01

    Recently, third-order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron-rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third-order nonlinear optical properties of the dyes, which showed typical d-π-A structures, were characterized by Z-scan techniques. In addition, the self-assembly properties were investigated through the phase-exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post-functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components.

  2. Application of Near‐IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third‐Order Nonlinear Optical Materials

    PubMed Central

    Mi, Yongsheng; Liang, Pengxia; Cao, Hui; He, Wanli

    2015-01-01

    Abstract Recently, third‐order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron‐rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8‐tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third‐order nonlinear optical properties of the dyes, which showed typical d‐π‐A structures, were characterized by Z‐scan techniques. In addition, the self‐assembly properties were investigated through the phase‐exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post‐functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components. PMID:27308215

  3. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.

    PubMed

    Bathaie, S Z; Farajzade, A; Hoshyar, R

    2014-08-01

    The perennial flowering plant, saffron crocus (Crocus sativus L.), is the source of the most expensive spice in the world. The dried stigmas of saffron flowers are the source of a natural dye, saffron, which has been used from ancient times for dyeing silk and fabric rugs, and for painting; it also has been used for cooking and in medicine. The yellow compounds present in the dye include crocins, which are 20-carbon water soluble glycosyl derivatives of the carotenoid, crocetin, and the dicarboxylic acid itself. We review the chemistry of these compounds and discuss various applications of saffron as a natural dye. We review in particular the use of saffron or its constituents in histopathologic techniques.

  4. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.

    PubMed

    Astakhova, I Kira; Wengel, Jesper

    2013-01-14

    Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2'-O-propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM).

  5. Aqueous dispersible graphene/Pt nanohybrids by green chemistry: application as cathodes for dye-sensitized solar cells.

    PubMed

    Kim, Young-Gon; Akbar, Zico Alaia; Kim, Dong Young; Jo, Seong Mu; Jang, Sung-Yeon

    2013-03-01

    Aqueous dispersible nanohybrids (NHBs) of graphene nanosheets (GNSs) and Pt nanoparticles (Pt-NPs) were synthesized through the one-pot reduction of their precursors using an environmentally benign chemical, vitamin C. The concurrent reduction of the precursors, which includes graphene oxide (GO) to GNS and H2PtCl6 to Pt(0), was facile and efficient to yield GNS/Pt-NHBs in which face-centered cubic (fcc) crystalline Pt-NPs with average diameters of ~5 nm were robustly attached on the surface of the GNSs. The conversion yield during Pt reduction was fairly high (∼90%) and the Pt content within the NHBs was easily controllable. The resulting stable aqueous colloidal dispersion of GNS/Pt-NHBs was successfully fabricated as thin films without using any binder by the electro-spray method at room temperature, and the fabricated samples were used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The electrocatalytic activity of the NHBs for I(-)/I3(-) redox couples in conventional DSSCs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis. Doping of GNSs with small amounts of Pt-NPs (<10 wt %) could dramatically enhance the redox kinetics. The enhanced electrocatalytic activity of the GNS/Pt-NHBs was reflected in the performance of the DSSCs. The power conversion efficiency of optimized DSSCs using the NHB-CEs was 8.91% (VOC: 830 mV, JSC: 15.56 mAcm(-2), and FF: 69%), which is comparable to that of devices using the state-of-the-art Pt-based CEs (8.85%). PMID:23394268

  6. Aqueous dispersible graphene/Pt nanohybrids by green chemistry: application as cathodes for dye-sensitized solar cells.

    PubMed

    Kim, Young-Gon; Akbar, Zico Alaia; Kim, Dong Young; Jo, Seong Mu; Jang, Sung-Yeon

    2013-03-01

    Aqueous dispersible nanohybrids (NHBs) of graphene nanosheets (GNSs) and Pt nanoparticles (Pt-NPs) were synthesized through the one-pot reduction of their precursors using an environmentally benign chemical, vitamin C. The concurrent reduction of the precursors, which includes graphene oxide (GO) to GNS and H2PtCl6 to Pt(0), was facile and efficient to yield GNS/Pt-NHBs in which face-centered cubic (fcc) crystalline Pt-NPs with average diameters of ~5 nm were robustly attached on the surface of the GNSs. The conversion yield during Pt reduction was fairly high (∼90%) and the Pt content within the NHBs was easily controllable. The resulting stable aqueous colloidal dispersion of GNS/Pt-NHBs was successfully fabricated as thin films without using any binder by the electro-spray method at room temperature, and the fabricated samples were used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The electrocatalytic activity of the NHBs for I(-)/I3(-) redox couples in conventional DSSCs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis. Doping of GNSs with small amounts of Pt-NPs (<10 wt %) could dramatically enhance the redox kinetics. The enhanced electrocatalytic activity of the GNS/Pt-NHBs was reflected in the performance of the DSSCs. The power conversion efficiency of optimized DSSCs using the NHB-CEs was 8.91% (VOC: 830 mV, JSC: 15.56 mAcm(-2), and FF: 69%), which is comparable to that of devices using the state-of-the-art Pt-based CEs (8.85%).

  7. Quirks of dye nomenclature. 1. Evans blue.

    PubMed

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name. PMID:23957706

  8. Green chemistry methods in sulfur dyeing: application of various reducing D-sugars and analysis of the importance of optimum redox potential.

    PubMed

    Blackburn, Richard S; Harvey, Anna

    2004-07-15

    The importance of sulfur dyeing of cellulosic fibers, particularly cotton, is realized economically throughout the dyeing industry. At the present time, dyeing with sulfur dyes requires the use of various auxiliaries, many of which have adverse effects on the environment. The most damaging of these is the reducing agent sodium sulfide, required to reduce the dye molecules to a water-soluble leuco form to enable adsorption and diffusion into the fiber. In this study, attempts have been made to replace the sodium sulfide used within the sulfur dyeing process with a variety of environmentally friendly reducing sugars. The redox potential of various hexose and pentose monosaccharides and reducing disaccharides was recorded and compared. Subsequently, cotton was dyed with the world's most important sulfur dye, C. I. Sulfur Black 1, using the reducing sugars under alkaline conditions, and compared to dyeings secured by employing commercial sulfide reducing agents. It was observed that reducing sugars gave comparable, and in many cases superior, color strength and wash fastness results, with respect to the commercial sulfide-based reducing agents, which still account for the vast majority of sulfur dyeing processes and that pose significant environmental concern. Employment of reducing sugars in sulfur dyeing could provide a sustainable, nontoxic, biodegradable, cost-effective alternative to sodium polysulfide and sodium hydrogen sulfide. Comparison of the redox potential of reducing sugars against the color strength of the dyeings secured demonstrated that there was an optimum redox potential of around -650 mV for maximum color strength achieved. The same redox potential also conferred the lowest color loss upon washing. These observations were attributed to reduction of the polymeric dye molecules to an optimum size for fiber affinity and diffusion into the fiber, but which would also confer maximum wash fastness upon oxidation. PMID:15298216

  9. Dye Painting!

    ERIC Educational Resources Information Center

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  10. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  11. Chemistry for Artists and Art Buffs.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1979-01-01

    This course provides an attractive introduction to chemistry for a group of students who would normally avoid traditional chemistry courses. Topics include color, pigments, metals, ceramics, glass, paints, plastics, fibers, and dyes. (BB)

  12. Investigation of the azo-hydrazone tautomeric equilibrium in an azo dye involving the naphthalene moiety by UV-vis spectroscopy and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Ünal, Arslan; Eren, Bilge; Eren, Erdal

    2013-10-01

    Photophysical properties of the azo-hydrazone tautomerism of Eriochrome Blue Black B (1-(1-hydroxy-2-naphthylazo)-2-naphthol-4-sulphonic acid) in DMF, MeCN and water were investigated using UV-visible spectroscopy and quantum chemical calculations. The optimized molecular structure parameters, relative energies, mole fractions, electronic absorption spectra and HOMO-LUMO energies for possible stable tautomeric forms of EBB were theoretically calculated by using hybrid density functional theory, (B3LYP) methods with 6-31G(d) basis set level and polarizable continuum model (PCM) for solvation effect. The effects of varying pH-, dye concentration-, solvent-, temperature-, and time-dependences on the UV-vis spectra of Eriochrome Blue Black B were also investigated experimentally. The calculations showed that the dye exhibited acid-base, azo-hydrazone and aggregate equilibria in DMF solution, while the most probably preferred form in MeCN solution was azo form. Thermodynamic parameters of dimerization reaction in DMF solution proved that entropy was the driving force of this reaction.

  13. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  14. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  15. Synthesis of azoimidazolium dyes with nitrous oxide.

    PubMed

    Tskhovrebov, Alexander G; Naested, Lara C E; Solari, Euro; Scopelliti, Rosario; Severin, Kay

    2015-01-19

    A new method for the synthesis of industrially important azoimidazolium dyes is presented. The procedure is based on a reagent which is rarely used in the context of synthetic organic chemistry: nitrous oxide ("laughing gas"). N2O is first coupled to N-heterocyclic carbenes. Subsequent reaction with aromatic compounds through an AlCl3-induced C-H activation process provides azoimidazolium dyes in good yields. PMID:25420599

  16. Dyes and stains: from molecular structure to histological application.

    PubMed

    Veuthey, Tania; Herrera, Georgina; Dodero, Veronica I

    2014-01-01

    In the present review, the chemistry of dyes as well as the interaction mechanisms between tissue and dye has been detailed, and also some of the key factors affecting the selectivity of dyes by certain cellular structures have been mentioned. Moreover, due to the relevance that histological stains have acquired in biomedical research, some of the most common stains have been described, pointing out previous and current applications in basic and applied research.

  17. Determination of minimum enzymatic decolorization time of reactive dye solution by spectroscopic & mathematical approach.

    PubMed

    Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim

    2015-02-01

    Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation.

  18. JCE Resources for Chemistry and Art.

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2001-01-01

    Includes an annotated bibliography of articles featured in this journal on art, dyes, glass, pottery and ceramics, interdisciplinary courses in art and chemistry, light and color, metalwork, and music. (YDS)

  19. The Chemistry of Photographic Color Dye Formation

    ERIC Educational Resources Information Center

    Kahn, Bruce E.

    2004-01-01

    A laboratory activity that can be used at a number of levels from high school to college is discussed. This activity can be used to teach chemical concepts such as oxidation and reduction, stoichiometry, acids and bases, pH, nucleophilic reactions, conjugation, leaving groups, complexation, solubility, and reversibility.

  20. Textile dye dermatitis.

    PubMed

    Hatch, K L; Maibach, H I

    1995-04-01

    The literature concerning textile dye dermatitis published during the last decade was reviewed. Sixty-one cases of dye-allergic contact dermatitis in which the presentation or course of the dermatitis was unusual or the dye allergen was one not previously reported have been described. The four new dye allergens discovered were Disperse Blue 106, Disperse Blue 85, Disperse Brown 1, and Basic Red 46. The incidence of dye dermatitis varied from 1% to 15.9% depending on the country, patient sample, and number of dyes in the patch test series. The 10 new dye allergens discovered in these studies were Disperse Blue 153, Disperse Orange 13, Basic Black 1, Basic Brown 1, the acid dyes Supramine Yellow and Supramine Red, the direct dye Diazol Orange, the basic dye Brilliant Green, Turquoise Reactive, and Neutrichrome Red. Disperse Blue 106 and Disperse Blue 124 were shown to be the strongest clothing dye sensitizers to date. Standard screening patch test series were found to be inadequate for the detection of textile dye sensitivity; therefore textile dye patch test series should be used. It is difficult to determine whether the incidence of dye dermatitis is increasing or decreasing because controlled epidemiologic studies are lacking, but data suggest that textile dye sensitivity is more common than previously believed.

  1. A Colorful Solubility Exercise for Organic Chemistry

    ERIC Educational Resources Information Center

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  2. Solvatochromic dyes detect the presence of homeopathic potencies.

    PubMed

    Cartwright, Steven J

    2016-02-01

    A systematic approach to the design of simple, chemical systems for investigating the nature of homeopathic medicines has led to the development of an experimental protocol in which solvatochromic dyes are used as molecular probes of serially diluted and agitated solutions. Electronic spectroscopy has been used to follow changes in the absorbance of this class of dyes across the visible spectrum in the presence of homeopathic potencies. Evidence is presented using six different solvatochromic dyes in three different solvent systems. In all cases homeopathic potencies produce consistent and reproducible changes in the spectra of the dyes. Results suggest that potencies influence the supramolecular chemistry of solvatochromic dyes, enhancing either dye aggregation or disaggregation, depending upon dye structure. Comparable dyes lacking the intramolecular charge transfer feature of solvatochromic dyes are unaffected by homeopathic potencies, suggesting potencies require the oscillating dipole of solvatochromic dyes for effective interaction. The implications of the results presented, both for an eventual understanding of the nature of homeopathic medicines and their mode of action, together with future directions for research in this area, are discussed.

  3. The Chemistry of Color Photography

    ERIC Educational Resources Information Center

    Guida, Wayne C.; Raber, Douglas J.

    1975-01-01

    Presents several topics in color photography which can serve as an introduction of scientific concepts into the classroom, such as: photochemistry (energy transport), organic chemistry (dye formation), physics (nature of light), psychology (color perception), and engineering (isolation of different chemical processes within layers of the film).…

  4. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry. PMID:27319056

  5. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  6. Cloth dye poisoning

    MedlinePlus

    ... poisonous ingredient in most household cloth dyes. Most common household cloth dyes are made from nonpoisonous substances, such as: Mild soaps Pigments Salts Although these substances are generally considered not dangerous, ...

  7. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    PubMed

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-01

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed.

  8. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    PubMed

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-01

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed. PMID:27488198

  9. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  10. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  11. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  12. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  13. Candies to Dye For: Cooperative, Open-Ended Student Activities To Promote Understanding of Electrophoretic Fractionation.

    ERIC Educational Resources Information Center

    Emry, Randall; Curtright, Robert D.; Wright, Jonathan; Markwell, John

    2000-01-01

    Introduces electrophoresis activities developed for chemistry and biology courses in which students identify the food, drug, and cosmetic identity of the food dyes used in the coating of candies. (YDS)

  14. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  15. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  16. Aberration corrected STEM to study an ancient hair dyeing formula

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.

    2014-05-01

    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  17. Dye system for dye laser applications

    SciTech Connect

    Hammond, P.R.

    1991-05-21

    This patent describes a dye of the DCM family, (2-methyl-6-(2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl)-4H-pyran-4-ylidene)-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  18. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  19. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics.

    PubMed

    Al-Etaibi, Alya M; Alnassar, Huda S; El-Apasery, Morsy Ahmed

    2016-01-01

    The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated. PMID:27367659

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  1. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes experiments, demonstrations, activities and ideas relating to various fields of chemistry to be used in chemistry courses of secondary schools. Three experiments concerning differential thermal analysis are among these notes presented. (HM)

  3. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  4. Colour Chemistry

    ERIC Educational Resources Information Center

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  5. Diode-pumped dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O. A.; Gorbunkov, M. V.; Petukhov, V. A.; Semenov, M. A.

    2016-10-01

    This letter reports diode pumping for dye lasers. We offer a pulsed dye laser with an astigmatism-compensated three-mirror cavity and side pumping by blue laser diodes with 200 ns pulse duration. Eight dyes were tested. Four dyes provided a slope efficiency of more than 10% and the highest slope efficiency (18%) was obtained for laser dye Coumarin 540A in benzyl alcohol.

  6. Sweet Chemistry

    NASA Astrophysics Data System (ADS)

    Aurian-Blajeni*, Benedict; Sam, Jonathan; Sisak, Michael

    1999-01-01

    This laboratory exercise is an introduction to spectrophotometry suitable for college freshmen and high school students. It involves food dyes and brown M&M candy. The spectra of "primary" dyes are measured and represented graphically as absorbance vs wavelength to show that minimum absorption of light occurs in the spectral region corresponding to the color of the dye. The spectra of dye combinations illustrate the fact that some common colors are actually mixtures of colors. Finally, the Beer-Lambert law is verified by using the single-wavelength absorbance (620 nm, blue) of mixtures. This project illustrates the absorption of light by substances and its dependence on wavelength, the change of light absorption with the concentration of dissolved substance (Beer-Lambert law), and the explicit correspondence of colors with spectral features. It uses safe chemicals and connects everyday objects and substances with laboratory measurements.

  7. Hair dye poisoning

    MedlinePlus

    ... are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other harmful ... bleeding and infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system ...

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  9. Kids and Chemistry: Large Event Guide.

    ERIC Educational Resources Information Center

    Tinnesand, Michael

    This guide is intended to provide Kids and Chemistry (K&C) with a variety of age-appropriate, fun, and safe demonstrations. It features information on planning a large event and includes safety guidelines. Several activities are included under each major topic. Topics include: (1) Acids and Bases; (2) Unsigned; (3) Kool Tie-Dye; (4) Secret…

  10. Chemistry in the Time of the Pharaohs

    ERIC Educational Resources Information Center

    Loyson, Peter

    2011-01-01

    The Egyptians were known in the ancient world as experts in many applied chemistry fields such as metallurgy, wine and beer making, glass making, paper manufacture, paint pigments, dyes, cosmetics, perfumes, and pharmaceuticals. They made significant developments in the extraction of metals from their ores, especially copper and gold. The…

  11. Dye Application, Manufacture of Dye Intermediates and Dyes

    NASA Astrophysics Data System (ADS)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  12. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  13. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  14. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs. PMID:26273975

  15. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  16. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  17. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  18. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  20. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  1. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient.

  2. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  3. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  4. Hair Dyes and Cancer Risk

    MedlinePlus

    ... including aromatic amines that were found to cause cancer in animals. In the mid- to late 1970s, however, manufacturers changed the components in dye products to eliminate some of these chemicals ... in hair dyes can cause cancer. Given the widespread use of hair dye products, ...

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describing the construction of a self-testing device for learning ionic formulae, problems with standard'' experiments in crystallizing sulfur, preparative details for a cold-setting adhesive and vermillion dye, and providing data related to the industrial manufacture of sulphuric acid. (AL)

  7. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  8. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well.

  9. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  10. Photoredox Catalysis in Organic Chemistry

    PubMed Central

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  11. Photoredox Catalysis in Organic Chemistry.

    PubMed

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds. PMID:27477076

  12. Photoredox Catalysis in Organic Chemistry.

    PubMed

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.

  13. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  14. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  15. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  16. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  18. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  19. Dye removal from textile dye wastewater using recycled alum sludge.

    PubMed

    Chu, W

    2001-09-01

    The removal of dyes from textile dying wastewater by recycled alum sludge (RAS) generated by the coagulation process itself was studied and optimized. One hydrophobic and one hydrophilic dye were used as probes to examine the performance of this process. It was found that RAS is a good way of removing hydrophobic dye in wastewater, while simultaneously reducing the fresh alum dosage, of which one third of the fresh alum can be saved. The back-diffusion of residued dye from the recycling sludge is detected but is easily controlled as long as a small amount of fresh alum is added to the system. The use of RAS is not recommended for the removal of hydrophilic dyes, since the high solubility characteristics of such dyes can cause deterioration in the water quality during recycling.

  20. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 μm inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 μm inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  1. Azacoumarin dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.

  2. Azaquinolone dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.

  3. Microwave assisted dyeing of polyester fabrics with disperse dyes.

    PubMed

    Al-Mousawi, Saleh Mohammed; El-Apasery, Morsy Ahmed; Elnagdi, Mohamed Hilmy

    2013-09-09

    Dyeing of polyester fabrics with thienobenzochromene disperse dyes under conventional and microwave heating conditions was studied in order to determine whether microwave heating could be used to enhance the dyeability of polyester fabrics. Fastness properties of the dyed samples were measured. All samples dyed with or without microwave heating displayed excellent washing and perspiration fastness. The biological activities of the synthesized dyes against Gram positive bacteria, Gram negative bacteria, yeast and fungus were also evaluated.

  4. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.

  5. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini; Dollahon, Norman R.; Stoll, Sarah L.

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  6. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  7. Color chemistry and the environment.

    PubMed

    Anliker, R

    1977-09-01

    Dyes, and by extension the various organic compounds used for coloration, including organic pigments and fluorescent whitening agents (FWAs), are among the organic chemicals which we encounter as technological and functional necessities in nearly every sphere of our daily lives. They also greatly influence our mood and thus contribute enormously to the very quality of the lives we lead. At the same time we have come to realize that our achievements and continuing technological progress are only worthwhile provided they pose no hazard to the environment. Tremendous efforts have been undertaken on a worldwide scale to identify, measure, evaluate, and eliminate the undesirable effects of chemicals and, hence, dyes on man and the environment. The present paper deals in particular with the environmental problems associated with the manufacture and use of dyes, problems so complex and so varied in impact that only a discerning appraisal can put them into proper perspective. An attempt is made to define and evaluate these problems and to show, with reference to selected examples, what measures have been and are being implemented to overcome them. Various aspects of the relevant legal regulations, the obligation on manufacturers to take due care in their operations, and product liability are touched upon. This much is certain: A good deal of creative, interdisciplinary effort and meticulous attention to minor detail will be necessary to master existing and future environmental problems in this area. That is the challenge facing all scientists engaged in color chemistry. PMID:361372

  8. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging.

    PubMed

    Reisch, Andreas; Klymchenko, Andrey S

    2016-04-01

    Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed. PMID:26901678

  9. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  10. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  11. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  12. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  13. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer. PMID:6993608

  14. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer.

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  18. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  19. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  20. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  4. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  5. Overhead Projector Spectrum of Polymethine Dye: A Physical Chemistry Demonstration.

    ERIC Educational Resources Information Center

    Solomon, Sally; Hur, Chinhyu

    1995-01-01

    Encourages the incorporation into lecture of live experiments that can be predicted or interpreted with abstract models. A demonstration is described where the position of the predominant peak of 1,1'-diethyl-4,4'-cyanine iodide is measured in class using an overhead projector spectrometer, then predicted using the model of a particle in a…

  6. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    PubMed

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  7. New Analytical Method for the Determination of Detergent Concentration in Water by Fabric Dyeing

    ERIC Educational Resources Information Center

    Seng, Set; Kita, Masakazu; Sugihara, Reiko

    2007-01-01

    The use of harmful organic solvents in classrooms has become a critical issue of concern in the field of chemistry education. This article describes a classroom activity at a high school in which an acrylic fabric was used as the extraction medium in the analysis of the detergent concentration in water instead of organic solvents. Dyes were used…

  8. Photocatalytic Destruction of an Organic Dye Using TiO2 and Solar Energy.

    ERIC Educational Resources Information Center

    Giglio, Kimberly D.; And Others

    1995-01-01

    Describes a general chemistry experiment that is carried out in sunlight to illustrate the ability of TiO2 to act as a photocatalyst by mineralizing an organic dye into carbon dioxide. Details about the construction of the reactor system used to perform this experiment are included. (DDR)

  9. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  10. Synthesis of Triarylmethane and Xanthene Dyes Using Electrophilic Aromatic Substitution Reactions

    ERIC Educational Resources Information Center

    McCullagh, James V.; Daggett, Kelly A.

    2007-01-01

    The synthesis of dyes has long been a popular topic in organic chemistry laboratory experiments because it allows students to see first hand that reactions learned in class can be used to make compounds with useful applications. In this experiment electrophilic aromatic substitution reactions are used to synthesize several triarylmethane and…

  11. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  12. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  13. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Mamon, G. A.

    1991-01-01

    Recent theoretical studies of circumstellar chemistry are discussed for both red-giant and protostellar winds. The generalized photochemical model is able to account for the recently discovered silicon-bearing molecules in the prototypical, C-rich, AGB star IRC + 10216. The surprising occurrence of CO in protostellar winds that are largely atomic is interpreted to be the result of the high density and the rapid decrease of the temperature with distance that is expected for such winds.

  14. GC-MS and spectrophotometric analysis of biodegradation of new disazo dye by Trametes versicolor.

    PubMed

    Akdogan, H Ardag; Demircali, A; Aydemir, C; Pazarlioglu, N; Karci, F

    2011-01-01

    In this study; sub-tropical white rot fungi, Trametes versicolor was investigated for its ability to degrade 4-(3'-methyl-4'-(4"-nitrophenyl)azo- 1'H-pyrazol-5'-ylazo)-3-methyl- H-pyrazol-5-on in the mediums containing glucose and different concentrations of degrade dye in batch systems. This dye was synthetized at Pamukkale Universtiy of Organic Chemistry research laboratory. Samples were collected on 10 days, and was detected by Shimadzu UV-1600A spectrophotometry. Decolorization study showed that this disazo dye was removed by more than 70% in 10 days. Laccase enzyme activity was detected in samples and then last sample was analyzed by GC-MS. Metabolites weren't showed in GC-MS result. It was concluded that T. versicolor could achieve the biodegradation of this new disazo dye.

  15. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  16. Dyeing Properties of Natural Dye Syzygium cuminii on Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, V.; Ninge Gowda, K. N.; Sudhakar, R.

    2014-04-01

    Dyeing behavior of natural dye extracted from the bark of Syzygium cuminii L has been studied on silk fabric. Colour values and colour co-ordinates were examined in terms of K/S and L* a* b* C and h. A range of shades were obtained by using various mordants and mordanting techniques. Dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with the set standards to determine the eco-friendliness of natural dye. Their concentrations were much below the stipulated limits. Dyed samples were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and were found to possess antibacterial activity.

  17. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  18. Hair dye poisoning and rhabdomyolysis.

    PubMed

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity. PMID:25976581

  19. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  20. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  1. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential. PMID:20214593

  2. Dye removal by immobilised fungi.

    PubMed

    Rodríguez Couto, Susana

    2009-01-01

    Dyes are widely used within the food, pharmaceutical, cosmetic, printing, textile and leather industries. This has resulted in the discharge of highly coloured effluents that affect water transparency and gas solubility in water bodies. Furthermore, they pose a problem because of their carcinogenicity and toxicity. Therefore, removal of such dyes before discharging them into natural water streams is essential. For this, appropriate treatment technologies are required. The treatment of recalcitrant and toxic dyes with traditional technologies is not always effective or may not be environmentally friendly. This has impelled the search for alternative technologies such as biodegradation with fungi. In particular, ligninolytic fungi and their non-specific oxidative enzymes have been reported to be responsible for the decolouration of different synthetic dyes. Thus, the use of such fungi is becoming a promising alternative to replace or complement the current technologies for dye removal. Processes using immobilised growing cells seem to be more promising than those with free cells, since the immobilisation allows using the microbial cells repeatedly and continuously. This paper reviews the application of fungal immobilisation to dye removal. PMID:19211032

  3. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

  4. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  5. Provocative Opinion: Descriptive Chemistry.

    ERIC Educational Resources Information Center

    Bent, Henry A.; Bent, Brian E.

    1987-01-01

    Discusses many of the distinctions that chemists draw between theoretical chemistry and descriptive chemistry, along with the tendency for chemical educators to adopt the type of chemistry they feel is most important to teach. Uses examples to argue that theoretical chemistry and descriptive chemistry are, at the bottom line, the same. (TW)

  6. Synthetic chemistry with nitrous oxide.

    PubMed

    Severin, Kay

    2015-10-01

    This review article summarizes efforts to use nitrous oxide (N2O, 'laughing gas') as a reagent in synthetic chemistry. The focus will be on reactions which are carried out in homogeneous solution under (relatively) mild conditions. First, the utilization of N2O as an oxidant is discussed. Due to the low intrinsic reactivity of N2O, selective oxidation reactions of highly reactive compounds are possible. Furthermore, it is shown that transition metal complexes can be used to catalyze oxidation reactions, in some cases with high turnover numbers. In the final part of this overview, the utilization of N2O as a building block for more complex molecules is discussed. It is shown that N2O can be used as an N-atom donor for the synthesis of interesting organic molecules such as triazenes and azo dyes. PMID:26104268

  7. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    PubMed

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties.

  8. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  9. Systems chemistry approach in organic photovoltaics.

    PubMed

    Würthner, Frank; Meerholz, Klaus

    2010-08-16

    The common approach in organic materials science is dominated by the perception that the properties of the bulk materials are virtually determined by the properties of the molecular building blocks. In this Concept Article, we advocate for taking into account supramolecular organization principles for all kinds of organic solid-state materials, irrespective of them being crystalline, liquid crystalline, or amorphous, and discuss a showcase example, that is, the utilization of merocyanine dyes as p-type organic semiconductors in bulk heterojunction (BHJ) solar cells. Despite their extraordinarily large dipole moments, which are considered to be detrimental for efficient charge carrier transport, BHJ organic photovoltaic materials of these dyes with fullerenes have reached remarkable power conversion efficiencies of meanwhile nearly 5%. These at the first glance contradictory properties are, however, well-understandable on the systems chemistry level.

  10. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  11. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  12. Sea dye marker provides visibility for 20 hours

    NASA Technical Reports Server (NTRS)

    De Laat, F.

    1966-01-01

    Sea dye marker block releases a visible slick which lasts at least twelve hours. The dye marker uses a fluorescent dye in a heat cured binder which, when immersed in seawater, releases the dye at a controlled rate.

  13. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  14. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  15. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  16. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  17. An enhanced mangiferaindica for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  18. Pneumatically tunable optofluidic dye laser

    NASA Astrophysics Data System (ADS)

    Song, Wuzhou; Psaltis, Demetri

    2010-02-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with compressed air. This dye laser exhibits a pumping threshold of 1.6 μJ/pulse, a lasing linewidth of 3 nm, and a tuning range of 14 nm.

  19. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  20. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  1. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner.

  2. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  3. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  4. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  5. Natural dyes versus lysochrome dyes in cheiloscopy: A comparative evaluation

    PubMed Central

    Singh, Narendra Nath; Brave, V R; Khanna, Shally

    2010-01-01

    Cheiloscopy is the study of lip prints. Lip prints are genotypically determined and are unique, and stable. At the site of crime, lip prints can be either visible or latent. To develop lip prints for study purpose various chemicals such as lysochrome dyes, fluorescent dyes, etc. are available which are very expensive. Vermilion (Sindoor used by married Indian women) and indigo dye (fabric whitener) are readily available, naturally derived, and cost-effective reagents available in India. Objective: To compare the efficacy of sudan black, vermilion, and indigo in developing visible and latent lip prints made on bone china cup, satin fabric, and cotton fabric. Materials and Methods: Out of 45 Volunteers 15 lip prints were made on bone China cup 15 lip prints on Satin fabric and 15 on Cotton fabric. Sudan black, vermilion and indigo were applied on visible and latent lip prints and graded as good (+,+), fair (+), and poor (-) and statistically evaluated. Results: The vermilion and indigo dye gives comparable results to that of sudan black for developing visible and latent lip prints. PMID:21189984

  6. Hair dye toxicity--a review.

    PubMed

    Marzulli, F N; Green, S; Maibach, H I

    1978-01-01

    This article reviews local and systemic effects which relate to hair dye formulation and hair dye ingredient tests and experiences in man and animals. Mutagenic and carcinogenic aspects are discussed. In a very limited way, safety and hazards of using hair dyes are interpreted for consumers. PMID:363966

  7. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  8. Allergic contact dermatitis from azo dyes.

    PubMed

    Su, J C; Horton, J J

    1998-02-01

    Contact allergy to textile dyes usually occurs with disperse dyes of the azo or anthraquinone groups. A case is reported of a woman with clinical features of contact allergy to coloured nylon stockings who had multiple sensitivities to dyes of different azo groups.

  9. Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.

    SciTech Connect

    Kent, James A.

    2007-07-01

    This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.

  10. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes.

    PubMed

    Grabolle, Markus; Starke, Marian; Resch-Genger, Ute

    2016-04-12

    Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. PMID:27007448

  11. Anthraquinone dyes for superhydrophobic cotton.

    PubMed

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties.

  12. Anthraquinone dyes for superhydrophobic cotton.

    PubMed

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties. PMID:26265296

  13. Preparation of Al-doped ZnO nanocrystalline aggregates with enhanced performance for dye adsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Que, WenXiu; Yuan, Yuan; Zhong, Peng; Liao, YuLong

    2012-07-01

    Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.

  14. Candies to Dye for: Cooperative, Open-Ended Student Activities to Promote Understanding of Electrophoretic Fractionation

    NASA Astrophysics Data System (ADS)

    Emry, Randall; Curtright, Robert D.; Wright, Jonathan; Markwell, John

    2000-10-01

    A three-part series of laboratory activities is presented that allows students to learn why electrophoretic separations work and to manipulate the factors that influence the separation process. In the first two exercises, students perform cooperative separations of FD&C dyes from candies utilizing electrophoresis in two buffers of different pH. Students must use package information from one brand of candy and critical thinking to determine the identities of these dyes. Using structural formulas for the dyes the students draw conclusions regarding the effect of charge and molecular mass on separation. The final activity is an open-ended investigation into a student-formulated question. These activities integrate topics in biology and chemistry into activities that interest students and foster a real understanding of the tool of electrophoresis.

  15. Microflora involved in textile dye waste removal.

    PubMed

    Abd El-Rahim, Wafaa M; Moawad, Hassan; Khalafallah, M

    2003-01-01

    Textile dyes are heavily used in factories for coloring different cloth materials. This work was designed to identify microorganisms capable of removing textile dyes, either by biodegradation or by biosorption. We expected to isolate microorganisms adapted to high dye concentrations from sites near textile industry complex. An experiment was conducted to study the efficiency of the isolates in removing textile dyes. The tested dyes were used as carbon and nitrogen sources for isolation of soil and/or water microorganisms capable of removing textile dyes wastes from factories effluent. The results indicated the low efficiency of both bacteria and actinomycetes in clean-up the effluent from the waste dyes in 10-21 days. On the other hand six fungal isolates were obtained by plating factory effluent on Martin's medium and media containing dyes as the sole source of carbon and nitrogen for growth. These isolates fell in two genera, Aspergillus and Trichoderma. Results of these studies revealed the potential capacity of these fungi to decolorize the tested dyes in comparatively short time (2-24 hours) indicating strong efficiency of dye bioremediation by the fungal isolates. Since the process involved is mostly fast interaction between the fungal mycelium and the dye in the media, the possible mechanism could be based on a biosorption of such chemicals on the intact fungal biomass, rather than direct biodegradation of the compounds. PMID:12761767

  16. pH-Insensitive FRET voltage dyes.

    PubMed

    Maher, Michael P; Wu, Nyan-Tsz; Ao, Hong

    2007-08-01

    Many high-throughput ion channel assays require the use of voltage-sensitive dyes to detect channel activity in the presence of test compounds. Dye systems employing Förster resonance energy transfer (FRET) between 2 membrane-bound dyes are advantageous in combining high sensitivity, relatively fast response, and ratiometric output. The most widely used FRET voltage dye system employs a coumarin fluorescence donor whose excitation spectrum is pH dependent. The authors have validated a new class of voltage-sensitive FRET donors based on a pyrene moiety. These dyes are significantly brighter than CC2-DMPE and are not pH sensitive in the physiological range. With the new dye system, the authors demonstrate a new high-throughput assay for the acid-sensing ion channel (ASIC) family. They also introduce a novel method for absolute calibration of voltage-sensitive dyes, simultaneously determining the resting membrane potential of a cell. PMID:17517905

  17. Anaphylaxis to annatto dye: a case report.

    PubMed

    Nish, W A; Whisman, B A; Goetz, D W; Ramirez, D A

    1991-02-01

    Annatto dye is an orange-yellow food coloring extracted from the seeds of the tree Bixa orellana. It is commonly used in cheeses, snack foods, beverages, and cereals. Previously reported adverse reactions associated with annatto dye have included urticaria and angioedema. We present a patient who developed urticaria, angioedema, and severe hypotension within 20 minutes following ingestion of milk and Fiber One cereal, which contained annatto dye. Subsequent skin tests to milk, wheat, and corn were negative. The patient had a strong positive skin test to annatto dye, while controls had no response. The nondialyzable fraction of annatto dye on SDS-PAGE demonstrated two protein staining bands in the range of 50 kD. Immunoblotting demonstrated patient IgE-specific for one of these bands, while controls showed no binding. Annatto dye may contain contaminating or residual seed proteins to which our patient developed IgE hypersensitivity. Annatto dye is a potential rare cause of anaphylaxis. PMID:1994783

  18. [Leather azo dyes: mutagenic and carcinogenic risks].

    PubMed

    Clonfero, E; Venier, P; Granella, M; Levis, A G

    1990-01-01

    The paper reviews the carcinogenicity and mutagenicity data on azo dyes used in the leather industry. Two water soluble benzidine-based dyes were classified as "probably carcinogenic to humans" by the International Agency for Research on Cancer (IARC). No other dyes have been evaluated by the IARC. Of the 48 azo dyes assayed in the Salmonella/microsome test, 20 gave positive results. Attention is drawn to the important role of the in vivo metabolism of azo compounds, which includes a preliminary reduction of the azo bonds and subsequent release of the aromatic amines of the dye. A useful assay (Prival test) for evaluating the mutagenic properties of azo dyes involves a reductive step that permits the release of any genotoxic agents present in the compounds. A list of leather azo dyes is furnished that are considered as potentially harmful due to the presence of a carcinogenic aromatic amine (benzidine, p-aminobenzene and derivatives) in their formulae.

  19. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  20. Dyeing of Jute with Reactive Dyes: Optimisation of the Process Variables and Assessment of Colourfastness Characteristics

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Chakraborty, Sharmistha; Guha Roy, T. K.

    2012-08-01

    This paper deals with the studies on the effect of dye concentration, electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH of the dye solution and material to liquor ratio (MLR) on colour strength and other colour parameters after being dyed of jute fabrics with reactive dyes, namely, Turquoise blue, Lemon Yellow, Red CN colours. The dye absorption increases with increase in electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH and decreases with increase of MLR. Colour fastness to wash, light and rubbing for the dyed samples has been studied and reported. It is observed that reactive dye gives overall good colour fastness to both washing and rubbing. But the light fastness has been found to be moderate only, due to the UV-light initiated fading of jute fibre itself change of the colour substrate, ie, undyed material. This colour fastness has been significantly resolved by post treatment with 1 % benzotriazole.

  1. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  2. DCM-based organic dyes with electron donating groups for dye-sensitized solar cells.

    PubMed

    Kim, Joo Young; Yoon, Seung Soo; Kim, Young Sik

    2014-07-01

    Herein, 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM)-based dyes with electron donating groups were designed and their electronic and optical properties were investigated theoretically for dye-sensitized solar cells (DSSCs). Among the dyes, the D1 and D2 dyes were composed of single electron donating group and the D3 and D4 dyes composed of dual donating group. We performed DFT/TDDFT calculations to get insight into the factors responsible for photovoltaic properties as dye sensitizers. It showed that all the dyes in this work are available as dye sensitizers from the energy consideration compared to TiO2 electrode and iodide electrolyte. It also showed that the D3 and D4 dyes produced additional absorption bands by the introduction of dual donor in absorption spectra and the absorption band of the D4 dye is more red-shifted than that of the D3 dye. It is attributed to the fact that the M2 (a coumarin derivative) moiety with stronger electron withdrawing ability stabilized its LUMO level. In terms of molar extinction coefficient and panchromatic feature, we suggest that the D4 dye would show better performance than other dyes in the present study as a dye sensitizer for DSSCs.

  3. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    PubMed

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  4. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  5. Molecular scale characterization of the titania-dye-solvent interface in dye-sensitized solar cells.

    PubMed

    Marquet, Philip; Andersson, Gunther; Snedden, Alan; Kloo, Lars; Atkin, Rob

    2010-06-15

    Charge separation at the dye/titania interface in dye sensitized solar cells is strongly influenced by the thickness and homogeneity of the sensitizing dye layer, as this controls the potential drop across the interface, and the probability of an excited electron being transferred from the dye to the titania. In this study we use atomic force microscopy and the depth profiling method neutral impact collision ion scattering spectroscopy (NICISS) to investigate the thickness and homogeneity of N719 dye adsorbed to titania before and after rinsing with pure acetonitrile. Both experimental methods show that the dye layers are closed but inhomogeneous. Inhomogeneity is more pronounced for unrinsed samples. PMID:20297833

  6. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  7. [Benzidine dyes and risk of bladder cancer].

    PubMed

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes. PMID:2618904

  8. [Benzidine dyes and risk of bladder cancer].

    PubMed

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes.

  9. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. PMID:25575805

  10. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method.

  11. In defence of 'dye therapy'.

    PubMed

    Wainwright, Mark

    2014-07-01

    Worldwide, healthcare is facing enormous problems with the continuing rise of drug-resistant infectious diseases. In view of the scarcity of new antimicrobial agents and the withdrawal of many pharmaceutical houses from the fray, alternative approaches are required. One of these is photoantimicrobial chemotherapy, which is highly effective across the range of microbial pathogens and does not suffer from resistance. However, there is a lack of uptake of this approach by healthcare providers and the pharmaceutical industry alike. It is seldom recalled that, unlike anticancer photodynamic therapy, the development of photoantimicrobial agents has evolved from the antiseptic 'dye therapy' in common use until the widespread introduction of the penicillin class in the mid-1940s. Cationic biological dyes such as methylene blue, crystal violet and acriflavine were effective in local wound therapy and today provide a sound basis for light-activated antimicrobial therapeutics. It is proposed that such 'safe' dyes are introduced as locally administered photoantimicrobials, especially in order to conserve valuable conventional antibacterial drugs. PMID:24795083

  12. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. PMID:26945529

  13. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  14. In defence of 'dye therapy'.

    PubMed

    Wainwright, Mark

    2014-07-01

    Worldwide, healthcare is facing enormous problems with the continuing rise of drug-resistant infectious diseases. In view of the scarcity of new antimicrobial agents and the withdrawal of many pharmaceutical houses from the fray, alternative approaches are required. One of these is photoantimicrobial chemotherapy, which is highly effective across the range of microbial pathogens and does not suffer from resistance. However, there is a lack of uptake of this approach by healthcare providers and the pharmaceutical industry alike. It is seldom recalled that, unlike anticancer photodynamic therapy, the development of photoantimicrobial agents has evolved from the antiseptic 'dye therapy' in common use until the widespread introduction of the penicillin class in the mid-1940s. Cationic biological dyes such as methylene blue, crystal violet and acriflavine were effective in local wound therapy and today provide a sound basis for light-activated antimicrobial therapeutics. It is proposed that such 'safe' dyes are introduced as locally administered photoantimicrobials, especially in order to conserve valuable conventional antibacterial drugs.

  15. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  16. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  17. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  18. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  19. Synthetic dye decolourization by white rot fungi.

    PubMed

    Murugesan, K; Kalaichelvan, P T

    2003-09-01

    Synthetic dyes are integral part of many industrial products. The effluents generated from textile dyeing units create major environmental problems and issues both in public and textile units. Industrial wastewater treatment is one of the major problems in the present scenario. Though, the physical and chemical methods offer some solutions to the problems, it is not affordable by the unit operators. Biological degradation is recognized as the most effective method for degrading the dye present in the waste. Research over a period of two decades had provided insight into the various aspects of biological degradation of dyes. It is observed that the white rot fungi have a non-specific enzyme system, which oxidizes the recalcitrant dyes. Detailed and extensive studies have been made and process developed for treatment of dye containing wastewaters by white rot fungi and their enzyme systems. An attempt is made to summarize the detailed research contributions on these lines.

  20. Photochemical and lasing properties of pyrromethene dyes

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Klueva, Oksana; Kumar, Satish; Pacheco, Dennis P.

    2001-04-01

    Pyrromethene dyes, particularly PM 567, have been studied in liquid media using various spectroscopic techniques. Photodecomposition of dyes was monitored by absorption and fluorescence spectroscopy. In laser flash photolysis experiments on dyes in liquids, phototransients were observed (microsecond time domain) that included dye triplets and at least one other transient of the radical or radical-ion type. Experiments included product studies that allowed identification of major products of photodegradation; an assessment of the effectiveness of known stabilizing additives such as DABCO and butazate was also conducted. Purposes of the work included definition of the roles of energy and electron transfer mechanisms in dye photodegradation and the effects of oxygen or additives in dye media.

  1. Studies on the influence of power ultrasound on dye penetration in leather dyeing using photomicrographic analysis.

    PubMed

    Sivakumar, V; Swaminathan, G; Rao, P G

    2005-10-01

    The use of power ultrasound in enhancing diffusion rate in various chemical as well as physical processes is gaining in importance. The influence of power ultrasound in the leather dyeing process on enhancing the penetration of dye through the leather matrix was studied. The penetration of dye through a leather cross-section for a given time in the presence and absence of an ultrasonic field (33 kHz, 150 W) was studied by photomicrographic analysis using a stereomicroscope. Different types of black dyes, such as Acid black 1, Metal complex black 194 and Direct black 155, were used for dyeing leather in the present study. Photomicrographic analysis of a cross-section of dyed leather indicated better penetration of dyes through the leather matrix with the use of ultrasound than without it. Therefore, the results indicate that ultrasound helps to improve the diffusion of dye and to reduce diffusional resistance in the leather dyeing process.

  2. Suppression and enhancement of dye lasing and stimulated Raman scattering from various dye-doped liquid spheres.

    PubMed

    Taniguchi, H; Tomisawa, H

    1994-09-15

    The observation of suppression or enhancement of dye lasing and stimulated Raman scattering (SRS) from various dye-doped liquid droplets, in which SRS from the initial pumping wavelength appeared in shorter and longer wavelengths of various dye fluorescence regions, is reported; SRS from the dye-lasing wavelengths (double resonances) and stimulated resonance Raman scattering of dyes are included. Furthermore, the contribution to SRS of the dye fluorescence (depending on dye concentration and different dyes) and dye-lasing suppression that is due to stimulated resonance Raman scattering is also described. PMID:19855533

  3. Development of new near-infrared and leuco-dye optical systems for forensic and crime fighting applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda

    2004-12-01

    New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.

  4. Chemistry as General Education

    ERIC Educational Resources Information Center

    Tro, Nivaldo J.

    2004-01-01

    The efficacy of different science and chemistry courses for science-major and non-major students, and the question of chemistry's contribution to general education are evaluated. Chemistry and science curriculum are too profession- and consumer-oriented, and to overcome this problem, it is advised that all disciplines must incorporate the major…

  5. History of Chemistry.

    ERIC Educational Resources Information Center

    Servos, John W.

    1985-01-01

    Discusses the development of chemistry in the United States by considering: (1) chemistry as an evolving body of ideas/techniques, and as a set of conceptual resources affecting and affected by the development of other sciences; and (2) chemistry related to the history of American social and economic institutions and practices. (JN)

  6. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  7. Environmental Chemistry Activities.

    ERIC Educational Resources Information Center

    Jackland, Thomas; And Others

    The authors of this curriculum supplement believe in a laboratory approach to chemistry and express the feeling that environmental chemistry provides the students an opportunity to apply theoretical chemistry to important practical problems. There are eighteen activities presented, each accompanied with behavioral objectives, one or more suggested…

  8. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  9. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  10. Mechanisms in Photographic Chemistry

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1974-01-01

    Reviews current research interests in photographic chemistry, involving two proposed models for spectral sensitization of crystal defects and impurities in the photolysis reactivity and the mechanisms of development and complexation. Establishment of photographic chemistry in a chemistry curriculum is recommended. (CC)

  11. The physics of dye laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jensen, C. C.

    This paper describes a method for the complete analysis of the optical properties of a laser dye. The analysis uses direct measurements of the saturation intensities for absorption and emission. The complete analysis of an ultraviolet laser dye, 3,5,3,5-Tetra-t-butyl-p-sexiphenyl, demonstrates the power of the saturation analysis method. The dye TBS exhibits some unique optical properties which affect its emission wavelength range and photochemistry.

  12. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  13. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  14. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. PMID:25875031

  15. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  16. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  17. The microbial degradation of azo dyes: minireview.

    PubMed

    Chengalroyen, M D; Dabbs, E R

    2013-03-01

    The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.

  18. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-01

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  19. On the early development of organic dyes for dye-sensitized solar cells.

    PubMed

    Kloo, Lars

    2013-07-28

    This viewpoint describes the background of the development of organic dyes for dye-sensitized solar cells, the impact of the 2006 ChemComm paper by Sun, Hagfeldt and co-workers regarding the D5 D-π-A-family of dyes, some recent developments and possible future challenges to meet.

  20. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  1. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  2. The Implementation of a Service-Learning Component in an Organic Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Glover, Sarah R.; Sewry, Joyce D.; Bromley, Candice L.; Davies-Coleman, Michael T.; Hlengwa, Amanda

    2013-01-01

    avenues for the implementation of service-learning into their curricula. A second-year undergraduate organic chemistry laboratory experiment, in which the undergraduate students make azo dyes, can provide a vehicle for a service-learning module in which university undergraduate…

  3. A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.

    2015-01-01

    A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…

  4. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the

  5. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    Studies on dye laser theory, design, components, optical systems, and frequency range are presented in approximately 96 citations. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered.

  6. Thiophene-based dyes for probing membranes.

    PubMed

    López-Duarte, Ismael; Chairatana, Phoom; Wu, Yilei; Pérez-Moreno, Javier; Bennett, Philip M; Reeve, James E; Boczarow, Igor; Kaluza, Wojciech; Hosny, Neveen A; Stranks, Samuel D; Nicholas, Robin J; Clays, Koen; Kuimova, Marina K; Anderson, Harry L

    2015-03-28

    We report the synthesis of four new cationic dipolar push–pull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (–CH=CH–) or ethynylene (–C≡C–) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 μM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 μM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 μM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.

  7. Hydrogen peroxide sensor using laser grade dye Rhodamine B

    NASA Astrophysics Data System (ADS)

    Pattanaik, Amitansu; Sahare, P. D.; Nanda, Maitreyee

    2007-11-01

    Many chemical sensors based on fluorescence spectroscopy have been reported in applications, ranging from biomedical and environmental monitoring to industrial process control. In these diverse applications, the analyte can be probed directly, by measuring its intrinsic absorption, or by incorporating some transduction mechanism such as reagent chemistry to enhance sensitivity and selectivity. Hydrogen Peroxide is a colorless liquid. It is a common oxidizing and bleaching agent. It plays an important role in High Power Laser such as Chemical Oxygen Iodine Laser (COIL). As it is on the Hazardous substance list and on the special health hazard substance list, detection of Hydrogen Peroxide is of great importance. In the present study the detection of hydrogen Peroxide is by fluorescence quenching of laser grade dye Rhodamine B. Estimation of rate constant of the bimolecular quenching reaction is made.

  8. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOEpatents

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  9. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  10. Multiple azo disperse dye sensitization mainly due to group sensitizations to azo dyes.

    PubMed

    Nakagawa, M; Kawai, K; Kawai, K

    1996-01-01

    A female patient, with a previous episode of contact dermatitis caused by a blue dress, developed similar dermatitis due to a navy-blue dress. Patch tests revealed multiple allergic positive reactions to paraphenylenediamine (PPD), the navy-blue dress, its extracts, 6 azo disperse dyes in a textile series, as well as 3 dye components, including Disperse (DP) Red 153, which were present in the dress; these were composed of 9 azo disperse dyes, all dyes being of a different chemical structure. On the basis of chemical similarities between these 16 azo dyes including PPD, these are classified into the following 4 groups: thiazol-azoyl-PPD group (including DP Blue 106, DP Blue 124 and 5 used dyes), aminoazobenzene group (DP Red 1, DP Red 17, DP Brown 1 and 2 used dyes), PPD group (PPD and DP Orange 3) and benzothiazol-azoyl-PPD group (2 dyes in DP Red 153). With few exceptions, cross-sensitizations between dyes in the same group have been reported by other authors, or are suggested by us, in the former 3 groups. Multiple azo disperse dye sensitization is therefore considered to be attributable mainly to group sensitizations to azo dyes.

  11. Eco-Friendly Dyeing of Cotton with Indigo Dye By Electrochemical Method

    NASA Astrophysics Data System (ADS)

    Prabu, H. Gurumallesh; Sarala, K.; Babu, S. Ananda; Savitha, K. U.

    2011-07-01

    Eco-friendly dyeing of cotton was performed in two step process; (i) enzymatic pre-treatment of grey cotton fabric and (ii) Electrochemical dyeing of the pre-treated cotton fabric with indigo. The enzymatic pre-treatment was done in three methods; (i) amylase treatment only, (ii) amylase and hydrogen peroxide treatment and (iii) single bath method. The dyeing was carried out with the pre-treated cotton fabric. The reduction of indigo dye by electrochemical method was initiated by applying potential. Then the dyeing was carried out different concentrations of dye, glucose and NaOH. Conventional method of dyeing was also carried out and compared with the electrochemical method. Dyeability was measured by computer colour matching (CCM) GretagMacbeth colour eye 2180UV instrument.

  12. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  13. Clickable degradable aliphatic polyesters via copolymerization with alkyne epoxy esters: synthesis and postfunctionalization with organic dyes.

    PubMed

    Teske, Nele S; Voigt, Julia; Shastri, V Prasad

    2014-07-23

    Degradable aliphatic polyesters are the cornerstones of nanoparticle (NP)-based therapeutics. In this paradigm, covalent modification of the NP with cell-targeting motifs and dyes can aid in guiding the NP to its destination and gaining visual confirmation. Therefore, strategies to impart chemistries along the polymer backbone that are amenable to easy modification, such as 1,3-dipolar cycloaddition of an azide to an alkyne (the "click reaction"), could be significant. Here we present a simple and efficient way to introduce alkyne groups at high density in aliphatic polyesters without compromising their crystallinity via the copolymerization of cyclic lactones with propargyl 3-methylpentenoate oxide (PMPO). Copolymers of lactic acid and ε-caprolactone with PMPO were synthesized with up to 9 mol % alkyne content, and accessibility of the alkyne groups to the click reaction was demonstrated using several dyes commonly employed in fluorescence microscopy and imaging (Cy3, ATTO-740, and coumarin 343). In order to establish the suitability of these copolymers as nanocarriers, copolymers were formulated into NPs, and cytocompatibility, cellular uptake, and visualization studies undertaken in HeLa cells. Dye-modified NPs exhibited no quenching, remained stable in solution for at least 10 days, showed no cytotoxicity, and were readily taken up by HeLa cells. Furthermore, in addition to enabling the incorporation of multiple fluorophores within the same NP through blending of individual dye-modified copolymers, dye-modified polyesters offer advantages over physical entrapment of dye, including improved signal to noise ratio and localization of the fluorescence signal within cells, and possess the necessary prerequisites for drug delivery and imaging.

  14. Molecular engineering of simple phenothiazine-based dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells.

    PubMed

    Hua, Yong; Chang, Shuai; He, Jian; Zhang, Caishun; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok; Zhu, Xunjin

    2014-05-19

    A series of simple phenothiazine-based dyes, namely, TP, EP, TTP, ETP, and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye-sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc = 15.2 mA cm(-2), Voc =0.783 V, fill factor (FF) = 0.679) and 7.87 % (Jsc = 16.1 mA cm(-2), Voc = 0.717 V, FF = 0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I(-)/I3(-) redox couple. By replacing the T group with the E unit, EP-based DSSCs had a slightly lower PCE of 7.98 % with a higher short-circuit photocurrent (Jsc) of 16.7 mA cm(-2). The dye ETP, with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP, with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.

  15. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  16. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  17. Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells.

    PubMed

    Li, Xiaoe; Reynal, Anna; Barnes, Piers; Humphry-Baker, Robin; Zakeeruddin, Shaik Mohammed; De Angelis, Filippo; O'Regan, Brian C

    2012-11-28

    We have measured the binding coefficients of iodine to three dyes used in Dye Sensitised Solar Cells (DSSCs). Binding coefficients are quantified via the effect of iodine binding on the UV-vis spectrum of the dye. From iodine titration curves of dye sensitised TiO(2) films we find that the binding coefficients of iodine to the dyes C101, N719 and AR24 (vide infra) are in the range of 2000-4000 M(-1). From FTIR results and molecular modelling we show the iodine binds to the thiocyanate group in all these dyes. For the AR24 dye we present evidence that iodine also binds to the amine moiety on this dye. With these binding coefficients we show that the dye-iodine complex will be present at much higher concentrations than free iodine in the pore structure of a DSSC. As we have recently shown that iodine (rather than tri-iodide) is the dominant acceptor in electron recombination, the concentration dye-iodine complexes could influence recombination rates and thus V(oc). By comparison of recombination data on full cells, we show that AR24 accelerates recombination by a factor of 7 over N719, presumably due to the iodine binding to the amine group. We leave open the question why iodine binding to the amine group seems to have a stronger effect on the recombination than does binding to the thiocyanate. PMID:23070136

  18. Ultrasound for wool dyeing and finishing.

    PubMed

    McNeil, S J; McCall, R A

    2011-01-01

    The effects of ultrasound at 35-39 kHz on several wool dyeing and finishing processes have been investigated as a way of reducing environmental impact. Ultrasound improved the effectiveness of cleaning scoured wool in water and to a lesser extent in water-nonionic surfactant. Scanning electron microscopy did not indicate any surface damage. Fluorescence microscopy revealed increased levels of sulphydryl groups on the wool surface suggesting ultrasound caused the removal of thioester-bound lipids. Ultrasound pre-treatment increased the effectiveness of subsequent oxidative-reductive bleaching, but had no effect on the uptake of acid levelling and acid milling dyes. The pre-treatment retarded the uptake of reactive dye, possibly by increasing the crystallinity of the fibre or removing surface bound lipids. Ultrasound did not improve dyeing under conditions that are currently used in industry, but did show potential to reduce the chemical and energy requirements of dyeing wool with reactive and acid milling dyes, but not acid levelling dyes. PMID:20675174

  19. Photochemistry of triarylmethane dyes bound to proteins

    NASA Astrophysics Data System (ADS)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  20. Ultrasound-assisted dyeing of cellulose acetate.

    PubMed

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time.

  1. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  2. Kinetics of anaerobic biodecolourisation of azo dyes.

    PubMed

    Kalyuzhnyi, S; Yemashova, N; Fedorovich, V

    2006-01-01

    Kinetics of anaerobic biodecolourisation (methanogenic environment) of four azo dyes (Acid Orange 6, Acid Orange 7, Methyl Orange and Methyl Red) was investigated with regard to their electrochemical properties as well as under variation of dye and sludge concentrations, pH and temperature. Cyclic voltammetry revealed a correlation between the potential of irreversible reduction peak of the dye and its first-order decolorisation constant. For each dye tested, this decolourisation constant was adversely proportional to dye concentration (0.086-1.7 mM) and had a saturation (hyperbolic) dependency on sludge concentration (0.04-1.1 g VSS/l), a bell-shape dependency on pH (4.0-9.0) and Arrhenius dependency on temperature (24-40 degrees C). Transfer from methanogenic to sulphate reducing environment led to an increase of decolorisation constant for all the dyes investigated due to the abundant presence of sulphide as a reducing agent in the reaction medium. Similar transfer to a denitrifying environment resulted in an almost complete decease of decolourisation because nitrate easily outcompetes azo dyes as an electron acceptor.

  3. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye.

  4. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye. PMID:26585007

  5. Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes.

    PubMed

    Nepomnyashchii, Alexander B; Bard, Allen J

    2012-11-20

    BODIPY (boron dipyrromethene) dyes are unique materials with spectroscopic and electrochemical properties comparable to those of aromatic hydrocarbons. Electrochemical studies are useful in understanding the redox properties of these materials and finding structure-stability relations for the radical ions; along with spectroscopy, these studies help researchers design novel compounds with desired properties. This Account represents our attempt at a full description of the electrochemical and electrogenerated chemiluminescence (ECL) properties of the BODIPY dyes. When the dyes are completely substituted with alkyl or other groups, the radical ions of BODIPY dyes are highly stable. But if they include unsubstituted positions, the radical ions can undergo dimerization or other reactions. BODIPY dyes also show unusually large separations, ~1.0 V, between the first and second cyclic voltammetric (CV) waves for both oxidation and reduction half-reactions. Alkyl-substituted BODIPY dyes show good photoluminescence (PL) quantum efficiencies, and radical ion electron transfer annihilation in these molecules produces electrogenerated chemiluminescence (ECL), the intensity of which depends on the structure of the dye. The large separation between waves and the presence of strong ECL signals are both important in the design of stable ECL-based materials. The ECL spectra provide a fast method of monitoring the electrochemical formation of dimers and aggregates from the monomers. BODIPY dyes are particularly good systems for studying stepwise electron transfer in their chemically synthesized oligomers and polymers because of the small separation between the first oxidation and first reduction waves, generally about 2.0-2.4 V, and their relative ease of reduction compared with many other aromatic compounds. The larger separation between consecutive waves for oxidation compared with reduction is noticeable for all BODIPY dimers and trimers. We also observe a more difficult addition

  6. Solvatochromism of BODIPY-Schiff dye.

    PubMed

    Filarowski, Aleksander; Lopatkova, Marina; Lipkowski, Paweł; Van der Auweraer, Mark; Leen, Volker; Dehaen, Wim

    2015-02-12

    A boron-dipyrrin chromophore connected with an o-hydroxyaryl aldimine by a diazo bridge (BODIPY-Schiff dye) has been developed. The photophysical properties of the BODIPY-Schiff dye have been investigated with UV, steady-state, and time-resolved fluorimetry. The spectral features have been characterized with respect to density functional theory and time-dependent density functional theory. The conformational analysis of the studied compound has been accomplished both in the ground and excited states. A scheme of the processes occurring in the BODIPY-Schiff dye has been proposed. PMID:25470764

  7. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed. PMID:26529223

  8. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  9. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  10. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent.

    PubMed

    Modi, H A; Rajput, Garima; Ambasana, Chetan

    2010-08-01

    The aim of this work is to isolate and characterize bacterial isolates form dye house effluent, and to check their ability of decolorizing sulfonated azo dyes, and also to study influence of various environmental parameters on same process. Among seven Gram positive bacterial isolates obtained form dye house effluent, M1 (Bacillus cereus) and M6 were proved to be more potent for decolorizing sulfonated azo dyes under aerobic conditions. Maltose as carbon source and peptone as nitrogen source enhanced decolorization efficiency of M1 (B. cereus). HPTLC studies proved that more than 97% of the dye (Reactive Red 195) was degraded by bacteria after 72 h of incubation. These results along with spectrophotometric data prove the efficiency of bacteria suggesting their possible use in treating dye containing effluents.

  11. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  12. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.

    PubMed

    Ozdemir, Sebnem; Cirik, Kevser; Akman, Dilek; Sahinkaya, Erkan; Cinar, Ozer

    2013-10-01

    This study aims at investigating azo dye reduction performance of a sulfidogenic anaerobic baffled reactor (ABR) for around 400 days. ABR was operated at 30 °C in a temperature-controlled room and hydraulic retention time (HRT) was kept constant at 2 days. The robustness of ABR was assessed under varying azo dye loadings and COD/sulfate ratios. Additionally, oxygen was supplied (1-2 L air/m(3)reactor min) to the last compartment to investigate the removal of azo dye breakdown products. ABR performed well in terms of COD, sulfate and azo dye removals throughout the reactor operation. Maximum azo dye, COD and sulfate removals were 98%, 98% and 93%, respectively, at COD/sulfate ratio of 0.8. Aeration created different redox conditions in last compartment, which enhanced the removal of COD and breakdown products. The adverse effects of aeration on azo dye reduction were eliminated thanks to the compartmentalized structure of the ABR.

  13. Opportunities in Chemistry.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Because of the changes occurring in the chemical sciences, a new survey of chemistry and its intellectual and economic impact was clearly needed. This report presents a current assessment of the status of chemistry and of the future opportunities in the field. This analysis contains: (1) an introductory chapter (establishing the need for the…

  14. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  15. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  16. Brushing Up on Chemistry.

    ERIC Educational Resources Information Center

    Trantow, Ashley

    2002-01-01

    Presents an activity designed for use during National Chemistry Week 2002 with the theme "Chemistry Keeps Us Clean". Allows students to discover more about a cleaning product they use everyday. Students make their own toothpaste and compare its properties with those of commercial toothpaste. (MM)

  17. Minicourses in Chemistry

    ERIC Educational Resources Information Center

    Lygre, D. G.; And Others

    1975-01-01

    Describes nine minicourses in chemistry designed to acquaint the non-science major with practical applications of chemistry in everyday experiences. Each course consists of daily classes for two weeks for one credit and is offered on a credit/no credit basis. (MLH)

  18. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  19. Chemistry and Biology

    ERIC Educational Resources Information Center

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  20. Chemistry from Issues.

    ERIC Educational Resources Information Center

    Harding, Jan; Donaldson, Jim

    1986-01-01

    Describes the "Chemistry from Issues" project at Chelsea College. Provides the background information, rationale, and overall structure of a proposed course about the importance of chemistry to common culture. Outlines one module about the British steel industry that has been taught at King's College. (TW)

  1. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  2. Stratospheric chemistry and transport

    NASA Technical Reports Server (NTRS)

    Prather, Michael; Garcia, Maria M.

    1990-01-01

    A Chemical Tracer Model (CTM) that can use wind field data generated by the General Circulation Model (GCM) is developed to implement chemistry in the three dimensional GCM of the middle atmosphere. Initially, chemical tracers with simple first order losses such as N2O are used. Successive models are to incorporate more complex ozone chemistry.

  3. Career Options in Chemistry.

    ERIC Educational Resources Information Center

    Belloli, Robert C.

    1985-01-01

    Describes a credit/no credit course which focuses on career options in chemistry. The course (consisting of 15 one-hour seminar-type sessions) includes guest speakers for several sessions and an emphasis (in introductory sessions) on graduate school in chemistry, the chemical industry, resumes, and interviews. Also briefly describes an internship…

  4. Movies in Chemistry Education

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  5. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  6. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2016-04-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  7. Refractometric monitoring of dissolution and fluid flow with distributed feedback dye laser sensor.

    PubMed

    Vannahme, Christoph; Sørensen, Kristian Tølbøl; Gade, Carsten; Dufva, Martin; Kristensen, Anders

    2015-03-01

    Monitoring the dissolution of solid material in liquids and monitoring of fluid flow is of significant interest for applications in chemistry, food production, medicine, and especially in the fields of microfluidics and lab on a chip. Here, real-time refractometric monitoring of dissolution and fast fluid flow with DFB dye laser sensors with an optical imaging spectroscopy setup is presented. The dye laser sensors provide both low detection limits and high spatial resolution. It is demonstrated how the materials NaCl, sucrose, and bovine serum albumin show characteristic dissolution patterns. The unique feature of the presented method is a high frame rate of up to 20 Hz, which is proven to enable the monitoring of fast flow of a sucrose solution jet into pure water.

  8. Thermodynamic Driving Forces for Dye Molecule Position and Orientation in Nanoconfined Solvents.

    PubMed

    Harvey, Jacob A; Thompson, Ward H

    2015-07-23

    The results of replica exchange molecular dynamics simulations of a coumarin 153 (C153) dye molecule dissolved in ethanol confined within a 2.4 nm hydrophilic amorphous silica pore are presented. The C153 dye position and orientation distributions provide insight into time-dependent fluorescence measurements in nanoconfined solvents as well as general features of chemistry in mesoporous materials. In addition to the distributions themselves, the free energy, internal energy, and entropic contributions have been calculated to explore the factors determining the distributions. The most likely location of C153 is found to be near the pore surface, but two possible hydrogen-bonding structures lead to differing orientations. Internal energy and entropy are found to be competing forces within the pore, with entropy playing a significant role with unexpected consequences. These results represent a crucial step in determining how the nanoconfining framework can affect measurements of solvation dynamics. PMID:25295835

  9. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…

  10. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    ERIC Educational Resources Information Center

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  11. EVOLVING FROM GREEN CHEMISTRY TO SUSTAINABLE CHEMISTRY

    EPA Science Inventory

    The twelve principles of green chemistry provide a foundation and pathway which allows researchers to incorporate greenness into existing reactions or when developing new technologies. Research from our laboratory has adopted many of these principles and utlizes them as a major c...

  12. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.

  13. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  15. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  16. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  17. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  18. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  19. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

  20. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  1. Thermal treatment of dyes from military munitions

    SciTech Connect

    1996-09-01

    Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

  2. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  3. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A.; Hirons, Gregory T.

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  4. Alcian yellow as a fluorescent dye.

    PubMed

    Stockert, J C; Del Castillo, P; Armas-Portela, R

    1989-01-01

    Fluorescence characteristics of the cationic dye Alcian yellow are described. Under ultraviolet excitation, the chromatin and basophilic cytoplasm from cell smears show a blue-white emission, which depends on the presence of nucleic acids. Glycosaminoglycans-containing structures (mast cell granules, cartilage matrix) appear brightly fluorescent. The excitation at 320 less than or equal to lambda less than or equal to 340 nm is the most suitable, and the emission wavelength shows dependence on the dye concentration.

  5. Spectral broadening in a microdroplet dye laser

    NASA Astrophysics Data System (ADS)

    Knospe, Anders G.; Kwok, Alfred S.

    2004-05-01

    We have observed broadening of the lasing spectrum of 60-μm diameter micrdroplet dye lasers. The spectral width of microdroplet dye lasers consisting of Rhodamine 6G or Pyrromethene 597 is essentially constant when water is used as a solvent but broaden by >30% at high input-laser intensities when ethanol is used as solvent. Spectral broadening is preceded by stimulated Raman scattering of ethanol in the microdroplets as the input-laser intensity increases.

  6. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  7. Phytoremediation in education: textile dye teaching experiments.

    PubMed

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students. PMID:19810348

  8. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  9. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  10. Sweeteners, flavorings, and dyes in antibiotic preparations.

    PubMed

    Kumar, A; Weatherly, M R; Beaman, D C

    1991-03-01

    Even though a variety of adverse effects caused by sweeteners, flavorings, and dyes in susceptible individuals have been reported, there is no good single reference with information about these substances in pediatric antimicrobials. Data on sweeteners, flavorings, and dyes in 91 antimicrobial preparations were collected. Sucrose was present in 74 (85%) of 87 preparations, followed by saccharin in 30 (34%) preparations. Mannitol, lactose, and sorbitol were each present in 7 preparations. None of the preparations were free of sweeteners. Thirty-four (37%) of 91 preparations did not specify the flavoring content. While cherry was the most common flavoring used, there were 25 other flavorings. Thirteen different dyes and coloring agents were used in these antimicrobials. Red dye no. 40 was present in 45% of preparations. Tables detailing sweeteners, flavorings, and dyes in different groups of antimicrobials (amoxicillin, ampicillin, cephalosporins, erythromycin, penicillins, sulfonamides, and others) and adverse effects reported with these inert ingredients are presented. These tables should be helpful to physicians in selecting an antimicrobial containing a different sweetener and/or dye when an adverse reaction occurs.

  11. Fluorine in medicinal chemistry.

    PubMed

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.

  12. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  13. Computational quantum chemistry website

    SciTech Connect

    1997-08-22

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage.

  14. Seawater Chemistry Package

    2005-11-23

    SeaChem Seawater Chemistry package provides routines to calculate pH, carbonate chemistry, density, and other quantities for seawater, based on the latest community standards. The chemistry is adapted from fortran routines provided by the OCMIP3/NOCES project, details of which are available at http://www.ipsl.jussieu.fr/OCMIP/. The SeaChem package can generate Fortran subroutines as well as Python wrappers for those routines. Thus the same code can be used by Python or Fortran analysis packages and Fortran ocean models alike.

  15. Near-infrared dyes and upconverting phosphors as biomolecule labels and probes

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun

    2007-02-01

    Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes

  16. A Double-Clicking Bis-Azide Fluorogenic Dye for Bioorthogonal Self-Labeling Peptide Tags.

    PubMed

    Demeter, Orsolya; Fodor, Eszter A; Kállay, Mihály; Mező, Gábor; Németh, Krisztina; Szabó, Pál T; Kele, Péter

    2016-04-25

    Herein, we give the very first example for the development of a fluorogenic molecular probe that combines the two-point binding specificity of biarsenical-based dyes with the robustness of bioorthogonal click-chemistry. This proof-of-principle study reports on the synthesis and fluorogenic characterization of a new, double-quenched, bis-azide fluorogenic probe suitable for bioorthogonal two-point tagging of small peptide tags by double strain-promoted azide-alkyne cycloaddition. The presented probe exhibits remarkable increase in fluorescence intensity when reacted with bis-cyclooctynylated peptide sequences, which could also serve as possible self-labeling small peptide tag motifs. PMID:27010966

  17. Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics.

    PubMed

    El-Shishtawy, Reda M; El-Zawahry, Manal M; Abdelghaffar, Fatma; Ahmed, Nahed S E

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% of of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  18. Allergic dermatoses and respiratory diseases from reactive dyes.

    PubMed

    Estlander, T

    1988-05-01

    5 cases of occupational eczema, urticaria and respiratory disease from reactive dyes, occurring during 1977-1987, are reported. The patients, 4 men and 1 woman, were 24-52 years old when examined. They had been working in dye houses or textile plants, and had been exposed to reactive dyes for 8 months to 4 years before symptoms developed. Only 1 of the patients has been able to continue in the same occupation. On patch testing, the 4 patients with eczema reacted positively to 9 commercial dye powders. 2 patients reacted to the same dye, Remazol Schwarz B. On scratch and/or prick testing, the 2 patients who also had respiratory symptoms and/or urticaria reacted positively to the same dyes as on patch testing. The 5th patient, who had urticaria and respiratory symptoms, reacted positively to a dye, Remazol Gold Gelb RNL, but the patch test with that dye was negative. None of the patients was patch-test-positive to para-phenylenediamine (PPD) or to textile dye allergens in a series of organic dyes. Thus, the series of organic dyes has little value in the screening of allergy to reactive dyes. A 1% pet. dilution of commercial dye powder for patch testing and the same concentration in distilled water for prick testing seem to be suitable for the screening of allergy to reactive dyes.

  19. Enzymatic decolorization of spent textile dyeing baths composed by mixtures of synthetic dyes and additives.

    PubMed

    Ciullini, Ilaria; Gullotto, Antonella; Tilli, Silvia; Sannia, Giovanni; Basosi, Riccardo; Scozzafava, Andrea; Briganti, Fabrizio

    2012-10-01

    The effects of different components of real dyeing bath formulations, such as the equalizing and fixing additives-acids, salts, and surfactants-on the decolorization catalyzed by Funalia trogii enzymatic extracts, were investigated to understand their influence on the recalcitrance to biodegradation of this type of wastewater. The decolorization of selected dyes and dye mixtures after tissue dyeing was performed in the presence/absence of auxiliary compounds. All spent dyeing baths were enzymatically decolorized to different extents, by the addition of extracts containing laccase only or laccase plus cellobiose dehydrogenase. Whereas surfactant auxiliaries, in some instances, inhibit the decolorization of spent dyeing baths, in several occurrences the acid/salt additives favor the enzymatic process. In general, the complete spent dyeing formulations are better degraded than those containing the dyes only. The comparison of extracellular extracts obtained from spent straws from the commercial growth of Pleurotus sp. mushrooms with those from F. trogii reveals similar decolorization extents thus allowing to further reduce the costs of bioremediation.

  20. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  1. Selective staining of animal chromosomes with synthetic dyes following iodine-dye-procedure.

    PubMed

    Dutt, M K

    1975-01-01

    The paper embodies results of the use of 51 synthetic dyes, belonging to different chemical groups for staining of animal chromosomes following iodine-dye procedure. It has been found that some of these dyes can replace gentian violet, crystal violet and safranin when used after this procedure. It has further been found that the fluorescent dyes, acriflavine and acridine yellow can also be used to stain animal chromosomes and that some of the dyes belonging to one chemical group can be successfully used whereas others of the same group are of no use. Dyes of the monoazo group are absolutely useless. Amongst the dyes successfully used, the preparations remain stable when stained with most of them except methyl green, malachite green, brillant green, iodine green and cresyl violet and amongst acid dyes, acid fuchsin. Cytochemical studies presented herein indicate that the components of the animal chromosomes stainable with crystal violet are the nucleic acids and that these substances should be highly polymerised and should not be even in a semi-degraded state. Removal of any one of these nucleic acids makes the chromosomes unstainable with iodine-crystal violet.

  2. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin.

  3. General Chemistry for Engineers.

    ERIC Educational Resources Information Center

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  4. Chemistry for Nonscientists

    ERIC Educational Resources Information Center

    Weil, Thomas A.; And Others

    1974-01-01

    Discusses the case of DDT which can be introduced to nonscience students in a chemistry course, including the development of DDT, problems associated with its adverse effects, and curtailment of its use in our environments. (CC)

  5. Chemistry for Kids.

    ERIC Educational Resources Information Center

    Sato, Sanae; Majoros, Bela

    1988-01-01

    Reports two methods for interesting children in chemistry. Describes a method for producing large soap bubbles and films for study. Examines the use of simple stories to explain common chemical concepts with example given. Lists titles of available stories. (ML)

  6. Chemistry with a Peel.

    ERIC Educational Resources Information Center

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  7. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  8. Magnetism in Chemistry

    ERIC Educational Resources Information Center

    Brookes, R. W.; McFadyen, W. D.

    1975-01-01

    Discusses the technical aspects of paramagnetism and an electrostatic model called Crystal Field Theory (CFT), very often used in the case of transition metal compounds. Suggests that this discussion be included as an option for college chemistry courses. (MLH)

  9. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  10. Chemistry and Detective Fiction.

    ERIC Educational Resources Information Center

    Labianca, Dominick A.; Reeves, William J.

    1981-01-01

    Describes an interdisciplinary program consisting of two courses. The first course deals with the chemistry of drugs and poisons; the second course focuses on fictional works in which these drugs and poisons are central to the plots. (SK)

  11. Water Chemistry: Seeking Information

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  12. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  13. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  14. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  15. Molecular design and photovoltaic performance of organic dyes containing phenothiazine for dye-sensitized solar cells.

    PubMed

    Jo, Hyo Jeong; Nam, Jung Eun; Sim, Kyoseung; Kim, Dae-Hwan; Kim, Jae Hong; Kang, Jin-Kyu

    2014-10-01

    We synthesized novel organic photosensitizers based on fluorine-substituted phenothiazine with thiophene bridge units in the chromophore for application in dye-sensitized solar cells (DSSCs). Furthermore, organic dyes with different acceptors exhibited higher molar extinction coefficients, and better light absorption at longer wavelengths. The photovoltaic properties of organic dyes composed of different acceptors in their chromophores were measured to identify their effects on the DSSC performance. The organic dye, PFSCN2 containing multi-cyanoacrylic acid as the electron acceptor, showed a power conversion efficiency of 4.67% under AM 1.5 illumination (100 mW/cm2). The retarded recombination kinetics from TiO2 electrode to electrolyte enhanced the electron life time of the organic dye, PFSCN2 in the photoanode of the DSSC. This was confirmed with impedance analysis.

  16. Unexpected radiation hazard in dyes of textiles.

    PubMed

    Abdel Ghany, Hayam A; Ibrahim, Eman M

    2014-01-01

    Textile dyes are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Many of the chemicals used in the textile industry may represent some health concerns. The determination of the radioactivity in textile dyes is therefore very important for both human health and environment. The study was designated to determine, for the first time, the values of (238)U, (232)Th and (40)K in nine different dyes employed in the textile industry using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector. The mean activity concentrations of (238)U, (232)Th and (40)K were 29.37 ± 4.48, 1.15 ± 0.13 and 565 ± 4 Bq/kg, respectively. The calculated radium equivalents for all samples were lower than the maximum admissible value (370 Bq/kg). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 2.94 ± 0.05 to 166 ± 3 nGy/h. So, the absorbed dose rates for all samples of textile dyes were lower than the international recommended value (55 nGy/h) except the yellow dye (166 ± 3 nGy/h), which recorded a significant radiological hazard. The external hazard index was also calculated. Conclusively, the results have indicated that the textile dyes may possess a measurable amount of radioactivity that should be taken into account. Therefore, safety rules and precautions should be applied for dyes used in the textile industry and for people working in this field.

  17. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT.

    PubMed

    Eriksson, Susanna K; Josefsson, Ida; Ellis, Hanna; Amat, Anna; Pastore, Mariachiara; Oscarsson, Johan; Lindblad, Rebecka; Eriksson, Anna I K; Johansson, Erik M J; Boschloo, Gerrit; Hagfeldt, Anders; Fantacci, Simona; Odelius, Michael; Rensmo, Håkan

    2016-01-01

    The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

  18. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  19. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  20. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  1. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  2. Physical and chemical investigations on natural dyes

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  3. Dyes and Materials for Sensitised Electrochemical Photovoltaics

    NASA Astrophysics Data System (ADS)

    Amirnasr, M.; Brooks, K. G.; McEvoy, A. J.; Nazeeruddin, M. K.; Pechy, P.; Thampi, K. R.; Grätzel, M.

    2001-11-01

    The present concepts evolved in the context of research and development of artificial photosynthetic systems. Our biosphere depends totally on the action of a porphyrin dye, chlorophyll, for its continued existance, since all food resources find their origin in photosynthesis. Equally, for much of our energy resources we rely on the same process, present or past, as stored in fossil fuels. Naturally, therefore, when it comes to the molecular design of dyes for solar photochemical applications the reference to the porphyrins and similar organometallic complexes based on nitrogen ring structures as prototypes is obvious. However, although nature confines itself to magnesium and iron for its principal pigments, chlorophyll and haemoglobin respectively, the synthetic chemist can access the whole range of metallic elements. The use of ruthenium pyridyl complexes has almost thirty years of development history, and although other compounds have been assessed, such as zinc porphyrins and even prussian-blue analogues, the most suitable dyes today are still modifications of the ruthenium-based pyridyl complexes. The molecular engineering of dyes extends the visible spectrum response, enhances stability and promotes chemisorption to oxide semiconductor substrates while maintaining the energetics and kinetics for efficient charge transfer to function in sensitised electrochemical photovoltaic devices. There is also an overview of the present status of the technology, the materials incorporated in current devices, and their reliability in practical applications especially in situations of thermal stress. The conclusion will present the case for ongoing development of dye-sensitised systems in photovoltaic technology.

  4. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles

    PubMed Central

    Mariselvam, R.; Ranjitsingh, A. J. A.; Mosae Selvakumar, P.; Alarfaj, Abdullah A.; Munusamy, Murugan A.

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as PH, temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  5. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  6. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  7. Nonlinear optical properties of multipyrrole dyes

    PubMed Central

    Frenette, Mathieu; Hatamimoslehabadi, Maryam; Bellinger-Buckley, Stephanie; Laoui, Samir; Bag, Seema; Dantiste, Olivier; Rochford, Jonathan; Yelleswarapu, Chandra

    2014-01-01

    The nonlinear optical properties of a series of pyrrolic compounds consisting of BODIPY and aza-BODIPY systems are investigated using 532 nm nanosecond laser and the Z-scan technique. Results show that 3,5-distyryl extension of BODIPY to the red shifted MeO2BODIPY dye has a dramatic impact on its nonlinear absorption properties changing it from a saturable absorber to an efficient reverse saturable absorbing material with a nonlinear absorption coefficient of 4.64 × 10−10 m/W. When plotted on a concentration scale per mole of dye in solution MeO2BODIPY far outperforms the recognized zinc(II) phthalocyanine dye and is comparable to that of zinc(II) tetraphenylporphyrin. PMID:25242819

  8. Quirks of dye nomenclature. 6. Malachite green.

    PubMed

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed. PMID:27491273

  9. Quirks of dye nomenclature. 6. Malachite green.

    PubMed

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  10. Residue chemistry guidelines.

    PubMed

    Olinger, C L; Schmitt, R D; Zager, E

    1993-01-01

    Residue chemistry guidelines are designed to determine what the potential residues in food are and how much may be present as a result of pesticide application, so that a tolerance level may be established. Some requirements are established to assist in the enforcement of tolerances by the USDA, FDA, and the states. I realize I have given you a quick overview of the residue chemistry requirements. There are many documents which are available if you should require more information, such as the Subdivision O Residue Chemistry Guidelines, Standard Evaluation Procedures (which are used by reviewers when evaluating the studies), the Data Reporting Guidelines (which provide guidance on preparing final reports), and the Technical Guidance from Phase III of Reregistration. We have also released various papers on studies when additional guidance is required. Most of these documents are available from NTIS. I hope you will consider this information when auditing residue chemistry studies. As I see the efforts that you, the QA professionals, have made to educate yourselves on residue chemistry studies through programs such as this meeting, I have a little more confidence in answering the question "Do you trust them?" with a "Yes." Thank you.

  11. Technetium Chemistry in HLW

    SciTech Connect

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-06-06

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry.

  12. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    PubMed Central

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  13. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    PubMed

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-22

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  14. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  15. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  16. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  17. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    PubMed

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  18. Continuous-wave organic dye lasers and methods

    SciTech Connect

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  19. The Ideal Solvent for Paper Chromatography of Food Dyes.

    ERIC Educational Resources Information Center

    Markow, Peter G.

    1988-01-01

    Uses paper chromatography with food dyes to provide a simple and inexpensive basis for teaching chromatography. Provides experimental methodology and tabled results. Includes a solvent system comparison (Rf) for seven dyes and twenty-two solvents. (MVL)

  20. Spectral characteristics and nonlinear studies of crystal violet dye.

    PubMed

    Sukumaran, V Sindhu; Ramalingam, A

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  1. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    SciTech Connect

    Sahmer, Ahmad Zahrin Mohamed, Norani Muti Zaine, Siti Nur Azella

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  2. Third row metal complexes as an alternative dye in dye sensitized solar cell system

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Badriyah, I.; Kristy, I. O.; Dewi, N. S.; Rahardjo, S. B.

    2013-10-01

    Copper(II), Cobalt (II) and Iron (II) complexes as photosensitizer on Dye Sensitized Solar Cell (DSSC) had been investigated. The aim of this research is to find out the respond addition of those dyes on FTO/TiO2 (FTO = fluorine Tin Oxide) thin film to visible light and the effect of various third row complexes to DSSC performance. Slip casting method was used to fabricate FTO/TiO2 and FTO/carbon thin film. The result from FTO/TiO2 UV-Vis spectra show no absorption on visible light. Dye solution was synthesized from free metal ions of Cu(II), Co(II), and Fe(II) in methanol with diphenylamine (dpa), 2,2,bypiridine (bpy), 1,10, phenathroline (phen), 4,4'-dicarboxylic acid-2,2'-bipyridine (dcbq), and anthocyanin (ant) ligands, respectively. UV-Vis spectrophotometry was used to identify FTO/TiO2/dye with various sensitizer dyes. The performance of DSSC was determined by I (current) - V (voltage) curve using Keithley 2602 A System Source. In this research, DSSCs are able to convert photon energy become electrical energy. Dye used in DSSC is greatly effect in photon to current efficiency (IPCE). The greater absorption in visible region of alternative dye used gains higher IPCE spectra. TiO2 character can help spread the absorption in whole visible region. The nanosize mesoporous TiO2 of TiO2/SiPA/CoII-PAR (SiPA = silylpropilamine) have greater value than P25 TiO2/SiPA-CoII-PAR. The SiPA/FeII-PAR and SiPA/CoII-PAR dyes are better dye than tpa.

  3. Oxidative degradation of azo dyes using tourmaline.

    PubMed

    Wang, Cuiping; Zhang, Yanwei; Yu, Li; Zhang, Zhiyuan; Sun, Hongwen

    2013-09-15

    This study aimed to investigate the catalyzed degradation ability of tourmaline on the dyes methylene blue (MB), rhodamine B (RhB), and congo red (CR) at different pH values. Interestingly, tourmaline strongly adsorbed anionic dyes, but it did not adsorb cationic dyes. When H₂O₂ was introduced into the tourmaline-dye systems, the degradation percentage for CR catalysis by tourmaline was lower than the percentage of adsorption, whereas the opposite was true for MB and RhB systems. Notably, the catalyzed degradation decreased from 100% to 45% for MB, 100% to 15% for RhB and 100% to 25% for CR as the pH increased from 3.0 to 10.0, respectively, which was much greater than the degradation obtained for previously reported materials at pH values ranging from 4.0 to 10.0. Tourmaline catalytically degraded the dyes over a broad range of pH values, which was attributed to tourmaline automatically adjusting the pH of the dye solutions to approximately 5.5 from an initial range of 4.2-10.0. An electron paramagnetic resonance spin trapping technique observed peroxyl (ROO·) and alkoxy (RO·) or alkyl (R·) radicals originated from the attack of ·OH radicals and O₂(·-) radicals, indicating that these radicals were involved in the catalyzed degradation of MB. Importantly, four intermediate products of MB at m/z 383, 316, 203 and 181 were observed by LC/MS. PMID:23876254

  4. Oxidative degradation of azo dyes using tourmaline.

    PubMed

    Wang, Cuiping; Zhang, Yanwei; Yu, Li; Zhang, Zhiyuan; Sun, Hongwen

    2013-09-15

    This study aimed to investigate the catalyzed degradation ability of tourmaline on the dyes methylene blue (MB), rhodamine B (RhB), and congo red (CR) at different pH values. Interestingly, tourmaline strongly adsorbed anionic dyes, but it did not adsorb cationic dyes. When H₂O₂ was introduced into the tourmaline-dye systems, the degradation percentage for CR catalysis by tourmaline was lower than the percentage of adsorption, whereas the opposite was true for MB and RhB systems. Notably, the catalyzed degradation decreased from 100% to 45% for MB, 100% to 15% for RhB and 100% to 25% for CR as the pH increased from 3.0 to 10.0, respectively, which was much greater than the degradation obtained for previously reported materials at pH values ranging from 4.0 to 10.0. Tourmaline catalytically degraded the dyes over a broad range of pH values, which was attributed to tourmaline automatically adjusting the pH of the dye solutions to approximately 5.5 from an initial range of 4.2-10.0. An electron paramagnetic resonance spin trapping technique observed peroxyl (ROO·) and alkoxy (RO·) or alkyl (R·) radicals originated from the attack of ·OH radicals and O₂(·-) radicals, indicating that these radicals were involved in the catalyzed degradation of MB. Importantly, four intermediate products of MB at m/z 383, 316, 203 and 181 were observed by LC/MS.

  5. Citric Acid Fuctionalized Magnetic Ferrite Nanoparticles for Photocatalytic Degradation of Azo Dye.

    PubMed

    Mahto, Triveni Kumar; Roy, Anurag; Sahoo, Banalata; Sahu, Sumanta Kumar

    2015-01-01

    In this study different magnetic ferrite nanoparticles (MFe2O4, where M = Fe, Mn, Zn) were synthesized through an aqueous coprecipitation method and then functionalized with citric acid for the degradation of azo dye present in industrial waste water. Here we evaluated the role of citric acid for photocatalytic application. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and the catalytic activity in degradation of methyl orange (MO) was evaluated. The rate of MO degradation in different magnetic systems was determined by UV-Vis spectroscopy. The effect of active parameters (pH, initial MO concentration and effect of sunlight) on degradation performance was investigated. For the first time, citric acid chemistry is successfully exploited to develop a photocatalyst that can successfully degrade the dyes. This citric acid functionalized magnetic ferrite nanoparticles are very much effective for photocalytic degradation of dye and also these can be recollected with the help of permanent magnet for successive uses.

  6. Detection of smectites in ppm and sub-ppm concentrations using dye molecule sensors

    NASA Astrophysics Data System (ADS)

    Lofaj, Marcel; Bujdák, Juraj

    2012-03-01

    Methylene blue and rhodamine 6G were used as molecular sensors for the spectrophotometric titrations of the aqueous colloids of clay minerals (montmorillonite, illite and kaolinite). The dyes adsorbed on colloid particles form molecular aggregates, which exhibit spectral properties significantly different from those of dye solutions. Spectrophotometric titrations provide the most sensitive detection of smectites in aqueous colloids (sub-ppm concentrations); and the sensitivity further increases using second derivative spectroscopy. The endpoint of spectrophotometric titrations can be used for the determination of exchange capacity of the mineral in colloids and in this way to estimate its amount. The method is selective only to expandable clays, which was proven by experiments with kaolinite and illite. Spectrophotometric titrations have promising future in the analysis of clays and can be applied in many fields of geology, mineralogy, chemistry, material sciences or in industry. Its application may expand to the analysis of other nanomaterials built from charged particles and exhibiting metachromasy in the systems with organic dyes.

  7. Trypan blue dye for anterior segment surgeries

    PubMed Central

    Jhanji, V; Chan, E; Das, S; Zhang, H; Vajpayee, R B

    2011-01-01

    Use of vital dyes in ophthalmic surgery has gained increased importance in the past few years. Trypan blue (TB) has been a popular choice among anterior segment surgeons mainly due to its safety, ease of availability, and remarkable ability to enable an easy surgery in difficult situations mostly related to visibility of the targeted tissue. It is being used in cataract surgery since nearly a decade and its utilization has been extended to other anterior segment surgeries like trabeculectomy and corneal transplantation. This review will discuss the techniques and outcome of TB dye-assisted anterior segment surgeries. PMID:21681214

  8. Atmospheric chemistry research

    SciTech Connect

    Saylor, R.D. )

    1990-01-01

    Global environmental changes are occurring all around us, and the energy industry is a major player in the changes that are taking place. Wise energy policy can only be generated from a position of informed enlightenment and understanding about the environmental consequences of energy production and utilization. The atmospheric chemistry research being conducted at the University of Kentucky's Center for Applied Energy Research is geared toward providing the knowledge necessary to allow industrial and legislative officials to make responsible energy decisions in the 1990's and beyond. Three programs are described: the Kentucky Acid Deposition Program Precipitation chemistry network; modeling of regional and urban photochemistry and acid deposition; and modeling of global tropospheric chemistry.

  9. IR laser chemistry

    NASA Astrophysics Data System (ADS)

    Quack, Martin

    1995-01-01

    Recent progress in IR laser chemistry is reviewed with stress on the conceptual background and experimental advances from our research group. In particular we discuss various experimental schemes in laser chemistry as related to thermal reactions and ordinary photochemistry, and new results in time and frequency resolved kinetic IR spectroscopy at the limit defined by the uncertainty relation. The recent detection of hyperfine effects in IR laser chemistry is reviewed as well as nonlinear intensity dependence over many orders of magnitude including observations of nonlinear intensity fall-off and IR laser ionization of molecules. An outlook is presented on different time scales for intramolecular processes and the resulting future possibilities of IR laser chemical reaction control.

  10. Uranium triamidoamine chemistry.

    PubMed

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  11. Air Composition and Chemistry

    NASA Astrophysics Data System (ADS)

    Brimblecombe, Peter

    1996-01-01

    This book is about the atmosphere and humanity's influence on it. For this new edition, Brimblecombe has rewritten and updated much of the book. In the early chapters, he discusses the geochemical, biological and maritime sources of the trace gases. Next, he examines the chemistry of atmospheric gases, suspended particles, and rainfall. After dealing with the natural atmosphere, he examines the sources of air pollution and its effects, with all scenarios updated from the last edition. Scenarios include decline in health, damage to plants and animals, indoor pollution, and acid rain. The final chapters, also revised, are concerned with the chemistry and evolution of the atmospheres of the planets of the solar system. Students with an interest in chemistry and the environmental sciences will find this book highly valuable.

  12. Digital biology and chemistry.

    PubMed

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-01

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  13. Laser based on dye-activated silica gel

    SciTech Connect

    Altshuler, G.B.; Bakhanov, V.A.; Dulneva, E.G.; Erofeev, A.V.; Mazurin, O.V.; Roskova, G.P.; Tsekhomskaya, T.S.

    1987-06-01

    Silica gel activated by a dye is used as a new laser medium. The lasin characteristics of rhodamine 6G in silica gel are reported. An important characteristic of the dye laser is its long service life, which is determined by the photostability of the dye in silic gel.(AIP)

  14. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    This bibliography covers studies on dye laser theory, design, components, optical systems, and frequency range. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered. This updated bibliography contains 217 citations, none of which are new entries to the previous edition.

  15. Antibody Labeling with Fluorescent Dyes Using Magnetic Protein A and Protein G Beads.

    PubMed

    Nath, Nidhi; Godat, Becky; Urh, Marjeta

    2016-01-01

    Antibodies labeled with small molecules like fluorescent dyes, cytotoxic drugs, and radioactive tracers are essential tools in biomedical research, immunodiagnostics and more recently as therapeutic agents. Traditional methods for labeling antibodies with small molecules require purified antibodies at relatively high concentration, involve multiple dialysis steps and have limited throughput. However, several applications, including the field of Antibody Drug Conjugates (ADCs), will benefit from new methods that will allow labeling of antibodies directly from cell media. Such methods may allow antibodies to be screened in biologically relevant assays, for example, the receptor-mediated antibody internalization assay in the case of ADCs. Here, we describe a method (on-bead method) that enables labeling of small amounts of antibodies directly from cell media. This approach utilizes high capacity magnetic Protein A and Protein G affinity beads to capture antibodies from the cell media followed by labeling with small molecules using either amine or thiol chemistry and subsequent elution of the labeled antibodies. Taking fluorescent dyes as surrogates for small molecules, we demonstrate the on-bead labeling of three different mouse antibodies directly from cell media using both amine and thiol labeling chemistry. The high binding affinity of antibodies to Protein A and Protein G ensures high recoveries as well as high purity of the labeled antibodies. In addition, use of magnetic beads allows multiple samples to be handled manually, thereby significantly improving labeling throughput. PMID:27685323

  16. Chemistry of Transactinides

    NASA Astrophysics Data System (ADS)

    Kratz, J. V.

    In this chapter, the chemical properties of the man-made transactinide elements rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), bohrium, Bh (element 107), hassium, Hs (element 108), and copernicium, Cn (element 112) are reviewed, and prospects for chemical characterizations of even heavier elements are discussed. The experimental methods to perform rapid chemical separations on the time scale of seconds are presented and comments are given on the special situation with the transactinides where chemistry has to be studied with single atoms. It follows a description of theoretical predictions and selected experimental results on the chemistry of elements 104 through 108, and element 112.

  17. Chemistry in cometary comae.

    PubMed

    Irvine, W M; Dickens, J E; Lovell, A J; Schloerb, F P; Senay, M; Bergin, E A; Jewitt, D; Matthews, H E

    1998-01-01

    Significant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.

  18. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  19. Chemistry in cometary comae

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.

    1998-01-01

    Significant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.

  20. Chemistry in Second Life

    PubMed Central

    Lang, Andrew SID; Bradley, Jean-Claude

    2009-01-01

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students. PMID:19852781

  1. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  2. Top Down Chemistry Versus Bottom up Chemistry

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Witt, Adolf N.

    2016-06-01

    The idea of interstellar top down chemistry (TDC), in which molecules are produced from decomposition of larger molecules and dust in contrast to ordinary bottom up chemistry (BUC) in which molecules are produced synthetically from smaller molecules and atoms in the ISM, has been proposed in the chemistry of PAH and carbon chain molecules both for diffusea,c and dense cloudsb,d. A simple and natural idea, it must have occurred to many people and has been in the air for sometime. The validity of this hypothesis is apparent for diffuse clouds in view of the observed low abundance of small molecules and its rapid decrease with molecular size on the one hand and the high column densities of large carbon molecules demonstrated by the many intense diffuse interstellar bands (DIBs) on the other. Recent identification of C60^+ as the carrier of 5 near infrared DIBs with a high column density of 2×1013 cm-2 by Maier and others confirms the TDC. This means that the large molecules and dust produced in the high density high temperature environment of circumstellar envelopes are sufficiently stable to survive decompositions due to stellar UV radiaiton, cosmic rays, C-shocks etc. for a long time (≥ 10^7 year) of their migration to diffuse clouds and seems to disagree with the consensus in the field of interstellar grains. The stability of molecules and aggregates in the diffuse interstellar medium will be discussed. Duley, W. W. 2006, Faraday Discuss. 133, 415 Zhen,J., Castellanos, P., Paardekooper, D. M., Linnartz, H., Tielens, A. G. G. M. 2014, ApJL, 797, L30 Huang, J., Oka, T. 2015, Mol. Phys. 113, 2159 Guzmán, V. V., Pety, J., Goicoechea, J. R., Gerin, M., Roueff, E., Gratier, P., Öberg, K. I. 2015, ApJL, 800, L33 L. Ziurys has sent us many papers beginning Ziurys, L. M. 2006, PNAS 103, 12274 indicating she had long been a proponent of the idea. Campbell, E. K., Holz, M., Maier, J. P., Gerlich, D., Walker, G. A. H., Bohlender, D, 2016, ApJ, in press Draine, B. T. 2003

  3. Primary flavonoids in marigold dye: extraction, structure and involvement in the dyeing process.

    PubMed

    Guinot, Pauline; Gargadennec, Annick; Valette, Gilles; Fruchier, Alain; Andary, Claude

    2008-01-01

    Flavonoids extracted from marigold flowers were investigated for their dyeing potential. Patulitrin (1) and patuletin (2) were isolated and their structures established using NMR and HPLC-MS. These compounds were identified as the main flavonoids present in the dyeing bath. Following the dyeing process, it was demonstrated that aglycone 2 bound more strongly to wool fibres than its glucoside 1. Moreover, analysis focused on 1 and 2 dynamics during plant growth revealed that these components were only found in flowers during and after flowering. The influence of growing location was also investigated and it appeared that cultivation under Mediterranean conditions enhanced biosynthesis of 1 and 2 . Finally, several solvents were tested for their potential to extract the flavonoids: the use of a water-ethanol mixture gave a high extraction efficiency and allowed selective extraction of 1 and 2. The implications of these results are discussed in relation to the development of marigold as a potential dyeing plant. PMID:17654539

  4. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  5. [Enhanced biodecolourization of azo dyes by the catalysis of anthraquinone dyes intermediators].

    PubMed

    Su, Yan-Yan; Wang, Jing; Zhou, Ji-Ti; Lü, Hong; Li, Li-Hua

    2008-07-01

    Enhanced biodecolourization of azo dyes by suspended and immobilized quinone-reducing community using kinds of anthraquinone dyes intermediators as redox mediators was investigated. The suspended bacterium community could enhance the biodecolourization of many kinds of azo dyes using bromoamine acid (BAA) as a redox mediator, the optimum conditions for Acid Red 3R were as follows: pH 6-9, glucose, BAA and initial dye concentrations 400-600 mg/L, 19-34.2 mg/L and < or = 900 mg/L, respectively. Under these conditions, the maximal decolourization rate was about 95%, which is reached within 7 h for suspended cells and 14 h for immobilized cells. However, the latter needed 38-57 mg/L BAA as a redox mediator. In addition, after 7 cycles without BAA addition, the decolourization rate of Acid Red 3R by immobilized cells retained over 85%.

  6. Organic Chemistry Self Instructional Package 1: Review of General Chemistry.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet is one of a series of 17 developed at Prince George's Community College, Largo, Maryland. It provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The entire…

  7. Emphasizing Mineral Chemistry in an Analytical Chemistry Unit.

    ERIC Educational Resources Information Center

    Dunn, Jeffrey G.; And Others

    1995-01-01

    Describes an analytical chemistry unit in the second year of the chemistry degree course at Curtin University that was designed to reflect the numerous employment opportunities for chemistry graduates in the mineral processing industries and private analytical laboratories. Presents the lecture syllabus, the laboratory course description, and…

  8. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  9. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    ERIC Educational Resources Information Center

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  10. Connected Chemistry--Incorporating Interactive Simulations into the Chemistry Classroom.

    ERIC Educational Resources Information Center

    Stieff, Mike; Wilensky, Uri

    2003-01-01

    Describes a novel modeling and simulation package and assesses its impact on students' understanding of chemistry. Connected Chemistry was implemented inside the NetLogo modeling environment. Using Connected Chemistry, students employed problem -solving techniques characterized by stronger attempts at conceptual understanding and logical…

  11. Characterising dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2009-08-01

    With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

  12. Removal of Triphenylmethane Dyes by Bacterial Consortium

    PubMed Central

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  13. Triphenylmethane Dye Activation of Beta-Arrestin

    PubMed Central

    2013-01-01

    β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508

  14. Quirks of dye nomenclature. 3. Trypan blue.

    PubMed

    Cooksey, C J

    2014-11-01

    Trypan blue is colorant from the 19(th) century that has an association with Africa as a chemotherapeutic agent against protozoan (Trypanosomal) infections, which cause sleeping sickness. The dye still is used for staining biopsies, living cells and organisms, and it also has been used as a colorant for textiles.

  15. Laser kinetic processes in dye mixtures

    SciTech Connect

    Lei Jie; Fu Honglang

    1988-11-01

    Radiation from rhodamine 6G+cresyl violet and rhodamine B+cresyl violet dye mixtures in ethyl alcohol pumped by N/sub 2/ laser light were studied. The rate constants of resonant transfer in the mixtures were determined. The radiative transfer processes are discussed.

  16. Degradation of various dyes using Laccase enzyme.

    PubMed

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  17. Tunable optofluidic distributed feedback dye lasers

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Zhang, Zhaoyu; Emery, Teresa; Scherer, Axel; Psaltis, Demetri

    2006-08-01

    We demonstrated a continuously tunable optofluidic distributed feedback (DFB) dye laser on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip. The optical feedback was provided by a phase-shifted higher order Bragg grating embedded in the liquid core of a single mode buried channel waveguide. We achieved nearly 60nm continuously tunable output by mechanically varying the grating period with two dye molecules Rhodamine 6G (Rh6G) and Rhodamine 101 (Rh101). Single-mode operation was obtained with <0.1nm linewidth. Because of the higher order grating, a single laser, when operated with different dye solutions, can provide tunable output covering from near UV to near IR spectral region. The low pump threshold (< 1uJ) makes it possible to use a single high energy pulsed laser to pump hundreds of such lasers on a chip. An integrated array of five DFB dye lasers with different lasing wavelengths was also demonstrated. Such laser arrays make it possible to build highly parallel optical sensors on a chip. The laser chip is fully compatible with PDMS based soft microfluidics.

  18. Removal of triphenylmethane dyes by bacterial consortium.

    PubMed

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  19. Fluorescent indicator dyes for calcium ions

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor)

    1986-01-01

    The present invention discloses a new class of highly fluorescent indicator dyes that are specific for calcium ions. The new fluorescent indicator dyes combine a stilbene-type fluorophore with a tetracarboxylate parent Ca.sup.2+ chelating compound having the octacoordinate pattern of liganding groups characteristic of EGTA and BAPTA. Preferred forms contain extra heterocyclic bridges to reinforce the ethylenic bond of the stilbene and to reduce hydrophobicity. Compared to their widely used predecessor, quin2, the new dyes offer up to thirty-fold brighter fluorescence, major changes in wavelength (not just intensity) upon Ca.sup.2+ binding, slightly lower affinities for Ca.sup.2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca.sup.2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca.sup.2+, make the dyes useful indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues. The present invention also discloses an improved method for synthesizing alpha-acyloxyalkyl bromides wherein the bromides so synthesized are free of contaminating bis(1-bromoalkyl)ether. The improved method is exemplified herein in the synthesis of acetoxymethyl bromide, a compound useful in preparing the acetoxymethyl esters disclosed herein as novel Ca.sup.2+ specific fluorescent indicators.

  20. Mutagenicity testing of some commonly used dyes.

    PubMed Central

    Chung, K T; Fulk, G E; Andrews, A W

    1981-01-01

    Seventeen commonly used dyes and 16 of their metabolites or derivatives were tested in the Salmonella-mammalian microsome mutagenicity test. Mutagens active with and without added Aroclor-induced rat liver microsome preparations (S9) were 3-aminopyrene, lithol red, methylene blue (USP), methyl yellow, neutral red, and phenol red. Those mutagenic only with S9 activation were 4-aminopyrazolone, 2,4-dimethylaniline, N,N-dimethyl-p-phenylenediamine, methyl red, and 4-phenyl-azo-1-naphthylamine. Orange II was mutagenic only without added S9. Nonmutagenic azo dyes were allura red, amaranth, ponceau R, ponceau SX, sunset yellow, and tartrazine. Miscellaneous dyes not mutagenic were methyl green, methyl violet 2B, and nigrosin. Metabolites of the azo dyes that were not mutagenic were 1-amino-2-naphthol hydrochloride, aniline, anthranilic acid, cresidine salt, pyrazolone T,R-amino salt (1-amino-2-naphthol-3,6-disulfonic disodium salt), R-salt, Schaeffer's salt (2-naphthol-6-sulfonic acid, sodium salt), sodium naphthionate, sulfanilamide, and sulfanilic acid. 4-Amino-1-naphthalenesulfonic acid sodium salt was also not mutagenic. Fusobacterium sp. 2 could reductively cleave methyl yellow to N,N-dimethyl-p-phenylenediamine which was then activated to a mutagen. PMID:7039509

  1. Chemistry and Popperism.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1984-01-01

    Discusses the relationship of Karl Popper's theories to chemistry, examining scientific statements and verisimilitude (which indicates that newer theories should have a higher degree of truth content compared with older theories). Also provides examples illustrating the use of Agassi's criteria for assessing currently fashionable theories. (JN)

  2. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  3. Chemistry and Heritage

    NASA Astrophysics Data System (ADS)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  4. Myrrh--Commiphora chemistry.

    PubMed

    Hanus, Lumír O; Rezanka, Tomás; Dembitsky, Valery M; Moussaieff, Arieh

    2005-06-01

    Myrrh and opopanax has been used throughout history in incense and as a perfume. Since Bible times it has been used for the treatment of wounds. The first attempts to identify content compounds were almost 100 years ago. In this review we discuss the present state of knowledge in the chemistry of substances of Commiphora spp. PMID:16170385

  5. The Chemistry of Health

    ERIC Educational Resources Information Center

    Davis, Alison

    2009-01-01

    Do people realize that chemistry plays a key role in helping solve some of the most serious problems facing the world today? Chemists want to find the building blocks of the chemical universe--the molecules that form materials, living cells and whole organisms. Many chemists are medical explorers looking for new ways to maintain and improve…

  6. Chemistry in the Troposphere.

    ERIC Educational Resources Information Center

    Chameides, William L.; Davis, Douglas D.

    1982-01-01

    Topics addressed in this review of chemistry in the troposphere (layer of atmosphere extending from earth's surface to altitude of 10-16km) include: solar radiation/winds; earth/atmosphere interface; kinetic studies of atmospheric reactions; tropospheric free-radical photochemistry; instruments for nitric oxide detection; sampling…

  7. Array processors in chemistry

    SciTech Connect

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  8. The Chemistry of Health.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This booklet, geared toward an advanced high school or early college-level audience, describes how basic chemistry and biochemistry research can spur a better understanding of human health. It reveals how networks of chemical reactions keep our bodies running smoothly. Some of the tools and technologies used to explore these reactions are…

  9. Chemistry Cook-Off

    ERIC Educational Resources Information Center

    McCormick, Cynthia

    2012-01-01

    For this activity, high school chemistry students compete in a cooking contest. They must determine the chemical and physical changes that occur in the food they prepare, present their recipe as a step-by-step procedure similar to a lab procedure, identify chemicals in the food, and present all measurements in both metric and English units. The…

  10. Epoxying Isoprene Chemistry

    EPA Science Inventory

    It seems that every few months we read about another missing aspect of atmospheric chemistry: missing products, missing reactivity, missing sources, missing understanding. Thus, it is with some relief that we read in this issue the paper of Paulot et al. The paper provides more...

  11. Chemistry of Meridiani Outcrops

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Squyres, S. W.; Ming, D. W.; Morris, R. V.; Yen, A.; Gellert, R.; Knoll, A.H.; Arvidson, R. E.

    2006-01-01

    The chemistry and mineralogy of the sulfate-rich sandstone outcrops at Meridiani Planum, Mars, have been inferred from data obtained by the Opportunity rover of the MER mission and reported in recent publications [1-6]. Here, we provide an update on more recent samples and results derived from this extensive data set.

  12. General Chemistry, 1970 Edition.

    ERIC Educational Resources Information Center

    Dunham, Orson W.; Franke, Douglas C.

    This publication is a syllabus for a senior high school chemistry course designed for the average ability, nonscience major. The content of the syllabus is divided into three basic core areas: Area I: Similarities and Dissimilarities of Matter (9 weeks); Area II: Preparation and Separation of Substances (10 weeks); Area III: Structure and…

  13. News: Green Chemistry & Technology

    EPA Science Inventory

    A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

  14. Microscale Gas Chemistry

    ERIC Educational Resources Information Center

    Mattson, Bruce; Anderson, Michael P.

    2011-01-01

    The development of syringes having free movement while remaining gas-tight enabled methods in chemistry to be changed. Successfully containing and measuring volumes of gas without the need to trap them using liquids made it possible to work with smaller quantities. The invention of the LuerLok syringe cap also allowed the gas to be stored for a…

  15. Chemistry between the stars

    NASA Technical Reports Server (NTRS)

    Gammon, R. H.

    1976-01-01

    A unit is presented for the secondary school teacher of physics, chemistry, astronomy, or earth sciences. Included are a list of reference materials, teaching aids, and projects. Discussion questions and a glossary are also provided. Concepts developed are: the nature of interstellar space, spectroscopy, molecular signals from space and interstellar molecules and other areas of astronomy.

  16. Chemistry Between The Stars.

    ERIC Educational Resources Information Center

    Gammon, Richard H.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics are covered: the physical conditions in interstellar space in comparison with those of the earth, particularly in regard to gas density,…

  17. The Language of Chemistry.

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Meinwald, Jerrold

    2002-01-01

    Describes a new curriculum called The Language of Chemistry designed to illustrate how problems of biological and/or medical importance can be understood on a molecular basis and to show that the logic, knowledge, and language needed are easily accessible. Among the case studies in the curriculum are the giant peacock moth, bacterial chemotaxis,…

  18. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  19. Get Cooking with Chemistry!

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book presents science activities investigating the chemical changes and reactions with powders that are used in baking. Activities include: (1) Mystery Powders; (2) Find the Fizz: Discover the Secret of Baking Powder; and (3) A Feast for Yeast and Cheese: Behold the Power of Chemistry. (YDS)

  20. Greener and Sustainable Chemistry

    EPA Science Inventory

    The special issue on Greener and Sustainable Chemistry highlights various strategies that can be adopted to address the pollution preventive measures promoting the use of energy efficient reactions that utilize benign and bio-renewable raw materials in a relatively safer reaction...

  1. Nobel Prize in Chemistry

    NASA Astrophysics Data System (ADS)

    2000-01-01

    The Royal Swedish Academy has awarded the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail (California Institute of Technology, Pasadena, CA) "for his studies of the transition states of chemical reactions using femtosecond spectroscopy". Zewail's work has taken the study of the rates and mechanisms of chemical reactions to the ultimate degree of detail - the time scale of bond making and bond breaking.

  2. Chemistry Curricula. Course Suggestions.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Listings of suggested topics aimed at helping university and college faculties plan courses in the main areas of the chemistry curricula are provided. The suggestions were originally offered as appendices to the American Chemical Society's (ACS) Committee on Professional Training's 1983 guidelines for ACS-approved schools. The course data included…

  3. Myrrh--Commiphora chemistry.

    PubMed

    Hanus, Lumír O; Rezanka, Tomás; Dembitsky, Valery M; Moussaieff, Arieh

    2005-06-01

    Myrrh and opopanax has been used throughout history in incense and as a perfume. Since Bible times it has been used for the treatment of wounds. The first attempts to identify content compounds were almost 100 years ago. In this review we discuss the present state of knowledge in the chemistry of substances of Commiphora spp.

  4. Bringing chemistry to life

    PubMed Central

    Boyce, Michael; Bertozzi, Carolyn R

    2011-01-01

    Bioorthogonal chemistry allows a wide variety of biomolecules to be specifically labeled and probed in living cells and whole organisms. Here we discuss the history of bioorthogonal reactions and some of the most interesting and important advances in the field. PMID:21799498

  5. Getting Reactions to Chemistry.

    ERIC Educational Resources Information Center

    Smith, Walter S.

    1983-01-01

    "COMETS on Careers" describes science-related careers, introduces activities illustrating a science concept being studied, and encourages use of professional persons as activity leaders. Several COMETS chemistry activities are described. These activities, which can be performed in school or at home, focus on colloids, acid/base indicators, and…

  6. Water Chemistry Laboratory Manual.

    ERIC Educational Resources Information Center

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  7. Online Organic Chemistry

    ERIC Educational Resources Information Center

    Janowicz, Philip A.

    2010-01-01

    This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…

  8. Chemistry in a Nutshell.

    ERIC Educational Resources Information Center

    Rupnow, John; And Others

    1995-01-01

    Presents an activity that involves making peanut butter in the laboratory as a way to teach students the chemistry concepts of emulsification, solubility, and formulation. Enables students to realize that they can actually create or modify the physical and sensory characteristics of peanut butter and taste the differences in their work. (JRH)

  9. Green chemistry metrics

    EPA Science Inventory

    Synthetic chemists have always had an objective to achieve reliable and high-yielding routes to the syntheses of targeted molecules. The importance of minimal waste generation has emphasized the use of green chemistry principles and sustainable development. These directions lead ...

  10. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  11. Measurement of atmospheric OH by titration of near-IR fluorescent dyes

    NASA Technical Reports Server (NTRS)

    Betterton, Eric A.; Gast, Karl

    1994-01-01

    Recent research has shown that certain polymethine dyes can be detected at ultratrace levels (greater than or equal to 6x10(exp -14) M) in solution by fluorimetry. These detection limits are possible because of the inherent sensitivity of fluorescence techniques, because the dyes fluoresce in the near infrared region where background interference is negligible, and because powerful infrared diode lasers are now available to improve the signal to noise ratio. Other work has shown that the hydroxyl radical destroys the ability of polymethine dyes to fluoresce. These observations form the basis for a new hydroxyl radical detector that is essentially a fluorometric titrator. Theoretically, the detector should show an acceptable sensitivity and response time. Assuming that the atmospheric HO concentration is about 10(exp -11) moles m(exp -3) (i.e. 10(exp 6) molecules cm(exp -3)), then 10 L of air 'titrated' with 20 mL of 10(exp -11) M dye solution (an easily detected concentration) should result in a drop in the fluorescent signal of 50 percent - a readily detectable change. At a flow rate of 3 L min(exp -1) the sampling time would be 3 minutes. The biggest potential problem is selectivity: other oxidants may also cause the fluorescence signal to be lost. The chemistry of polymethine dyes has not been studied in detail and so no quantitative data are available. However, a survey of the literature suggests that in general HO should react up to six orders of magnitude faster than HO2 and other radicals such as RO2 and RO. It should also react much more rapidly than H2O2 and O3. Thus it may be possible to discriminate kinetically against potential interfering substances. It was shown in the laboratory that 10(exp -4) M H2O2 has little effect on the absorption spectrum of the dye IR125 over a period of hours but that the band at 780 nm is slowly lost in water over a period of days even under argon in the dark. By contrast, DMSO solutions of IR125 are stable.

  12. The Lighter Side of Chemistry.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1984-01-01

    Discusses the rationale for using photochemistry to merge descriptive chemistry and molecular orbital theory in first-year chemistry courses. Includes procedures and safety information for various activities, demonstrations, and experiments involving photochemical reactions. (DH)

  13. The Birthday of Organic Chemistry.

    ERIC Educational Resources Information Center

    Benfey, Otto Theodor; Kaufman, George B.

    1979-01-01

    Describes how the synthesis of urea, 150 years ago, was a major factor in breaking the artificial barrier that existed between organic and inorganic chemistry, and this contributed to the rapid growth of organic chemistry. (GA)

  14. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  15. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  16. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium.

    PubMed

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2010-11-01

    A bacterial consortium (consortium GR) consisting of Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 could rapidly decolorize and degrade commonly-used sulfonated reactive dye Green HE4BD and many other reactive dyes. Consortium GR shows markedly higher decolorization activity than that of the individual strains. The preferable physicochemical parameters were identified to achieve higher dye degradation and decolorization efficiency. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of consortium GR. Extent of mineralization was determined with TOC and COD measurements, showing nearly complete mineralization of Green HE4BD by consortium GR (up to 90% TOC and COD reduction) within 24 h. Oxidoreductive enzymes seemed to be involved in fast decolorization/degradation process with the evidence of enzymes induction in the bacterial consortium. Phytotoxicity and microbial toxicity studies confirm that the biodegraded products of Green HE4BD by consortium GR are non-toxic. Consortium GR also shows significant biodegradation and decolorization activities for mixture of reactive dyes as well as the effluent from actual dye manufacturing industry. This confers the possibility of applying consortium GR for the treatment of industrial wastewaters containing dye pollutants.

  17. Method of dye removal for the textile industry

    SciTech Connect

    Stone, M.L.

    2000-07-25

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention uses an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  18. Dark dyes-bright complexes: fluorogenic protein labeling.

    PubMed

    Bruchez, Marcel P

    2015-08-01

    Complexes formed between organic dyes and genetically encoded proteins combine the advantages of stable and tunable fluorescent molecules and targetable, biologically integrated labels. To overcome the challenges imposed by labeling with bright fluorescent dyes, a number of approaches now exploit chemical or environmental changes to control the properties of a bound dye, converting dyes from a weakly fluorescent state to a bright, easily detectable complex. Optimized, such approaches avoid the need for removal of unbound dyes, facilitate rapid and simple assays in cultured cells and enable hybrid labeling to function more robustly in living model organisms.

  19. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  20. Vibrational spectroscopy to study degradation of natural dyes. Assessment of oxygen-free cassette for safe exposition of artefacts.

    PubMed

    Koperska, Monika; Łojewski, Tomasz; Łojewska, Joanna

    2011-03-01

    An important issue connected with conservation chemistry is how to improve the storage and exposure conditions in order to suppress the fading and degradation of dyes and other components of paintings. Although the oxygen-free exposure cassettes are commonly known in museums, there is still lack of information in the literature about the effect of anoxic conditions on the degradation of dyes. This study is an attempt to start a database formation on the dyes degradation. Five commercial dyes (indigo, dragon's blood, curcumin, madder, carminic acid) were submitted to accelerated ageing by exposure to intensive light in the visible range in both oxygen-free (anoxia) and -rich conditions. Degradation of the samples was investigated by several analytical techniques (attenuated total reflectance infrared spectroscopy, Raman spectroscopy, reflectance UV-Vis spectroscopy, X-ray fluorescence spectroscopy and optical microscopy). The conclusions are based on the estimators (derived from the determination of colour differences from Vis spectra and from the changes in FTIR and Raman vibrational bands intensity). According to them, only indigo, dragon's blood and curcumin show greater stability in anoxic conditions in comparison with oxygen-rich ones while madder, carminic acid undergo greater degradation. PMID:21165610

  1. A New Method To Evaluate Excited States Lifetimes Based on Green's Function: Application to Dye-Sensitized Solar Cells.

    PubMed

    Sulzer, David; Iuchi, Satoru; Yasuda, Koji

    2016-07-12

    Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor. PMID:27310524

  2. A New Method To Evaluate Excited States Lifetimes Based on Green's Function: Application to Dye-Sensitized Solar Cells.

    PubMed

    Sulzer, David; Iuchi, Satoru; Yasuda, Koji

    2016-07-12

    Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor.

  3. A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes.

    PubMed

    Combes, R D; Haveland-Smith, R B

    1982-03-01

    The genetic toxicology of the major dyestuffs used in foods, drugs and cosmetics has been reviewed. Published data for azo, triphenylmethane and xanthene dyes from short-term assays for muta-carcinogenicity have been summarized and discussed according to usage, current and previous worldwide legislative status. Certain other synthetic food dyes, commercial mixtures, natural and polymeric colourants as well as a section on aminoazobenzene and its derivatives have been included. Genotoxicity has been discussed with reference to structural chemistry, levels of exposure, absorption and metabolism and to epidemiological information. The extent of agreement between data from different tests and correlations with animal cancer assays have been considered. Synthetic dyes from the 3 major structural classes exhibit genotoxicity, whilst only 2 natural colours have proved active. Activity may be due to the presence of certain functional groups, notably nitro- and amino-substituents which are metabolized to ultimate electrophiles that may be stabilized by electronic interaction with aryl rings. Metabolic processes such as azo-reduction may be activating or detoxifying. the low but significant correlation between animal carcinogenicity and short-term test data may be increased with further screening, especially involving chromosome assays. It is suggested that a human cancer hazard may exist where significant quantities of finished benzidine dye samples are handled. Such risks from exposures to other colours and the possibility of human germ-line mutation induction by dyestuffs cannot be meaningfully assessed.

  4. Raman Spectroscopic Investigation of Dyes in Spices

    NASA Astrophysics Data System (ADS)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  5. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  6. Evaluation of biotoxicity of textile dyes using two bioassays.

    PubMed

    Moawad, Hassan; El-Rahim, Wafaa M Abd; Khalafallah, M

    2003-01-01

    The toxicity of eight textile dyes was evaluated using two bioassays namely: Ames test and seed germination test. The Ames test is widely used for the evaluation of hazardous mutagenic effect of different chemicals, as a short-term screening test for environmental impact assessment. The eight-textile dyes and Eithidium bromide dye (as positive control) were tested with five "his" Salmonella typhimurium strains: TA 100; TA 98; TA 1535; TA 1537; TA 1538. Using six concentrations of each dye (2.5 microg/ml, 4.5 microg/ml, 9 microg/ml, 13.5 microg/ml, 18 microg/ml, and 22.5 microg/ml) revealed that, most of the dyes were mutagenic for the test strains used in this study. The high concentrations of dye eliminated microbial colonies due to the high frequency of mutation causing lethal effect on the cells. In this work the phytotoxicity of different soluble textile dyes was estimated by measuring the relative changes in seed germination of four plants: clover, wheat, tomato and lettuce. The changes in shooting percentages and root length as affected by dye were also measured. Seed germination percent and shoot growth as well as root length were recorded after 6 days of exposure to different concentrations of textile dyes in irrigation water. The results show that high concentrations of dyes were more toxic to seed germination as compared with the lower concentrations. However, the low concentrations of the tested dyes adversely affected the shooting percent significantly.

  7. Novel method for evaluation of natural dyes in DSSC

    SciTech Connect

    Lakshmi, M.; Kavitha, S.; Paul, Mercyleena

    2014-10-15

    Dye sensitized Solar Cell (DSSC) is presently centered on Ruthenium based dyes. Recent research is diverted to explore the potential of natural dyes in replacing the conventional dyes. In this work we have chosen few natural dyes, which when coated on TiO{sub 2} leads to increase in absorption capacity of TiO{sub 2}. Co-relation of absorption and electrochemical properties of natural dyes gives a scientific insight of the probable performance of a dye, even without fabricating a cell. We have tried to compare this predictions based on HOMO-LUMO energy levels with the real cell performance. Measurements of cell parameters suggest that there is scope for further research in this area.

  8. Decolorization of textile dyes by Alishewanella sp. KMK6.

    PubMed

    Kolekar, Yogesh M; Kodam, Kisan M

    2012-07-01

    Alishewanella sp. strain KMK6 was isolated from textile dye-contaminated soil. The strain was able to decolorize and degrade different azo dyes and displayed high dye degradation ability and tolerance. The bacterium could completely degrade 2.5 g l(-1) dye, Reactive Blue 59 within 6 h. The induction in the level of cytochrome P-450 and activities of azoreductase and NADH-dichlorophenolindophenol reductase were observed in the cells after dye decolorization indicating the role of these enzymes. The intermediates of Reactive Blue 59 degradation were identified by high-performance liquid chromatography, gas chromatography and mass spectroscopy, and Fourier transform infrared spectroscopy. The ecotoxicity has been evaluated for dye and its metabolites by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (a yellow tetrazole) and comet assay, and it revealed that the dye degradation products were nontoxic.

  9. The Use of Vital Dyes during Vitreoretinal Surgery - Chromovitrectomy.

    PubMed

    Farah, Michel Eid; Maia, Maurício; Penha, Fernando M; Rodrigues, Eduardo Büchele

    2016-01-01

    The aim of this article is to present the current data with regard to the application of vital dyes during vitreoretinal surgery, 'chromovitrectomy', as well as to overview the current literature regarding the properties of dyes, techniques of application, indications and complications in chromovitrectomy. It is well known that indocyanine green is toxic to the retina and consequently not the ideal dye for chromovitrectomy. Different vital dyes has been tested for chromovitrectomy including trypan blue, patent blue, triamcinolone acetonide, infracyanine green, sodium fluorescein and brilliant blue. Brilliant blue seems to be the ideal dye for internal limiting membrane due to its afinity, lower toxic profile and to reduce the appearance of apoptosis. Besides the dye itself, the injection technique is crucial to avoid additional toxicity, slow injection, far from the retina and protection of the macular hole are some tips. More recently the use of dyes has been applied to stain perfluorcarbon liquids that may enhance its visualization during vitrectomy. PMID:26502062

  10. The Use of Vital Dyes during Vitreoretinal Surgery - Chromovitrectomy.

    PubMed

    Farah, Michel Eid; Maia, Maurício; Penha, Fernando M; Rodrigues, Eduardo Büchele

    2016-01-01

    The aim of this article is to present the current data with regard to the application of vital dyes during vitreoretinal surgery, 'chromovitrectomy', as well as to overview the current literature regarding the properties of dyes, techniques of application, indications and complications in chromovitrectomy. It is well known that indocyanine green is toxic to the retina and consequently not the ideal dye for chromovitrectomy. Different vital dyes has been tested for chromovitrectomy including trypan blue, patent blue, triamcinolone acetonide, infracyanine green, sodium fluorescein and brilliant blue. Brilliant blue seems to be the ideal dye for internal limiting membrane due to its afinity, lower toxic profile and to reduce the appearance of apoptosis. Besides the dye itself, the injection technique is crucial to avoid additional toxicity, slow injection, far from the retina and protection of the macular hole are some tips. More recently the use of dyes has been applied to stain perfluorcarbon liquids that may enhance its visualization during vitrectomy.

  11. Prediction of Intracellular Localization of Fluorescent Dyes Using QSAR Models.

    PubMed

    Uchinomiya, Shohei; Horobin, Richard W; Alvarado-Martínez, Enrique; Peña-Cabrera, Eduardo; Chang, Young-Tae

    2016-01-01

    Control of fluorescent dye localization in live cells is crucial for fluorescence imaging. Here, we describe quantitative structure activity relation (QSAR) models for predicting intracellular localization of fluorescent dyes. For generating the QSAR models, electric charge (Z) calculated by pKa, conjugated bond number (CBN), the largest conjugated fragment (LCF), molecular weight (MW) and log P were used as parameters. We identified the intracellular localization of 119 BODIPY dyes in live NIH3T3 cells, and assessed the accuracy of our models by comparing their predictions with the observed dye localizations. As predicted by the models, no BODIPY dyes localized in nuclei or plasma membranes. The accuracy of the model for localization in fat droplets was 92%, with the models for cytosol and lysosomes showing poorer agreement with observed dye localization, albeit well above chance levels. Overall therefore the utility of QSAR models for predicting dye localization in live cells was clearly demonstrated. PMID:27055752

  12. Microbiological assessment of dentin stained with a caries detector dye.

    PubMed

    Zacharia, M A; Munshi, A K

    1995-01-01

    The purpose of this study was to assess microbiologically the efficacy of 1% acid red in propylene glycol dye to stain carious dentin. Thirty teeth with primary carious lesions involving dentin were chosen. Cavity preparation using the conventional visual and tactile criteria was done and the dye was applied to the prepared cavity. Dentin samples were collected, from carious dentin prior to cavity preparation, dye stained areas and unstained areas. The total colony forming units (CFU) in each sample were then assessed microbiologically. The results showed a highly significant difference in the total colony forming units in dye stained and dye unstained dentin samples. The 1% acid red dye in propylene glycol dye was found to be effective as an adjunctive aid in the diagnosis of carious dentin.

  13. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  14. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  15. Chemistry 200, 300 Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…

  16. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  17. Chemistry Sets Face Uncertain Future.

    ERIC Educational Resources Information Center

    Stinson, Stephen C.

    1979-01-01

    Chemistry sets, often a child's first contact with chemistry, are becoming less attractive to manufacturers as the market for these items decreases. There is a tendency for recently manufactured chemistry sets to be less adequate than those selling in the same price range in past years. Manuals vary in quality among manufacturers. (RE)

  18. Spectroscopic characterization of SC-NTR: a subsidiary dye of allura red AC dye (FD&C red no. 40).

    PubMed

    Takeda, Y; Goda, Y; Noguchi, H; Yamada, T; Yoshihira, K; Takeda, M

    1994-01-01

    A major subsidiary dye in US certified Allura Red AC dye (FD&C Red No. 40) has been isolated by preparative high performance liquid chromatography. The paper chromatographic properties of the isolated dye indicate that it is the dye designated as SC-NTR in a previous paper (Marmion 1971). Spectroscopic analysis of the isolated dye is consistent with the disodium salt of 6-hydroxy-5-(2-methoxy-5-methyl-3-sulphophenylazo)-2-naphthalen esulphonic acid, which is an azo-coupling product between the meta-isomer of cresidine-p-sulphonic acid (CSA) and Schaeffer's salt (SS).

  19. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of

  20. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of

  1. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  2. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting.

    PubMed

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices. PMID:27188528

  3. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting.

    PubMed

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  4. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    SciTech Connect

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.

  5. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications

    PubMed Central

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J.; Schacher, Felix H.; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-01-01

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push–pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices. PMID:26052420

  6. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs. PMID:26846846

  7. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  8. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  9. Towards "Bildung"-Oriented Chemistry Education

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  10. Chemistry of superheavy elements.

    PubMed

    Schädel, Matthias

    2006-01-01

    The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.

  11. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  12. Turbine Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2001-01-01

    Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.

  13. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  14. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  15. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  16. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  17. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  18. Atmospheric Chemistry Data Products

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This presentation poster covers data products from the Distributed Active Archive Center (DAAC) of the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Total Ozone Mapping Spectrometer products (TOMS) introduced in the presentation include TOMS Version 8 as well as Aura, which provides 25 years of TOMS and Upper Atmosphere Research Satellite (UARS) data. The presentation lists a number of atmospheric chemistry and dynamics data sets at DAAC.

  19. Green chemistry: development trajectory

    NASA Astrophysics Data System (ADS)

    Moiseev, I. I.

    2013-07-01

    Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.

  20. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  1. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-01

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  2. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  3. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  4. Chemistry and cosmology.

    PubMed

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe. PMID:17191439

  5. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  6. Extensible Computational Chemistry Environment

    2012-08-09

    ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing themore » power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of the inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less

  7. The Relative Location of the Dye Staining Endpoint Indicated With Polypropylene Glycol-Based Caries Dye versus Conventional Propylene Glycol-Based Caries Dye

    PubMed Central

    Boston, Daniel W; Jefferies, Steven R; Gaughan, John P

    2008-01-01

    Objectives This study determined the difference in the location of the caries dye staining endpoint of 1% Acid Red dye in propylene glycol versus that of 1% Acid Red dye in polypropylene glycol. Methods Freshly extracted permanent molar crowns with primary occlusal carious lesions were chisel-split axially to expose the lesion in cross-section on both halves. One half was stained with propylene glycol-based dye and the other with polypropylene glycol-based dye. For the control group, both halves were stained with propylene glycol-based dye. The dye staining front was marked on digital images of the stained split surfaces, and the images were aligned using reference notches. The distance between the marked staining front lines was measured in five locations, and the measurement protocol was repeated. Weighted averages and a 95% confidence interval for the distance between marked staining front lines were calculated for the control and experimental groups. Results The weighted average distance for the experimental group (0.298 mm, 95% confidence interval 0.240 mm – 0.357 mm) was about four times that of the control group (0.070 mm, 95% confidence interval 0.051 mm – 0.089 mm). Generally, the marked staining line for the polypropylene glycol-based dye specimens was located shallow (occlusal) to the propylene glycol-based staining line (range −0.12 mm to 0.66 mm). Conclusions The staining endpoint of 1% Acid Red dye in polypropylene glycol is shallower than that of 1% Acid Red dye in propylene glycol. The method is useful for comparing staining endpoints of caries dye formulations. (Eur J Dent 2008;2:29–36) PMID:19212506

  8. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  9. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields. PMID:26016854

  10. General chemistry students' understanding of the chemistry underlying climate science

    NASA Astrophysics Data System (ADS)

    Versprille, Ashley N.

    The purpose of this study is to investigate first-semester general chemistry students' understanding of the chemistry underlying climate change. The first part of this study involves the collection of qualitative data from twenty-four first-semester general chemistry students from a large Midwestern research institution. The semi-structured interview protocol was developed based on alternative conceptions identified in the research literature and the essential principles of climate change outlined in the U.S. Climate Change Science Program (CCSP) document which pertain to chemistry (CCSP, 2003). The analysis and findings from the interviews indicate conceptual difficulties for students, both with basic climate literacy and underlying chemistry concepts. Students seem to confuse the greenhouse effect, global warming, and the ozone layer, and in terms of chemistry concepts, they lack a particulate level understanding of greenhouse gases and their interaction with electromagnetic radiation, causing them to not fully conceptualize the greenhouse effect and climate change. Based on the findings from these interviews, a Chemistry of Climate Science Diagnostic Instrument (CCSI) was developed for use in courses that teach chemistry with a rich context such as climate science. The CCSI is designed for professors who want to teach general chemistry, while also addressing core climate literacy principles. It will help professors examine their students' prior knowledge and alternative conceptions of the chemistry concepts associated with climate science, which could then inform their teaching and instruction.

  11. Dye-promoted precipitation of serum proteins. Mechanism and application.

    PubMed

    Birkenmeier, G; Kopperschläger, G

    1991-11-01

    Immobilized dyes have been used primarily for purification of nucleotide dependent enzymes and proteins from plasma and other sources. Due to their low costs, high protein binding capacity and resistance to degradation dyes bear the potential as ligand for affinity separation of proteins on a large scale. In this paper dyes have been used for precipitation of proteins. Using albumin, prealbumin, alpha 1-acid glycoprotein and immunoglobulin G as model proteins we could demonstrate that dye-promoted precipitation depends on several factors which include the structure of the dye, the pH of the solution, the dye/protein molar ratio and the intrinsic properties of the proteins. It revealed that most of the dyes tested were endowed with the precipitating potential. The efficacy of precipitation was found to increase with the complexity of the dye structure. However, the amount of a dye required for total precipitation was found to be different for a given protein. Electrostatic as well as hydrophobic forces are involved in the mechanism of precipitation. It was demonstrated that by optimizing the conditions, mixtures of proteins can be resolved by dye-promoted precipitation. The high sensitivity of the reaction offers the possibility of using this method for rapid concentration of very diluted protein solutions. PMID:1367693

  12. Significance of hair-dye base-induced sensory irritation.

    PubMed

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  13. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines.

    PubMed Central

    Vennerstrom, J L; Makler, M T; Angerhofer, C K; Williams, J A

    1995-01-01

    In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity. PMID:8593000

  14. Degradation of azo dyes by environmental microorganisms and helminths

    SciTech Connect

    Kingthom Chung; Stevens, S.E. Jr. . Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  15. Phototoxic reaction to xanthene dyes induced by visible light.

    PubMed

    Morikawa, F; Fukuda, M; Naganuma, M; Nakayama, Y

    1976-04-01

    Many dyes, for instance methylene blue, rose bengal, and eosin, are known as photosensitizers, and in the presence of molecular oxygen they induce cell lethality and skin photosensitivity (1-4). Several dyes are used in cosmetic products, particularly in lipsticks. Human lip skin is therefore exposed to potential danger from dye-sensitized phototoxic reactions. Using an in vivo system of mammalian skin, such as the abdominal skin of rabbits, we established screening tests for the phototoxic potential of synthetic dyes in two ways: (a) intracutaneous injection; (b) topical application with and without damaging the barrier property of the stratum corneum. In the intracutaneous injection assay, distinct phototoxic reactions were induced by rose bengal, eosin Y.S., and dibromofluorescein. When these dyes were applied topically to intact skin, no phototoxic reactions were observed. Phototoxic reactions were, however, elicited when the dye solutions were applied to abraded or scratched skin. The intensity of phototoxic reaction was found to be influenced by the vehicle in which the dyes were suspended. Phototoxic reaction to the dyes was induced by artificial light as well as by sunlight. By using commercially available fluorescent lamps with different spectral emissions, the action spectra for the phototoxic reaction to these dyes were investigated and it was found that the maximum phototoxicities of the dyes were manifested by light within a spectral range of 400-600 nm. Further studies on action spectra, using a monochromatic irradiation system, revealed a high correlation between the action spectra of the dyes and their absorption spectra. Maximum effective wavelength for the phototoxic reaction of eosin Y.S. was 525 nm. This topical as well as intradermal assay for assesing phototoxic reaction to synthetic dyes in living skin will be a practical and useful measure for studying the phototoxicity of the dyes.

  16. A photoelectric amplifier as a dye detector

    USGS Publications Warehouse

    Ebel, Wesley J.

    1962-01-01

    A dye detector, based on a modified photoelectric amplifier, has been planned, built, and tested. It was designed to record automatically the time of arrival of fluorescein dye at predetermined points in a stream system. Laboratory tests and stream trials proved the instrument to be efficient. Small changes in color can be detected in turbid or clear water. The unit has been used successfully for timing intervals of more than 17 hours; significant savings of time and manpower have resulted. Replacement of the clock, included in the original device, with a recording milliammeter increases the efficiency of the unit by contin,!ously recording changes in turbidity. The addition of this component would increase the cost from $75 to approximately $105.

  17. Dye-sensitized nanocrystalline solar cells.

    PubMed

    Peter, Laurence M

    2007-06-01

    The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Grätzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.

  18. Fanshaped superradiance of a dye laser

    SciTech Connect

    Wang, X.; Peng, G.

    1982-09-01

    The experimental apparatus used to achieve fan shaped superradiance of a dye laser by using second harmonics from a giant pulsed YAP:Nd(3+) laser oscillator-amplifier to pump Rhodamine 6G is described. The laser device employs a single 45 deg LiNbO3 electro-optical Q-switched yttrium aluminate laser as the oscillation stage, and after one stage of oscillation of yttrium aluminate laser amplification, it puts out a laser peak power of approximately 30 MW, with a repetition rate of once per second using LiLO3 (I type phase matching, theta m approximately 30 deg) outer cavity frequency doubling, it puts out 0.539 micrometer frequency doubled light, with a peak power of 1.8 MW and then uses the 0.539 micrometer frequency doubled light to pump Rhodamine 6G laser dye. The emission obtained assumes a fan shape which is planar.

  19. Single mode optofluidic distributed feedback dye laser

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Zhang, Zhaoyu; Emery, Teresa; Scherer, Axel; Psaltis, Demetri

    2006-01-01

    Single frequency lasing from organic dye solutions on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip is demonstrated. The laser cavity consists of a single mode liquid core/PDMS cladding channel waveguide and a phase shifted 15th order distributed feedback (DFB) structure. A 1mM solution of Rhodamine 6G in a methanol and ethylene glycol mixture was used as the gain medium. Using 6 nanosecond 532nm Nd:YAG laser pulses as the pump light, we achieved threshold pump fluence of ~0.8mJ/cm2 and single-mode operation at pump levels up to ten times the threshold. This microfabricated dye laser provides a compact and inexpensive coherent light source for microfluidics and integrated optics covering from near UV to near IR spectral region.

  20. Starburst triarylamine based dyes for efficient dye-sensitized solar cells.

    PubMed

    Ning, Zhijun; Zhang, Qiong; Wu, Wenjun; Pei, Hongcui; Liu, Bo; Tian, He

    2008-05-16

    We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs.

  1. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    SciTech Connect

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  2. A new technology for harnessing the dye polluted water and dye collection in a chemical factory.

    PubMed

    Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K

    2001-04-01

    A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits. PMID:11590742

  3. Treatment of direct blending dye wastewater and recycling of dye sludge.

    PubMed

    Xu, Xin-Hui; Li, Ming-Li; Yuan, Yuan

    2012-01-01

    A new sorbent material, barium sulfate-Direct Blending Yellow D-3RNL hybrid (BSD), was synthesized and characterized by various methods. Both the anionic dyes, Reactive Brilliant Red X-3B and Weak Acid Green GS were hardly adsorbed by the BSD material, while the sorption of Ethyl Violet (EV) and Victoria Blue B were extremely obvious. The sorption of cationic dyes obeyed the Langmuir isotherm model, which depended on the electric charge attraction. The saturation amount of EV adsorbed onto the BSD material approached to 39.36 mg/g. The sorption of EV changed little with pH from 3 to 12 while it increased with increasing levels of electrolyte. A dye wastewater sampled from Jinjiang Chemicals was treated, and the color removal rate was more than the COD removal rate. In addition, the cationic dye-BSD sludge was utilized as a colorant fill-in coating. The light stability and thermal stability of the colorant was measured and exhibited good features. This work provided a simple and eco-friendly method for dye wastewater treatment with recycling of waste.

  4. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles.

  5. Trinity Bay Study: Dye tracing experiments

    NASA Technical Reports Server (NTRS)

    Ward, G. H., Jr.

    1972-01-01

    An analysis of the heat balance and temperature distribution within Trinity Bay near Galveston, Texas is presented. The effects of tidal currents, wind driven circulations, and large volume inflows are examined. Emphasis is placed on the effects of turbulent diffusion and local shears in currents. The technique of dye tracing to determine the parameters characterizing dispersion is described. Aerial photographs and maps are provided to show the flow conditions existing at different times and seasons.

  6. Indanthrone dye revisited after sixty years.

    PubMed

    Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam

    2014-10-01

    Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.

  7. Photolysis of rhodamine-WT dye

    USGS Publications Warehouse

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  8. Gemini 4 Recovery with Green Marker Dye

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Overhead view of the Gemini 4 spacecraft showing the yellow flotation collar used to stabilize the spacecraft in choppy seas. The green marker dye is highly visible from the air and is used as a locating aid. A crewmember is being hoisted aboard a U.S. Navy helicopter during recovery operations following the successful four-day, 62 revolution mission highlighted by Ed White's space walk.

  9. A near-infrared phthalocyanine dye-labeled agent for integrin αvβ6-targeted theranostics of pancreatic cancer.

    PubMed

    Gao, Duo; Gao, Liquan; Zhang, Chenran; Liu, Hao; Jia, Bing; Zhu, Zhaohui; Wang, Fan; Liu, Zhaofei

    2015-06-01

    Integrin αvβ6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin αvβ6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin αvβ6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin αvβ6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin αvβ6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer.

  10. Decolorization of azo dyes in bioelectrochemical systems.

    PubMed

    Mu, Yang; Rabaey, Korneel; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg

    2009-07-01

    Azo dyes are ubiquitously used in the textile industry. These dyes need to be removed from the effluent prior to discharge to sewage due to their intense color and toxicity. In this study we investigated the use of a bioelectrochemical system (BES) to abioticlly cathodic decolorization of a model azo dye, Acid Orange 7 (AO7), where the process was driven by microbial oxidation of acetate atthe anode. Effective decolorization of AO7 at rates up to 264 +/- 0.03 mol m(-3) NCC d(-1) (net cathodic compartment, NCC) was achieved at the cathode, with concomitant energy recovery. The AO7 decolorization rate was significantly enhanced when the BES was supplied with power, reaching 13.18 +/- 0.05 mol m(-3) NCC d(-1) at an energy consumption 0.012 +/- 0.001 kWh mol(-1) AO7 (at a controlled cathode potential of -400 mV vs SHE). Compared with conventional anaerobic biological methods, the required dosage of organic cosubstrate was significantly reduced in the BES. A possible cathodic reaction mechanism for the decolorization of AO7 is suggested based on the decolorization products identified: the azo bond of AO7 was cleaved at the cathode, resulting in the formation of the colorless sulfanilic acid and 1-amino-2-naphthol.

  11. Mutagenicity of some lipsticks and their dyes.

    PubMed

    Green, M R; Pastewka, J V

    1980-03-01

    Twenty-four lipsticks of various shades and colors were tested for mutagencitiy with the histidine-requiring tester strain Salmonella typhimurium TA98. Nine lipsticks were mutagenic without microsomal (S-9) activation. Dose-response effects were observed. Eight colorants listed as ingredients of the mutagenic lipsticsk were tested with and without S-9. Drug and Cosmetic (D&C) Orange No. 17, a monoazo dye with two nitro groups, was highly mutagenic in the absence of S-9. The mutagenic effect was decreased or lost in the presence of S-9 prepared from livers of male noninbred Sprague-Dawley rats given a single injection of Aroclor 1254. Eight lipsticsk matched for ingredients other than dyes were tested. Two containing D&C Orange No. 17 were directly mutagenic. The mutagenic effect was decreased by the presence of S-9. Only D&C Orange No. 17 was sufficiently mutagenic without microsomal activation to account for the mutagenicity observed in these lipsticks. Lipsticks containing D&C Orange No. 17 and those labeled with the words "may contain" D&C Orange No. 17 should be suspected of being mutagenic for S. typhimurium TA98. This dye and 2,4-dinitrosaniline, which may also be present, are potential health hazards. Assessment of their carcinogenicity awaits evaluation of results obtained by appropriate testing in animals.

  12. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force.

  13. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-01

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  14. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    PubMed

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used.

  15. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    PubMed

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. PMID:25967675

  16. Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes

    DOEpatents

    Field, G.F.; Hammond, P.R.

    1993-10-26

    A novel method is described for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.

  17. Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes

    DOEpatents

    Field, George F.; Hammond, Peter R.

    1993-01-01

    A novel method for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.

  18. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  19. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  20. Dye-Sensitized Approaches to Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grätzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely