Sample records for dye solvent red

  1. Spectroscopy and laser action of the "red perylimide dye" in various solvents

    NASA Astrophysics Data System (ADS)

    Gvishi, R.; Reisfeld, R.; Burshtein, Z.

    1993-10-01

    Optical properties of the red perylimide laser dye in various solvents are studied. The absorption spectrum exhibits two main bands, in the ranges 480-600 and 400-460 nm, due to the S 0-S 1 and S 0-S 2 transition. The fluorescence spectrum is a mirror image of the S 0-S 1 absorption (shift of ˜ 30-50 nm). The Stokes shift increases with solvent polarity. Such dye-solvent interactions are compared to theoretical predictions. The fluorescence quantum yields approaches unity in all the solvents studied. Laser tunability around 30 nm was obtained each time, covering the spectral range 580-640 nm. This interval is important for medical applications in photodynamic therapy and fluorescence diagnostics. The laser threshold energy varied from 0.35 mJ/pulse in cyclohexane to 1.87 mJ/pulse in methanol, and the slope efficiency from about 6.6% in methanol to 14% in xylenes. The laser output was stable for several hours of operation under an average pump energy of about 20 mJ/pulse at 1 Hz repetition rate, without flow.

  2. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  3. Investigating the effect of various extracting solvents on the potential use of red-apple skin (Malus domestica) as natural sensitizer for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Saputro, Aldhi; Mizan, Adlan; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-03-01

    In the current investigation, the natural dye extracted from red-apple (Malus domestica) skin was used as natural sensitizer for dye sensitized solar cell (DSSC) application. The present study was specifically aimed at observing the effect of different solvents, i.e. deionized water, ethanol, and acidified ethanol, on the performance of the natural dye and thus the DSSC. For synthesis purposes, red-apple skin was peeled off, dried, crushed and furthermore extracted with ratio red-apple skin powder to solvent 1:20 w/v for 2 hours at 50°C under mechanical stirring. Subsequently, the resulting natural dyes with different solvents were examined by Fourier transform infrared (FTIR) to analyze their functional groups, UV-Vis spectroscopy to observe their absorption spectra for a wide range of wavelength, while TiO2 nanoparticle used as the semiconductor oxide layer in the device was characterized by field emission scanning electron microscope (FESEM). The FTIR results showed that the red-apple skin has anthocyanin group which functions as the sensitizer agent for photon energy absorption from the sunlight. The UV-Vis spectroscopy results showed that ethanol solvent has higher absorption of sunlight wavelength as compared to those of deionized water and acidified ethanol solvents. The performance test of the fabricated DSSC showed the prototype made of the red apple skin dye extracted by ethanol solvent can provide the highest open circuit voltage (Voc) up to 324 mV and efficiency around 0.046%. On the basis of investigation, it has been found that ethanol was the best solvent to extract anthocyanin from the red-apple skin.

  4. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  5. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    PubMed

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  7. Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents

    PubMed Central

    Zhu, Shuqiang; Zhu, Xinyue; Su, Along

    2017-01-01

    Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods. PMID:28831327

  8. Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Haynes, P. D.; Payne, M. C.; Hine, N. D. M.

    2017-03-01

    The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution.

  9. Analysis of Chameleonic Change of Red Cabbage Depending on Broad pH Range for Dye-Sensitized Solar Cells.

    PubMed

    Park, Kyung Hee; Kim, Tae Young; Ko, Hyun Seok; Han, Eun Mi; Lee, Suk-Ho; Kim, Jung-Hun; Lee, Jae Wook

    2015-08-01

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from red cabbage as a sensitizer. In this work, we investigated the adsorption characteristics and the electrochemical behavior for harvesting sunlight and electron transfer in red cabbage DSSCs under different solvents and pH. For the red cabbage dye-sensitized electrode adsorbed at pH 3.5, the solar cell yields a short-circuit current density (Jsc) of 1.60 mA/cm2, a photovoltage (Vcc) of 0.46 V, and a fill factor of 0.55, corresponding to an energy conversion efficiency (η) of 0.41%.

  10. The Ideal Solvent for Paper Chromatography of Food Dyes.

    ERIC Educational Resources Information Center

    Markow, Peter G.

    1988-01-01

    Uses paper chromatography with food dyes to provide a simple and inexpensive basis for teaching chromatography. Provides experimental methodology and tabled results. Includes a solvent system comparison (Rf) for seven dyes and twenty-two solvents. (MVL)

  11. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    NASA Astrophysics Data System (ADS)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  12. High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.

    PubMed

    Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K

    2015-08-10

    Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.

  13. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    NASA Astrophysics Data System (ADS)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  14. A survey of extraction solvents in the forensic analysis of textile dyes.

    PubMed

    Groves, Ethan; Palenik, Christopher S; Palenik, Skip

    2016-11-01

    The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  16. Mycoremediation of congo red dye by filamentous fungi.

    PubMed

    Bhattacharya, Sourav; Das, Arijit; G, Mangai; K, Vignesh; J, Sangeetha

    2011-10-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  17. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id; Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan; Suyitno,, E-mail: suyitno@uns.ac.id

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to themore » Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.« less

  18. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  19. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  20. Discovery and structural elucidation of the illegal azo dye Basic Red 46 in sumac spice.

    PubMed

    Ruf, J; Walter, P; Kandler, H; Kaufmann, A

    2012-01-01

    An unknown red dye was discovered in a sumac spice sample during routine analysis for Sudan dyes. LC-DAD and LC-MS/MS did not reveal the identity of the red substance. Nevertheless, using LC-high-resolution MS and isotope ratio comparisons the structure was identified as Basic Red 46. The identity of the dye was further confirmed by comparison with a commercial hair-staining product and two textile dye formulations containing Basic Red 46. Analogous to the Sudan dyes, Basic Red 46 is an azo dye. However, some of the sample clean-up methodology utilised for the analysis of Sudan dyes in food prevents its successful detection. In contrast to the Sudan dyes, Basic Red 46 is a cation. Its cationic properties make it bind strongly to gel permeation columns and silica solid-phase extraction cartridges and prevent elution with standard eluents. This is the first report of Basic Red 46 in food. The structure elucidation of this compound as well as the disadvantages of analytical methods focusing on a narrow group of targeted analytes are discussed.

  1. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  2. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  3. Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

    PubMed

    Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng

    2014-04-14

    Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. TiO 2 -Assisted Photoisomerization of Azo Dyes Using Self-Assembled Monolayers: Case Study on para -Methyl Red Towards Solar-Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.

    2014-02-18

    The optical and electronic properties of a TiO2 nanoparticle-assisted photo-isomerizable surface, prepared by an azo dye/TiO2 nanocomposite film, are examined experimentally and computationally. The azo dye, para-methyl red, undergoes photoisomerization at room temperature, catalyzed by the TiO2 nanoparticle supports, while it exhibits negligible photoisomerization in solvents under otherwise identical conditions. Density functional theory and time-dependent density functional theory are employed to explain the origin of this photoisomerization in these dye…TiO2 nanoparticle self-assembled monolayers (SAMs). The device performance of these SAMs when embedded into dye-sensitized solar cells is used to further elucidate the nature of this azo dye photoisomerization and relatemore » it to the ensuing optoelectronic properties.« less

  5. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  6. Solvent effects on the photophysical properties of coumarin dye

    NASA Astrophysics Data System (ADS)

    Bhavya, P.; Melavanki, Raveendra; Manjunatha, M. N.; Koppal, Varsha; Patil, N. R.; Muttannavar, V. T.

    2018-05-01

    The absorption and emission spectrum of fluorescent coumarin dye namely, 3-Hydroxy-3-[2-oxo-2-(3-oxo-3H-benzo[f]chromen-2-yl)-ethyl]-1,3-dihydro-indol-2-one [3HBCD] has been recorded at room temperature in solvents of different polarities. The exited state dipole moments (μe) were estimated from Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The geometry of the molecule was fully optimized and the μg was also calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The μg and μg were calculated by means of solvatochromic shift method. It was observed that μe was higher than μg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected coumarin dye. Further, the changes in the dipole moment (Δμ) was calculated from solvatochromic shift method.

  7. Interaction of protonated merocyanine dyes with amines in organic solvents.

    PubMed

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-15

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (1a) and 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N,N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA>DEA>TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA>DEA>BA≫NDAN, while for 2b the order was: TEA>DEA>BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA>TEA>BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract☆

    PubMed Central

    Xu, Haiyan; Heinze, Thomas M.; Paine, Donald D.; Cerniglia, Carl E.; Chen, Huizhong

    2018-01-01

    Sudan azo dyes have genotoxic effects and ingestion of food products contaminated with Sudan I, II, III, IV, and Para Red could lead to exposure in the human gastrointestinal tract. In this study, we examined thirty-five prevalent species of human intestinal bacteria to evaluate their capacity to degrade Sudan dyes and Para Red. Among these tested bacterial strains, 23, 13, 33, 30, and 29 out of 35 species tested were able to reduce Sudan I, II, III, IV, and Para Red, respectively, to some extent. Bifidobacterium infantis, Clostridium indolis, Enterococcus faecalis, Lactobacillus rhamnosus, and Ruminococcus obeum were able to reduce completely all four tested Sudan dyes and Para Red. Escherichia coli and Peptostreptococcus magnus were the only two strains that were not able to reduce any of the tested Sudan dyes and Para Red to any significant extent. Metabolites of the reduction of the tested Sudan dyes and Para Red by E. faecalis were isolated and identified by HPLC and LC/ESI-MS analyses and compared with authentic standards. Thus it appears that the ability to reduce Sudan dyes and Para Red except Sudan II is common among bacteria in the human colon. PMID:19580882

  9. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  10. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  11. Protein labeling with red squarylium dyes for analysis by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Yan, Weiying; Sloat, Amy L; Yagi, Shigeyuki; Nakazumi, Hiroyuki; Colyer, Christa L

    2006-04-01

    Two new red luminescent asymmetric squarylium dyes (designated "Red-1c and Red-3") have been shown to exhibit absorbance shifts to longer wavelengths upon the addition of protein, along with a concomitant increase in fluorescence emission. Specifically, the absorbance maxima for Red-1c and Red-3 dyes are 607 and 622 nm, respectively, in the absence of HSA, and 642 and 640 nm in the presence of HSA, making the excitation of their protein complexes feasible with inexpensive and robust diode lasers. Fluorescence emission maxima, in the presence of HSA, are 656 and 644 nm for Red-1c and Red-3, respectively. Because of the inherently low fluorescence of the dyes in their free state, Red-1c and Red-3 were used as on-column labels (that is, with the dye incorporated into the separation buffer), thus eliminating the need for sample derivatization prior to injection and separation. A comparison of precolumn and on-column labeling of proteins with these squarylium dyes revealed higher efficiencies and greater sensitivities for on-column labeling, which, when conducted with a basic, high-salt content buffer, permitted baseline resolution of a mixture of five model proteins. LOD for model proteins, such as transferrin, alpha-lactalbumin, BSA, and beta-lactoglobulin A and B, labeled with these dyes and analyzed by CE with LIF detection (CE-LIF) were found to be dependent upon dye concentration and solution pH, and are as low as 5 nM for BSA. Satisfactory linear relationships between peak height (or peak area) and protein concentration were obtained by CE-LIF for this on-column labeling method with Red-3 and Red-1c.

  12. Curcuma longa extract as a histological dye for collagen fibres and red blood cells

    PubMed Central

    Avwioro, O G; Onwuka, S K; Moody, J O; Agbedahunsi, J M; Oduola, T; Ekpo, O E; Oladele, A A

    2007-01-01

    Crude ethanolic extract and column chromatographic fractions of the Allepey cultivar of Curcuma longa Roxb, commonly called turmeric (tumeric) in commerce, were used as a stain for tissue sections. Staining was carried out under basic, acidic and neutral media conditions. Inorganic and organic dissolution solvents were used. The stain was used as a counterstain after alum and iron haematoxylins. C. longa stained collagen fibres, cytoplasm, red blood cells and muscle cells yellow. It also stained in a fashion similar to eosin, except for its intense yellow colour. Preliminary phytochemical evaluation of the active column fraction revealed that it contained flavonoids, free anthraquinone and deoxy sugar. A cheap, natural dye can thus be obtained from C. longa. PMID:17451535

  13. Ultrasound assisted extraction of natural dye from jackfruit's wood (Artocarpus heterophyllus): The effect of ethanol concentration as a solvent

    NASA Astrophysics Data System (ADS)

    Febriana, Ike Dayi; Gala, Selfina; Mahfud, Mahfud

    2017-05-01

    Azo dye are synthetic organic dyes which has an azo group (- N = N -) as chromophore. Azo dye is resistand to decomposition process and harmfull for the environment and human being. Natural dye can be used as substitution of azo dye at textile industry. Natural dye are eco - friendly and can be applied for dyeing of fibrous material. Natural dye can be obtained from natural origin such as leaves, wood, or roots. The wood of jackfruit (Artocarpus heterophyllus) can used as natural source of natural dye. Ultrasound assisted extraction (UAE) is a new method that can be used to extract natural dye from jackfruit's wood. The aim of this research are to study about influence of ethanol concentration as solvent and extraction kinetic. Jackfruit's wood dust from sawmill used for the experimentation were sifted by sieve 35 mesh. Ethanol 96% used as solvent of this experiment and varied the concentration in volume to volume ratio (v/v). Experiment were carried out from 20 to 50 minutes. The result of this experiment shows that ethanol concentration influenced yield of extraction from jackfruit's wood. Concentration of ethanol will be affected polarity of solvent. The Peleg model was used to describe about kinetic model of natural dye extraction. Value of k1 and k2 constant are 0.003835 and 0.04186 respectively.

  14. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.

    PubMed

    Sánchez-Duarte, Reyna G; Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Correa-Murrieta, Ma A

    2012-01-01

    The present study was designed to evaluate the chitosan, which has been obtained by deacetylation of chitin, as a biosorbent. The chitin was isolated from fermented shrimp waste by an important local industrial food biopolymer. The aim of this work was the characterization of chitosan and preparation of cross-linked chitosan- tripolyphosphate (chitosan-TPP) beads for the removal of allura red food dye from aqueous solutions. Conditions of batch adsorption such as pH, time and adsorbent dose were examined. The effectiveness of cross-linked chitosan beads for dye removal was found to be higher for pH 2 (98%, percentage of dye removal) and tends to decrease at pHs of 3 to 11 (up to 49%). The values of percentage removal show that the adsorption capacity increases with time of contact and dosage of chitosan-TPP, but red dye adsorption is mainly influenced by pH level. The cross-linked chitosan-TPP beads can significantly adsorb allura red monoazo dye from aqueous solutions even at acidic pHs unlike raw chitosan beads that tend to dissolve in acidic solutions. Consequently, this modified chitosan has characteristics that allow minimization of environmental pollution and widening the valorization of shrimp waste.

  15. Solvent dependent triphenylamine based D-(pi-A)n type dye molecules and optical properties.

    PubMed

    Li, Xiaochuan; Son, Young-A; Kim, Young-Sung; Kim, Sung-Hoon; Kun, Jun; Shin, Jong-Il

    2012-02-01

    D-(pi-A)n type dyes of triphenylamine derivatives were synthesized and their absorption and luminescence in different solvents were examined to investigate solvent dependent properties observed for their emissions in solvents with different dielectric constants. The emission wavelengths showed a dramatic blue shift with increasing solvent polarity. The results of molecular orbital calculations by computer simulation, based on Material Studio suite of programs, were found to reasonably account for the spectral properties. Relative levels of HOMO and LUMO were measured and calculated and all derivatives exhibited strong solid fluorescence with distinctively different FWHMs.

  16. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  17. Fluorescent measurements in whole blood and plasma using red-emitting dyes

    NASA Astrophysics Data System (ADS)

    Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.

    2000-04-01

    We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.

  18. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual‐Color Flag

    PubMed Central

    Oliveira, Elisabete; Bértolo, Emilia; Núñez, Cristina; Pilla, Viviane; Santos, Hugo M.; Fernández‐Lodeiro, Javier; Fernández‐Lodeiro, Adrian; Djafari, Jamila; Capelo, José Luis

    2017-01-01

    Abstract Red and green are two of the most‐preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune‐staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most‐relevant results on the use of red and green fluorescent dyes in the fields of bio‐, chemo‐ and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron–dipyrromethene (BODIPY), 7‐nitobenz‐2‐oxa‐1,3‐diazole‐4‐yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P‐oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed. PMID:29318095

  19. Extrinsic Fluorescent Dyes as Tools for Protein Characterization

    PubMed Central

    Hawe, Andrea; Sutter, Marc

    2008-01-01

    Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization. PMID:18172579

  20. Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and high-performance liquid chromatography.

    PubMed

    Sun, Shuo; Wang, Ying; Yu, Wenzhi; Zhao, Tianqi; Gao, Shiqian; Kang, Mingqin; Zhang, Yupu; Zhang, Hanqi; Yu, Yong

    2011-07-01

    The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    NASA Astrophysics Data System (ADS)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  2. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    PubMed

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  3. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.

    PubMed

    Wang, Qi; Luan, Zhaokun; Wei, Ning; Li, Jin; Liu, Chengxi

    2009-10-30

    In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.

  4. Migration behavior of organic dyes based on physicochemical properties of solvents as background electrolytes in non-aqueous capillary electrophoresis.

    PubMed

    Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho

    2018-07-27

    The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s >  2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    PubMed

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V

    2006-09-01

    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  6. Evaluation of Aluminium Dross as Adsorbent for Removal of Carcinogenic Congo Red Dye in Wastewater

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohamad Zulfika Hazielim b.; Zauzi, Nur Syuhada Ahmad; Baini, Rubiyah; Sutan, Norsuzailina Mohamed; Rezaur Rahman, Md

    2017-06-01

    In this study, aluminium dross waste generated from aluminium smelting industries was employed as adsorbent in removing of congo red dye in aqueous solution. The raw aluminium dross as adsorbent was characterized using Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) for surface area and X-Ray Fluorescence (XRF) Spectroscopy. Adsorption experiments were carried out by batch system at different adsorbent mass, pH, and initial dye concentration. The results showed that the per cent removal of dye increased as adsorbent mass increased. It was found that 0.4 gram of adsorbent can remove approximately 100 % of dye at pH 9 for dye concentration 20 and 40 ppm. Therefore, it can be concluded that raw aluminium dross without undergone any treatment can be effectively used for the adsorption of congo red in textile wastewater related industries.

  7. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer.

    PubMed

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-05

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  9. Influence of solvent and substituent on excited state characteristics of laser grade coumarin dyes.

    PubMed

    Sharma, Vijay K; Saharo, P D; Sharma, Neera; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-04-01

    Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.

  10. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Al-Alwani, Mahmoud A. M.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Ludin, Norasikin A.

    2015-03-01

    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.

  11. Deep-red to near-infrared fluorescent dyes: Synthesis, photophysical properties, and application in cell imaging

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Weimin; Wu, Jiasheng; Zhou, Bingjiang; Niu, Guangle; Zhang, Hongyan; Ge, Jiechao; Wang, Pengfei

    2016-07-01

    More and more attention has been paid to the design of new fluorescent imaging agents with good photostability and water solubility, especially those with emissions in the deep-red and near-infrared regions. In this work, we designed and synthesized four novel fluorescent dyes with deep-red or NIR fluorescence by hybridizing coumarin and pyronin moieties based on our previous work. Introduction of carboxylic acid in the dyes not only imparted the dyes with water solubility but also provided a versatile sensing platform for designing the fluorescent probes and sensors of biomolecules. The photophysical properties of these new dyes were investigated through absorption and fluorescence spectroscopy. Cell imaging experiments showed that esterification products could selectively stain lysosomes with good photostability, thereby indicating that they could be useful in the development of fluorescent probes for bioimaging.

  12. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  13. Contribution of Raman and Surface Enhanced Raman Spectroscopy (SERS) to the analysis of vehicle headlights: Dye(s) characterization.

    PubMed

    Muehlethaler, Cyril; Cheng, Yin Pak; Islam, Syed K; Lombardi, John R

    2018-06-01

    Although ubiquitous on accident scenes, the polymers from headlight optics are often neglected in hit-and-run cases, and their evidential value restrained to direct comparison once a corresponding vehicle is found. Multilayered automotive paint fragments are preferred for their access to corresponding databases (PDQ, EUCAP) to infer models and brands of cars. The potential of polymers headlights for providing forensic intelligence has never been exploited, principally due to the lack of diversity, of appropriate databases, and of case examples. The motives are very simple however. Headlight polymers suffer from a lack of differentiation, and about 90% of them are composed of polymethylmethacrylate (PMMA). The discriminating powers using techniques in sequence typically range from 30 to 60%. In this paper, we take advantage of the extreme sensitivity of Surface Enhanced Raman Spectroscopy (SERS) to analyze the dye composition of the polymer headlights. The measurements by standard Raman spectroscopy at 488, 633, and 785nm permits us to identify the polymer type with relative ease. 51 out of 53 samples are composed of PMMA, the two remaining being either Polycarbonate or Polybutylene terephthalate. Additionally, using SERS with silver colloids at 488 and 633nm, provides enhanced spectra of the dyes used in the composition with an extreme sensitivity and specificity. With SERS we are able to differentiate the majority of the headlights with a remarkable 90-100% discriminating power. Solvent Orange 60, Solvent Red 52 and Solvent Red 111 were successfully identified as dyes used in the manufacture of the headlights. These results demonstrate that a combined Raman-SERS approach has the potential to replace an otherwise lengthy sequence of many different analytical techniques. With one single instrument, we offer the possibility to combine an analysis of the polymer type, and of the dye components with high discriminating capabilities. These results open up new

  14. Electrodeposition of NiO films from various solvent electrolytic solutions for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Koussi-Daoud, S.; Pellegrin, Y.; Odobel, F.; Viana, B.; Pauporté, T.

    2017-02-01

    We have investigated the preparation of NiO layers by cathodic electrodeposition in various organic-based solvents, namely ethanol, dimethyl sulfoxide (DMSO), DMSO/2 vol.% H2O and DMSO/25 vol.% H2O mixtures. The layers were formed from the electrochemical reduction of nickel nitrate precursor. We show that, depending on the solvent used, various nickel compounds were deposited. In the case of ethanol, a transparent precursor layer was obtained that was transformed into NiO after an annealing treatment at 300°C. For DMSO and DMSO with 2 volume % of H2O, adherent, well-covering, mesoporous and rather thick NiO layers were obtained after an annealing treatment at 450°C. These layers, after growth, contained nickel oxide or hydroxide, metallic nickel and DMSO. The solvent acted as a blowing agent, being included in the deposit and giving rise to a mesoporous film after its elimination by thermal annealing. These porous layers of p-type oxide have been successfully sensitized by a push-pull dye (P1 dye) and showed photocurrent generation and an open circuit voltage (Voc) up to 167 mV in p-type dye-sensitized solar cells (p-DSSCs). For DMSO with 25 volume % of H2O, the deposited layers contained more metallic nickel and were dense even after annealing. They were unsuitable in p-DSSCs.

  15. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.

    PubMed

    Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L

    2017-05-05

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maynez-Rojas, M. A.; Casanova-González, E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400 nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500 nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color.

  17. Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R

    NASA Astrophysics Data System (ADS)

    Bevziuk, Kateryna; Chebotarev, Alexander; Snigur, Denys; Bazel, Yaroslav; Fizer, Maksym; Sidey, Vasyl

    2017-09-01

    The acid-base properties of Allura Red AC and Ponceau 4R azo dyes were investigated by spectrophotometric, potentiometric and tristimulus colourimetry methods. Ionization constants of the functional groups were also found in aqueous solutions of the dyes. It was discovered that the wavelength of the maximum light absorption of Allura Red AC and Ponceau 4R solutions does not change significantly over a wide pH range. As a result, spectrophotometric methods yield little information for assessing the acid-base properties of the dyes. It was shown with a help of the tristimulus colourimetry method that it is possible to determine the ionization constants of the functional groups of the dyes even when there is significant overlap of the absorption bands of the acid-base forms. The basic spectrophotometric characteristics of the main forms of Allura Red AC and Ponceau 4R in water and organic solvents were calculated. The molar absorbance coefficients of azo forms were shown to increase as the dielectric permittivity of the solvent increases. It was determined that in aqueous solution the dyes exist in the azo form over a wide range of acidity - pH 2-12 for Allura Red AC (λmax = 505 nm; ελ = 3.1·104 dm3 mol-1 cm-1) and 1-13 for Ponceau 4R (λmax = 510 nm; ελ = 1.7·10-4 dm3 mol-1 cm-1). The most probable protonation/deprotonation schemes were theoretically determined for Allura Red AC and Ponceau 4R using DFT calculations.

  18. Simple modification of basic dyes with bulky &symmetric WCAs for improving their solubilities in organic solvents without color change.

    PubMed

    Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil

    2017-04-06

    A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.

  19. Quantitative Determination of Four Azo Dyes in Rat Plasma with Solid-Phase Extraction and UFLC-MS-MS Analysis: Application to a Pharmacokinetic Study.

    PubMed

    Zhu, Hao; Huang, Changshun; Chen, Yijun; Lu, Zihui; Zhou, Haidong; Chen, Chunru; Wu, Jin; Chen, Xiaohong; Jin, Micong

    2016-06-05

    A rapid and sensitive ultra-fast liquid chromatography tandem mass spectrometry method, followed by simple protein precipitation and solid-phase extraction, has been developed and validated for the quantitative determination of four azo dyes (Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B) in rat plasma using D 5 -Sudan I as the internal standard. The optimal separation was accomplished on an Agilent Eclipse Plus C18 column (100 × 2.1 mm, 1.8 μm) with gradient elution using the mobile phase including acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.45 mL/min. The detection was conducted by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring. The calibration curves showed good linearity, with correlation coefficients >0.998 for all of the analytes within the concentration range. The lower limits of quantification (LLOQs) of Para red, Solvent yellow 2, Solvent red 1 and Sudan red 7B in rat plasma were 1.0, 0.1, 0.1 and 0.1 μg/L, respectively. The intra- and interday relative standard deviations were ≤9.6 and ≤12.4%, respectively, and the accuracy was in the range of -5.8 to -9.5%. The average recoveries were between 81.49 and 118.65%, and the matrix effects were satisfactory in the biological matrices. The fully validated method has been successfully applied in measuring levels of the four azo dyes in rat plasma following oral administration of 20.0 mg/kg of analytes in rats, which was suitable for the pharmacokinetic studies of the azo dyes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Adsorption Properties of p -Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO 2 Photoanode Interfaces for Dye-Sensitized Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.

    2014-08-29

    The optical and electronic properties of dye aggregates of p-methyl red on a TiO2 anatase (101) surface were modeled as a function of aggregation order (monomer to pentameric dye) via first principles calculations. A progressive red-shifting and intensity increase toward the visible region in UV/vis absorption spectra is observed from monomeric-to-tetrameric dyes, with each molecule in a given aggregate binding to one of the four possible TiO2 (101) adsorption sites. The pentamer exhibits a blue-shifted peak wave- length in the UV/vis absorption spectra and less absorption intensity in the visible region in comparison; a corresponding manifestation of H-aggregation occurs sincemore » one of these five molecules cannot occupy an adsorption site. This finding is consistent with experiment. Calculated density of states (DOS) and partial DOS spectra reveal similar dye…TiO2 nanocomposite conduction band characteristics but different valence band features. Associated molecular orbital distributions reveal dye-to-TiO2 interfacial charge transfer in all five differing aggregate orders; meanwhile, the level of intramolecular charge transfer in the dye becomes progressively localized around its azo- and electron-donating groups, up to the tetrameric dye/TiO2 species. Dye adsorption energies and dye coverage levels are calculated and compared with experiment. Overall, the findings of this case study serve to aid the molecular design of azo dyes towards better performing DSSC devices wherein they are incorporated. In addition, they provide a helpful example reference for understanding the effects of dye aggregation on the adsorbate…TiO2 interfacial optical and electronic properties.« less

  1. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    PubMed

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  2. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  3. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Anandan, Sambandam; Murugan, Ramaswamy

    2013-03-01

    Natural dyes extracted from fruits of ivy gourd and flowers of red frangipani were used as sensitizers to fabricate dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Fourier transform Raman (FT-Raman) and liquid chromatography-mass spectrometry (LC-MS) studies indicated the presence of β-carotene in the fruits of ivy gourd and anthocyanins in the flowers of red frangipani. The extract of the flowers of red frangipani exhibits higher photosensitized performance compared to the fruits of ivy gourd and this is due to the better charge transfer between the dyes of flowers of red frangipani and the TiO2 photoanode surface.

  4. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016.

    PubMed

    Maniyam, Maegala Nallapan; Ibrahim, Abdul Latif; Cass, Anthony E G

    2018-06-20

    In the present study, locally isolated Rhodococcus strains were attempted as biological tools for methyl red removal, a mutagenic azo dye posing threat to the environment if left untreated. Rhodococcus strain UCC 0016 demonstrated superior methyl red-decolourizing activity of 100% after 24 hours at static condition in comparison to Rhodococcus strain UCC 0008 which recorded 65% decolourization after 72 hours. Optimization of physicochemical parameters at 30 °C, pH 7 and supplementing glucose as the carbon source resulted in improved methyl red-decolourizing activity at static condition and reduced the time taken to achieve complete decolourization by 80%. Higher concentration of methyl red (5 g/L) was able to be decolourized completely within 10 hours by adopting the technology of immobilization. The encapsulated cells of Rhodococcus strain UCC 0016 demonstrated higher substrate affinity (K m =0.6995 g/L) and accelerated rate of disappearance of methyl red (V max = 0.3203 g/L/h) compared to the free cells. Furthermore, the gellan gum beads could be reused up to 9 batches without substantial loss in the catalytic activity indicating the economic importance of this protocol. Analysis of methyl red degradation products revealed no germination inhibition on Triticum aestivum and Vigna radiata demonstrating complete toxicity removal of the parent dye after biological treatment. The occurrence of new and altered peaks (UV-Vis and FTIR) further supported the notion that the removal of methyl red by Rhodococcus strain UCC 0016 was indeed through biodegradation. Therefore, this strain has a huge potential as a candidate for efficient bioremediation of wastewater containing methyl red.

  5. Viscosity induced emission of red-emitting NLOphoric coumarin morpholine-thiazole hybrid styryl dyes as FMRs: Consolidated experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Avhad, Kiran C.; Patil, Dinesh S.; Chitrambalam, S.; Sreenath, M. C.; Joe, I. Hubert; Sekar, Nagaiyan

    2018-05-01

    Four new coumarin hybrid styryl dyes are synthesized by condensing 4-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-2-morpholinothiazole-5-carbaldehyde with dicyanovinylene containing active methylene intermediates and their linear and non-linear optical properties are studied. The dye having dicyanovinylene-isophorone acceptor displayed a large Stokes shift of 3702-4795 cm-1 in non-polar to polar solvent respectively. The dyes exhibit a good charge transfer characteristics and positive emission solvatochromism (∼50 nm-72 nm) in non-polar to a polar solvent which is well supported by multi-linear regression analysis. Viscosity induced enhancement study in ethanol/polyethylene glycol-400 system shows 2.71-6.78 fold increase in emission intensity. The intra and twisted-intramolecular charge transfer (ICT-TICT) characteristics were established using emission solvatochromism, polarity plots, generalised Mullikan-Hush (GMH) analysis and optimized geometry. A dye having the highest charge transfer dipole moment relatively possess the maximum two-photon absorption cross-section area (KK-1 = 165-207 GM) which was established using theoretical two-level model. The NLO properties have been investigated employing solvatochromic and computational methods and were found to be directly proportional to the polarity of the solvent. Z-scan results reveal that the dyes KK-1 and KK-2 possesses reverse saturable kind of behaviour whereas KK-3 and KK-4 show saturable kind of behaviour. From the experimental and theoretical data, these coumarin thiazole hybrid dyes can be considered as promising candidates for FMR and NLOphores.

  6. Green synthesis, structure and fluorescence spectra of new azacyanine dyes

    NASA Astrophysics Data System (ADS)

    Enchev, Venelin; Gadjev, Nikolai; Angelov, Ivan; Minkovska, Stela; Kurutos, Atanas; Markova, Nadezhda; Deligeorgiev, Todor

    2017-11-01

    A series of symmetric and unsymmetric monomethine azacyanine dyes (monomethine azacyanine and merocyanine sulfobetaines) were synthesized with moderate to high yields via a novel method using microwave irradiation. The compounds are derived from a condensation reaction between 2-thiomethylbenzotiazolium salts and 2-imino-3-methylbenzothiazolines proceeded under microwave irradiation. The synthetic approach involves the use of green solvent and absence of basic reagent. TD-DFT calculations were performed to simulate absorption and fluorescent spectra of synthesized dyes. Absorption maxima, λmax, of the studied dyes were found in the range 364-394 nm. Molar absorbtivities were evaluated in between 40300 and 59200 mol-1 dm3 cm-1. Fluorescence maxima, λfl, were registered around 418-448 nm upon excitation at 350 nm. A slight displacements of theoretically estimated absorption maxima according to experimental ones is observed. The differences are most probably due to the fact that the DFT calculations were carried out without taking into account the solvent effect. In addition, the merocyanine sulfobetaines also fluorescence in blue optical range (420-480 nm) at excitation in red range (630-650 nm).

  7. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  8. Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure.

    PubMed

    Hernández-Zamora, Miriam; Martínez-Jerónimo, Fernando; Cristiani-Urbina, Eliseo; Cañizares-Villanueva, Rosa Olivia

    2016-12-01

    Nearly 7 00000 tons of dyes are produced annually throughout the world. Azo dyes are widely used in the textile and paper industries due to their low cost and ease of application. Their extensive use results in large volumes of wastewater being discharged into aquatic ecosystems. Large volume discharges constitute a health risk since many of these dyes, such as Congo Red, are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is limited. Therefore, the aim of the present study was to evaluate the effect of Congo Red on survival and reproduction of Ceriodaphnia dubia. We determined the 48 h median lethal concentration (LC 50 ) and evaluated the effects of sublethal concentrations in subchronic exposures by using as food either fresh algae or algae previously exposed to the dye. LC 50 was 13.58 mg L -1 . In subchronic assays, survival was reduced to 80 and 55 %, and fertility to 40 and 70 %, as compared to the control, in C. dubia fed with intoxicated cells or with the mix of intoxicated + fresh algae, respectively, so the quantity and type of food had a significant effect. We determined that Congo Red is highly toxic to C. dubia since it inhibits survival and fertility in concentrations exceeding 3 mg L -1 . Our results show that this dye produces negative effects at very low concentrations. Furthermore, our findings warn of the risk associated with discharging dyes into aquatic environments. Lastly, the results emphasize the need to regulate the discharge of effluents containing azo dyes.

  9. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    PubMed

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  10. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media.

    PubMed

    Chakraborty, Moumita; Panda, Amiya Kumar

    2011-10-15

    Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Preconcentration of aqueous dyes through phase-transfer liquid-phase microextraction with a room-temperature ionic liquid.

    PubMed

    Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo

    2012-09-12

    In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.

  13. Development of a γ-alumina- nanoparticle-functionalized porous polymer monolith for the enrichment of Sudan dyes in red wine samples.

    PubMed

    Li, Wanjun; Zhou, Xiao; Ye, Juanjuan; Jia, Qiong

    2013-10-01

    Monolithic materials were synthesized in capillaries by in situ polymerization with N-isopropylacrylamide, glycidyl methacrylate, and ethylene dimethacrylate as the monomers, and methanol and PEG as the porogens. With γ-alumina nanoparticles attached to the surface of the porous monolithic column via epoxide groups, a novel polymer monolith microextraction (PMME) material was prepared with a good mechanical stability and a high extraction capacity. SEM and X-ray photoelectron spectroscopy were employed to characterize the modified monolithic column, demonstrating that γ-alumina nanoparticles were effectively functionalized onto the monolithic column. In addition, a new method was developed for the analysis of Sudan I-IV dyes using PMME coupled with HPLC. In order to obtain the optimum extraction efficiency, the PMME conditions including desorption solvent type, sample pH, sample volume, sample flow rate, and eluent flow rate were investigated. Under the optimum conditions, we obtained acceptable linearities, low LODs, and good intra- and interday RDSs. When applied to the determination of Sudan I-IV dyes in red wine samples, satisfactory recoveries were obtained in the range of 84.0-115.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of a Red Marker Dye on Aedes and Culex Larvae: Are There Implications for Operational Mosquito Control?

    PubMed

    Unlu, Isik; Leisnham, Paul T; Williams, Gregory M; Klingler, Kim; Dow, Garrett W; Kirchoff, Nicole; Jin, Sophie; Delisi, Nicholas; Montenegro, Katherine; Faraji, Ary

    2015-12-01

    Marker dyes are often mixed with liquid insecticide formulations prior to field applications to accurately determine the characteristics and penetration of droplets into targeted habitats. We have been using FD&C Red 40 Granular DM food dye at the rate of 20 g/liter in liquid solutions of Bacillus thuringiensis israelensis (Bti) for area-wide larvicide applications against the Asian tiger mosquito, Aedes albopictus. The Bti and dye mix ratio has been recommended by pesticide manufacturers for testing under operational conditions, but no data exist on the effects of the dye itself on mosquito larvae. We tested the effects of the FD&C Red 40 food dye in laboratory bioassays against different strains of Ae. albopictus (New Jersey and Maryland) and Culex pipiens pipiens (Utah) at rates of 0.039 to 80.0 g/liter. We also conducted field application trials to measure dye concentrations up to 100 m downwind when mixed and applied according to manufacturer instructions. In laboratory bioassays, we found that mean survival in cups with dye were significantly different from the controls beginning at 10.0 g/liter for New Jersey Ae. albopictus and at 20.0 g/liter for Maryland Ae. albopictus and Utah Cx. p. pipiens. In field application trials, we recorded a maximum volume density of 1,152.8 nl/cm(2) and calculated the maximum concentration of dye at 9.09 × 10(-3) g/liter. Our results showed that although we detected greater effects of dye on Ae. albopictus in New Jersey experiments than Ae. albopictus in Maryland and Cx. p. pipiens from Utah, concentrations of the dye during operational applications were at least 1,100 times below concentrations that exhibited toxic effects for either species in the laboratory, suggesting that the dye will not interfere with accuracy of field bioassays. Our results conclusively demonstrate that the addition of the FD&C Red 40 marker dye does not alter the efficacy of the pesticide formulation by skewing results, but rather provides a valuable

  15. In-situ spectroscopic analysis of the traditional dyeing pigment Turkey red inside textile matrix

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Huthwelker, T.; Borca, C. N.; Meßlinger, K.; Bieber, M.; Fink, R. H.; Späth, A.

    2018-03-01

    Turkey red is a traditional pigment for textile dyeing and its use has been proven for various cultures within the last three millennia. The pigment is a dye-mordant complex consisting of Al and an extract from R. tinctorum that contains mainly the anthraquinone derivative alizarin. The chemical structure of the complex has been analyzed by various spectroscopic and crystallographic techniques for extractions from textiles or directly in solution. We present an in-situ study of Turkey red by means of μ-XRF mapping and NEXAFS spectroscopy on textile fibres dyed according to a traditional process to gain insight into the coordination chemistry of the pigment in realistic matrix. We find an octahedral coordination of Al that corresponds well to the commonly accepted structure of the Al alizarin complex derived from ex-situ studies.

  16. High-throughput measurement of polymer film thickness using optical dyes

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  17. The application of sensitizers from red frangipani flowers and star gooseberry leaves in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Almaz Dhafina, Wan; Salleh, Hasiah; Zalani Daud, Muhamad; Ali, Nora’aini

    2018-05-01

    Nowadays natural based dyes for dye-sensitized solar cells (DSSCs) have been in research field attention due to its advantages over other type of dyes such as low-cost, low-toxicity, completely biodegradable and abundance of resources. Natural dyes can be produced via the simple extraction method of pigments from plant parts such as flower, fruits, leaves, tuber etc. In this feature article, the natural dyes which composed of anthocyanin pigment from red frangipani flowers and chlorophyll from star gooseberry leaves were applied in zinc oxide, (ZnO) based-DSSC. The ZnO photoanode of the DSSCs sample were sensitized in each dye with different duration. It was observed that DSSCs which has chlorophyll pigment as dye had better performance with power conversion efficiency (PCE) of 0.007%.

  18. Novel push-pull fluorescent dyes - 7-(diethylamino)furo- and thieno[3,2-c]coumarins derivatives: structure, electronic spectra and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Akchurin, Igor O.; Yakhutina, Anna I.; Bochkov, Andrei Y.; Solovjova, Natalya P.; Medvedev, Michael G.; Traven, Valerii F.

    2018-05-01

    Novel push-pull fluorescent dyes - 7-(diethylamino)furo- and 7-(diethylamino)thieno[3,2-c]coumarins derivatives have been synthesized using formyl derivatives of furo- and thieno[3,2-c]coumarins as starting materials. Electron absorption and fluorescent spectra of the dyes have been recorded in different solvents. Structure and solvent effects on the dyes spectral characteristics were analyzed. The fusion of five-membered heterocycle to coumarin provides a definite increase of Stokes shifts in all solvents and results in higher quantum yields of fluorescence. The absorption and emission bands of thieno[3,2-c] coumarin derivatives are definitely shifted to the red region (3-30 nm) compared to similar derivatives of furo[3,2-c]coumarin. TD-DFT calculations of some of the studied compounds have shown that hybrid DFT functionals and adequate representation of molecular environment are essential for obtaining accurate UV-Vis absorption spectra for the dyes with extended π-system. The longest-wave electron transitions in the studied compounds were computationally shown to be of push-pull nature.

  19. Polarity control at interfaces: Quantifying pseudo-solvent effects in nano-confined systems

    DOE PAGES

    Singappuli-Arachchige, Dilini; Manzano, J. Sebastian; Sherman, Lindy M.; ...

    2016-08-02

    Surface functionalization controls local environments and induces solvent-like effects at liquid–solid interfaces. We explored structure–property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the poresmore » are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. Furthermore, an inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.« less

  20. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  2. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-08-01

    Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR. Graphical abstract ᅟ.

  3. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment.

    PubMed

    Kong, Fanying; Wang, Aijie; Cheng, Haoyi; Liang, Bin

    2014-01-01

    In this study, BES with bioanode and biocathode was applied to decolorize an azo dye Congo red (CR). Results showed that the Congo red decolorization efficiency (CR-DE) within 23 h in a combined bioanode-biocathode single chamber BES was 98.3±1.3%, significantly higher than that of mixed solution in a dual chamber BES (67.2±3.5%) (P<0.005). Various electrodes deployments (horizontal, vertical and surrounding) in the combined bioanode-biocathode BES were further compared based on the decolorization performance and electrochemical characterization. Results indicated that CR-DE within 11h improved from 87.4±1.3% to 97.5±2.3%, meanwhile the internal resistance decreased from 236.6 to 42.2Ω as modifying the horizontal deployment to be a surrounding deployment. It proved that the combination of bioanode and biocathode with suitable electrodes deployment could accelerate the decolorization of azo dye Congo red, which would be great potential for the application of bioelectrochemical technology in azo dye wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  5. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Tingyu

    2017-09-01

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed.

  6. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  7. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.

    PubMed

    Yan, Ting-guo; Wang, Li-Juan

    2014-01-01

    A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe(3)O(4) particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe(3)O(4)/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g(-1), which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe(3)O(4)/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g(-1), respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe(3)O(4)/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic.

  8. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1.

    PubMed

    Chequer, Farah Maria Drumond; Lizier, Thiago Mescoloto; de Felício, Rafael; Zanoni, Maria Valnice Boldrin; Debonsi, Hosana Maria; Lopes, Norberto Peporine; Marcos, Ricard; de Oliveira, Danielle Palma

    2011-12-01

    Azo dyes constitute the largest class of synthetic dyes. Following oral exposure, these dyes can be reduced to aromatic amines by the intestinal microflora or liver enzymes. This work identified the products formed after oxidation and reduction of the dye Disperse Red 1, simulating hepatic biotransformation and evaluated the mutagenic potential of the resultant solution. Controlled potential electrolysis was carried out on dye solution using a Potentiostat/Galvanostat. HPLC-DAD and GC/MS were used to determine the products generated after the oxidation/reduction process. The Salmonella/microsome assay with the strains TA98 and YG1041 without S9, and the mouse lymphoma assay (MLA) using the thymidine kinase (Tk) gene, were used to evaluate the mutagenicity of the products formed. Sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, nitrobenzene, 4-nitro-benzamine and 2-(ethylphenylamino)-ethanol were detected. This dye has already being assigned as mutagenic in different cell system. In addition, after the oxidation/reduction process the dye still had mutagenic activity for the Salmonella/microsome assay. Nevertheless, both the original dye Disperse Red 1 and its treated solutions showed negative results in the MLA. The present results suggest that the ingestion of water and food contaminated with this dye may represent human and environmental health problem, due to the generation of harmful compounds after biotransformation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Toxicity of tomato red, a popular food dye blend on male albino mice.

    PubMed

    Sharma, Shipra; Goyal, Rajendra P; Chakravarty, Geetanjali; Sharma, Anjali

    2008-06-01

    Colour in food is an integral part of our culture and is also indispensable to the modern day consumer. During the past several decades, the technology of food processing has changed dramatically and the growth in the use of synthetic food colours as an individual dye or in the form of blends has increased enormously. In the present investigation, an attempt has been made to evaluate the toxic effects of a commonly used dye blend, tomato red on male Swiss albino mice. The mice were treated orally with 2 and 6g/kg body weight/day for 42 days. The present study revealed an increase in the body weight and liver weight. However, a decrease was recorded in the weights of kidneys and testes. Histopathological study revealed severe degenerative changes in the liver, kidney and testes. In conclusion, the use of the dye blend in various food items has adverse effect on the vital organs.

  10. Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.

    PubMed

    Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin

    2018-05-28

    The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7  cm 2 /W and 10 -12  cm/W, 10 -3  m 3  W -1  s -1 and 10 -24  m 6  W -1  s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.

  11. Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes.

    PubMed

    Cotillas, Salvador; Clematis, Davide; Cañizares, Pablo; Carpanese, Maria Paola; Rodrigo, Manuel A; Panizza, Marco

    2018-05-01

    This work focuses on the treatment of synthetic wastewater polluted with dye Procion Red MX-5B by different Electrochemical Advanced Oxidation Processes (EAOP) based on diamond anodes. The influence of the current density and the supporting electrolyte has been studied on dye removal and total mineralization of the organic matter. Results show that electrolysis with diamond electrodes is a suitable technology for an efficient degradation of dye. Nonetheless, the process efficiency increases when using chloride as supporting electrolyte because of the electrochemical generation of hypochlorite in wastewater which significantly contribute to dye removal. On the contrary, the total mineralization of the organic matter is more efficient in sulfate media. In this case, large amounts of peroxodisulfate are electrogenerated, favoring the complete removal of total organic carbon (TOC). On the other hand, lower current densities (10 mA cm -2 ) lead to a more efficient removal of both dye and TOC due to the mass transfer limitations of the technology. Finally, the coupling of UV light irradiation or ultrasound to electrolysis significantly improves the process performance, being photoelectrolysis the most efficient technology for the treatment of wastewater polluted with Procion Red MX-5B. This fact is due to the potential production of free chlorine or sulfate radicals that takes place by the activation of the electrogenerated oxidants. These species are more reactive than oxidants and, therefore, they quickly attack the organic matter present in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye.

    PubMed

    Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh

    2016-10-01

    Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  14. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa

    PubMed Central

    Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134

  15. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa.

    PubMed

    Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.

  16. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  17. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent.

    PubMed

    Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar

    2013-09-01

    The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. On the molecular interaction between lactoferrin and the dye Red HE-3B. A novel approach for docking a charged and highly flexible molecule to protein surfaces

    NASA Astrophysics Data System (ADS)

    Grasselli, Mariano; Cascone, Osvaldo; Anspach, F. Birger; Delfino, Jose M.

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  19. On the molecular interaction between lactoferrin and the dye Red HE-3b. A novel approach for docking a charged and highly flexible molecule to protein surfaces.

    PubMed

    Grasselli, Mariano; Cascone, Osvaldo; Birger Anspach, F; Delfino, Jose M

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  20. Reversal in solvatochromism in some novel styrylpyridinium dyes having a hydrophobic cleft.

    PubMed

    Panigrahi, Mallika; Dash, Sukalyan; Patel, Sabita; Behera, P K; Mishra, B K

    2007-11-01

    The influence of solvent polarity on the electronic transition of four different N-hexadecyl styrylpyridinium dyes has been investigated in 15 solvents. The E(T)(30) scale has been used to propose a quantitative approach towards the relative stability of the electronic ground and excited state species. The extents of contribution of dipolar aprotic solvents towards the solvation of the excited species have been determined to be 42-48% for some of the dyes. Instead of a steady solvatochromism, all the dyes suffer a reversal in solvatochromism. The transitions of the solvatochromism, referred to as solvatochromic switches, are found to be at E(T)(30) values of approximately 50 for methyl and N,N-dimethylamino substituted dyes while at 37.6 for hydroxyl substituted dye and approximately 45 for 4-(1-methyl-2-phenylethenyl) pyridinium dye. A reversal in the trend of solvent effect in the later dye corresponding to 4-(4-methyl styryl)pyridinium dye has been attributed to an analogy of series and parallel electron flow.

  1. Media composition and incubation temperature affect Congo red dye affinity of Shiga toxin-producing Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Background: Escherichia coli biofilm formation is dependent on curli fimbriae and cellulose, and the expression of both varies among Shiga toxin-producing E. coli (STEC). Curli and cellulose expression are often identified by their affinity for Congo red dye (CR) but media composition and incubation...

  2. Certification procedures for sirius red F3B (CI 35780, Direct red 80).

    PubMed

    Dapson, R W; Fagan, C; Kiernan, J A; Wickersham, T W

    2011-06-01

    Sirius red F3B (CI 35780, Direct red 80) is a polyazo dye used principally in staining methods for collagen and amyloid. For certification by the Biological Stain Commission, a sample of the dye must exhibit an absorption spectrum of characteristic shape with a maximum at 528-529 nm, a small shoulder near 500 nm and narrow peaks at 372, 281-282 and 230-235 nm. Spot tests (color changes with addition of concentrated H(2)SO(4) or HCl and subsequent dilution or neutralization) also are applied. The dye must perform satisfactorily in the picro-sirius red method for collagen by providing red staining of all types of collagen with yellow and green birefringence of fibers. Llewellyn's alkaline sirius red method applied to tissue known to contain amyloid must show red coloration of the products with green birefringence. Dye content, which does not influence significantly the staining properties of sirius red F3B, is not assayed.

  3. Extraction methods and food uses of a natural red colorant from dye sorghum.

    PubMed

    Akogou, Folachodé Ug; Kayodé, Ap Polycarpe; den Besten, Heidy Mw; Linnemann, Anita R

    2018-01-01

    The interest in stable natural colorants for food applications continues to grow. A red pigment extracted from the leaf sheaths of a sorghum variety (Sorghum bicolor) with a high content of apigeninidin is widely used as a biocolorant in processed foods in West Africa. This study compared the colour and anthocyanin composition from traditional extraction methods to determine options for improvement and use of the red biocolorant from dye sorghum in the food sector. Sorghum biocolorant was commonly applied in fermented and heated foods. Traditional extraction methods predominantly differed in two aspects, namely the use of an alkaline rock salt (locally known as kanwu) and the temperature of the extraction water. Cool extraction using the alkaline ingredient was more efficient than hot alkaline and hot aqueous extractions in extracting anthocyanins. The apigeninidin content was three times higher in the cool and hot alkaline extracts than in the aqueous extract. Cool and hot alkaline extractions at pH 8-9 were the most efficient methods for extracting apigeninidin from dye sorghum leaf sheaths. Broader use of the sorghum biocolorant in foods requires further research on its effects on nutrient bioavailability and antioxidant activity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Synthesis, physiochemical and optical properties of chitosan based dye containing naphthalimide group.

    PubMed

    Kumar, Santosh; Koh, Joonseok

    2013-04-15

    A new biopolymer dye containing naphthalimide moiety was synthesized by reaction of N-naphthaloyl chitosan with 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid. N-naphthaloyl chitosan was synthesized by reaction of chitosan with 4-bromo-1,8-naphthalic anhydride in aqueous media by greener approach. The degree of substitution of chitosan biopolymer dye is 0.55 with a yield of 70%. The synthesized materials were characterized by using UV-vis, (1)H NMR, FTIR, and FT-Raman spectroscopy. Some physical properties and surface morphology were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Optical properties of chitosan biopolymer dye were evaluated by photoluminescence (PL) spectroscopy that showed red shift (λ(em)) peak at 442 nm and 551 nm at excitation wavelength 325 nm in comparison to chitosan. The solubility of chitosan biopolymer dye increased in most of the organic solvents. These results may provide new perspectives in biomedical applications as an optical and sensitive biosensor material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  6. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T

    PubMed Central

    Guo, Xiang; Zhou, Shan; Wang, Yanwei; Song, Jinlong; Wang, Huimin; Kong, Delong; Zhu, Jie; Dong, Weiwei; He, Mingxiong; Hu, Guoquan; Ruan, Zhiyong

    2016-01-01

    Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK) was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v) organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide) could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM) and Ethyl Violet (25 μM), respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions. PMID:27741324

  7. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  8. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  9. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye

    PubMed Central

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  10. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  11. Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet).

    PubMed

    Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B

    2017-12-15

    In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Preferential solvation of Brooker's merocyanine in binary solvent mixtures composed of formamides and hydroxylic solvents.

    PubMed

    Bevilaqua, Tharly; da Silva, Domingas C; Machado, Vanderlei G

    2004-03-01

    The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.

  14. Screening of Chemical Dyes in Traditional Chinese Medicine by HPTLC-MS.

    PubMed

    He, Fengyan; He, Yi; Zheng, Xiaowei; Wang, Ruizhong; Lu, Jing; Dai, Zhong; Ma, Shuangcheng

    2018-05-01

    It has been uncovered that chemical dyes are illegally used in traditional Chinese medicines to brighten color and cover up inferiority, which threaten the safety of patients. In the present study, an HPTLC-MS method was developed for the effective screening of 11 chemical dyes (Sudan I, II, III, and IV; 808 Scarlet; Sudan Red 7B; malachite green; Basic Orange 2; auramine; Orange II; and erythrosine) in traditional Chinese medicine (TCM) raw materials and Chinese patent medicines. Firstly, unwashed HPTLC plates were chosen by comparing the background signals of the TLC plates used directly and prewashed with analytical grade and HPLC grade solvents. Twice developments were conducted to isolate chemical dyes of different polarity. Possible adulterants were preliminarily identified by comparing Rf values and in situ UV-Vis spectra with those of the references. Further confirmation was conducted by tandem MS analysis via an elution head-based TLC-MS interface. Sudan I and IV, 808 Scarlet, and Orange II were successfully detected in eight batches of TCM. The proposed method could be applied as a reliable technology for the screening of chemical dyes in TCM.

  15. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.

    PubMed

    Sani, R K; Azmi, W; Banerjee, U C

    1998-01-01

    Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.

  16. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less

  17. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    PubMed Central

    Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; Zaheer-ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber. PMID:22272108

  18. Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization.

    PubMed

    Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-07

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO 2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  19. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    NASA Astrophysics Data System (ADS)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  20. A solvent-based intelligence ink for oxygen.

    PubMed

    Mills, Andrew; Hazafy, David

    2008-02-01

    A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film -- made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein -- loses its colour rapidly (<30 s) upon exposure to UVA light and remains colourless in an oxygen-free atmosphere, returning to its original blue colour upon exposure to air. In the latter step the rate of colour recovery is proportional to the level of ambient oxygen and the same film can be UV-activated repeatedly. The mechanism of this novel, UV-activated, solvent-based, colorimetric oxygen indicator is discussed, along with its possible applications.

  1. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  2. Effect of methyl red dye on dielectric and conductivity properties of PEO/CdCl{sub 2} electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, Archana; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-05-06

    In this report the conductivity and dielectric properties of polyethylene oxide-cadmium chloride (PEO/CdCl{sub 2}) polymer electrolyte films doped with an azo dye methyl red (MR) are discussed. The films were prepared by solution casting technique at different concentrations of the dye in PEO/CdCl{sub 2} electrolyte. The thermal behavior, chemical interaction of the dye with the electrolyte and surface morphology were studied by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) respectively. The conductivity and dielectric properties were measured as a function of composition and temperature using complex impedance spectroscopy. The temperature dependent electrical conductivitymore » of the films exhibited Arrhenius type behavior. Conductivity and dielectric results also signify the enhancement in the amorphous phase of the polymer electrolyte dye systems. The value of highest conductivity observed is 1.21x10{sup −4} at 343K and the conductivity of the film was enhanced by a three orders of magnitude.« less

  3. Photophysical parameters and laser performance of 3-(4‧-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP): A new laser dye

    NASA Astrophysics Data System (ADS)

    El-Daly, S. A.; Gaber, M.; El-Sayed, Y. S.

    2009-09-01

    The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser ( λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460-590 nm. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.

  4. Column performance of carbon nanotube packed bed for methylene blue and orange red dye removal from waste water

    NASA Astrophysics Data System (ADS)

    Gill, G. K.; Mubarak, N. M.; Nizamuddin, S.; Al-Salim, H. S.; Sahu, J. N.

    2017-06-01

    Environmental issues have always been a major issue among human kind for the past decades. As the time passes by, the technology field has grown and has helped a lot in order to reduce these environmental issues. Industries such as metal plating facilities, mining operations and batteries production are a few examples that involves in the environmental issues. Carbon nanotube is proven to possess excellent adsorption capacity for the removal of methylene blue and orange red dyes. The effect of process parameters such as pH and contact time was investigated The results revealed that optimized conditions for the highest removal for methylene blue (MB) (97%) and orange red (94%) are at pH 10, CNTs dosage of 1 grams, and 15 minutes for each dyes removal respectively. The equilibrium adsorption data obtained was best fit to Freundlich model, while kinetic data can be characterized by the pseudo second-order rate kinetics.

  5. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    NASA Astrophysics Data System (ADS)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  6. The influence of surface plasmons on fluorescence of the dye Lumogen F red 300 in condensed phase

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Levchenko, Viktoria

    2017-01-01

    The paper is divided to two parts one is a short description of scientific activity of Georges Boulon and my long standing friendship with him, the second part consists of the new findings of increasing fluorescence by surface plasmons studies performed recently in Jerusalem. We describe the synthesis of copper nanoparticles and their incorporation into polyvinylpyrrolidone and into sol-gel matrix co-doped with the fluorescent dye Lumogen F Red 300. The absorption and emission spectra of samples undoped and co-doped with nanoparticles reveal the increase of fluorescence of the dye in presence of copper nanoparticles. The phenomenon arises from scattered light by the nanoparticles.

  7. Self-Assembly of Cis-Configured Squaraine Dyes at the TiO2-Dye Interface: Far-Red Active Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Punitharasu, Vellimalai; Mele Kavungathodi, Munavvar Fairoos; Nithyanandhan, Jayaraj

    2018-05-16

    To synergize both steric and electronic factors in designing the dyes for dye-sensitized solar cells, a series of cis-configured unsymmetrical squaraine dyes P11-P15 with suitably functionalized alkyl groups and squaric acid units containing the electron-withdrawing groups were synthesized, respectively. These dyes capture the importance of (i) the effect and position of branched alkyl groups, (ii) mono- and di-anchoring groups containing dyes, and (iii) further appending the alkyl groups through the cyanoester vinyl unit on the central squaric acid units of D-A-D-based cis-configured squaraine dyes. All the above factors govern the controlled self-assembly of the dyes on the TiO 2 surface which helps to broaden the absorption profile of the dyes with an increased energy-harvesting process. With respect to the position of the branched alkyl groups, dye P11 with the sp 3 -C and N-alkyl groups away from the TiO 2 surface showed a better device efficiency of 5.98% ( J sc of 14.46 mA cm -2 , V oc of 0.576 V, and ff of 71.8%) than its positional isomer P12 with 3.45% ( J sc of 8.78 mA cm -2 , V oc of 0.554 V, and ff of 70.9%). However, with respect to the dyes containing mono- and di-anchoring groups, P13 with two anchoring units exhibited a superior device performance of 7.58% ( J sc of 17.12 mA cm -2 , V oc of 0.618 V, and ff of 71.7%) in the presence of optically transparent co-adsorbent CDCA (3α,7α-dihydroxy-5β-cholanic acid) than dyes P11 and P12.

  8. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    PubMed

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    PubMed

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  10. Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment.

    PubMed

    Franco, Jefferson Honorio; Aissa, Alejandra Ben; Bessegato, Guilherme Garcia; Fajardo, Laura Martinez; Zanoni, Maria Valnice Boldrin; Pividori, María Isabel; Del Pilar Taboada Sotomayor, Maria

    2017-02-01

    Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retained more selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation.

  11. Merocyanine-type dyes from barbituric acid derivatives.

    PubMed

    Rezende, M C; Campodonico, P; Abuin, E; Kossanyi, J

    2001-05-01

    The preparation and the solvatochromic behavior of two dyes, obtained by condensation of N,N'-dimethylbarbituric acid with dimethylaminobenzaldehyde and with 4,4'-bis(N,N-dimethylamino)benzophenone (Michler's ketone) are described. The latter dye is rather sensitive to the polarity of the medium, and in particular, to the hydrogen-bond-donor ability of protic solvents. The solvatochromism of both compounds is discussed in terms of the pi* and E(T)(30) solvent polarity scales and their differences in behavior interpreted with the aid of semiempirical calculations.

  12. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Magnetic polymer microcapsules loaded with Nile Red fluorescent dye

    NASA Astrophysics Data System (ADS)

    Bartel, Marta; Wysocka, Barbara; Krug, Pamela; Kępińska, Daria; Kijewska, Krystyna; Blanchard, Gary J.; Kaczyńska, Katarzyna; Lubelska, Katarzyna; Wiktorska, Katarzyna; Głowala, Paulina; Wilczek, Marcin; Pisarek, Marcin; Szczytko, Jacek; Twardowski, Andrzej; Mazur, Maciej

    2018-04-01

    Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.

  14. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    PubMed

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    PubMed

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  16. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography

    PubMed Central

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d’Ischia, Marco

    2015-01-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system. PMID:26246999

  17. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    PubMed

    Hayashi-Takanaka, Yoko; Stasevich, Timothy J; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi

    2014-01-01

    To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red).

  18. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse.

    PubMed

    Khadhraoui, M; Trabelsi, H; Ksibi, M; Bouguerra, S; Elleuch, B

    2009-01-30

    The objective of this study was to investigate the degradation and mineralization of an azo-dye, the Congo red, in aqueous solutions using ozone. Phytotoxicity and the inhibitory effects on the microbial activity of the raw and the ozonated solutions were also carried out with the aim of water reuse and environment protection. Decolorization of the aqueous solutions, disappearance of the parent compound, chemical oxygen demand (COD) and total organic carbon (TOC) removal were the main parameters monitored in this study. To control the mineralization of the Congo red, pH of the ozonated solution and heteroatoms released from the mother molecule such NH(4)(+), NO(3)(-) and SO(4)(2-) were determined. It was concluded that ozone by itself is strong enough to decolorize these aqueous solutions in the early stage of the oxidation process. Nonetheless, efficient mineralization had not been achieved. Significant drops in COD (54%) were registered. The extent of TOC removal was about 32%. Sulfur heteroatom was totally oxidized to SO(4)(2-) ions while the central -NN- azo ring was partially converted to NH(4)(+) and NO(3)(-). Results of the kinetic studies showed that ozonation of the selected molecule was a pseudo-first-order reaction with respect to dye concentration. The obtained results also demonstrate that ozone process reduced the phytotoxicity of the raw solution and enhanced the biodegradability of the treated azo-dyes-wastewater. Hence, this show that ozone remains one of the effective technologies for the discoloration and the detoxification of organic dyes in wastewater.

  19. Studies on the Inhalation Toxicity of Dyes Present in Colored Smoke Munitions. Phase I Studies: Generation and Characterization of Dye Aerosol

    DTIC Science & Technology

    1984-02-01

    DYE AEROSOL Rogene F. Henderson Y. S. Cheng J. S. Dutcher T. C. Marshall J. E. White 0)February 1 . 1984 Supported by SU. S. ARMY MEDICAL RESEARCH AND...from Report) 1 . SUPPLEMENTARY NOTES IS. KEY WORDS (Coattine on re tore* side I’ necessary teid iatfiy by biock nuqber) Solvent Yellow Dye Aerosols...Solvent Green Exposure Atmosphere 2-(2’-quinolyl )-1,3-indandione 1 -4-di-p-toluidinoanthraquinone 20. AmTlACT (Cowftfuem a reserve ft D rofmwe ,uy md

  20. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  1. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.

    PubMed

    Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain

    2017-01-01

    Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  4. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers.

    PubMed

    Ahmad, Iqbal; Sabah, Arif; Anwar, Zubair; Arif, Aysha; Arsalan, Adeel; Qadeer, Kiran

    2017-01-01

    A study of the extraction of polymeric material and dyes from the pharmaceutical plastic containers using various organic solvents was conducted to evaluate the effect of polarity on the extraction process. The plastic containers used included semi-opaque, opaque, transparent and amber colored and the solvent used were acetonitrile, methanol, ethanol, acetone, dichloroethane, chloroform and water. The determination of extractable material was carried out by gravimetric and spectrometric methods. The yield of extractable materials from containers in 60 h was 0.10-1.29% (w/w) and the first-order rate constant (kobs) for the extraction of polymeric material ranged from 0.52-1.50 × 10-3 min -1 and for the dyes 6.43- 6.74 x10-3min-1. The values of (k obs ) were found to be an inverse function of solvent dielectric constant and decreased linearly with the solvent acceptor number. The extractable polymeric materials exhibited absorption in the 200-400 nm region and the dyes in the 300-500nm region. The rates of extraction of polymeric material and dyes from plastic containers were dependent on the solvent dielectric constant. The solvents of low polarity were more effective in the extraction of material indicating that the extracted material were of low polarity or have non-polar character. The dyes were soluble in acetone and chloroform. No plastic material was found to be extracted from the containers in aqueous solution.

  5. Development of sustainable dye adsorption system using nutraceutical industrial fennel seed spent-studies using Congo red dye.

    PubMed

    Taqui, Syed Noeman; Yahya, Rosiyah; Hassan, Aziz; Nayak, Nayan; Syed, Akheel Ahmed

    2017-07-03

    Fennel seed spent (FSS)-an inexpensive nutraceutical industrial spent has been used as an efficient biosorbent for the removal of Congo red (CR) from aqueous media. Results show that the conditions for maximum adsorption would be pH 2-4 and 30°C were ideal for maximum adsorption. Based on regression fitting of the data, it was determined that the Sips isotherm (R 2 = 0.994, χ 2 = 0.5) adequately described the mechanism of adsorption, suggesting that the adsorption occurs homogeneously with favorable interaction between layers with favorable interaction between layers. Thermodynamic analysis showed that the adsorption is favorable (negative values for ΔG°) and endothermic (ΔH° = 12-20 kJ mol -1 ) for initial dye concentrations of 25, 50, and 100 ppm. The low ΔH° value indicates that the adsorption is a physical process involving weak chemical interactions like hydrogen bonds and van der Waals interactions. The kinetics revealed that the adsorption process showed pseudo-second-order tendencies with the equal influence of intraparticle as well as film diffusion. The scanning electron microscopy images of FSS show a highly fibrous matrix with a hierarchical porous structure. The Fourier transform infrared spectroscopy analysis of the spent confirmed the presence of cellulosic and lignocellulosic matter, giving it both hydrophilic and hydrophobic properties. The investigations indicate that FSS is a cost-effective and efficient biosorbent for the remediation of toxic CR dye.

  6. Natural red dyes extraction on roselle petals

    NASA Astrophysics Data System (ADS)

    Inggrid, H. M.; Jaka; Santoso, H.

    2016-11-01

    Roselle (Hibiscus sabdariffa L.) has a high quantity of anthocyanin pigment and is a good colorant. The anthocyanin pigment can be used as a natural colorant and antioxidant. An antioxidant is an organic compound that has the ability to inhibit free radical reactions in the human body. The objective of this research is to study the effect of pH and temperature on total anthocyanin and antioxidant activity in roselle extract, and to evaluate the effect of temperature and sunlight on the stability of the red color from roselle. Dried roselle petals were extracted with solid liquid extraction method using water as solvent. The variables in this study are temperature (5°C, 30°C, and 55°C) and pH (2, 7, and 12). Total anthocyanin was analysed using the pH differential method. The antioxidant activities were determined using the DPPH method. The highest total anthocyanin in the roselle petals was 80.4 mg/L at a temperature of 5°C and pH 2. The highest antioxidant activity and yield content in the roselle were 90.4% and 71.6 % respectively, obtained at 55°C and pH 2.

  7. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  8. Steric hindrance inhibits excited-state relaxation and lowers the extent of intramolecular charge transfer in two-photon absorbing dyes.

    PubMed

    Stewart, David J; Dalton, Matthew J; Long, Stephanie L; Kannan, Ramamurthi; Yu, Zhenning; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2016-02-21

    The two-photon absorbing dye AF240 [1, (7-benzothiazol-2-yl-9,9-diethylfluoren-2-yl)diphenylamine] is modified by adding bulky alkyl groups to the diphenylamino moiety. Three new compounds are synthesized which have ethyl groups in both ortho positions of each phenyl ring (2), t-butyl groups in one ortho position of each phenyl ring (3), and t-butyl groups in the para position of each phenyl ring (4). The dyes are examined in several aprotic solvents with varying polarity to observe the effects of the sterically hindering bulky groups on the ground and excited-state photophysical properties. While the ground state shows minimal solvent dependence, there is significant dependence on the fluorescence quantum yield and lifetime, as well as the excited-state energy levels. This effect is caused by the formation of an intramolecular charge-transfer (ICT) state, which is observed in the solvents more polar than n-hexane and supported by TD-DFT calculations. Electronic effects of ortho or para alkyl substitution should be similar, yet drastic differences are observed. A red shift in the fluorescence maximum is observed in 4 relative to 1, yet a blue shift occurs in 2 and 3 because the substituents at the sterically sensitive ortho-positions inhibit excited-state geometric relaxation and result in less ICT character than 1. Coupled with theoretical calculations, the data support a planar ICT (PICT) excited state where the diphenylamino nitrogen in an sp(2)-like geometry is integral with the plane containing the fluorene and benzothiazole moieties. Ultrafast transient absorption experiments show that ICT occurs rapidly (<150 fs) followed by geometric and solvent relaxation in ∼ 1-4 ps to form the PICT or solvent-stabilized ICT (SSICT) state. This relaxation is not observed in non-polar n-hexane because the solvent dependent ICT state energy lies higher than the locally-excited (LE) state. Finally, formation of a triplet state (T1) is only efficiently observed in n

  9. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Occurrence and risk assessment of an azo dye - The case of Disperse Red 1.

    PubMed

    Vacchi, Francine Inforçato; Von der Ohe, Peter Carsten; Albuquerque, Anjaína Fernandes de; Vendemiatti, Josiane Aparecida de Souza; Azevedo, Carina Cristina Jesus; Honório, Jaqueline Gonçalves; Silva, Bianca Ferreira da; Zanoni, Maria Valnice Boldrin; Henry, Theodore B; Nogueira, Antonio J; Umbuzeiro, Gisela de Aragão

    2016-08-01

    Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L(-1) was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L(-1) was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new "Criteria for Reporting and Evaluating ecotoxicity Data" (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L(-1). The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of the monobrominated derivative of Acid Red 52 (Food Red No. 106) in pickled vegetables.

    PubMed

    Ochi, Naoki; Okuda, Tetsuya; Fujii, Hisashi

    2016-09-01

    Two unknown dyes (purple and purplish-red) were detected by TLC in two pickled vegetable (sakura-zuke daikon) samples containing Acid Red 52 (AR) and New Coccine as food colorants. HPLC with diode-array detection and LC/MS analyses suggested that the purple dye is monobrominated AR and the purplish-red dye is its N-desethyl derivative, which would be generated mainly during sample preparation. For the identification of the purple dye, a reference compound was prepared by bromination of AR followed by isolation of the monobrominated AR, the structure of which was elucidated as 4'-brominated AR (4'BrAR) by LC/ToF-MS and (1)H-NMR spectroscopy. The purple dye was confirmed as 4'BrAR by comparison of its retention time, ultraviolet-visible spectrum and mass spectrum with those of the prepared reference compound. To our knowledge, this is the first report of the detection of 4'BrAR in foods.

  12. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    PubMed Central

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (P<0.05) increase in creatinine, uric acid, urea, and blood urea nitrogen (BUN) levels as well as kidney malondialdehyde (MDA) content, with concomitant decrease in kidney vitamin C and GSH contents. Furthermore, activities of kidney antioxidant enzymes such as, SOD, Catalase, and GST were significantly (P<0.05) altered in cisplatin administered rats. However, consumption of diets supplemented with the dye for 20 days prior to cisplatin administration protected the kidney and attenuates oxidative stress through modulation of in vivo antioxidant status. The determined anthocyanin content of the dye is 121.5 mg Cyanidin-3-rutinoside equivalent/100 g, thus, the observed nephroprotective effect of H. sabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  13. Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers.

    PubMed

    Das, Raghunath; Bhaumik, Madhumita; Giri, Somnath; Maity, Arjun

    2017-07-01

    Nano-sized magnetic Fe 0 /polyaniline (Fe 0 /PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe 0 /PANI , was synthesized via reductive deposition of nano-Fe 0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV-visible spectroscopy under different experimental conditions such as % of Fe 0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations=500mg.L -1 , concentration of CR=200ppm, solution pH=neutral (7.0), temperature=30°C, % of Fe 0 loading=30% and 500W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30min with higher Q max value (Q max =446.4 at 25°C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 ). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe 0 /PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of contact glow discharge electrolysis method for degradation of batik dye waste Remazol Red by the addition of Fe2+ ion

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Puspita, Indah; Sukreni, Tulus

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) has been shown to degrade much weight organic compounds such as dyes because the production of hydroxil radical (•OH) is excess. This research aims to degrade batik dye waste Remazol Red, using CGDE method with the addition of Fe2+ ion. The addition of iron salt compounds has proven to increase process efficiency. Dye degradation is known by measure its absorbances with Spectrophotometer UV-Vis. The result of study showed that percentage degradation was 99.92% in 20 minutes which obtained by using Na2SO4 0.01 M, with addition FeSO4 0,1 gram, applied voltage 860 volt, and 1 wolfram anode 5 mm depth.

  15. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    PubMed

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  16. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    PubMed

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Surfactant for dye-penetrant inspection is insensitive to liquid oxygen

    NASA Technical Reports Server (NTRS)

    1966-01-01

    LOX insensitive solvent is blended into a mixture of commercially available surfactants to clean metal surfaces which are to be investigated by the dye-penetrant method. The surfactant mixture is applied before and after application of the dye.

  18. On the heterogeneity of fluorescence lifetime of room temperature ionic liquids: onset of a journey for exploring red emitting dyes.

    PubMed

    Ghosh, Anup; Chatterjee, Tanmay; Mandal, Prasun K

    2012-06-25

    An excitation and emission wavelength dependent non-exponential fluorescence decay behaviour of room temperature ionic liquids (RTILs) has been noted. Average fluorescence lifetimes have been found to vary by a factor of three or more. Red emitting dyes dissolved in RTILs are found to follow hitherto unobserved single exponential fluorescence decay behaviour.

  19. Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud

    2017-05-01

    The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.

  20. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.

    PubMed

    Klymchenko, Andrey S

    2017-02-21

    Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies

  1. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  2. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink

    NASA Astrophysics Data System (ADS)

    Hu, Xiaochen; Liu, Yang; Duan, Yuai; Han, Jingqi; Li, Zhongfeng; Han, Tianyu

    2017-09-01

    In this study, we reported the photoluminescence (PL) behaviour of a new intramolecular charge transfer (ICT) compound, ((E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid, (HABA), which shows ICT solvent effect in aprotic solvents as confirmed by absorption and emission spectra. While in protic solvents including water and ethanol, the charge transfer (CT) band significantly reduces. Remarkable fluorescence enhancement in the blue region was also observed for HABA in polar protic solvents. We described such phenomena as ;specific solvent effect;. It can be ascribed to the hydrogen bonding formation between HABA and protic solvents, which not only causes significant reduction in the rate of internal conversion but also elevates the energy gap. Density functional theory (DFT) calculations as well as the dynamics analysis were performed to further verify the existence of hydrogen bonding complexes. Stronger emission turn-on effect was observed on HABA solid film when it is treated with water and base solution. The stimuli-responsive fluorescence of HABA enables a new green printing technique that uses water/base as the ink, affording fluorescent handwritings highly distinct from the background. Thermoanalysis of the dye suggests the nice thermostability, which is highly desired for real-world printing in a wide temperature range.

  3. Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang

    2013-11-25

    “Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less

  4. Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization.

    PubMed

    Alarcón, Emilio; Edwards, Ana Maria; Aspee, Alexis; Moran, Faustino E; Borsarelli, Claudio D; Lissi, Eduardo A; Gonzalez-Nilo, Danilo; Poblete, Horacio; Scaiano, J C

    2010-01-01

    The photophysics and photochemistry of rose bengal (RB) and methylene blue (MB) bound to human serum albumin (HSA) have been investigated under a variety of experimental conditions. Distribution of the dyes between the external solvent and the protein has been estimated by physical separation and fluorescence measurements. The main localization of protein-bound dye molecules was estimated by the intrinsic fluorescence quenching, displacement of fluorescent probes bound to specific protein sites, and by docking modelling. All the data indicate that, at low occupation numbers, RB binds strongly to the HSA site I, while MB localizes predominantly in the protein binding site II. This different localization explains the observed differences in the dyes' photochemical behaviour. In particular, the environment provided by site I is less polar and considerably less accessible to oxygen. The localization of RB in site I also leads to an efficient quenching of the intrinsic protein fluorescence (ascribed to the nearby Trp residue) and the generation of intra-protein singlet oxygen, whose behaviour is different to that observed in the external solvent or when it is generated by bound MB.

  5. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.

    PubMed

    Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

    2015-03-28

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.

  6. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  7. Potential of roselle and blue pea in the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  8. Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber.

    PubMed

    Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Sharma, Shikha

    2014-10-13

    The present study deals with the surface modification of Luffa cylindrica fiber through graft copolymerization of methyl acrylate/acrylamide (MA/AAm) via microwave radiation without the use of initiator. Various reaction parameters effecting grafting yield were optimized and physico-chemical properties were evaluated. The grafted Luffa cylindrica fiber showed morphological transformations, thermal stability and chemical resistance. The adsorption potential of modified fiber was investigated using adsorption isotherms for hazardous congo red dye removal from aqueous system. The maximum adsorption capacity of dye onto grafted Luffa cylindrica fiber was found to be 17.39 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ΔH(0) (21.27 kJ/mol), entropy change, ΔS(0) (64.71 J/mol K) and free energy change, ΔG(0) (-139.52 kJ/mol) were also calculated. Adsorption process was found spontaneous and endothermic in nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Molecular mechanism of tau aggregation induced by anionic and cationic dyes.

    PubMed

    Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A

    2013-01-01

    Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.

  10. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Juwita, Ratna; Tsai, Hui-Hsu Gavin

    2018-01-01

    The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D-π-spacer-A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional -CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.

  12. Formation of vesicles through solvent assisted self-assembly of hydrophobic pentapeptides: encapsulation and pH responsive release of dyes by the vesicles.

    PubMed

    Kar, Sudeshna; Drew, Michael G B; Pramanik, Animesh

    2011-09-01

    In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe (I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: α-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while β-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated β-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.

  13. Physicochemical Investigation of 2,4,5-Trimethoxybenzylidene Propanedinitrile (TMPN) Dye as Fluorescence off-on Probe for Critical Micelle Concentration (CMC) of SDS and CTAB.

    PubMed

    Khan, Salman A; Asiri, Abdullah M

    2015-11-01

    2,4,5-trimethoxybenzylidene propanedinitrile (TMPN) was synthesized by Knoevenagel condensation. Structure of the TMPN was conformed by the elemental analysis and EI-MS, FT-IR, (1)H-NMR, (13)C-NMR spectroscopy. Absorbance and emission spectrum of the TMPN was studied in different solvent provide that TMPN is good absorbent and emission red shift in absorbance and emission spectra as polarity of the solvents increase. Photophysical properties including, oscillator strength, extinction coefficient, transition dipole moment, stokes shift and fluorescence quantum yield were investigated in order to investigate the physicochemical behaviors of TMPN. Dye undergoes solubilization in different micelles and may be used as a probe to determine the critical micelle concentration (CMC) of SDS and CTAB.

  14. Fluorescence emission of disperse Red 1 in solution at room temperature.

    PubMed

    Toro, Carlos; Thibert, Arthur; De Boni, Leonardo; Masunov, Artëm E; Hernández, Florencio E

    2008-01-24

    In this article, we report the fluorescence emission of Disperse Red 1 in solution at room temperature and pumping at 532 nm with a 25 mW diode laser. We have measured its fluorescence quantum yield in methanol, ethylene glycol, glycerol, and phenol obtaining values as high as 10(-3) in the aliphatic alcohols. The excitation spectra of Disperse Red 1 in all four solvents as well as its excitation anisotropy in glycerol are presented. Applying a Gaussian decomposition method to the absorption spectra along with the support from the excitation spectra, the positions of the different transitions in this pseudo-stilbene azobenzene dye were determined. Solvatochromic and isomerization constraint effects are discussed. Calculations using density functional theory at TD-B3LYP/6-31G*//HF/6-31G* level were performed to interpret the experimental observations.

  15. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  16. Preparation of demipermanent and semipermanent hair dyes gels from ethanol extract of Caesalpinia sappan L. using carbomer as gelling agent

    NASA Astrophysics Data System (ADS)

    Indrawati, T.; Syahrin, A.; Irpan

    2017-07-01

    Caesalpinia sappan L. (Cs L) contains of essential oils, saponin, brazilin, brazilein, alkaloids, flavonoids and tannins that have a function as cationic natural dyes. The aim of this research was to prepare the ethanol extract of Cs L wood and to prepare demi-permanent and semi-permanent of hair dye gels by using Carbomer of 2 % and 1.5 % as gelling agent and Cs L extract as cationic dyes. The Extract of Cs L was macerated by using ethanol of 96 % as the solvent, and then thickened. Three formula of demi-permanent hair dye gels were made by using Cs L extract of 3 %, 6% and 9 %. Three formula of semi-permanent hair dye gels were made by using Cs L extract of 2.50 %, 7.00 % and 10.50 %. Those hair dyes gels were prepared by swelling and mixing methods. All products of hair dyes gels were evaluated with organoleptic test, homogeneity test, pH test, consistency test, rheological properties test and dyeing effect test. The demi-permanent hair dye gels products had brown to brown dark black colors, pH of 5.05-5.43, homogeny, specific Cs L odor, and had pseudoplastic thixotropic flow characteristic. The semi-permanent hair dye gels products had red color pH of 6.5-6.25, homogeny, Cs L odor, and have pseudoplastic thixotropic flow characteristics. The optimum formula of demi-permanent was formula gel that contained of 6 % extract of Cs L and the optimum formula of permanent hair dyes gel was formula that contained of 10.50 % extract of Cs L.

  17. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  18. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    PubMed

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pervaporation of Water-Dye, Alcohol-Dye, and Water-Alcohol Mixtures Using a Polyphosphazene Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, Christopher Joseph; Harrup, Mason Kurt; Mccoy, John Dwane

    A novel phosphazene heteropolymer (HPP) was synthesized that contained three differing pendant groups: 2-(2-methoxyethoxy)ethanol (MEE), 4-methoxyphenol, and 2-allylphenol. The resulting polymer is an amorphous elastomer with good film forming properties where MEE and 4-methoxyphenol pendant groups influenced the hydrophilicity and the solvent compatibility of the polymer. Sorption studies were performed to characterize the polymer in terms of Hansen solubility parameters. Additionally, group contributions were used to predict the Hansen parameters for the polymer and these data compared favorably with the observed solubility behavior with 15 solvents that ranged from hydrocarbons to water. Homopolymers synthesized from MEE and 4-methoxyphenol were alsomore » studied for solubility revealing different behaviors with each representing a limit in hydrophilicity; MEE formed a water-soluble hydrophilic polymer and 4-methoxyphenol yielded a hydrophobic polymer. Membranes formed from HPP were characterized for use as pervaporation membranse using five different feeds: water–dye, methanol–dye, 2-propanol–dye, water–2-propanol, and water–methanol. Fluxes of methanol and isopropanol were greater than for water. For the alcohol–water separations, the alcohol was the favored permeate in all cases with higher fluxes observed for higher alcohol feed concentrations, however, separation factors declined.« less

  1. Evaluation of the chitin-binding dye Congo red as a selection agent for the isolation, classification, and enumeration of ascomycete yeasts.

    PubMed

    Linder, Tomas

    2018-05-01

    Thirty-nine strains of ascomycete yeasts representing 35 species and 33 genera were tested for their ability to grow on solid agar medium containing increasing concentrations of the chitin-binding dye Congo red. Six strains were classified as hypersensitive (weak or no growth at 10 mg/l Congo red), five were moderately sensitive (weak or no growth at 50 mg/l), three were moderately tolerant (weak or no growth at 100 mg/l), while the remaining 25 strains were classified as resistant (robust growth at ≥ 100 mg/l) with 20 of these strains classified as hyper-resistant (robust growth at 200 mg/l). Congo red growth phenotypes were consistent within some families but not others. The frequency of Congo red resistance among ascomycete yeasts was deemed too high for the practical use of Congo red as a selection agent for targeted isolation, but can be useful for identification and enumeration of yeasts.

  2. Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan; Hall, Sarah

    2009-03-01

    Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.

  3. On-chip tunable optofluidic dye laser

    NASA Astrophysics Data System (ADS)

    Cai, Zengyan; Shen, Zhenhua; Liu, Haigang; Yue, Huan; Zou, Yun; Chen, Xianfeng

    2016-11-01

    We demonstrate a chip-scale tunable optofluidic dye laser with Au-coated fibers as microcavity. The chip is fabricated by soft lithography. When the active region is pumped, a relatively low threshold of 6.7 μJ/mm2 is realized with multimode emission due to good confinement of the cavity mirrors, long active region, as well as total reflectivity. It is easy to tune the lasing emission wavelength by changing the solvent of laser dye. In addition, the various intensity ratios of multicolor lasing can be achieved by controlling flow rates of two fluid streams carried with different dye molecules. Furthermore, the convenience in fabrication and directional lasing emission outcoupled by the fiber make the tunable optofluidic dye laser a promising underlying coherent light source in the integrated optofluidic systems.

  4. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    PubMed

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanofiltration in the manufacture of liquid dyes production.

    PubMed

    Mikulásek, P; Cuhorka, J

    2010-01-01

    In the manufacture of liquid dyes, almost complete desalting, which helps to improve the stability of the product, enhances the solubility of the dye. Diafiltration is used to allow a high level of desalting to be achieved. The process of desalination of aqueous dye-salt solutions by polymeric nanofiltration membranes using commercially available modules was studied. The influence of dye and salt concentration on the salt rejection and pressure applied on the flux as well as comparison of individual NF membranes for desalting purposes is presented. The great interest is also devoted to the mathematical modelling of nanofiltration and description of discontinuous diafiltration by periodically adding solvent at constant pressure difference.

  6. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Aggregation of Carbocyanine Dyes in Choline Chloride-Based Deep Eutectic Solvents in the Presence of an Aqueous Base.

    PubMed

    Pal, Mahi; Yadav, Anita; Pandey, Siddharth

    2017-09-26

    Deep eutectic solvents (DESs) have shown potential as novel media to support molecular aggregation. The self-aggregation behavior of two common and popular carbocyanine dyes, 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazole carbocyanine (TDBC) and 5,5'-dichloro-3,3'-di(3-sulfopropyl)-9-methyl-benzothiacarbo cyanine (DMTC), is investigated within DES-based systems under ambient conditions. Although TDBC is known to form J-aggregates in basic aqueous solution, DMTC forms H-aggregates under similar conditions. The DESs used, glyceline and reline, are composed of salt choline chloride and two vastly different H-bond donors, glycerol and urea, respectively, in 1:2 mol ratios. Both DESs in the presence of base are found to support J-aggregates of TDBC. These fluorescent J-aggregates are characterized by small Stokes' shifts and subnanosecond fluorescence lifetimes. Under similar conditions, DMTC forms fluorescent H-aggregates along with J-aggregates within the two DES-based systems. The addition of cationic surfactant cetyltrimethylammonium bromide (CTAB) below its critical micelle concentration (cmc) to a TDBC solution of aqueous base-added glyceline shows the prominent presence of J-aggregates, and increasing the CTAB concentration to above cmc results in the disruption of J-aggregates and the formation of unprecedented H-aggregates. DMTC exclusively forms H-aggregates within a CTAB solution of aqueous base-added glyceline irrespective of the surfactant concentration. Anionic surfactant, sodium dodecylsulfate (SDS), present below its cmc within aqueous base-added DESs supports J-aggregation by TDBC; for similar SDS addition, DMTC forms H-aggregates within the glyceline-based system whereas both H- and J-aggregates exist within the reline-based system. A comparison of the carbocyanine dye behavior in various aqueous base-added DES systems to that in aqueous basic media reveals contrasting aggregation tendencies and/or efficiencies. Surfactants as

  8. Contrasting guest binding interaction of cucurbit[7-8]urils with neutral red dye: controlled exchange of multiple guests.

    PubMed

    Shaikh, Mhejabeen; Choudhury, Sharmistha Dutta; Mohanty, Jyotirmayee; Bhasikuttan, Achikanath C; Pal, Haridas

    2010-07-14

    Interactions among macrocyclic hosts and dyes/drugs have been explored extensively for their direct usage in controlled uptake and release of large number of potential drug molecules. In this paper we report the non-covalent interaction of cucurbit[8]uril macrocycle (CB8) with a biologically important dye, neutral red, by absorption and fluorescence spectroscopy. A comparative analysis with the complexation behaviour of the dye with CB7, the lower homologue of CB8, indicates contrasting guest binding behaviour with significant changes in the photophysical characteristics of the dye. While CB7 interaction leads to a 1 ratio 1 stoichiometry resulting in approximately 6 fold enhancement in the fluorescence emission of the dye, CB8 displays signatures for a 1 ratio 2 host-guest stoichiometry with drastic reduction in the fluorescence emission. Apart from the evaluation of approximately 2 unit shift in the protolytic equilibrium on complexation (pK(a) shift), the measurements with tryptophan established a selective guest exchange to favour a co-localized dimer inside the CB8 cavity. In a protein medium (BSA), the 1 ratio 2 complex was converted to a 1 ratio 1 ratio 1 CB8-NRH(+)-BSA complex. The finding that NRH(+) can be transferred from CB8 to BSA, even though the binding constant for NRH(+)-CB8 is much higher than NRH(+)-BSA, is projected for a controlled slow release of NRH(+) towards BSA. Since the release and activity of drugs can be controlled by regulating the protolytic equilibrium, the macromolecular encapsulation and release of NRH(+) demonstrated here provide information relevant to host-guest based drug delivery systems and its applications.

  9. Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.; Burbach, J.; Egelhaaf, S. U.

    2016-05-28

    Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent andmore » solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.« less

  10. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  11. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  12. Ultra-bright red-emitting photostable perylene bisimide dyes: new indicators for ratiometric sensing of high pH or carbon dioxide.

    PubMed

    Pfeifer, David; Klimant, Ingo; Borisov, Sergey M

    2018-05-08

    New pH sensitive perylene bisimide indicator dyes were synthesised and used for fabrication of optical sensors. The highly photostable dyes show absorption/emission bands in the red/near-infrared (NIR) region of the electromagnetic spectrum, high molar absorption coefficients (up to 100 000 M-1 cm-1) and fluorescence quantum yields close to unity. The absorption and emission spectra show strong bathochromic shift upon deprotonation of imidazole nitrogen which makes the dyes promising as ratiometric fluorescent indicators. Physical entrapment of the indicators into polyurethane hydrogel enables pH determination in alkaline pH. It is also shown that plastic carbon dioxide solid state sensor can be manufactured via immobilization of the pH indicator in a hydrophilic polymer, along with a quaternary ammonium base. The influence of plasticizer, different lipophilic bases and humidity on the sensitivity of the sensor material were systematically investigated. The disubstituted perylene, particularly, features two deprotonation equilibria enabling sensing over a very broad range from 0.5 to 1000 hPa pCO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon composite lignin-based adsorbents for the adsorption of dyes.

    PubMed

    Wang, Xiaohong; Jiang, Chenglong; Hou, Bingxia; Wang, Yingying; Hao, Chen; Wu, Jingbo

    2018-05-10

    Carbon composite lignin-based adsorbent were prepared through hydrothermal method with glucose as carbon source, calcium lignosulfonate and triethylene tetramine as raw materials, respectively. The optimum synthesis conditions were determined by investigating the addition of carbon and triethylene tetramine. The adsorbent was used for the adsorption of azo dyes Congo red and Eriochrome blue black R, and the five factors affecting the adsorption were discussed, including pH of dyes, initial concentration, adsorption time, adsorption temperature and adsorbent dosage. The corresponding adsorption mechanism such as pseudo first order kinetics, pseudo second order kinetics, intraparticle diffusion, Langmuir adsorption isotherm, Freundlich isotherm, Temkin isotherm, Dubinin-Radushkevich adsorption isotherm, thermodynamics were also studied. When the dye concentration is 40 mg L -1 , Congo red and Eriochrome blue black R dye removal rates reach 99%. Moreover, the adsorption process of two kinds of dyes follow the pseudo second order kinetics and the Langmuir adsorption isotherm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Is Congo red an amyloid-specific dye?

    PubMed

    Khurana, R; Uversky, V N; Nielsen, L; Fink, A L

    2001-06-22

    Congo red (CR) binding, monitored by characteristic yellow-green birefringence under crossed polarization has been used as a diagnostic test for the presence of amyloid in tissue sections for several decades. This assay is also widely used for the characterization of in vitro amyloid fibrils. In order to probe the structural specificity of Congo red binding to amyloid fibrils we have used an induced circular dichroism (CD) assay. Amyloid fibrils from insulin and the variable domain of Ig light chain demonstrate induced CD spectra upon binding to Congo red. Surprisingly, the native conformations of insulin and Ig light chain also induced Congo red circular dichroism, but with different spectral shapes than those from fibrils. In fact, a wide variety of native proteins exhibited induced CR circular dichroism indicating that CR bound to representative proteins from different classes of secondary structure such as alpha (citrate synthase), alpha + beta (lysozyme), beta (concavalin A), and parallel beta-helical proteins (pectate lyase). Partially folded intermediates of apomyoglobin induced different Congo red CD bands than the corresponding native conformation, however, no induced CD bands were observed with unfolded protein. Congo red was also found to induce oligomerization of native proteins, as demonstrated by covalent cross-linking and small angle x-ray scattering. Our data suggest that Congo red is sandwiched between two protein molecules causing protein oligomerization. The fact that Congo red binds to native, partially folded conformations and amyloid fibrils of several proteins shows that it must be used with caution as a diagnostic test for the presence of amyloid fibrils in vitro.

  15. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red.

    PubMed

    Sutter, Marc; Oliveira, Sabrina; Sanders, Niek N; Lucas, Bart; van Hoek, Arie; Hink, Mark A; Visser, Antonie J W G; De Smedt, Stefaan C; Hennink, Wim E; Jiskoot, Wim

    2007-03-01

    The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein beta-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of beta-galactosidase below and above the protein's unfolding temperature of 57.4 degrees C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with beta-galactosidase aggregates led to a shift of the emission maximum (lambda (max)) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated beta-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native beta-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with beta-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.

  16. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com; Illyaskutty, Navas

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of themore » polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.« less

  17. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  18. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com; Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed withmore » visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.« less

  19. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.

    PubMed

    Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro

    The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.

  20. Relationship between solvent retention capacity and protein molecular weight distribution, quality characteristics, and breadmaking functionality of hard red spring wheat flour

    USDA-ARS?s Scientific Manuscript database

    In order to investigate suitability of solvent retention capacity (SRC) test for quality assessment of hard red spring (HRS) wheat flour, ten HRS genotypes from six locations in North Dakota State were analyzed for SRC and flour and breadmaking quality characteristics. The SRC values were significa...

  1. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    PubMed

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 °C, pH 5.0 and a 12 h reaction time for congo red; 25 °C, pH 3.0 and 36 h for bordeaux red; and 25 °C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents.

  2. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    PubMed

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  3. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.

    PubMed

    Dawood, Sara; Sen, Tushar Kanti

    2012-04-15

    Pine cone a natural, low-cost agricultural by-product in Australia has been studied for its potential application as an adsorbent in its raw and hydrochloric acid modified form. Surface study of pine cone and treated pine cone was investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The modification process leads to increases in the specific surface area and decreases mean particle sizes of acid-treated pine cone when compared to raw pine cone biomass. Batch adsorption experiments were performed to remove anionic dye Congo red from aqueous solution. It was found that the extent of Congo red adsorption by both raw pine cone biomass and acid-treated biomass increased with initial dye concentration, contact time, temperature but decreased with increasing solution pH and amount of adsorbent of the system. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on pseudo-first-order and intra-particle diffusion models. The different kinetic parameters including rate constant, half-adsorption time, and diffusion coefficient were determined at different physico-chemical conditions. Equilibrium data were best represented by Freundlich isotherm model among Langmuir and Freundlich adsorption isotherm models. It was observed that the adsorption was pH dependent and the maximum adsorption of 32.65 mg/g occurred at pH of 3.55 for an initial dye concentration of 20 ppm by raw pine cone, whereas for acid-treated pine cone the maximum adsorption of 40.19 mg/g for the same experimental conditions. Freundlich constant 'n' also indicated favourable adsorption. Thermodynamic parameters such as ∆G(0), ∆H(0), and ∆S(0) were calculated. A single-stage batch absorber design for the Congo red adsorption onto pine cone biomass also presented based on the Freundlich isotherm model equation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prima, Eka Cahya; Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung; International Program on Science Education, Universitas Pendidikan Indonesia

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. Themore » results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.« less

  5. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-16

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  6. A switchable digital microfluidic droplet dye-laser.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C; Eydelnant, Irwin A; Yun, Seok-Hyun; Weitz, David A; Wheeler, Aaron R

    2011-11-07

    Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses. This journal is © The Royal Society of Chemistry 2011

  7. Combining Biomimetic Block Copolymer Worms with an Ice-Inhibiting Polymer for the Solvent-Free Cryopreservation of Red Blood Cells.

    PubMed

    Mitchell, Daniel E; Lovett, Joseph R; Armes, Steven P; Gibson, Matthew I

    2016-02-18

    The first fully synthetic polymer-based approach for red-blood-cell cryopreservation without the need for any (toxic) organic solvents is reported. Highly hydroxylated block copolymer worms are shown to be a suitable replacement for hydroxyethyl starch as a extracellular matrix for red blood cells. When used alone, the worms are not a particularly effective preservative. However, when combined with poly(vinyl alcohol), a known ice-recrystallization inhibitor, a remarkable additive cryopreservative effect is observed that matches the performance of hydroxyethyl starch. Moreover, these block copolymer worms enable post-thaw gelation by simply warming to 20 °C. This approach offers a new solution for both the storage and transport of red blood cells and also a convenient matrix for subsequent 3D cell cultures. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment.

    PubMed

    Guendouz, Samira; Khellaf, Nabila; Zerdaoui, Mostefa; Ouchefoun, Moussa

    2013-06-01

    With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg L(-1) DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg L(-1) DR-89 and 15 mg L(-1) RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R (2) =0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R (2) =0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg g(-1) for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg L(-1), indicating that L. gibba biomass may be suitable in the refining step

  9. The structure and protein binding of amyloid-specific dye reagents.

    PubMed

    Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin

    2003-01-01

    The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.

  10. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1996-01-01

    Novel fluorescent DNA-staining dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts.

  11. Structure and Solvent Properties of Microemulsions

    ERIC Educational Resources Information Center

    Katz, Civia A.; Calzola, Zachary J.; Mbindyo, Jeremiah K. N.

    2008-01-01

    A microscale laboratory experiment to investigate the formation and utility of microemulsions is described. Microemulsions are technologically important fluids that can reduce the use of toxic organic solvents. In the experiment, students prepare a microemulsion and compare the solubility of sudan III dye in the microemulsion and in dodecane. They…

  12. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  13. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE PAGES

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.; ...

    2018-04-25

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  14. Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes

    DOEpatents

    Haugland, Richard P.; Whitaker, James E.

    1993-01-01

    Novel fluorescent dyes based on the rhodol structure are provided. The new reagents contain functional groups capable of forming a stable fluorescent product with functional groups typically found in biomolecules or polymers including amines, phenols, thiols, acids, aldehydes and ketones. Reactive groups in the rhodol dyes include activated esters, isothiocyanates, amines, hydrazines, halides, acids, azides, maleimides, aldehydes, alcohols, acrylamides and haloacetamides. The products are detected by their absorbance or fluorescence properties. The spectral properties of the fluorescent dyes are sufficiently similar in wavelengths and intensity to fluorescein or rhodamine derivatives as to permit use of the same equipment. The dyes, however, show less spectral sensitivity to pH in the physiological range than does fluorescein, have higher solubility in non-polar solvents and have improved photostability and quantum yields.

  15. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    NASA Astrophysics Data System (ADS)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  16. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste.

    PubMed

    Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L

    2004-05-01

    A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.

  17. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  18. Razor clam (Ensis directus) shell as a low-cost adsorbent for the removal of Congo red and Rhodamine B dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Areibat, Lila Elamari Mohamed; Kamari, Azlan

    2017-05-01

    Wastewater originating from industrial effluents contains many types of pollutants including dyes. Anionic and cationic dyes are very toxic and they can cause several problems to aquatic system. In present study, razor clam shell was used as a potential adsorbent to remove two classes of dyes, namely anionic (Congo red, CR) and cationic (Rhodamine B, RB) dyes from aqueous solution. Batch adsorption experiments were performed to study the effects of three experimental parameters, namely solution pH, adsorbent dosage and initial dye concentration, on adsorption capacity of CR and RB onto razor clam shell. Results indicated that pH 2.0 was optimum pH for adsorbent to adsorb both CR and RB. At an initial concentration of 20 mg/L, the removal percentages of CR and RB were 97% and 38%, respectively. The Freundlich and Langmuir isotherm models were used to describe adsorption behaviour of CR and RB, as well as the relationship between adsorbent and adsorbate. The adsorption equilibrium data were well fitted to Freundlich isotherm model. The separation factor (RL) constants suggest that both CR and RB were favourably adsorbed by razor clam shell. Razor clam shell was characterised by using two techniques, namely Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). Overall, this study suggests that razor clam shell has great potential to be an alternative to expensive adsorbents.

  19. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  20. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    PubMed

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  1. A large stokes-shifted fluorescent dye synthesized as a new probe for the determination of protein.

    PubMed

    Lin, Dayong; Fei, Xuening; Li, Ran; Gu, Yingchun; Tang, Yalin; Zhou, Jianguo; Zhang, Baolian

    2016-07-01

    A novel fluorescent dye, 1-(2-hydroxyethyl)-4-((E)-2-(3-benzothiazol-2yl-9-ethyl-carbazole-3yl)vinyl) pyridinium bromide, was synthesized for determination of protein and its structure was characterized by (1)H NMR. Photophysics of the new probe in different solvents has been delineated in this paper, the new fluorescent molecular dye exhibited a large stokes-shifted and fluorescence quantum yields in organic solvent. The photostability and thermostability of the new dye were also studied and the results suggested the stable was excellent. The interactions of the dye with bovine serum albumin (BSA) , Human serumal bumin (HSA) and calf thymus deoxyribonucleic acid (ctDNA) were studied by fluorescence and absorption spectroscopy. The binding constant for BSA, HSA and DNA were calculated to be 8.91 × 10(7), 1.86 × 10(6) and 2.9 × 10(4), respectively. The experimental results indicated a potential value of the new dye for biomarker.

  2. Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group.

    PubMed

    Kolmakov, Kirill; Wurm, Christian; Sednev, Maksim V; Bossi, Mariano L; Belov, Vladimir N; Hell, Stefan W

    2012-03-01

    Caged near-IR emitting fluorescent dyes are in high demand in optical microscopy but up to now were unavailable. We discovered that the combination of a carbopyronine dye core and a photosensitive 2-diazo-1-indanone residue leads to masked near-IR emitting fluorescent dyes. Illumination of these caged dyes with either UV or visible light (λ < 420 nm) efficiently generates fluorescent compounds with absorption and emission at 635 nm and 660 nm, respectively. A high-yielding synthetic route with attractive possibilities for further dye design is described in detail. Good photostability, high contrast, and a large fluorescence quantum yield after uncaging are the most important features of the new compounds for non-invasive imaging in high-resolution optical microscopy. For use in immunolabelling the caged dyes were decorated with a (hydrophilic) linker and an (activated) carboxyl group.

  3. Fluorescent pseudorotaxanes of a quinodicarbocyanine dye with gamma cyclodextrin

    NASA Astrophysics Data System (ADS)

    Bernstein, Olivia M.; McGee, Tiffany E.; Silzel, Lisa E.; Silzel, John W.

    2018-01-01

    Spectrophotometric titration of buffered solutions of gamma cyclodextrin (γCD) and 1,1‧-diethyl,2,2‧-dicarbocyanine (DDI) demonstrates extension of the known 1:2 host:guest complex to form a previously unreported 2:2 complex near the γCD solubility limit. Though DDI is predominantly hosted as a non-fluorescent H-aggregate, both complexes exist in respective equilibria with two secondary complexes hosting unaggregated DDI as 1:1 and 2:1 complexes. The 2:1 complex exhibits significant fluorescence emission, with a quantum yield six times that of DDI in organic solvents, but ten times lower than that of an analogous indodicarbocyanine. Fragment Molecular Orbital calculations suggest that the 2:1 complex has the tail-to-tail conformation, and that solvent access to the dye strongly favors photoisomerization. In the host-guest complex, γCD limits solvent access to the dye and hinders rotation of the quinolyl terminal groups, but nevertheless pairwise rotation of methine carbons within the γCD cavity likely remains as a significant nonradiative relaxation pathway for the excited state.

  4. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.

    PubMed

    Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-07-29

    The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.

  5. Certification procedures for nuclear fast red (Kernechtrot), CI 60760.

    PubMed

    Frank, M; Dapson, Rw; Wickersham, Tw; Kiernan, Ja

    2007-02-01

    Nuclear fast red (CI 60760), also known as Kernechtrot, is commonly used in conjunction with an excess of aluminum ions as a red nuclear counterstain following histochemical procedures that yield blue products. The dye has also been used as a histochemical and colorimetric reagent for calcium. Unsatisfactory samples of nuclear fast red are encountered occasionally, and confusion has resulted from applying the name of the dye to neutral red (CI 50040), an unrelated compound with different properties. Tests for the identity and performance of nuclear fast red have been developed in the laboratory of the Biological Stain Commission. The Commission will now accept samples submitted by vendors for certification. We describe here the spectrophotometric, chromatographic and biological staining methods that are used to identify and test nuclear fast red.

  6. Curcumin as an amyloid-indicator dye in E. coli.

    PubMed

    McCrate, Oscar A; Zhou, Xiaoxue; Cegelski, Lynette

    2013-05-14

    We have demonstrated that curcumin is an amyloid-specific dye in E. coli. Curcumin binds to curliated whole cells and to isolated curli amyloid fibers. Similar to Congo red, curcumin exhibits a red-shift in absorbance and a significant increase in fluorescence upon binding to isolated curli.

  7. Study of porous silicon optical waveguides impregnated with organic dyes

    NASA Astrophysics Data System (ADS)

    Pirasteh, P.; Charrier, J.; Dumeige, Y.; Chaillou, A.; Guendouz, M.; Haji, L.

    2007-01-01

    Planar waveguides were made using oxidised porous silicon layers. Then, they were impregnated with Congo Red or Disperse Red 1 dyes. Optical losses were investigated before and after impregnation. In our case, the losses of impregnated waveguides were always higher than those of non-impregnated ones. In order to achieve a better understanding of the origin of these losses, we not only studied the absorbance of solutions which would impregnate the porous layers but also the reflectance spectra of the obtained composite materials. According to the measurements, the increase in losses in the visible spectrum depends on the intrinsic absorption of the dye while in NIR, the increase would be due to an accumulation of dried dye on the surface of the waveguide which would give rise to the surface scattering losses.

  8. Role of the oxyallyl substructure in the near infrared (NIR) absorption in symmetrical dye derivatives: A computational study.

    PubMed

    Prabhakar, Ch; Chaitanya, G Krishna; Sitha, Sanyasi; Bhanuprakash, K; Rao, V Jayathirtha

    2005-03-24

    It is well-known from experimental studies that the oxyallyl-substructure-based squarylium and croconium dyes absorb in the NIR region of the spectrum. Recently, another dye has been reported (J. Am. Chem. Soc. 2003, 125, 348) which contains the same basic chromophore, but the absorption is red-shifted by at least 300 nm compared to the former dyes and is observed near 1100 nm. To analyze the reasons behind the large red shift, in this work we have carried out symmetry-adapted cluster-configuration interaction (SAC-CI) studies on some of these NIR dyes which contain the oxyallyl substructure. From this study, contrary to the earlier reports, it is seen that the donor groups do not seem to play a major role in the red-shift of the absorption. On the other hand, on the basis of the results of the high-level calculations carried out here and using qualitative molecular orbital theory, it is observed that the orbital interactions play a key role in the red shift. Finally, design principles for the oxyallyl-substructure-based NIR dyes are suggested.

  9. Femtosecond Fluorescence Upconversion Study of a Naphthalimide-Bithiophene-Triphenylamine Push-Pull Dye in Solution.

    PubMed

    Maffeis, Valentin; Brisse, Romain; Labet, Vanessa; Jousselme, Bruno; Gustavsson, Thomas

    2018-06-13

    There is a high interest in the development of new push-pull dyes for the use in dye sensitized solar cells. The pronounced charge transfer character of the directly photoexcited state is in principle favorable for a charge injection. Here, we report a time-resolved fluorescence study of a triphenylamine-bithiophene-naphthalimide dye in four solvents of varying polarity using fluorescence upconversion. The recording of femtosecond time-resolved fluorescence spectra corrected for the group velocity dispersion allows for a detailed analysis discriminating between spectral shifts and total intensity decays. After photoexcitation, the directly populated state (S 1 /FC) evolves toward a relaxed charge transfer state (S 1 /CT). This S 1 /CT state is characterized by a lower radiative transition moment and a higher nonradiative quenching. The fast dynamic shift of the fluorescence band is well described by solvation dynamics in polar solvents, but less so in nonpolar solvents, hinting that the excited-state relaxation process occurs on a free energy surface whose topology is strongly governed by the solvent polarity. This study underlines the influence of the environment on the intramolecular charge transfer (ICT) process, and the necessity to analyze time-resolved data in detail when solvation and ICT occur simultaneously.

  10. Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study.

    PubMed

    Fan, Wenjie; Tan, Dazhi; Deng, Wei-Qiao

    2012-06-04

    A series of metal-free acene-modified triphenylamine dyes (benzene to pentacene, denoted as TPA-AC1 to TPA-AC5) are investigated as organic sensitizers for application in dye-sensitized solar cells (DSSCs). A combination of density functional theory (DFT), density functional tight-binding (DFTB), and time-dependent DFT (TDDFT) approaches is employed. The effects of acene units on the spectra and electrochemical properties of the acene-modified TPA organic dyes are demonstrated. The dye/(TiO(2))(46) anatase nanoparticle systems are also simulated to show the electronic structures at the interface. The results show that from TPA-AC1 to TPA-AC5 with increasing sizes of the acenes, the absorption and fluorescence spectra are systematically broadened and red-shifted, but the oscillator strength and electron injection properties are reduced. The molecular orbital contributions show increasing localization on the bridging acene units from TPA-AC1 to TPA-AC5. From the theoretical examination of some key parameters including free enthalpy related to the electron injection, light-harvesting efficiency, and the shift of semiconductor conduction band, TPA-AC3 with an anthracene moiety demonstrates a balance of the above crucial factors. TPA-AC3 is expected to be a promising dye with desirable energetic and spectroscopic parameters in the DSSC field, which is consistent with recent experimental work. This study is expected to deepen our understanding of TPA-based organic dyes and assist the molecular design of new metal-free dyes for the further optimization of DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bright and photostable cyanine-styryl chromophores with green and red fluorescence colour for DNA staining

    NASA Astrophysics Data System (ADS)

    Bohländer, Peggy R.; Wagenknecht, Hans-Achim

    2015-12-01

    The synthesis and optical characterisation of a series of green- and red-emitting cyanine and cyanine-styryl dyes is presented that were developed based on the cyanine-indole-quinolinium and based on the thiazole red type structure. For the green emitting fluorophores the quinolinium part was replaced by a pyridinium group. The bridge to the indole group was attached either to the 2-position or to the 4-position of the pyridinium moiety. For the red-emitting dyes the connection to the indole moiety is at the 4-position of the quinolinium part. In each set of dyes a methyl group at the indole-NH and/or a phenyl group at the 2-position of the indole part were introduced to tune the optical properties and photostability. Additionally, two dyes were modified with a cyano group to tune the photophysical properties and to enhance the photostabilities. The developed dyes show good photostabilities and bright green or red fluorescence intensities in the presence of DNA. Thus, these dyes represent important and promising candidates for fluorescent molecular imaging of nucleic acids inside living cells.

  12. Removal of toxic Congo red dye from water employing low-cost coconut residual fiber.

    PubMed

    Rani, K C; Naik, Aduja; Chaurasiya, Ram Saran; Raghavarao, K S M S

    2017-05-01

    The coconut residual fiber (CRF) is the major byproduct obtained during production of virgin coconut oil. Its application as a biosorbent for adsorption of Congo red was investigated. The CRF was subjected to different pretreatments, namely, pressure cooking, hexane treatment, acid treatment and their combinations. The pretreatment of CRF with the combination of hexane, acid, and pressure cooking resulted in the highest degree of adsorption. The equilibrium data were analyzed and found to fit best to both Langmuir and Freundlich isotherms. Thermodynamic parameters such as standard free energy (ΔG 0 kJ mol -1 ), standard enthalpy (ΔH 0 , kJ mol -1 ) and standard entropy (ΔS 0 , kJ mol -1 K -1 ) of the systems were calculated by using the Langmuir constant. The ΔG 0 , ΔH 0 and ΔS 0 were found to be 16.51 kJ mol -1 , -19.39 kJ mol -1 and -0.12 kJ mol -1 K -1 , respectively, at 300 K. These thermodynamic parameters suggest the present adsorption process to be non-spontaneous and exothermic. The adsorption process was observed to follow pseudo-second-order kinetics. The results suggest that CRF has potential to be a biosorbent for the removal of hazardous material (Congo red dye) with a maximum adsorption capacity of 128.94 mg g -1 at 300 K.

  13. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    PubMed

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  14. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    PubMed

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-07-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  15. Water Quality Criteria for Colored Smokes: Solvent Yellow 33

    DTIC Science & Technology

    1987-11-01

    Y . ’~ ~% d .’ 4’ . TABLE 4. DISTRIBUTION OF [1 4 C]-SOLVENT YELLOW 33 IN RATS 1 hr AFTER- EXPOSURE TO SOLVENT YELLOW 33 (SY) OR SOLVENT YELLOW 33...have shown that some individuals react strongly Lo this dye. The repeat insult patch test is used most often. The subjects receive five to ten exposures...70 Neutrophils Control 5 ± 2 0 ± 0 7 ± 3 3( lO cells/g) Exposed 1300 ± 130 d 470 ± i 0 0d 290 ± 50 d a. Adapted from Henderson et al. 1985b. b. Values

  16. Synthesis, structural characterization and tautomeric properties of some novel bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Safarnejad, Mastaneh

    Nine new bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone have been synthesized in two steps using Knoevenagel condensation and diazotization-coupling reaction. The structures of the compounds were confirmed by UV-vis, IR, 1H NMR and 13C NMR spectroscopic techniques. The spectral characterizations demonstrate that there is an equilibrium between the azo (T1) and hydrazine (T2 and T3) tautomers for all prepared dyes in solutions. In addition, the solvatochromic behavior of the prepared dyes was evaluated using polarity/polarizability parameter (π*) in various solvents. The UV-vis absorption spectra of dyes show a bathochromic shift with increasing polarity and base strength of the solvents. Finally, the effects of acid and base on the UV-vis absorption spectra of the dyes with different substituent in diazo component are reported.

  17. Femtosecond solvation and the bandshape of polar dyes

    NASA Astrophysics Data System (ADS)

    Ernsting, N. P.; Eilers-König, N.; Kemeter, K.; Kovalenko, S.; Ruthmann, J.

    1996-04-01

    The bandwidth of gain spectra for the dye DASPI in polar solvents and its evolution is described by Brownian oscillators with different frequencies for the ground- and excited electronic states. Comparison with experiments reveals a fast relaxation process which is assigned to vibrational redistribution.

  18. Intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye in polar solvents. A CS INDO MRCI study

    NASA Astrophysics Data System (ADS)

    Marguet, S.; Mialocq, J. C.; Millie, P.; Berthier, G.; Momicchioli, F.

    1992-03-01

    The solvent-induced changes of trans-cis isomerization efficiency and electronic structure of the excited state of the DCM dye have been considered by means of CS INDO MRCI calculations. The potential energy curves, dipole moments and atomic charge densities as a function of two internal coordinates, namely the rotation angle about the central "double" bond and the twisting of the dimethylamino group, have been obtained for the ground state and the lowest excited states. The structural requirements for the existence of ICT (intramolecular charge transfer) excited states have been investigated by considering internal rotations about three single bonds. The reliability of the potential surfaces and of the solvation models has been discussed with reference to test-calculations on the DMABN molecule. In the first excited singlet state of DCM, the low-energy barrier for the trans-cis isomerization has been found unaffected by the solvent polarity. The only singlet excited state presenting a large ICT character has been found to be the S 2 state for a perpendicularly twisted conformation of the dimethylamino group (TICT state). The assumption of a deactivation of the trans-isomer in the locally excited state through the TICT funnel has been largely discussed with reference to the simplifications of the present theoretical approach.

  19. Mechanism of transport and distribution of organic solvents in blood

    NASA Technical Reports Server (NTRS)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  20. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  1. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    PubMed

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. © 2015 American Institute of Chemical Engineers.

  2. Synthesis, structure and solvatochromic properties of some novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone dyes

    PubMed Central

    2012-01-01

    Background A series of some novel arylazo pyridone dyes was synthesized from the corresponding diazonium salt and 6-hydroxy-4-phenyl-3-cyano-2-pyridone using a classical reaction for the synthesis of the azo compounds. Results The structure of the dyes was confirmed by UV-vis, FT-IR, 1H NMR and 13C NMR spectroscopic techniques and elemental analysis. The solvatochromic behavior of the dyes was evaluated with respect to their visible absorption properties in various solvents. Conclusions The azo-hydrazone tautomeric equilibration was found to depend on the substituents as well as on the solvent. The geometry data of the investigated dyes were obtained using DFT quantum-chemical calculations. The obtained calculational results are in very good agreement with the experimental data. PMID:22824496

  3. Estimation of ground and excited state dipole moment of laser dyes C504T and C521T using solvatochromic shifts of absorption and fluorescence spectra.

    PubMed

    Basavaraja, Jana; Suresh Kumar, H M; Inamdar, S R; Wari, M N

    2016-02-05

    The absorption and fluorescence spectra of laser dyes: coumarin 504T (C504T) and coumarin 521T (C521T) have been recorded at room temperature in a series of non-polar and polar solvents. The spectra of these dyes showed bathochromic shift with increasing in solvent polarity indicating the involvement of π→π⁎ transition. Kamlet-Taft and Catalan solvent parameters were used to analyze the effect of solvents on C504T and C521T molecules. The study reveals that both general solute-solvent interactions and specific interactions are operative in these two systems. The ground state dipole moment was estimated using Guggenheim's method and also by quantum mechanical calculations. The solvatochromic data were used to determine the excited state dipole moment (μ(e)). It is observed that dipole moment value of excited state (μ(e)) is higher than that of the ground state in both the laser dyes indicating that these dyes are more polar in nature in the excited state than in the ground state. Copyright © 2015. Published by Elsevier B.V.

  4. Photophysical behavior of new acridine(1,8)dione dyes.

    PubMed

    Cabanzo Hernández, Rafael; David Gara, Pedro M; Velasco, Daniel Molina; Erra-Balsells, Rosa; Bilmes, Gabriel M

    2013-11-01

    The photophysical behavior of five acridine(1,8)dione dyes of biological interest was studied by absorption and fluorescence spectroscopy, photoacoustics and time resolved phosphorescence techniques. The results obtained in ethanol and acetonitrile solutions show that the main spectroscopic and photophysical parameters of these compounds depend strongly on both the solvent and oxygen concentrations. Oxygen completely quenched the triplet state of all dyes. In nitrogen-saturated solutions, quantum efficiencies of triplet formation in ethanol were lower than those in acetonitrile.

  5. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. (c) 2009 Elsevier B.V. All rights reserved.

  6. Automated extraction of direct, reactive, and vat dyes from cellulosic fibers for forensic analysis by capillary electrophoresis.

    PubMed

    Dockery, C R; Stefan, A R; Nieuwland, A A; Roberson, S N; Baguley, B M; Hendrix, J E; Morgan, S L

    2009-08-01

    Systematic designed experiments were employed to find the optimum conditions for extraction of direct, reactive, and vat dyes from cotton fibers prior to forensic characterization. Automated microextractions were coupled with measurements of extraction efficiencies on a microplate reader UV-visible spectrophotometer to enable rapid screening of extraction efficiency as a function of solvent composition. Solvent extraction conditions were also developed to be compatible with subsequent forensic characterization of extracted dyes by capillary electrophoresis with UV-visible diode array detection. The capillary electrophoresis electrolyte successfully used in this work consists of 5 mM ammonium acetate in 40:60 acetonitrile-water at pH 9.3, with the addition of sodium dithionite reducing agent to facilitate analysis of vat dyes. The ultimate goal of these research efforts is enhanced discrimination of trace fiber evidence by analysis of extracted dyes.

  7. Photophysical Characterization and BSA Interaction of Direct Ring Carboxy Functionalized Symmetrical squaraine Dyes

    NASA Astrophysics Data System (ADS)

    Saikiran, Maryala; Pandey, Shyam S.; Hayase, Shuzi; Kato, Tamaki

    2017-11-01

    A series of far-red sensitive symmetrical squaraine dyes bearing direct -COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations. These symmetrical squaraine dyes were then subjected to investigate their interaction with bovine serum albumin (BSA) in Phosphate buffer solutions. All the squaraine dyes under investigation exhibit intense and sharp optical absorption mainly in the far-red wavelength region from 550 nm -700 nm having very high molar extinction coefficients from 1.3 × 105 dm3.mol-1.cm-1. A very small Stokes shift of 10-17 nm indicates the rigid conformational structure of squaraine chromophore. Interaction of these dyes with BSA leads to not only enhanced emission intensity but also bathochromically shifted absorption maximum due to formation of dye-BSA conjugate. These dyes bind strongly with BSA having about an order of magnitude higher binding constant as compared to the reported squaraine dyes. Amongst the symmetrical squaraine dyes investigated in this work one bearing substituents like trifluorobutyl as alkyl chain at N-position of indole ring and carboxylic acid on benzene ring at the terminal (SQ-26) exhibited highest association with the BSA having very high binding constant 8.01 × 106 M-1.

  8. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    PubMed

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Forensic analysis of anthraquinone, azo, and metal complex acid dyes from nylon fibers by micro-extraction and capillary electrophoresis.

    PubMed

    Stefan, Amy R; Dockery, Christopher R; Nieuwland, Alexander A; Roberson, Samantha N; Baguley, Brittany M; Hendrix, James E; Morgan, Stephen L

    2009-08-01

    The extraction and separation of dyes present on textile fibers offers the possibility of enhanced discrimination between forensic trace fiber evidence. An automated liquid sample handling workstation was programmed to deliver varying solvent combinations to acid-dyed nylon samples, and the resulting extracts were analyzed by an ultraviolet/visible microplate reader to evaluate extraction efficiencies at different experimental conditions. Combinatorial experiments using three-component mixture designs varied three solvents (water, pyridine, and aqueous ammonia) and were employed at different extraction temperatures for various extraction durations. The extraction efficiency as a function of the three solvents (pyridine/ammonia/water) was modeled and used to define optimum conditions for the extraction of three subclasses of acid dyes (anthraquinone, azo, and metal complex) from nylon fibers. The capillary electrophoresis analysis of acid dye extracts is demonstrated using an electrolyte solution of 15 mM ammonium acetate in acetonitrile/water (40:60, v/v) at pH 9.3. Excellent separations and discriminating diode array spectra are obtained even for dyes of similar color.

  10. Noncovalent labeling of biomolecules with red and near- infrared dyes.

    PubMed

    Patonay, Gabor; Salon, Jozef; Sowell, John; Strekowski, Lucjan

    2004-02-28

    Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  11. Biosorption of Azo dyes by spent Rhizopus arrhizus biomass

    NASA Astrophysics Data System (ADS)

    Salvi, Neeta A.; Chattopadhyay, S.

    2017-10-01

    In the present study, spent Rhizopus arrhizus biomass was used for the removal of six azo dyes from aqueous solutions. The dye removal capacity of the biomass was evaluated by conducting batch tests as a function of contact time, biomass dosage, pH and initial dye concentrations. The pseudo-second-order kinetic model fitted well with the experimental data with correlation coefficients greater than 0.999, suggesting that chemisorptions might be the rate limiting step. The equilibrium sorption data showed good fit to the Langmuir isotherm model. Among the six dyes tested, the maximum monolayer adsorption capacity for fast red A and metanil yellow was found to be 108.8 and 128.5 mg/g, respectively. These encouraging results suggest that dead Rhizopus arrhizus biomass could be a potential biomaterial for the removal of azo dyes from aqueous dye solution.

  12. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  13. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.

    PubMed

    Kaur, Matinder; Choi, Dong Hoon

    2015-01-07

    The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.

  14. Gamma irradiation and steam pretreatment of jute stick powder for the enhancement of dye adsorption efficiency

    NASA Astrophysics Data System (ADS)

    Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra

    2017-11-01

    The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.

  15. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  16. Photophysical properties of a laser dye (LD-473) in different solvents

    NASA Astrophysics Data System (ADS)

    Ibnaouf, K. H.; Alhathlool, R.; Ali, M. K. M.

    2018-06-01

    In this paper, we investigated the spectroscopic properties the 1, 2, 3, 8-tetrahydrofuran, 2, 3, 8-(LD-473) dissolved in seven types of solvents with different concentrations. The absorption, emission, fluorescence and its quantum yield and Stokes shift of LD-473 were measured. The amplified spontaneous emission (ASE) spectra of LD-473 have been obtained using a transverse laser cavity configuration, where the LD-473 was pumped by laser pulses from the third harmonic of an Nd: YAG laser (355 nm). LD-473 in non-polar solvents exhibits dual ASEs around 445 and 470 nm, whereas the corresponding fluorescence spectrum shows only one peak around 437 nm. The peak at 470 nm is due to the combination of two excited molecules and the solvent between them.

  17. New stable tunable solid-state dye laser in the red

    NASA Astrophysics Data System (ADS)

    Gvishi, Raz; Reisfeld, Renata; Burshtein, Zeev; Miron, Eli

    1993-08-01

    A red perylene derivative was impregnated into a composite silica-gel glass, and characterized as a dye laser material. The absorption spectrum in the range 480 - 600 nm belongs to the S0 - S1 electronic transition, with a structure reflecting the perylene skeletal vibrations, of typical energy 1100 - 1200 cm-1. An additional peak between 400 and 460 nm belongs to the S0 - S2 transition. The fluorescence exhibits a mirror image relative to the S0 - S1 absorption, with a Stokes shift of about 40 nm for the 0 - 0 transition. Laser tunability was obtained in the range 605 - 630 nm using a frequency-doubled Nd:YAG laser for pumping ((lambda) equals 532 nm). This wavelength range is important for medical applications, such as photodynamic therapy of some cancer tumors. Maximum laser efficiency of approximately 2.5% was obtained at 617 nm. Maximum output was approximately 0.36 mJ/pulse at a repetition rate of 10 Hz. Minimum laser threshold obtained was 0.45 mJ/pulse. The medium losses are attributed to an excited-state singlet-singlet absorption, with an upper limit cross-section of approximately 2.5 X 10-16 cm2. The laser output was stable over more than approximately 500,000 pulses, under excitation with the green line of a copper vapor laser (510 nm), of energy density approximately 40 mJ/cm2 per pulse. Good prospects exist for a considerable enhancement in laser output efficiency.

  18. Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells.

    PubMed

    Wang, Huei-Tang; Taufany, Fadlilatul; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2014-05-01

    The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.

  19. The increased flexibility of CDR loops generated in antibodies by Congo red complexation favors antigen binding.

    PubMed

    Krol, Marcin; Roterman, Irena; Drozd, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Spolnik, Paweł; Stopa, Barbara

    2006-02-01

    The dye Congo red and related self-assembling compounds were found to stabilize immune complexes by binding to antibodies currently engaged in complexation to antigen. In our simulations, it was shown that the site that becomes accessible for binding the supramolecular dye ligand is located in the V domain, and is normally occupied by the N-terminal polypeptide chain fragment. The binding of the ligand disrupts the beta-structure in the domain, increasing the plasticity of the antigen-binding site. The higher fluctuation of CDR-bearing loops enhances antigen binding, and allows even low-affinity antibodies to be engaged in immune complexes. Experimental observations of the enhancement effect were supported by theoretical studies using L lambda chain (4BJL-PDB identification) and the L chain from the complex of IgM-rheumatoid factor bound to the CH3 domain of the Fc fragment (1ADQ-PDB identification) as the initial structures for theoretical studies of dye-induced changes. Commercial IgM-type rheumatoid factor (human) and sheep red blood cells with coupled IgG (human) were used for experimental tests aimed to reveal the dye-enhancement effect in this system. The specificity of antigen-antibody interaction enhanced by dye binding was studied using rabbit anti-sheep red cell antibodies to agglutinate red cells of different species. Red blood cells of hoofed mammals (horse, goat) showed weak enhancement of agglutination in the presence of Congo red. Neither agglutination nor enhancement were observed in the case of human red cells. The dye-enhancement capability in the SRBC-antiSRBC system was lost after pepsin-digestion of antibodies producing (Fab)2 fragments still agglutinating red cells. Monoclonal (myeloma) IgG, L lambda chain and ovoalbumin failed to agglutinate red cells, as expected, and showed no enhancement effect. This indicates that the enhancement effect is specific.

  20. Curcumin as an Amyloid-indicator Dye in E. coli †

    PubMed Central

    McCrate, Oscar A.; Zhou, Xiaoxue; Cegelski, Lynette

    2013-01-01

    We have demonstrated that curcumin is an amyloid-specific dye in E. coli. Curcumin binds to curliated whole cells and to isolated curli amyloid fibers. Similar to Congo red, curcumin exhibits a red-shift in absorbance and a significant increase in fluorescence upon binding to isolated curli. PMID:23287899

  1. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.

    PubMed

    Nor, Nurafifah Mohd; Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Lazim, Zainab Mat; Adnan, Liyana Amalina; Fulazzaky, Mohamad Ali

    2015-11-01

    Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88% within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73%), salinity concentrations of 100 g/L (73%), and a volume of 0.1 mL of Tween 80 (79%). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV-Vis spectrophotometer, and Gas chromatography mass spectrometry (GC-MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

  2. Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation.

    PubMed

    Sun, Jian; Li, Youming; Hu, Yongyou; Hou, Bin; Zhang, Yaping; Li, Sizhe

    2013-04-01

    We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air-cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red.

  3. Effect of red dyes on blue light phototoxicity against VSC producing bacteria in an experimental oral biofilm.

    PubMed

    Jeffet, U; Nasrallah, R; Sterer, N

    2016-11-21

    Oral malodour is considered to be caused mainly by the production of volatile sulfide compounds (VSC) by anaerobic Gram-negative oral bacteria. Previous study showed that these bacteria were susceptible to blue light (wavelengths of 400-500 nm). In the present study, we tested the effect of blue light in the presence of red dyes on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60, and 120 s (i.e. fluences of 41, 82, and 164 J cm -2 , respectively) with the addition of erythrosine, natural red and rose bengal (0.01, 0.1 and 1% w/v). Following light exposure biofilm samples were examined for malodour production (Odour judge), VSC production (Halimeter ™ ), VSC producing bacteria quantification using microscopy sulfide assay (MSA) and reactive oxygen species (ROS) production. Results showed that the exposure of experimental oral biofilm to blue light in the presence of rose bengal caused an increased reduction in VSC and malodour production concomitant with an increase in ROS production. These results suggest that rose bengal might be effective as a blue light photosensitizer against VSC producing bacteria.

  4. Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.

    PubMed

    Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell

    2017-11-08

    Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.

  5. Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase.

    PubMed

    Haghshenas, Hamed; Kay, Maryam; Dehghanian, Fariba; Tavakol, Hossein

    2016-01-01

    Azo dyes are one of the most important class of dyes, which have been widely used in industries. Because of the environmental pollution of azo dyes, many studies have been performed to study their biodegradation using bacterial systems. In present work, the AzrC of mesophilic gram-positive Bacillus sp. B29 has been considered to study its interaction with five common azo dyes (orange G, acid red 88, Sudan I, orange I, and methyl red). The molecular dynamics simulations have been employed to study the interaction between AzrC and azo dyes. The trajectory was confirmed using root mean square deviation and the root mean square fluctuation analyses. Then, the hydrogen bond and alanine scanning analyses were performed to reveal active site residues. Phe105 (A), Phe125 (B), Phe172 (B), and Pro132 (B) have been found as the most important hydrophobic residues whereas Asn104 (A), Tyr127 (B), and Asn187 (A) have key role in making hydrogen bond. The results of molecular mechanics Poisson-Boltzmann surface area and molecular mechanics generalized Born surface area calculations proved that the hydrophobic azo dyes like Acid red 88 binds more tightly to the AzrC protein. The calculated data suggested MR A 121 (B) I as a potential candidate for improving the AzrC-MR interactions.

  6. Degradation of azo dye active brilliant red X-3B by composite ferrate solution.

    PubMed

    Xu, G R; Zhang, Y P; Li, G B

    2009-01-30

    Composite ferrate(VI) solution (CFS) with improved stability was successfully prepared in this study. The stability of Fe(VI) increased from hours for potassium ferrate at pH 9-10 to 16d for 1 mmol L(-1) Fe(VI) in CFS at 25 degrees C, decomposing 24%. The Fe(VI) was more stable at low concentration (1 mmol L(-1)) than that at high concentration (10 mmol L(-1)). The degradation of the azo dye reactive brilliant red X-3B (X-3B) by CFS was investigated. The results showed that pH, initial dye concentration and CFS dosage affected the degradation efficiency. For 0.08 mmol L(-1) X-3B simulate wastewater, the optimal pH and CFS dosage were 8.4 and 25 mg L(-1) (as K(2)FeO(4)), and about 99% X-3B was decolorized after 20 min under this conditions. The color decay was considerably faster than the decrease in COD and TOC, which was attributed to the ease of chromophore destruction. Compared with the decolorization, the removal percentage of COD and TOC were 42% and 9% after 60 min, respectively. The Fe(VI) and ClO(-) were contained in CFS, which have synergetic effect for the degradation of X-3B. Additionally, phthalic acid and muconic acid were identified as intermediates by GC/MS, which was in accordance with the lowered pH with the reaction time. The complete mineralization of X-3B cannot be achieved under the oxidation by CFS. And a tentative pathway for the oxidative degradation of X-3B was postulated.

  7. Effect of Solvent Variations in the Alcothermal Synthesis of Template-Free Mesoporous Titania for Dye-Sensitized Solar Cells Applications

    PubMed Central

    Wawrzyńczak, Agata; Półrolniczak, Paulina; Sobuś, Jan; Schroeder, Grzegorz; Jurga, Stefan; Selli, Elena

    2016-01-01

    A series of 14 mesoporous titania materials has been synthesized using the simple alcothermal template-free method and various alcohols, such as methanol, propanols and butanols, as solvents. All materials were characterized by both wide and small angle XRD, which exhibited the anatase phase with short-range ordered mesoporous structure that is still forming during post synthetic temperature treatment in most of the investigated materials. Nitrogen adsorption–desorption isotherms confirmed the mesoporous structure with surface area ranging from 241 to 383 m2g- 1 and pore volumes from 0.162 to 0.473 m3g-1, UV-Vis diffuse reflectance showed the redshift of the absorption edge and the bandgap decrease after post synthetic calcination of the materials presented. The TEM, FT-IR, DTA and TG measurements have been made to well characterize the materials synthesized. The mesoporous samples obtained were applied as anode materials for dye-sensitized solar cells and showed good activity in photon-to-current conversion process with efficiency values ranging from 0.54% to 4.6% and fill factors in the 52% to 67% range. The photovoltaic performances were not as high as those obtained for the materials synthesized by us earlier employing ethanol as a solvent. The differences in the electron lifetime, calculated from electrochemical impedance spectroscopy results and varying between 4.3 to 17.5 ms, were found as a main factor determining the efficiency of the investigated photovoltaic cells. PMID:27741313

  8. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  9. Some heterocyclic azo dyes derived from thiazolyl derivatives; synthesis; substituent effects and solvatochromic studies

    NASA Astrophysics Data System (ADS)

    Yazdanbakhsh, M. R.; Mohammadi, A.; Abbasnia, M.

    2010-12-01

    A series of azo disperse dyes were synthesized by coupling reaction of N, N-diethylaniline, 2-anilinoethanol and N-phenyl-2,2'-iminodiethanol with diazotized aminothiazolyl derivatives as diazo components. These dyes have been prepared in good yields, and were characterized by UV-Vis, FT-IR and 1H NMR spectroscopic techniques. The effects of solvent polarity and various pH on dyes in the visible absorption spectra were evaluated. All dyes exhibit an excellent correlation coefficient ( r > 0.92) for the linear solvation energy relationship with π* values calculated by Kamlet et al. The influence of the pH on the dyes with electron-donating group implied that these dyes exist in acid-base equilibrium in acidic environment. The effect of substituents of both coupler and diazo component on the color of dyes was investigated as well.

  10. Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer

    DOE PAGES

    Brennan, Bradley J.; Regan, Kevin P.; Durrell, Alec C.; ...

    2016-12-19

    Lateral charge transport in a redox)active monolayer can be utilized for solar energy harvesting. We chose the porphyrin system to study the influence of the solvent on lateral hole hopping, which plays a crucial role in the charge)transfer kinetics. We also examined the influence of water, acetonitrile, and propylene carbonate as solvents. Hole)hopping lifetimes varied by nearly three orders of magnitude among solvents, ranging from 3 ns in water to 2800 ns in propylene carbonate, and increased nonlinearly as a function of added acetonitrile in aqueous solvent mixtures. Our results elucidate the important roles of solvation, molecular packing dynamics, andmore » lateral charge)transfer mechanisms that have implications for all dye)sensitized photoelectrochemical device designs.« less

  11. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.

    PubMed

    Mathur, Megha; Gola, Deepak; Panja, Rupobrata; Malik, Anushree; Ahammad, Shaikh Ziauddin

    2018-01-01

    A biological method was adopted to decolourize textile dyes, which is an economic and eco-friendly technology for textile wastewater remediation. Two fungal strains, i.e. Aspergillus lentulus and Aspergillus fumigatus, were used to study the removal of low to high concentrations (25 to 2000 mg L -1 ) of reactive remazol red, reactive blue and reactive yellow dyes by biosorption and bioaccumulation. The biosorption was successful only at the lower concentrations. A. lentulus was capable of removing 67-85% of reactive dyes during bioaccumulation mode of treatment at 500 mg L -1 dye concentration with an increased biomass uptake capacity. To cope up with the high dye concentration of 2000 mg L -1 , a novel combined approach was successful in case of A. lentulus, where almost 76% removal of reactive remazol red dye was observed during bioaccumulation followed by biosorption. The scanning electron microscopy also showed the accumulation of dye on the surface of fungal mycelium. The results signify the application of such robust fungal strains for the removal of high concentration of dyes in the textile wastewaters.

  12. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments.

    PubMed

    Dapson, R W; Bain, C L

    2015-01-01

    Brazilin is a nearly colorless dye precursor obtained from the heartwood of several species of trees including brazilwood from Brazil, sappanwood from Asia and the Pacific islands, and to a minor extent from two other species in Central America, northern South America and the Caribbean islands. Its use as a dyeing agent and medicinal in Asia was recorded in the 2(nd) century BC, but was little known in Europe until the 12(th) century AD. Asian supplies were replaced in the 16(th) century AD after the Portuguese discovered vast quantities of trees in what is now Brazil. Overexploitation decimated the brazilwood population to the extent that it never fully recovered. Extensive environmental efforts currently are underway to re-create a viable, sustainable population. Brazilin is structurally similar to the better known hematoxylin, thus is readily oxidized to a colored dye, brazilein, which behaves like hematein. Attachment of the dye to fabric is by hydrogen bonding or in conjunction with certain metallic mordants by coordinative bonding. For histology, most staining procedures involve aluminum (brazalum) for staining nuclei. In addition to textile dyeing and histological staining, brazilin and brazilein have been and still are used extensively in Asian folk medicine to treat a wide variety of disorders. Recent pharmacological studies for the most part have established a scientific basis for these uses and in many cases have elucidated the biochemical pathways involved. The principal use of brazilwood today is for the manufacture of bows for violins and other stringed musical instruments. The dye and other physical properties of the wood combine to produce bows of unsurpassed tonal quality.

  13. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  14. Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent.

    PubMed

    Attallah, M F; Ahmed, I M; Hamed, Mostafa M

    2013-02-01

    The present work investigates the potential use of metal hydroxides sludge (MHS) generated from hot dipping galvanizing plant for adsorption of Congo Red and Naphthol Green B dyes from aqueous solutions. Characterization of MHS included infrared and X-ray fluorescence analysis. The effect of shaking time, initial dye concentration, temperature, adsorbent dosage and pH has been investigated. The results of adsorption experiments indicate that the maximum capacity of Congo Red and Naphthol Green B dyes at equilibrium (q(e)) and percentage of removal at pH 6 are 40 mg/g, 93 %, and 10 mg/g, 52 %, respectively. Some kinetic models were used to illustrate the adsorption process of Congo Red and Naphthol Green B dyes using MHS waste. Thermodynamic parameters such as (ΔG, ΔS, and ΔH) were also determined.

  15. New Analytical Method for the Determination of Detergent Concentration in Water by Fabric Dyeing

    ERIC Educational Resources Information Center

    Seng, Set; Kita, Masakazu; Sugihara, Reiko

    2007-01-01

    The use of harmful organic solvents in classrooms has become a critical issue of concern in the field of chemistry education. This article describes a classroom activity at a high school in which an acrylic fabric was used as the extraction medium in the analysis of the detergent concentration in water instead of organic solvents. Dyes were used…

  16. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing

    NASA Astrophysics Data System (ADS)

    Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr

    2009-01-01

    In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.

  17. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    NASA Astrophysics Data System (ADS)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  18. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  19. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    PubMed Central

    Lv, Dongjun; Zhang, Mingjie; Cui, Jin; Li, Weixue; Zhu, Guohua

    2017-01-01

    A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS) and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY) and allura red (AR), was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity. PMID:28772583

  20. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  1. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  2. Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells.

    PubMed

    Reddy, Kamani Sudhir K; Chen, Yen-Chiao; Wu, Chih-Chung; Hsu, Chia-Wei; Chang, Ya-Ching; Chen, Chih-Ming; Yeh, Chen-Yu

    2018-01-24

    Since their introduction, dye-sensitized solar cells (DSCs) have achieved huge success at a laboratory level. Recently, research is concentrated to visualize large DSC modules at the commercial platform. In that aspect, we have tested structurally simple porphyrin-based dye SK6 and anthracene-based dye CW10 for DSCs application under simulated 1 sun (AM 1.5G) and indoor light sources. These two dyes can be easily synthesized and yet are efficient with cell performances of ca. 5.42% and ca. 5.75% (without coadsorbent/additive) for SK6 and CW10, respectively, under AM 1.5G illumination. The power conversion efficiency (PCE) of SK6 reported in this work is the highest ever reported; this is achieved by optimizing the adsorption of SK6 on TiO 2 photoanode using the most suitable solvent and immersion period. Cosensitization of SK6 with CW10 on TiO 2 surface has boosted cell performance further and achieved PCE of ca. 6.31% under AM 1.5G illumination. Charge-transfer properties of individual and cosensitized devices at TiO 2 /dye/electrolyte interface were examined via electrochemical impedance spectroscopy. To understand the cell performances under ambient light conditions, we soaked individual and cosensitized devices under T5 and light-emitting diode light sources in the range of 300-6000 lx. The PCE of ca. 22.91% under T5 light (6000 lx) with J SC = 0.883 mA cm -2 , V OC = 0.646 V, and FF = 0.749 was noted for the cosensitized device, which equals a power output of 426 μW cm -2 . These results reveal that DSCs made of structurally simple dyes performed efficiently under both 1 sun (AM 1.5G) and indoor light conditions, which is undoubtedly a significant achievement when it comes to a choice of commercial application.

  3. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  4. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  5. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    PubMed Central

    2012-01-01

    Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD) was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ) anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG) 25 and diazo-dye Acid Red (AR) 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l) with relative decolorization values of 91.2% (3 h) and 97.1% (18 h), as well as high activity to AR18 (1 g/l) by 80.5% (3 h) and 89.0% (18 h), was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l). No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved via a subsequent 4-h

  6. Red and far-red fluorescent dyes for the characterization of head and neck cancer at the cellular level.

    PubMed

    Abbaci, Muriel; Casiraghi, Odile; Temam, Stephane; Ferchiou, Malek; Bosq, Jacques; Dartigues, Peggy; De Leeuw, Frederic; Breuskin, Ingrid; Laplace-Builhé, Corinne

    2015-11-01

    Primary upper aerodigestive tract malignancy remains a cancer having a poor prognosis, despite current progress in treatment, due to a generally late diagnosis. We conducted a preliminary assessment of five dyes approved for human use for the imaging of head and neck tissues at the cellular level, which could be considered for clinical examination. We investigated fluorescence endomicroscopic images on fresh samples obtained from head and neck surgeries after staining with hypericin, methylene blue, toluidine blue, patent blue or indocyanine green to provide a preliminary consideration as to whether these images contain enough information for identification of non-pathologic and pathologic tissues. The distribution pattern of dye has been examined using probe-based confocal laser endomicroscopy (pCLE) in ex vivo specimens and compared with corresponding histology. In most samples, the image quality provided by pCLE with both dyes allowed pathologists to recognize histological characteristics to identify the tissues. The combination of pCLE imaging with these dyes provides interpretable images close to conventional histology; a promising clinical tool to assist physicians in examination of upper aerodigestive tract, as long as depth imaging issues can be overcome. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ethnobotany of dye plants in Dong communities of China.

    PubMed

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  8. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis.

    PubMed

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-10-21

    Multilayer dye aggregation at the dye/TiO 2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO 2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO 2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO 2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO 2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.

  9. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    PubMed Central

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-01-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196

  10. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  11. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species

    PubMed Central

    Sitepu, I.R.; Ignatia, L.; Franz, A. K.; Wong, D. M.; Faulina, S.A.; Tsui, M.; Kanti, A.; Boundy-Mills, K.

    2012-01-01

    A rapid and inexpensive method for estimating lipid content of yeasts is needed for screening large numbers of yeasts samples. Nile red is a fluorescent lipophilic dye used for detection and quantification of intracellular lipid droplets in various biological system including algae, yeasts and filamentous fungi. However, a published assay for yeast is affected by variable diffusion across the cell membrane, and variation in the time required to reach maximal fluorescence emission. In this study, parameters that may influence the emission were varied to determine optimal assay conditions. An improved assay with a high-throughput capability was developed that includes the addition of dimethyl sulfoxide (DMSO) solvent to improve cell permeability, elimination of the washing step, the reduction of Nile red concentration, kinetic readings rather than single time-point reading, and utilization of a black 96-well microplate. The improved method was validated by comparison to gravimetric determination of lipid content of a broad variety of ascomycete and basidiomycete yeast species. PMID:22985718

  12. Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal.

    PubMed

    Tian, Ye; Ju, Benzhi; Zhang, Shufen; Hou, Linan

    2016-01-20

    A thermoresponsive polymer, 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), was prepared by grafting butyl glycidyl ether (BGE) onto hydroxyethyl cellulose (HEC). The lower critical solution temperature (LCST) and critical flocculation temperature (CFT) of HBPEC were varied by changing the molar substitution (MS) and salt concentrations. Transmission electron microscopy (TEM) images and fluorescence spectroscopy showed that HBPEC can assemble into micelles. Additionally, using Nile Red as a model dye, the performance of HBPEC for the removing Nile Red from aqueous solutions via cloud point extraction procedures was investigated in detail. The encapsulation behavior of dye in the aqueous solution of HBPEC was studied by fluorescence spectroscopy and fluorescence microscope. The experimental results indicated that 99.4% of dye was removed from the aqueous solutions, and the HBPEC was recycled and reused easily, Furthermore, the recycle efficiency (RE) and maximum loading capacity portrayed little loss with the number of cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficient and rapid degradation of Congo red dye with TiO2 based nano-photocatalysts

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael

    2017-04-01

    Degradation of Congo red (CR) dye with TiO2 based nano-photocatalyst (NPC) loaded with Nd3+ and Er3+ ions is reported. The chemical route of synthesis through co-precipitation/hydrolysis (CPH) was employed to produce NPCs with general composition TiO2[R2O3]x, {x = 0.1, 0.2; R □ Nd, Er} and particle size within 12 - 16 nm. Photocatalytic degradation under visible light was measured in terms of the percent degradation of CR in 180 min ({C}180\\prime), time taken to degrade to half of the initial CR concentration (t1/2) and apparent rate constant (kobs). For both doping types, values of {C}180\\prime close to 100% were obtained with x = 0.2 NPCs, indicating complete removal of the dye. For the same NPCs, very high values of kobs were found; 2.91 × 10-2 min-1 and 2.36 × 10-2 min-1, for Nd3+ and Er3+ loaded NPCs, respectively, suggesting very rapid degradation. Other NPCs with x = 0.1, also showed reasonably good and fast degradation of CR. The observations may be attributed to the small particle size of the NPCs. Moreover, from the DRS results it is observed that the addition of Nd3+ and Er3+ ions apparently introduces intermediate energy levels within the band gap of TiO2. Such new levels seem to support photocatalysis because they act as electron traps leading to effective suppression of the undesired e-/h+ recombination. To some meaningful extent they also facilitate the absorption of visible irradiations required in the process.

  14. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  15. Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Wong, Y. C.; Veloo, K. V.

    2018-04-01

    Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

  16. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    NASA Astrophysics Data System (ADS)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  17. Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation.

    PubMed

    Bosco, Francesca; Mollea, Chiara; Ruggeri, Bernardo

    2017-10-01

    The degradation of Congo Red by means of Phanerochaete chrysosporium BKM-F-1767 is reported in this work. Solid and liquid cultures have been prepared to evaluate in vivo biodegradation as well as the role of biosorption phenomena on mycelium. Moreover, in vitro tests have been performed to define the influence of MnP on dye decolorization. P. chrysosporium, cultivated on Malt Extract Agar in the presence of Congo Red 0.005% (w/v), has shown good growth and the ability to decolorize the dye in the 25-39°C temperature range. It has also been cultivated in a low NMM liquid medium with the aforementioned dye concentration in immobilized stationary cultures inducted for Lignin Peroxidase (LiP) and Manganese Peroxidase (MnP) production. Congo Red was absorbed on the biomass and then decolorized (93% and 85% for the LiP and MnP cultures, respectively). The cultures with added Congo Red have shown a higher MnP synthesis rate than a control without the dye. The enzymatic degradation of Congo Red has also been investigated by means of the extracellular fluid for different MnP activities (0-300 IU/l); the decolorization percentage has been found to be clearly related to the enzyme concentration up to a value of about 200 IU/l.

  18. Evidence for significantly enhancing reduction of Azo dyes in Escherichia coli by expressed cytoplasmic Azoreductase (AzoA) of Enterococcus faecalis.

    PubMed

    Feng, J; Heinze, T M; Xu, H; Cerniglia, C E; Chen, H

    2010-05-01

    Although cytoplasmic azoreductases have been purified and characterized from various bacteria, little evidence demonstrating that these azoreductases are directly involved in azo dye reduction in vivo is known. In order to evaluate the contribution of the enzyme to azo dye reduction in vivo, experiments were conducted to determine the effect of a recombinant cytoplasmic azoreductase (AzoA) from Enterococcus faecalis expressed in Escherichia coli on the rate of metabolism of Methyl Red, Ponceau BS and Orange II. The intact cells that contained IPTG induced AzoA had a higher rate of dye reduction with increases of 2 (Methyl Red), 4 (Ponceau BS) and 2.6 (Orange II)-fold compared to noninduced cells, respectively. Metabolites of Methyl Red isolated from induced cultures were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid through liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) analyses. In conclusion, our data demonstrate that AzoA from Ent. faecalis is capable of increasing the reduction of azo dyes in intact E. coli cells and that cytoplasmic azoreductase is involved in bacterial dye degradation in vivo.

  19. Spectrally resolved visualization of fluorescent dyes permeating into skin

    NASA Astrophysics Data System (ADS)

    Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2012-03-01

    We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.

  20. Ozonation of exhausted dark shade reactive dye bath for reuse.

    PubMed

    Sundrarajan, M; Vishnu, G; Joseph, Kurian

    2006-10-01

    Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.

  1. Photoinduced intramolecular charge transfer in a cross-conjugated push-pull enediyne: implications toward photoreaction.

    PubMed

    Singh, Anuja; Pati, Avik Kumar; Mishra, Ashok Kumar

    2018-05-30

    Push-pull organic fluorophores are important owing to their interesting optoelectronical properties. Here we report the photophysics of a new cross-conjugated push-pull enediynyl dye which belongs to an unexplored class of π-conjugated donor-acceptor systems. Two N,N-dimethylaniline moieties serve as donors and one pyrene ring functions as an acceptor via a common Y-shaped 'enediyne' bridge which facilitates the cross-electronic communication. The dye exhibits dual emission from locally excited (LE) and intramolecular charge transfer (ICT) states. While the LE emission is dominant in non-polar solvents, the ICT emission predominates in polar solvents. Time-resolved fluorescence decay experiments reveal a relatively shorter lifetime component (∼0.5-0.9 ns) belonging to an ICT state and a relatively longer lifetime species (∼1.6-2.8 ns) corresponding to the LE state. The strong ICT behavior of the dye is manifested through the huge red-shift (4166 cm-1) of the emission spectra from non-polar cyclohexane to polar N,N-dimethylformamide. In contrast to many small push-pull organic dyes, the LE and ICT states of the push-pull enediynyl dye follow the same excitation pathway. The dominant red-shifted ICT emission (∼550 nm) intensity of the dye in polar solvent decreases with a concomitant appearance of the blue-shifted LE emission (∼385 nm) upon prolonged exposure to photons. This opens up a new photophysical strategy of achieving high contrast two fluorescence color conversion from yellow to blue.

  2. Near-infrared sensitization in dye-sensitized solar cells.

    PubMed

    Park, Jinhyung; Viscardi, Guido; Barolo, Claudia; Barbero, Nadia

    2013-01-01

    Dye-sensitized solar cells (DSCs) are a low cost and colorful promising alternative to standard silicon photovoltaic cells. Though many of the highest efficiencies have been associated with sensitizers absorbing only in the visible portion of the solar radiation, there is a growing interest for NIR sensitization. This paper reviews the efforts made so far to find sensitizers able to absorb efficiently in the far-red NIR region of solar light. Panchromatic sensitizers as well as dyes absorbing mainly in the 650-920 nm region have been considered.

  3. Fluorescence of acridinic dyes in anionic surfactant solution

    NASA Astrophysics Data System (ADS)

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer ( τ1 = 16.4 ns), dimer ( τ2 = 7.1 ns), and a faster component ( τ3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  4. Fluorescence of acridinic dyes in anionic surfactant solution.

    PubMed

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer (tau1 = 16.4 ns), dimer (tau2 = 7.1 ns), and a faster component (tau3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  5. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution

    PubMed Central

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.; Khan, Salah Ud-Din

    2014-01-01

    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b). PMID:25243216

  6. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume

    PubMed Central

    Proskurnin, Mikhail A.; Zhidkova, Tatyana V.; Volkov, Dmitry S.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Mock, Donald; Zharov, Vladimir P.

    2011-01-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (ICG, MB, and TB) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including CV and BG were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is, safe for human, and its applications for studying the liver function are further highlighted. PMID:21905207

  7. Solvent effect on FRET spectroscopic ruler

    NASA Astrophysics Data System (ADS)

    Qu, Songyuan; Liu, Chuanbo; Liu, Qiong; Wu, Wei; Du, Baoji; Wang, Jin

    2018-03-01

    A discrepancy has emerged in recent years between single-molecule Förster resonance energy transfer (smFRET) measurements and small angle X-ray scattering (SAXS) or small angle neutron scattering experiments in the study of unfolded or intrinsically disordered proteins in denaturing solutions. Despite significant advances that have been made in identifying various factors which may have contributed to the manifestation of the so-called smFRET-SAXS discrepancy, no consensus has been reached so far on its original source or eventual resolution. In this study, we investigate this problem from the perspective of the solvent effect on FRET spectroscopic ruler (SEFSR), a generic term we use to describe various solvent-dependent factors affecting the accuracy of the FRET experimental method that is known as a "spectroscopic ruler." Some factors belonging to SEFSR, such as direct dye-solvent interaction and labeling configuration, seem to have not received due attention regarding their significance in contributing to the discrepancy. We identify SEFSR by measuring a rigid segment of a double-stranded DNA in various solutions using the smFRET method and evaluate its relative importance in smFRET experiments by measuring segments of a single-stranded DNA and polyethylene glycol (PEG) in solutions. We find that SEFSR can produce non-negligible FRET-inferred interdye distance changes in various solutions, with an intensity following the Hofmeister series in ionic solutions and dependent on labeling configurations. SEFSR is found to be significant in GuHCl and urea solutions, which can fully cover the apparent expansion signal of dye-labeled PEG. Our findings suggest that SEFSR may have played an important role in contributing to the smFRET-SAXS discrepancy.

  8. Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Kao, Shon-Chen; Teng, Hsisheng; Lee, Yuh-Lang

    2015-01-01

    Propionitrile (PPN) or 3-methoxypropionitrile (MPN) is mixed with acetonitrile (ACN) to prepare ACN/PPN and ACN/MPN co-solvents and used to fabricate polymer gel electrolytes (PGEs) of dye-sensitized solar cells (DSSCs), aiming at improving the stability of gel-state DSSCs. Co-solvents with various ratios are utilized to prepare PGEs using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as the gelator. The ratio effects of the co-solvents on the properties of PGEs and the performances of the corresponding DSSCs are studied. The results show that in-situ gelation of the gel-electrolytes can still be performed at the presence of 40% PPN or 30% MPN. However, increasing the composition of PPN and MPN in the co-solvents triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the viscosity. Therefore, the energy conversion efficiencies of the cells decrease as a result. However, the introduction of PPN and MPN elevates the gel-to-liquid transition temperature (Tp) of the PGEs which significantly increases the stability of the gel-state DSSCs. Comparing between the effects of the two co-solvents, PPN and MPN have similar effect on elevation of Tp, but the conductivity of PGEs and the corresponding cell efficiency are higher for the ACN/PPN system, attributed to its lower viscosity compared with ACN/MPN system. By using the ACN/PPN (60/40) co-solvent at the presence of TiO2 fillers, gel-state cell with an efficiency of 8.3% can be achieved, which is even higher than that obtained by the liquid state cell (8%). After 500 h test at 60 °C, the cell can retain 95.4% of its initial efficiency.

  9. Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach.

    PubMed

    Roterman, I; KrUl, M; Nowak, M; Konieczny, L; Rybarska, J; Stopa, B; Piekarska, B; Zemanek, G

    2001-01-01

    The complexing of Congo red in two different ligand forms - unimolecular and supramolecular (seven molecules in a micelle) - with eight deca-peptides organized in a b-sheet was tested by computational analysis to identify its dye-binding preferences. Polyphenylananine and polylysine peptides were selected to represent the specific side chain interactions expected to ensure particularly the stabilization of the dye-protein complex. Polyalanine was used to verify the participation of non-specific backbone-derived interactions. The initial complexes for calculation were constructed by intercalating the dye between the peptides in the middle of the beta-sheet. The long axis of the dye molecule (in the case of unimolecular systems) or the long axis of the ribbon-like micelle (in the case of the supramolecular dye form) was oriented parallel to the peptide backbone. This positioning maximally reduced the exposure of the hydrophobic diphenyl (central dye fragment) to water. In general the complexes of supramolecular Congo red ligands appeared more stable than those formed by individual dye molecules. Specific interactions (electrostatic and/or ring stacking) dominated as binding forces in the case of the single molecule, while non-specific surface adsorption seemed decisive in complexing with the supramolecular ligand. Both the unimolecular and supramolecular versions of the dye ligand were found to be likely to form complexes of sufficient stability with peptides. The low stability of the protein and the gap accessible to penetration in the peptide sheet seem sufficient for supramolecular ligand binding, but the presence of positively charged or hydrophobic amino acids may strengthen binding significantly. The need for specific interaction makes single-molecule Congo red binding rather unusual as a general amyloid protein ligand. The structural feature of Congo red, which enables specific and common interaction with amyloid proteins, probably derives from the ribbon

  10. Oligoethylene Glycol-substituted Aza-BODIPY Dyes As Red Emitting ER-Probes

    PubMed Central

    Kamkaew, Anyanee; Thavornpradit, Sopida; Puangsamlee, Thamon; Xin, Dongyue; Wanichacheva, Nantanit; Burgess, Kevin

    2015-01-01

    This study features aza-BODIPY (BF2-chelated azadipyrromethene) dyes with two aromatic substituents linked by oligoethylene glycol fragments to increase hydrophilicity of aza-BODIPY for applications in intracellular imaging. To prepare these, two chalcones were attached α,ω onto oligoethylene glycol fragments, then reacted with nitromethane anion. Conjugate addition products from this reaction were then subjected to typical conditions for synthesis of aza-BODIPY dyes (NH4OAc, nBuOH, 120 °C); formation of boracycles in this reaction was concomitant with creation of macrocycles containing the oligoethylene glycol fragments. Similar dyes with acyclic oligoelythene glycol substituents in the same position were used to compare the efficiencies of the intra- and inter-molecular aza-BODIPY forming reactions, and the characteristics of the products. All the fluors with oligoethylene glycol fragments, ie cyclic or acyclic, localized in the endoplasmic reticulum of a fibroblast cell line (WEHI-13VAR), the human pancreatic cancer cell line (PANC-1, rough ER predominates) and human liver cancer cell line (HepG2, smooth ER prevalent). These fluors are potentially useful for near IR (λmax emis at 730 nm) ER staining probes. PMID:26138325

  11. Optical coherence tomography using images of hair structure and dyes penetrating into the hair.

    PubMed

    Tsugita, Tetsuya; Iwai, Toshiaki

    2014-11-01

    Hair dyes are commonly evaluated by the appearance of the hair after dyeing. However, this approach cannot simultaneously assess how deep the dye has penetrated into hair. For simultaneous assessment of the appearance and the interior of hair, we developed a visible-range red, green, and blue (RGB) (three primary colors)-optical coherence tomography (OCT) using an RGB LED light source. We then evaluated a phantom model based on the assumption that the sample's absorbability in the vertical direction affects the tomographic imaging. Consistent with theory, our device showed higher resolution than conventional OCT with far-red light. In the experiment on the phantom model, we confirmed that the tomographic imaging is affected by absorbability unique to the sample. Furthermore, we verified that permeability can be estimated from this tomographic image. We also identified for the first time the relationship between penetration of the dye into hair and characteristics of wavelength by tomographic imaging of dyed hair. We successfully simultaneously assessed the appearance of dyed hair and inward penetration of the dye without preparing hair sections. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    PubMed

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Orientational dynamics and dye-DNA interactions in a dye-labeled DNA aptamer.

    PubMed

    Unruh, Jay R; Gokulrangan, Giridharan; Lushington, G H; Johnson, Carey K; Wilson, George S

    2005-05-01

    We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or "aptamer" designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals surprising differences with significant implications for biophysical studies employing such conjugates. Time-resolved anisotropy studies demonstrate that the TR- and TAMRA-aptamer anisotropy decays are dominated by the overall rotation of the aptamer, whereas the fluorescein-aptamer anisotropy decay displays a subnanosecond rotational correlation time much shorter than that expected for the overall rotation of the aptamer. Docking and molecular dynamics simulations suggest that the low mobility of TR is a result of binding in the groove of the DNA helix. Additionally, associated anisotropy analysis of the TAMRA-aptamer reveals both quenched and unquenched states that experience significant coupling to the DNA motion. Therefore, quenching of TAMRA by guanosine must depend on the configuration of the dye bound to the DNA. The strong coupling of TR to the rotational dynamics of the DNA aptamer, together with the absence of quenching of its fluorescence by DNA, makes it a good probe of DNA orientational dynamics. The understanding of the nature of dye-DNA interactions provides the basis for the development of bioconjugates optimized for specific biophysical measurements and is important for the sensitivity of anisotropy-based DNA-protein interaction studies employing such conjugates.

  14. Orientational Dynamics and Dye-DNA Interactions in a Dye-Labeled DNA Aptamer

    PubMed Central

    Unruh, Jay R.; Gokulrangan, Giridharan; Lushington, G. H.; Johnson, Carey K.; Wilson, George S.

    2005-01-01

    We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or “aptamer” designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals surprising differences with significant implications for biophysical studies employing such conjugates. Time-resolved anisotropy studies demonstrate that the TR- and TAMRA-aptamer anisotropy decays are dominated by the overall rotation of the aptamer, whereas the fluorescein-aptamer anisotropy decay displays a subnanosecond rotational correlation time much shorter than that expected for the overall rotation of the aptamer. Docking and molecular dynamics simulations suggest that the low mobility of TR is a result of binding in the groove of the DNA helix. Additionally, associated anisotropy analysis of the TAMRA-aptamer reveals both quenched and unquenched states that experience significant coupling to the DNA motion. Therefore, quenching of TAMRA by guanosine must depend on the configuration of the dye bound to the DNA. The strong coupling of TR to the rotational dynamics of the DNA aptamer, together with the absence of quenching of its fluorescence by DNA, makes it a good probe of DNA orientational dynamics. The understanding of the nature of dye-DNA interactions provides the basis for the development of bioconjugates optimized for specific biophysical measurements and is important for the sensitivity of anisotropy-based DNA-protein interaction studies employing such conjugates. PMID:15731389

  15. Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles.

    PubMed

    Jiang, Chunzhu; Sun, Ying; Yu, Xi; Zhang, Lei; Sun, Xiumin; Gao, Yan; Zhang, Hanqi; Song, Daqian

    2012-01-30

    In this study, the new C(18)-functionalized ultrafine magnetic silica nanoparticles (C(18)-UMS NPs) were successfully synthesized and applied for extraction of sudan dyes in water samples based on the magnetic solid-phase extraction (MSPE). The extraction and concentration were carried out in one step by blending C(18)-UMS NPs and water samples. The sudan dyes adsorbed C(18)-UMS NPs were isolated from the matrix easily with an external magnetic field. After desorption the quantitation of sudan dyes was done by ultra fast liquid chromatography (UFLC). Satisfactory extraction recovery can be obtained with only 50 mg C(18)-UMS NPs. The effects of experimental parameters, including the amount of the nanoparticles, extraction time, pH value, desorption solvent, volume of desorption solvent and desorption time were investigated. The limits of detection for sudan I, II, III and IV were 0.066, 0.070, 0.12 and 0.12 ng mL(-1), respectively. Recoveries obtained by analyzing the six spiked water samples were between 68% and 103%. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  17. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  18. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  19. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification.

    PubMed

    Reichhardt, Courtney; McCrate, Oscar A; Zhou, Xiaoxue; Lee, Jessica; Thongsomboon, Wiriya; Cegelski, Lynette

    2016-11-01

    Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in

  20. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  1. New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment.

    PubMed

    Dotto, G L; Pinto, L A A; Hachicha, M A; Knani, S

    2015-03-15

    In this work, statistical physics treatment was employed to study the adsorption of food dyes onto chitosan films, in order to obtain new physicochemical interpretations at molecular level. Experimental equilibrium curves were obtained for the adsorption of four dyes (FD&C red 2, FD&C yellow 5, FD&C blue 2, Acid Red 51) at different temperatures (298, 313 and 328 K). A statistical physics formula was used to interpret these curves, and the parameters such as, number of adsorbed dye molecules per site (n), anchorage number (n'), receptor sites density (NM), adsorbed quantity at saturation (N asat), steric hindrance (τ), concentration at half saturation (c1/2) and molar adsorption energy (ΔE(a)) were estimated. The relation of the above mentioned parameters with the chemical structure of the dyes and temperature was evaluated and interpreted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    PubMed

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Ruben; Huang, Gaochao; Meekins, David A.

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pongmore » mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.« less

  4. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    PubMed Central

    Shrestha, Ruben; Huang, Gaochao; Meekins, David A.; Geisbrecht, Brian V.; Li, Ping

    2017-01-01

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases, which have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been uncovered for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand with two channels at diameters of ~3.0 and 8.0 Å leading to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pH 3.5 suggested that cmpd 0 deprotonation by the distal aspartate is rate-limiting in the formation of cmpd I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with cmpd I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in DyPs is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for cmpd I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining DyPs’ acidic pH optimum. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity. PMID:29308295

  5. Theoretical Study of Effect of Introducing π-Conjugation on Efficiency of Dye-Sensitized Solar Cell.

    PubMed

    Lee, Geon Hyeong; Kim, Young Sik

    2018-09-01

    In this study, phenoxazine (PXZ)-based dye sensitizers with triphenylamine (TPA) as a dual-electron donor and thiophen and benzothiadiazole (BTD) or 4,7-diethynylbenzo[c][1,2,5]thiadiazole (DEBT) as an electron acceptor (dye1, dye2, and dye3) were designed and investigated. dye3 can significantly stabilize the lowest unoccupied molecular orbital (LUMO) energy level of an organic dye. We used density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to better understand the factors responsible for the photovoltaic performance. The absorption spectrum of the dyes showed different forms because of the different energy levels of the molecular orbital (MO) of each dye and the intramolecular energy transfer (EnT). Among the three dyes, dye3 showed greater red-shift, broader absorption spectra, and higher molar extinction coefficient. These results indicate that adding a withdrawing unit and π-conjugation to a dye can result in good photovoltaic properties for dye-sensitized solar cells (DSSCs).

  6. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.

    PubMed

    Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito

    2018-01-15

    Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of coloring efficacy of lac dye in comminuted meat product.

    PubMed

    Divya; Singh, R P; Baboo, B; Prasad, K M

    2011-06-01

    Effect of incorporation of graded levels (4, 6, 8, 10, 25 ppm) of lac dye on coloring efficacy and possible use of this natural color in processed meat products was studied. Inclusion of lac dye at different concentrations did not affect the pH significantly whereas a linear increase in the Lovibond red color unit of chicken nuggets was noted with raising the level of lac dye from 4 to 10 ppm. The sensory rating for color was highest at addition level of 25 ppm of lac dye and it was comparable to color score of the product containing 200 ppm sodium nitrite. Lac dye inclusion in nuggets at all concentrations studied had better antimicrobial properties as compared to 200 ppm sodium nitrite. It was concluded that lac dye from 10 to 25 ppm could be incorporated in comminuted meat products as a natural colorant with antimicrobial action.

  8. Intravital multiphoton photoconversion with a cell membrane dye.

    PubMed

    Turcotte, Raphaël; Wu, Juwell W; Lin, Charles P

    2017-02-01

    Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρ pc on the incident power (ρpc∝Iexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polyamide as an efficient sorbent for simultaneous interface-free determination of three Sudan dyes in saffron and urine using high-performance liquid chromatography-ultra violet detection.

    PubMed

    Saeidi, Iman; Barfi, Behruz; Payrovi, Moazameh; Feizy, Javid; Sheibani, Hojat A; Miri, Mina; Ghollasi Moud, Farahnaz

    2015-01-01

    With polyamide (PA) as an efficient sorbent for solid phase extraction (SPE) of Sudan dyes II, III and Red 7B from saffron and urine, their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water (1:9, v/v, pH 7) as the washing solvent and 3 mL tetrahydrofuran for elution. Good clean-up and high (above 90%) recoveries were observed for all the analytes. The optimized mobile phase composition for HPLC analysis of these compounds was methanol-water (70:30, v/v). The SPE parameters, such as the maximum loading capacity and breakthrough volume, were also determined for each analyte. The limits of detection (LODs), limits of quantification (LOQs), linear ranges and recoveries for the analytes were 4.6-6.6 microg/L, 13.0-19.8 microg/L, 13.0-5000 microg/L (r2>0.99) and 92.5%-113.4%, respectively. The precisions (RSDs) of the overall analytical procedure, estimated by five replicate measurements for Sudan II, III and Red 7B in saffron and urine samples were 2.3%, 1.8% and 3.6%, respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine samples with HPLC coupled with UV detection.

  10. Ethnobotany of dye plants in Dong communities of China

    PubMed Central

    2014-01-01

    Background Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Methods Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011–2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Results Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. Conclusions The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye

  11. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  12. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105.

    PubMed

    Sodaneath, Hong; Lee, Jung-In; Yang, Seung-Ok; Jung, Hyekyeng; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-09-19

    A new decolorizing white-rot fungus, OBR105, was isolated from Mount Odae in South Korea and identified by the morphological characterization of its fruit body and spores and partial 18s rDNA sequences. The ligninolytic enzyme activity of OBR105 was studied to characterize their decolorizing mechanism using a spectrophotometric enzyme assay. For the evaluation of the decolorization capacity of OBR105, the isolate was incubated in an erlenmeyer flask and in an airlifte bioreator with potato dextrose broth (PDB) medium supplemented with each dye. In addition, the decolorization efficiency of real textile wastewater was evaluated in an airlift bioreactor inoculated with the isolate. The isolate was identified as Bjerkandera adusta and had ligninolytic enzymes such as laccase, lignin peroxidase (LiP), and Mn-dependent peroxidase (MnP). Its LiP activity was higher than its MnP and laccase activities. B. adusta OBR105 successfully decolorized reactive dyes (red 120, blue 4, orange 16, and black 5) and acid dyes (red 114, blue 62, orange 7, and black 172). B. adusta OBR105 decolorized 91-99% of 200 mg L -1 of each dye (except acid orange 7) within 3 days in a PDB medium at 28°C, pH 5, and 150 rpm. This fungus decolorized only 45% of 200 mg L -1 acid orange 7 (single azo-type dye) within 3 days, and the decolorization efficiency did not increase by prolonging the cultivation time. In the air-lift bioreactor, B. adusta OBR105 displayed a high decolorization capacity, greater than 90%, for 3 acid dyes (red 114, blue 62, and black 172) and 1 reactive dye (blue 4) within 10-15 h of treatment. B. adusta OBR105 could decolorize real textile wastewater in the air-lift bioreactor. This result suggests that an air-lift reactor employing B. adusta OBR105 is a promising bioreactor for the treatment of dye wastewater.

  13. Evidence for Significantly Enhancing Reduction of Azo Dyes in Escherichia coli by Expressed Cytoplasmic Azoreductase (AzoA) of Enterococcus faecalis

    PubMed Central

    Feng, Jinhui; Heinze, Thomas M.; Xu, Haiyan; Cerniglia, Carl E.; Chen, Huizhong

    2018-01-01

    Although cytoplasmic azoreductases have been purified and characterized from various bacteria, little evidence demonstrating that these azoreductases are directly involved in azo dye reduction in vivo is known. In order to evaluate the contribution of the enzyme to azo dye reduction in vivo, experiments were conducted to determine the effect of a recombinant cytoplasmic azoreductase (AzoA) from Enterococcus faecalis expressed in Escherichia coli on the rate of metabolism of Methyl Red, Ponceau BS and Orange II. The intact cells that contained IPTG induced AzoA had a higher rate of dye reduction with increases of 2 (Methyl Red), 4 (Ponceau BS) and 2.6 (Orange II)-fold compared to noninduced cells, respectively. Metabolites of Methyl Red isolated from induced cultures were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid through liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) analyses. In conclusion, our data demonstrate that AzoA from Ent. faecalis is capable of increasing the reduction of azo dyes in intact E. coli cells and that cytoplasmic azoreductase is involved in bacterial dye degradation in vivo. PMID:19663804

  14. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticlemore » (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.« less

  15. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    PubMed

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 < ΔG 0  < - 13.2 kJ mol -1 ), and exothermic (ΔH 0 values of - 29 and - 55 kJ mol -1 ). AS-H 2 SO 4 and AS-HNO 3 were adequate to treat dye house effluents, attaining color removal percentages of 82 and 75%. Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  16. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume.

    PubMed

    Proskurnin, Mikhail A; Zhidkova, Tatyana V; Volkov, Dmitry S; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Mock, Donald; Nedosekin, Dmitry A; Zharov, Vladimir P

    2011-10-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted. Copyright © 2011 International Society for Advancement of Cytometry.

  17. Physical and chemical investigations on natural dyes

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  18. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  19. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.

  20. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    PubMed

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  1. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles.

    PubMed

    Qu, Song; Huang, Fei; Yu, Shaoning; Chen, Gang; Kong, Jilie

    2008-12-30

    The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.

  2. Flow and thermal characteristics of high Reynolds number (2800-17,000) dye cell: simulation and experiment.

    PubMed

    Mishra, G K; Kumar, Abhay; Prakash, O; Biswal, R; Dixit, S K; Nakhe, S V

    2015-04-10

    This paper presents computational and experimental studies on wavelength/frequency fluctuation characteristics of a high pulse repetition rate (18 kHz) dye laser pumped by a frequency-doubled Nd:YAG laser (532 nm). The temperature gradient in the dye solution is found to be responsible for wavelength fluctuations of the dye laser at low flow rates (2800<Re(d)<5600). The turbulence Reynolds number (ReT) and the range of eddy sizes present in the turbulent flow are found to be responsible for the fluctuations at high flow rates (8400<Re(d)<17,000). A new dimensionless parameter, dimensionless eddy size (l(+)), has been defined to correlate the range of eddy sizes with the experimentally observed wavelength fluctuations. It was found that fluctuations can be controlled by keeping ReT≈10 and lmax(+)≈1. The simulated result explains the experimental observation and provides a basis for optimizing the dye solution flow rate for high PRR pumping.

  3. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 6-amino-1,3-dimethyluracil

    NASA Astrophysics Data System (ADS)

    Yousefi, Hessamoddin; Yahyazadeh, Asieh; Yazdanbakhsh, Mohammad Reza; Rassa, Mehdi; Moradi-e-Rufchahi, Enayat O.'llah

    2012-05-01

    A series of hetarylazoaminouracil dyes were prepared by coupling of 6-amino-1,3-dimethyluracil with eight diazotized heterocyclic amines in nitrosyl sulphuric acid. The prepared azo dyes were characterized by UV-Vis, FT-IR, 13C NMR, 1H NMR spectroscopic techniques and elemental analysis. The solvatochromism of dyes was evaluated with respect to wavelength of maximum absorption (λmax) in seven solvents with different polarities: acetic acid, methanol, water, chloroform, acetonitrile, dimethyl sulfoxide and dimethyl formamide. The effects of acid, base and concentration of the dye on the visible absorption spectra were also reported. In addition, the antimicrobial activity of the synthesized dyes was evaluated on Escherichia coli, Bacillus subtilis, Micrococcus leuteus and Pseudomonas aeruginosa.

  4. Effect of sintering time on the performance of turmeric dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Basuki, Hidajat, R. Lullus Lambang G.; Suyitno, Kristiawan, Budi; Rachmanto, Rendy Adhi

    2017-01-01

    This study reports the effect of sintering time on the performance of the dye-sensitized solar cells with turmeric dyes as sensitizers. Sintering TiO2 semiconductors were conducted at a temperature of 450°C for 30, 50, 90, 120, 150, and 180 minutes. The natural dye was extracted from dried turmeric powders with ethanol solvent. The results show that size of grains and the opening area of TiO2 semiconductor depended on the sintering time. The improvement of the properties of TiO2 semiconductor allowed more turmeric dyes were adsorbed by the semiconductors and then improved the performance of solar cells. The sintering time of 150 minutes produced large grains with an average diameter of 68.87 nm, and a porosity area of 26.51% caused the performance of DSSCs was the highest among other sintering time. The Voc, Jsc, and efficiency of DSSCs with turmeric-based natural dyes 0.64 V, 0.47 mA/cm2, and 0.2%, respectively.

  5. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  6. Co-sensitized natural dyes potentially used to enhance light harvesting capability

    NASA Astrophysics Data System (ADS)

    Amelia, R.; Sawitri, D.; Risanti, D. D.

    2015-01-01

    We present the photoelectrochemical properties of dye-sensitized solar cells using natural pigments containing anthocyanins, betalains, and caroteins. The dyes were adsorbed by a photoanode that was fabricated from nanocrystalline TiO2 on transparent conductive glass. TiO2 comprises of 100% anatase and 90:10 anatase:rutile fraction. The dyes extracted from mangosteen pericarp, Musa aromatica pericarp, Celosia cristata flower and red beet root were characterized through UV-vis and IPCE. The effectiveness of the dyes was explained through photocurrent as a function of incident light power. It was found that the cocktail and multilayered dyes comprised of anthocyanins and caroteins is beneficial to obtain high photocurrent, whereas betalains is not recommended to be applied on untreated TiO2. Due to the bandgap properties of rutile and anatase, the presence of 10% rutile in TiO2 is favourable to further enhance the electron transport.

  7. Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use

    PubMed Central

    Tenuta, Tiziana; Monopoli, Marco P.; Kim, JongAh; Salvati, Anna; Dawson, Kenneth A.; Sandin, Peter; Lynch, Iseult

    2011-01-01

    Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm. PMID:21998668

  8. Antimicrobial evaluation of red, phytoalexin-rich sorghum food biocolorant

    PubMed Central

    den Besten, Heidy M. W.; Kayodé, A. P. Polycarpe; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    Sorghum (Sorghum bicolor) extract is traditionally used as red biocolorant in West Africa to colour foods, among which wagashi, a soft cheese. This biocolorant is a source of the phytoalexin apigeninidin and phenolic acids, and users claim that it has preservative effects next to its colouring properties. If such a claim can be scientifically substantiated, it adds a valuable functional property to this natural red colorant, thereby increasing its potential applications in the food industry. Hence, the present study evaluated the antimicrobial properties of dye sorghum extracts using challenge tests in broth and wagashi as a model of a popular food application. The alkaline extract and hot aqueous extract were used for dyeing wagashi by 87.7% and 12.3% of the traders, respectively. The dyeing procedure is perceived as a preservation strategy, and is also a means to maximise the revenues. However, results demonstrated that the application of sorghum biocolorant on wagashi had no inhibitory effect on the growth of fungi (Penicillium chrysogenum, Cladosporium macrocarpum) and Escherichia coli O157:H7. Furthermore, sorghum biocolorant in broth had no effect on growth of Listeria monocytogenes and Escherichia coli O157:H7. Consequently, the commonly used extracts for colouring soft West-African cheese did not show a preservative effect. In addition, dyeing did not affect the physico-chemical properties of wagashi. Still, the red colour hampered visual detection of microbial growth, thus clarifying the preservative effect reported by users. PMID:29561885

  9. Antimicrobial evaluation of red, phytoalexin-rich sorghum food biocolorant.

    PubMed

    Akogou, Folachodé U G; Besten, Heidy M W den; Kayodé, A P Polycarpe; Fogliano, Vincenzo; Linnemann, Anita R

    2018-01-01

    Sorghum (Sorghum bicolor) extract is traditionally used as red biocolorant in West Africa to colour foods, among which wagashi, a soft cheese. This biocolorant is a source of the phytoalexin apigeninidin and phenolic acids, and users claim that it has preservative effects next to its colouring properties. If such a claim can be scientifically substantiated, it adds a valuable functional property to this natural red colorant, thereby increasing its potential applications in the food industry. Hence, the present study evaluated the antimicrobial properties of dye sorghum extracts using challenge tests in broth and wagashi as a model of a popular food application. The alkaline extract and hot aqueous extract were used for dyeing wagashi by 87.7% and 12.3% of the traders, respectively. The dyeing procedure is perceived as a preservation strategy, and is also a means to maximise the revenues. However, results demonstrated that the application of sorghum biocolorant on wagashi had no inhibitory effect on the growth of fungi (Penicillium chrysogenum, Cladosporium macrocarpum) and Escherichia coli O157:H7. Furthermore, sorghum biocolorant in broth had no effect on growth of Listeria monocytogenes and Escherichia coli O157:H7. Consequently, the commonly used extracts for colouring soft West-African cheese did not show a preservative effect. In addition, dyeing did not affect the physico-chemical properties of wagashi. Still, the red colour hampered visual detection of microbial growth, thus clarifying the preservative effect reported by users.

  10. Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens.

    PubMed

    Velmurugan, Palanivel; Kim, Jae-In; Kim, Kangmin; Park, Jung-Hee; Lee, Kui-Jae; Chang, Woo-Suk; Park, Yool-Jin; Cho, Min; Oh, Byung-Taek

    2017-08-01

    The main objective of this study was to extract natural colorant from purple sweet potato powder (PSPP) via a water bath and ultrasound water bath using acidified ethanol (A. EtOH) as the extraction solvent. When optimizing the colorant extraction conditions of the solvents, acidified ethanol with ultrasound yielded a high extraction capacity and color intensity at pH2, temperature of 80°C, 20mL of A. EtOH, 1.5g of PSPP, time of 45min, and ultrasonic output power of 75W. Subsequently, the colorant was extracted using the optimized conditions for dyeing of textiles (leather, silk, and cotton). This natural colorant extraction technique can avoid serious environmental pollution during the extraction and is an alternative to synthetic dyes, using less solvent and simplified abstraction procedures. The extracted purple sweet potato natural colorant (PSPC) was used to dye leather, silk, and cotton fabrics in an eco-friendly approach with augmented antibacterial activity by in situ synthesis of silver nanoparticles (AgNPs) and dyeing. The optimal dyeing conditions for higher color strength (K/S) values were pH2 and 70°C for 45min. The colorimetric parameters L ∗ , a ∗ , b ∗ , C, and H were measured to determine the depth of the color. The Fourier transform infrared spectroscopy (FTIR) spectra of undyed control, dyed with PSPC and dyed with blend of PSPC and AgNPs treated leather, silk and cotton fabric were investigated to study the interaction among fiber type, nanoparticles, and dye. The structural morphology of leather and silk and cotton fabrics and the anchoring of AgNPs with elemental compositions were investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The dry and wet rubbing fastness for dye alone and dye with nanoparticles were grade 4-5 and 4, respectively. Thus, the results of the present study clearly suggest that in situ synthesis of AgNPs along with dyeing should be considered in the development of

  11. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    PubMed

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  12. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    NASA Astrophysics Data System (ADS)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  13. Excited state characteristics of acridine dyes: acriflavine and acridine orange.

    PubMed

    Sharma, Vijay K; Sahare, P D; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-06-01

    The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.

  14. Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes

    NASA Astrophysics Data System (ADS)

    Mori, Tatsuo; Kim, Hyeong-Gweon; Mizutani, Teruyoshi; Lee, Duck-Chool

    2001-09-01

    An organic light-emitting diode (OLED) with a squarylium dye-doped aluminium quinoline (Alq3) emission layer prepared by vapor deposition method has a pure red emission. However, since its luminance and electroluminescence (EL) efficiency is poor, the authors attended to improve the EL efficiency by doping a photosensitizer dye (a styryl dye, DCM) in an emission layer. The EL efficiency and luminance of DCM- and Sq-doped OLEDs are 2-3 times higher than those of only Sq-doped OLEDs. It was found that the excited energy is transferred from Alq3 to Sq through DCM.

  15. Effects of dissolved oxygen on dye removal by zero-valent iron.

    PubMed

    Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien

    2010-10-15

    Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution. 2010 Elsevier B.V. All rights reserved.

  16. High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains

    PubMed Central

    Liu, Wenqi; Peck, Evan M.; Smith, Bradley D.

    2016-01-01

    Croconaine dyes have narrow and intense absorption bands at ~800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ~109 M−1), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the pre-assembled complex when it was diluted into a solution of fetal bovine serum, even after laser induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy. PMID:26807599

  17. Photodynamic Inactivation of Acinetobacter baumannii Using Phenothiazinium Dyes: In Vitro and In Vivo Studies

    PubMed Central

    Ragàs, Xavier; Dai, Tianhong; Tegos, George P.; Agut, Montserrat; Nonell, Santi; Hamblin, Michael R.

    2010-01-01

    Background and Objective Phenothiazinium dyes have been reported to be effective photosensitizers inactivating a wide range of microorganisms in vitro after illumination with red light. However, their application in vivo has not extensively been explored. This study evaluates the bactericidal activity of phenothiazinium dyes against multidrug-resistant Acinetobacter baumannii both in vitro and in vivo. Study Design/Materials and Methods We report the investigation of toluidine blue O, methylene blue, 1,9-dimethylmethylene blue, and new methylene blue for photodynamic inactivation of multidrug-resistant A. baumannii in vitro. The most effective dye was selected to carry out in vivo studies using third-degree mouse burns infected with a bioluminescent A. baumannii strain, upon irradiation with a 652 nm noncoherent light source. The mice were imaged daily for 2 weeks to observe differences in the bioluminescence–time curve between the photodynamic therapy (PDT)-treated mice in comparison with untreated burns. Results All the dyes were effective in vitro against A. baumannii after 30 J/cm2 irradiation of 635 or 652 nm red light had been delivered, with more effective killing when the dye remained in solution. New methylene blue was the most effective of the four dyes, achieving a 3.2-log reduction of the bacterial luminescence during PDT in vivo after 360 J/cm2 and an 800 μM dye dose. Moreover, a statistically significant reduction of the area under the bioluminescence–time curve of PDT-treated mice was observed showing that the infection did not recur after PDT. Conclusions Phenothiazinium dyes, and especially new methylene blue, are potential photosensitizers for PDT to treat burns infected with multidrug-resistant A. baumannii in vivo. PMID:20583252

  18. Evaluation of the in vivo genotoxicity of Allura Red AC (Food Red No. 40).

    PubMed

    Honma, Masamitsu

    2015-10-01

    Allura Red AC (Food Red No. 40) is a red azo dye that is used for food coloring in beverage and confectionary products. However, its genotoxic properties remain controversial. To clarify the in vivo genotoxicity, we treated mice with Allura Red AC and investigated the induction of DNA damage (liver, glandular stomach), clastogenicity/anuegenicity (bone marrow), and mutagenicity (liver, glandular stomach) using Comet assays, micronucleus tests, and transgenic gene mutation assays, respectively. All studies were conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guideline. Although Allura Red AC was administered up to the maximum doses recommended by the OECD guideline, no genotoxic effect was observed in any of the genotoxic endpoints. These data clearly show no evidence of in vivo genotoxic potential of Allura Red AC administered up to the maximum doses in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electrical and Luminescent Properties of Color-Changeable Organic Electroluminescent Diode Using Squarylium Dyes

    NASA Astrophysics Data System (ADS)

    Mori, Tatsuo; Miyachi, Kiyokazu; Kichimi, Tomoaki; Mizutani, Teruyoshi

    1994-12-01

    The organic electoluminescent diode (LED) with squarylium (Sq) dye-doped Alq3 changes color upon application of voltage (current). The luminescent color from the organic LED changes from red (electroluminescence (EL) of Sq dye) at low voltage to light green (EL of Alq3) at high voltage. We studied the EL efficiency and EL spectrum of organic Sq-doped Alq3 LED with various doping positions in the emission layer. Consequentially, it was clarified that Sq doping near TPD considerably reduced the EL efficiency. The EL mechanism of the organic LED was concluded to be associated with the energy transfer from the excited Alq3 to the guest dye and hole trapping of the guest dye in Alq3.

  20. Protein determination by microchip capillary electrophoresis using an asymmetric squarylium dye: noncovalent labeling and nonequilibrium measurement of association constants.

    PubMed

    Sloat, Amy L; Roper, Michael G; Lin, Xiuli; Ferrance, Jerome P; Landers, James P; Colyer, Christa L

    2008-08-01

    In response to a growing interest in the use of smaller, faster microchip (mu-chip) methods for the separation of proteins, advancements are proposed that employ the asymmetric squarylium dye Red-1c as a noncovalent label in mu-chip CE separations. This work compares on-column and precolumn labeling methods for the proteins BSA, beta-lactoglobulin B (beta-LB), and alpha-lactalbumin (alpha-LA). Nonequilibrium CE of equilibrium mixtures (NECEEM) represents an efficient method to determine equilibrium parameters associated with the formation of intermolecular complexes, such as those formed between the dye and proteins in this work, and it allows for the use of weak affinity probes in protein quantitation. In particular, nonequilibrium methods employing both mu-chip and conventional CE systems were implemented to determine association constants governing the formation of noncovalent complexes of the red luminescent squarylium dye Red-1c with BSA and beta-LB. By our mu-chip NECEEM method, the association constants K(assoc) for beta-LB and BSA complexes with Red-1c were found to be 3.53 x 10(3) and 1.65 x 10(5) M(-1), respectively, whereas association constants found by our conventional CE-LIF NECEEM method for these same protein-dye systems were some ten times higher. Despite discrepancies between the two methods, both confirmed the preferential interaction of Red-1c with BSA. In addition, the effect of protein concentration on measured association constant was assessed by conventional CE methods. Although a small decrease in K(assoc) was observed with the increase in protein concentration, our studies indicate that absolute protein concentration may affect the equilibrium determination less than the relative concentration of protein-to-dye.

  1. Part 1: Synthesis and visible absorption spectra of some new monoazo dyes derived from ethyl 2-amino-4-(4";-substitutedphenyl)thiophenes

    NASA Astrophysics Data System (ADS)

    Babür, Banu; Ertan, Nermin

    2014-10-01

    Series of monoazo dyes from some ethyl 2-amino-4-(4";-substitutedphenyl) thiophenes were prepared and characterized. The structure of the substances was confirmed by FT-IR, 1H NMR and mass spectroscopic techniques. The relationship among the structure of the dyes, their absorption characteristics and the solvatochromic and halochromic behaviors of the dyes were investigated. Introduction of electron-accepting substituent into the diazo moiety results in large bathochromic shifts in all solvents used. The dyes exhibited positive solvatochromism and their solvatochromic properties were discussed in relation to tautomerism.

  2. Efficient Covalent Modification of Multiwalled Carbon Nanotubes with Diazotized Dyes in Water at Room Temperature.

    PubMed

    Bensghaïer, Asma; Lau Truong, Stéphanie; Seydou, Mahamadou; Lamouri, Aazdine; Leroy, Eric; Mičušik, Matej; Forro, Klaudia; Beji, Mohamed; Pinson, Jean; Omastová, Mária; Chehimi, Mohamed M

    2017-07-11

    Tetrafluoroborate salts of diazotized Azure A (AA-N 2 + ), Neutral Red (NR-N 2 + ) and Congo Red (CR-N 2 + ) dyes were prepared and reacted with multiwalled carbon nanotubes (MWCNTs) at room temperature, in water without any reducing agent. The as-modified MWCNTs were examined by IRATR, Raman spectroscopy, XPS, TGA, TEM, and cyclic voltammetry. The diazonium band located at ∼2350 cm -1 in the diazotized dye IR spectra vanished after attachment to the nanotubes whereas the Raman D/G peak ratio slightly increased after dye covalent attachment at a high initial diazonium/CNT mass ratio. XPS measurements show the loss of F 1s from the BF 4 - anion together with a clear change in the high-resolution C 1s region from the modified nanotubes. Thermogravimetric analyses proved substantial mass loadings of the organic grafts leveling off at 40.5, 34.3, and 50.7 wt % for AA, NR, and CR, respectively. High-resolution TEM pictures confirmed the presence of 1.5-7-nm-thick continuous amorphous layers on the nanotubes assigned to the aryl layers from the dyes. Cyclic voltammetry studies in acetonitrile (ACN) confirmed the grafting of the dyes; the latter retain their electrochemical behavior in the grafted state. The experimental results correlate remarkably well with quantum chemical calculations that indicate high binding energies between the dyes and the CNTs accounting for true covalent bonding (140-185 kJ/mol with the CNT-aryl distance <1.6 nm), though attachment by π stacking also contributes to obtaining stable hybrids. Finally, the pH-responsive character of the robust hybrids was demonstrated by a higher degree of protonation of Neutral Red-grafted CNTs at pH 2 compared to that of the neutral aqueous medium. This work demonstrates that diazotized dyes can be employed for the surface modification of MWCNTs in a very simple and efficient manner in water and at room temperature. The hybrids could be employed for many purposes such as optically pH-responsive materials

  3. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    PubMed

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent.

    PubMed

    Munagapati, Venkata Subbaiah; Yarramuthi, Vijaya; Kim, Yeji; Lee, Kwon Min; Kim, Dong-Su

    2018-02-01

    The adsorption characteristics of Reactive Black 5 (RB5) and Cong Red (CR) onto Banana Peel Powder (BPP) from aqueous solution were investigated as a function of pH, contact time, initial dye concentration and temperature. The BPP was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis. FTIR results revealed that hydroxyl (-OH), amine (-NH) and carboxyl (-C˭O) functional groups present on the surface of BPP. The SEM results show that BPP has an irregular and porous surface morphology which is adequate for dye adsorption. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Experimental results were best represented by the Langmuir isotherm model. The adjustments of models were confirmed by the Chi-square (χ 2 ) test and the correlation coefficients (R 2 ). The maximum monolayer adsorption capacities of RB5 and CR on BPP calculated from Langmuir isotherm model were 49.2 and 164.6mg/g at pH 3.0 and 298K. Experimental data were also tested in terms of adsorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption processes of both RB5 and CR followed well pseudo-second-order kinetic models. The calculated thermodynamic parameters ΔG°, ΔH° and ΔS° showed that the adsorption of RB5 and CR onto BPP was feasible, spontaneous and endothermic in the temperature range 298-318K. The RB5 and CR were desorbed from BPP using 0.1M NaOH. The recovery for both anionic dyes was found to be higher than 90%. Based on these it can be concluded that BPP can be used as an effective, low cost, and eco-friendly adsorbent for CR removal than RB5 from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna

    2017-06-01

    The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.

  6. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  7. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  8. Near Infrared Dyes as Lifetime Solvatochromic Probes for Micropolarity Measurements of Biological Systems

    PubMed Central

    Berezin, Mikhail Y.; Lee, Hyeran; Akers, Walter; Achilefu, Samuel

    2007-01-01

    The polarity of biological mediums controls a host of physiological processes such as digestion, signaling, transportation, metabolism, and excretion. With the recent widespread use of near-infrared (NIR) fluorescent dyes for biological imaging of cells and living organisms, reporting medium polarity with these dyes would provide invaluable functional information in addition to conventional optical imaging parameters. Here, we report a new approach to determine polarities of macro- and microsystems for in vitro and potential in vivo applications using NIR polymethine molecular probes. Unlike the poor solvatochromic response of NIR dyes in solvents with diverse polarity, their fluorescence lifetimes are highly sensitive, increasing by a factor of up to 8 on moving from polar to nonpolar mediums. We also established a correlation between fluorescence lifetime and solvent orientation polarizability and developed a lifetime polarity index for determining the polarity of complex systems, including micelles and albumin binding sites. Because of the importance of medium polarity in molecular, cellular, and biochemical processes and the significance of reduced autofluorescence and deep tissue penetration of light in the NIR region, the findings reported herein represent an important advance toward using NIR molecular probes to measure the polarity of complex biological systems in vitro and in vivo. PMID:17573433

  9. Characterisation of novel pH indicator of natural dye Oldenlandia umbellata L.

    PubMed

    Ramamoorthy, Siva; Mudgal, Gaurav; Rajesh, D; Nawaz Khan, F; Vijayakumar, V; Rajasekaran, C

    2009-01-01

    Oldenlandia umbellata L., commonly known as 'chay root', belongs to the family Rubiaceae and is one of the unexplored dye-yielding plants. The roots from this plant are the sources of red dye. Extraction protocol and dye characterisation have not been completely studied so far in this plant. Hence, in this article we have used UV spectrophotometry, thin layer chromatography, GC-MS, high-performance liquid chromatography and NMR to identify the five major colouring compounds, including 1,2,3-trimethoxyanthraquinone, 1,3-dimethoxy-2-hydroxyanthraquinone, 1,2-dimethoxyanthraquinone, 1-methoxy-2-hydroxyanthraquinone and 1,2-dihydroxyanthraquinone. It showed application feasibility as a new pH indicator.

  10. Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis.

    PubMed

    Dotto, G L; Lima, E C; Pinto, L A A

    2012-01-01

    The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g(-1) and 1619.4 mg g(-1), respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2>0.99 and ARE<5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.

    PubMed

    Kupstat, Annette; Ritschel, Thomas; Kumke, Michael U

    2011-12-21

    In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive Förster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large Förster distance of ~7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but

  12. A Dipolar Anthracene Dye: Synthesis, Optical Properties and Two-photon Tissue Imaging.

    PubMed

    Moon, Hyunsoo; Jun, Yong Woong; Kim, Dokyoung; Ryu, Hye Gun; Wang, Taejun; Kim, Ki Hean; Huh, Youngbuhm; Jung, Junyang; Ahn, Kyo Han

    2016-09-20

    Two-photon microscopy is a powerful tool for studying biological systems. In search of novel two-photon absorbing dyes for bioimaging, we synthesized a new anthracene-based dipolar dye (anthradan) and evaluated its two-photon absorbing and imaging properties. The new anthradan, 9,10-bis(o-dimethoxy-phenyl)-anthradan, absorbs and emits at longer wavelengths than acedan, a well-known two-photon absorbing dye. It is also stable under two-photon excitation conditions and biocompatible, and thus used for two-photon imaging of mouse organ tissues to show bright, near-red fluorescence along with negligible autofluorescence. Such an anthradan thus holds promise as a new class of two-photon absorbing dyes for the development of fluorescent probes and tags for biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    PubMed

    Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that

  15. Water Quality Criteria for Disperse Red 9

    DTIC Science & Technology

    1987-07-01

    reported in Chin and Borer 1983). The parent compound of Disperse Red 9 is 9,10-anthraquinone; many of the natural and synthetic derivatives of 9,10...and carbonaceous matter (Rubin et al. 1983). 14 The combustion products are a result of thermal decomposition, thermal rearrangement of the parent dye...with individuals becoming more sensitive to subsequent contact (Tatyrok 1965). Parent (1964) reported that Disperse Red 9 is only slightly toxic by

  16. One trinucleus dimethine cyanine dye: Experimental and theoretical studies on molecular structure as well as absorption and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, D. D.; Wang, L. Y.; Su, J. J.; Zhang, X. F.; Lei, Y. B.; Zhai, G. H.; Wen, Z. Y.

    2013-05-01

    A kind of trinucleus dimethine cyanine dye: 1-methyl-2,6-bis[2-(furan-2-yl)vinyl]pyridinium iodide (1) was synthesized and characterized by 1H NMR, 13C NMR, IR, MS, UV-Vis spectroscopy and elemental analysis. The crystals of dye 1, obtained from slow evaporation of solvent acetone, crystallized in the triclinic space group P - 1 with a = 9.6501(16) Å, b = 10.2308(17) Å, c = 10.7341(17) Å, V = 887.2(3) Å3, and Z = 2 (at 298(2) K), and it was stabilized by the hydrogen bonds and intermolecular face-to-face π⋯π aromatic stacking interactions. Crystallographic, IR, 1H NMR and UV-Vis data of dye 1 were compared with the results of density functional theory (DFT) method, and the calculated molecular geometries, vibrational bands, 1H NMR chemical shifts and UV-Vis maximum absorption were consistent with the experimental results. The fluorescence spectra were predicted in four different solvents with CIS/PCM methods. Compared with experimental values, the absolute deviations of emission maxima were -17.4 nm in chloroform, 6.3 nm in DMSO, 4.9 nm in methanol, and 6.8 nm in water, respectively. And the experimental fluorescence spectra were nicely reproduced by the simulated fluorescence spectra for each solvent.

  17. Ultrafast electron and hole transfer dynamics of a solar cell dye containing hole acceptors on mesoporous TiO2 and Al2O3.

    PubMed

    Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas

    2017-03-08

    The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.

  18. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  19. Dye-Sensitized Solar Cells Employing Extracts from Four Cassia Flowers as Natural Sensitizers: Studies on Dye Ingredient Effect on Photovoltaic Performance

    NASA Astrophysics Data System (ADS)

    Maurya, Ishwar Chandra; Singh, Shalini; Neetu; Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2018-01-01

    Natural dyes extracted from four different flowers, namely, Cassia surattensis, Cassia tora, Cassia alata and Cassia occidentalis were used as sensitizers for TiO2-based dye-sensitized solar cells (DSSC). The dye extracts from flowers were obtained by a simple extraction technique and used without any further purification. Optical characteristics of dye extracts were studied. Fourier-transform infrared (FTIR) spectra were used to identify the constituents of extracted dyes. The photovoltaic performance of DSSC employing dye-capped TiO2 photoanodes was measured. The sensitization performance related to anchoring groups present and interaction between dyes with TiO2 surface is demonstrated. An attempt has been made to rationalize the observations by light absorption of the dye extracts and their adsorption on TiO2. The short-circuit current density ( I SC) values ranged from 0.06 mA/cm2 to 0.20 mA/cm2; open circuit voltage ( V OC) from 0.292 V to 0.833 V; fill factor (FF) from 0.7 to 0.9; efficiencies ( η) from 0.013% to 0.15% and incident photon-to-current conversion efficiency from 13% to 20%, were obtained for DSSC using these natural dye extracts. Cassia occidentalis showed the highest current density of 0.20 mA/cm2 and power conversion efficiency of 0.15%, which was due to better interaction between the carbonyl and hydroxyl group of the anthocyanin molecule of C. occidentalis and surface of TiO2 film. The red and blue shift of absorption wavelength of C. surattensis and the blue shift of absorption wavelength of the C. tora, C. alata and C. occidentalis extract in ethanol solution compared to that on TiO2 film has been used for the interpretation of obtained results.

  20. Physiological and biochemical responses of Chlorella vulgaris to Congo red.

    PubMed

    Hernández-Zamora, Miriam; Perales-Vela, Hugo Virgilio; Flores-Ortíz, César Mateo; Cañizares-Villanueva, Rosa Olivia

    2014-10-01

    Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.

    PubMed

    Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong

    2002-06-10

    Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions.

  2. Phenol red-silk tyrosine cross-linked hydrogels.

    PubMed

    Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L

    2016-09-15

    Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein

  3. Physicochemical and Nonlinear Optical Properties of Novel Environmentally Benign Heterocyclic Azomethine Dyes: Experimental and Theoretical Studies

    PubMed Central

    Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.

    2016-01-01

    Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371

  4. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Cronin,; John, P [Tucson, AZ; Tonazzi, Juan C. L. [Tucson, AZ; Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  5. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  6. Solar/UV-induced photocatalytic degradation of three commercial textile dyes.

    PubMed

    Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, Banumathi; Murugesan, V

    2002-01-28

    The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.

  7. Two-Photon Optical Properties of Near-Infrared Dyes at 1.55 microns Excitation

    PubMed Central

    Berezin, Mikhail; Zhan, Chun; Lee, Hyeran; Joo, Chulmin; Akers, Walter; Yazdanfar, Siavash; Achilefu, Samuel

    2011-01-01

    Two-photon (2P) optical properties of cyanine dyes were evaluated using a 2P fluorescence spectrophotometer with 1.55 μm excitation. We report the 2P characteristics of common NIR polymethine dyes, including their 2P action cross-sections and the 2P excited fluorescence lifetime. One of the dyes, DTTC showed the highest 2P action cross-section (~103 ± 19 GM) and relatively high 2P excited fluorescence lifetime and can be used as a scaffold for the synthesis of 2P molecular imaging probes. The 2P action cross-section of DTTC and the lifetime were also highly sensitive to the solvent polarity, providing other additional parameters for its use in optical imaging and the mechanism for probing environmental factors Overall, this study demonstrated the quantitative measurement of 2P properties of NIR dyes and established the foundation for designing molecular probes for 2P imaging applications in the NIR region. PMID:21866928

  8. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO2) and adsorption of remazol reactive dye

    NASA Astrophysics Data System (ADS)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Nanoporous amorphous-MnO2 was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH3COO)2.4H2O) in 0.1 M KMnO4. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO2 bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO2. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO2 showed 99 - 100% decolorization.

  9. Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake.

    PubMed

    Guadie, Awoke; Gessesse, Amare; Xia, Siqing

    2018-04-23

    Considering the saline-alkaline nature of textile wastewater and treatment requirements, microbial samples were collected from Ethiopian Rift Valley Soda Lakes. A large number of bacteria (121) were isolated from dye-uncontaminated Lakes Chitu (81.0%), Abijata (15.7%) and Arenguadie (3.3%), of which 95 isolates (78.5%) were found dye decolorizer. Many dye decolorizer from Lake Chitu positively correlated with higher pH (10.3 ± 0.1), salinity (64.6 ± 2.0%), conductivity (6.1 ± 0.3 mS cm -1 ) and Na+ (18.4 ± 0.6 g L -1 ) values observed than Abijata and Arenguadie Lakes. Through subsequent screening mechanism, strain A55 was selected to investigate the effect of nutrient (carbon and nitrogen), dissolved oxygen and dye concentration using Reactive Red 184 (RR 184). Based on morphological, biochemical and 16S rRNA gene sequence analysis, the strain was identified as Halomonas sp. Decolorization efficiencies were significantly enhanced with carbon (≥98%) and organic nitrogen (∼100%) than non-carbon/nitrogen (both<55%) supplements. Complete decolorization efficiencies were also observed under anoxic and anaerobic growth conditions. However, growing the isolate with nitrate (<30%) and aerobic (<10%) condition significantly decreased (p < 0.05) color removal efficiency. Kinetic analysis showed that pseudo-first-order best describes RR 184 decolorization process. Overall, the ability of Halomonas sp. strain A55 decolorized different dyes indicate that alkaline soda lake isolates are the potential candidate for treating color containing effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers

    NASA Astrophysics Data System (ADS)

    Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey

    1995-02-01

    We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.

  11. How many molecular layers of polar solvent molecules control chemistry? The concept of compensating dipoles.

    PubMed

    Langhals, Heinz; Braun, Patricia; Dietl, Christian; Mayer, Peter

    2013-09-27

    The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti-collinear dipoles on the basis of the E(T)(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium-N-phenolatebetaine dye; generally: E(T) =28,591 nm kcal mol(-1)/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds.

    PubMed

    Ganesan, P; Kumar, Chandini S; Bhaskar, N

    2008-05-01

    In vitro antioxidant activities of three selected Indian red seaweeds - viz., Euchema kappaphycus, Gracilaria edulis and Acanthophora spicifera were evaluated. Total phenolic content and reducing power of crude methanol extract were determined. The antioxidant activities of total methanol extract and five different solvent fractions (viz., petroleum ether (PE), ethyl acetate (EA), dichloromethane (DCM), butanol (BuOH) and aqueous) were also evaluated. EA fraction of A. spicifera exhibited higher total antioxidant activity (32.01 mg ascorbic acid equivalent/g extract) among all the fractions. Higher phenolic content (16.26 mg gallic acid equivalent/g extract) was noticed in PE fraction of G. edulis. Reducing power of crude methanol extract increased with increasing concentration of the extract. Reducing power and hydroxyl radical scavenging activity of E. kappaphycus were higher compared to standard antioxidant (alpha-tocopherol). The total phenol content of all the seaweeds was significantly different (P<0.05). In vitro antioxidant activities of methanol extracts of all the three seaweeds exhibited dose dependency; and increased with increasing concentration of the extract.

  13. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation† †Electronic supplementary information (ESI) available: Experimental details, basic photophysics of ADA, transient electronic absorption, additional steady-state and transient IR spectra. See DOI: 10.1039/c7sc00437k Click here for additional data file.

    PubMed Central

    Dereka, Bogdan

    2017-01-01

    The fluorescence quenching of organic dyes via H-bonding interactions is a well-known phenomenon. However, the mechanism of this Hydrogen-Bond Induced Nonradiative Deactivation (HBIND) is not understood. Insight into this process is obtained by probing in the infrared the O–H stretching vibration of the solvent after electronic excitation of a dye with H-bond accepting cyano groups. The fluorescence lifetime of this dye was previously found to decrease from 1.5 ns to 110 ps when going from an aprotic solvent to the strongly protic hexafluoroisopropanol (HFP). Prompt strengthening of the H-bond with the dye was identified by the presence of a broad positive O–H band of HFP, located at lower frequency than the O–H band of the pure solvent. Further strengthening occurs within a few picoseconds before the excited H-bonded complex decays to the ground state in 110 ps. The latter process is accompanied by the dissipation of energy from the dye to the solvent and the rise of a characteristic hot solvent band in the transient spectrum. Polarization-resolved measurements evidence a collinear alignment of the nitrile and hydroxyl groups in the H-bonded complex, which persists during the whole excited-state lifetime. Measurements in other fluorinated alcohols and in chloroform/HFP mixtures reveal that the HBIND efficiency depends not only on the strength of the H-bond interactions between the dye and the solvent but also on the ability of the solvent to form an extended H-bond network. The HBIND process can be viewed as an enhanced internal conversion of an excited complex consisting of the dye molecule connected to a large H-bond network. PMID:28970892

  14. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    NASA Astrophysics Data System (ADS)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  15. Simultaneously 'pushing' and 'pulling' graphene oxide into low-polar solvents through a designed interface.

    PubMed

    Liu, Zhen; Liu, Jingquan; Wang, Yichao; Razal, Joselito M; Francis, Paul S; Biggs, Mark J; Barrow, Colin J; Yang, Wenrong

    2018-08-03

    Dispersing graphene oxide (GO) in low-polar solvents can realize a perfect self-assembly with functional molecules and application in removal of organic impurities that only dissolve in low-polar solvents. The surface chemistry of GO plays an important role in its dispersity in these solvents. The direct transfer of hydrophilic GO into low-polar solvents, however, has remained an experimental challenge. In this study, we design an interface to transfer GO by simultaneously 'pushing and pulling' the nanosheets into low-polar solvents. Our approach is outstanding due to the ability to obtain monolayers of chemically reduced GO (CRGO) with designed surface properties in the organic phase. Using the transferred GO or CRGO dispersions, we have fabricated GO/fullerene nanocomposites and assessed the ability of CRGOs for dye adsorption. We hope our work can provide a universal approach for the phase transfer of other nanomaterials.

  16. Green light emitting curcumin dye in organic solvents

    NASA Astrophysics Data System (ADS)

    Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.

    2018-05-01

    In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.

  17. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    PubMed

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. FluoroMyelin™ Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin

    PubMed Central

    Monsma, Paula C.; Brown, Anthony

    2012-01-01

    FluoroMyelin™ Red is a commercially available water-soluble fluorescent dye that has selectivity for myelin. This dye is marketed for the visualization of myelin in brain cryosections, though it is also used widely to stain myelin in chemically fixed tissue. Here we have investigated the suitability of FluoroMyelin™ Red as a vital stain for live imaging of myelin in myelinating co-cultures of Schwann cells and dorsal root ganglion neurons. We show that addition of FluoroMyelin™ Red to the culture medium results in selective staining of myelin sheaths, with an optimal staining time of 2 hours, and has no apparent adverse effect on the neurons, their axons, or the myelinating cells at the light microscopic level. The fluorescence is bright and photostable, permitting long-term time-lapse imaging. After rinsing the cultures with medium lacking FluoroMyelin™ Red, the dye diffuses out of the myelin with a half life of about 130 minutes resulting in negligible fluorescence remaining after 18–24 hours. In addition, the large Stokes shift exhibited by FluoroMyelin™ Red makes it possible to readily distinguish it from popular and widely used green and red fluorescent probes such as GFP and mCherry. Thus FluoroMyelin™ Red is a useful reagent for live fluorescence imaging studies on myelinated axons. PMID:22743799

  19. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    PubMed

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of selected fluorescent dyes on small aquatic organisms

    NASA Astrophysics Data System (ADS)

    Rowiński, Paweł; Chrzanowski, Marcin

    2011-02-01

    Rhodamine B and Rhodamine WT are fluorescent dyes commonly used as tracers in hydrological investigations. Since introducing intensely red substances into rivers raises understandable doubts of ecological nature, the authors aimed at examining the influence of these dyes on small water fauna using bioindication methods. Quantitative results, calculated with the use of Bliss-Weber probit statistical method, were achieved by means of standardized ecotoxicological tests containing ready-to-hatch resting forms of fairy shrimp (Thamnocephalus platyurus). Qualitative studies included observation of water flea crustacean (Daphnia magna) and horned planorbis snail (Planorbis corneus), both typically present in rivers and representative for temperate climate, as well as guppy fish (Poecilla reticulata), paramecium protozoan (Paramaecium caudatum) and the above-mentioned fairy shrimp. The investigation revealed that both dyes in concentrations used for hydrological purposes are low enough to exert almost no toxic impact on water fauna considered.

  2. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application.

    PubMed

    Shaban, Mohamed; Abukhadra, Mostafa R; Hamd, Ahmed; Amin, Ragab R; Abdel Khalek, Ahmed

    2017-12-15

    MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni 2 O 3 ). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV-vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni 2 O 3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni 2 O 3 , respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni 2 O 3 as a single component. The adsorption mechanism of MCM-48/Ni 2 O 3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni 2 O 3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays.

    PubMed

    Singh, Namrata; Bhattacharyya, Debasish

    2016-04-15

    An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2010-11-01

    In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Color and COD degradation in photocatalytic process of procion red by using TiO2 catalyst under solar irradiation

    NASA Astrophysics Data System (ADS)

    Sari, Melati Ireng; Agustina, Tuty Emilia; Melwita, Elda; Aprianti, Tine

    2017-11-01

    Increasing textile industries in Indonesia resulted in increasing the utilization of dyes. The use of synthetic dyes are still dominating because they have many advantages. But, synthetic dyes are difficult to decompose in nature so they can cause potential pollution if discharged directly into the environment. In this study, Procion Red was used as a model of synthetic dye wastewater. The objective of this research is to study the effect of TiO2 catalyst concentration and irradiation time on the degradation of Procion Red under solar irradiation. Photo degradation takes place by using TiO2 catalyst powder in the various concentration of Procion Red of 150-300 ppm. The various concentrations of TiO2 catalyst of 0.5-8 g/l were used. The color and COD degradation of Procion Red for 12 hours of solar irradiation were investigated. Color degradation was measured by using a spectrophotometer. While COD degradation was measured by using Ferrous Ammonium Sulfate (FAS) analysis method. The result showed when using Procion Red of 150 ppm, the highest color degradation of 100% was achieved by using TiO2 catalyst of 6 g/l and the highest COD degradation of 62% was obtained by using TiO2 catalyst of 8 g/l, under 12 hours of solar irradiation

  6. Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution.

    PubMed

    Song, Kaili; Xu, Helan; Xu, Lan; Xie, Kongliang; Yang, Yiqi

    2017-05-01

    High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg -1 , respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity.

    PubMed

    Vyavahare, Govind D; Gurav, Ranjit G; Jadhav, Pooja P; Patil, Ravishankar R; Aware, Chetan B; Jadhav, Jyoti P

    2018-03-01

    In the present study, sorption and detoxification of malachite green (MG) dye was executed using biochar resulting after pyrolysis of agro-industrial waste at 400, 600 and 800 °C. Maximum sorption of MG dye (3000 mg/L) was observed on the sugarcane bagasse biochar (SCB) prepared at 800 °C. The interactive effects of different factors like dye concentration, time, pH and temperature on sorption of MG dye were investigated using response surface methodology (RSM). Optimum MG dye concentration, contact time, temperature and pH predicted through Box-Behnken based RSM model were 3000 mg/L MG dye, 51.89 min, 60 °C and 7.5, respectively. ANOVA analysis displayed the non-significant lack of fit value (0.4566), whereas, the predicted correlation coefficient values (R 2 0.8494) were reasonably in agreement with the adjusted value (R 2 0.9363) demonstrating highly significant model for MG dye sorption. The applicability of this model was also checked through F- test (30.39) with lower probability (0.0001) value. Furthermore, the characterization of SCB was performed using fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller surfaces (BET), total organic carbon (TOC) and atomic absorption spectroscopy (AAS). Phyto-toxicity and cytogenotoxicity studies showed successful removal of MG dye using SCB. In addition, the batch sorption studies for reutilization of SCB revealed that the SCB was effective in removal of MG for five repeated cycles. This technology would be effective for treating the toxic textile effluent released from the textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.

  9. RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip.

    PubMed

    Xu, Zongli; Langie, Sabine A S; De Boever, Patrick; Taylor, Jack A; Niu, Liang

    2017-01-03

    The Illumina Infinium HumanMethylation450 BeadChip and its successor, Infinium MethylationEPIC BeadChip, have been extensively utilized in epigenome-wide association studies. Both arrays use two fluorescent dyes (Cy3-green/Cy5-red) to measure methylation level at CpG sites. However, performance difference between dyes can result in biased estimates of methylation levels. Here we describe a novel method, called REgression on Logarithm of Internal Control probes (RELIC) to correct for dye bias on whole array by utilizing the intensity values of paired internal control probes that monitor the two color channels. We evaluate the method in several datasets against other widely used dye-bias correction methods. Results on data quality improvement showed that RELIC correction statistically significantly outperforms alternative dye-bias correction methods. We incorporated the method into the R package ENmix, which is freely available from the Bioconductor website ( https://www.bioconductor.org/packages/release/bioc/html/ENmix.html ). RELIC is an efficient and robust method to correct for dye-bias in Illumina Methylation BeadChip data. It outperforms other alternative methods and conveniently implemented in R package ENmix to facilitate DNA methylation studies.

  10. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agustia, Yuda Virgantara, E-mail: yuda.mechanical.engineer@student.uns.ac.id; Suyitno,, E-mail: suyitno@uns.ac.id; Sutanto, Bayu, E-mail: bayu.sutanto@student.uns.ac.id

    2016-03-29

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, E{submore » HOMO} and E{sub LUMO} was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where E{sub red} = −0.37V, E{sub LUMO} = −4.28 eV, E{sub ox} = 1.15V, E{sub HOMO} = −5.83 eV, and E{sub band} {sub gap} = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.« less

  11. Photoinduced electron transfer (PET) versus excimer formation in supramolecular p/n-heterojunctions of perylene bisimide dyes and implications for organic photovoltaics.

    PubMed

    Nowak-Król, Agnieszka; Fimmel, Benjamin; Son, Minjung; Kim, Dongho; Würthner, Frank

    2015-01-01

    Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer.

  12. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    PubMed Central

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  13. Assessment of FUN-1 vital dye staining: Yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye.

    PubMed

    Essary, Brandin D; Marshall, Pamela A

    2009-08-01

    FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.

  14. A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons.

    PubMed

    Baek, Yeonju; Park, Sang Jun; Zhou, Xin; Kim, Gyungmi; Kim, Hwan Myung; Yoon, Juyoung

    2016-12-15

    We present here a viscosity sensitive fluorescent dye, namely thiophene dihemicyanine (TDHC), that enables the specific staining of mitochondria. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this dye demonstrated its unique ability for robust staining of mitochondria with high photostability and ultrahigh signal-to-noise ratio (SNR). Moreover, TDHC also showed high sensitivity towards mitochondria membrane potential (ΔΨm) and intramitochondria viscosity change. Consequently, this dye was utilized in real-time monitoring of mitochondria transport in primary cortical neurons. Finally, the Two-Photon Microscopy (TPM) imaging ability of TDHC was also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  16. Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2013-05-01

    Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.

  17. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    PubMed

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-03

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Near-infrared squaraine dyes for fluorescence enhanced surface assay

    PubMed Central

    Matveeva, Evgenia G.; Terpetschnig, Ewald A.; Stevens, Megan; Patsenker, Leonid; Kolosova, Olga S.; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2009-01-01

    Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces. The fluorescence signal enhancement obtained for the two dyes was greater than that previously recorded for Rhodamine Red-X and AlexaFluor-647 labels. PMID:20046935

  19. Preparation and dyeing of super hydrophilic polyethylene terephthalate fabric

    NASA Astrophysics Data System (ADS)

    Zheng, D. D.; Zhou, J. F.; Xu, F.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this study, the dyeing properties of PET fabrics modified with sulfuric acid was investigated using disperse red E-4B and disperse blue 2BLNG-L at high temperature and high pressure. The results revealed that the sulfuric acid modification improved the K/S value of dyeing PET fabrics, and the modified PET fabric could be dyed uniformly. The a, b, C, L and H of modified PET fabric were almost the same as that of original PET fabric. The water contact angles were still 0o after 10s, indicating that the hydrophilic property of modified PET fabrics still kept excellent. The wash fastness of dyed PET fabrics after modification was generally good.

  20. Dyes for caries detection: influence on composite and compomer microleakage.

    PubMed

    Piva, Evandro; Meinhardt, Luciene; Demarco, Flávio F; Powers, John M

    2002-12-01

    The aim of this study was to evaluate the influence of caries-detecting dyes on the microleakage of adhesive materials. Sixty cubic class V cavities were prepared on buccal and lingual surfaces of 30 human third molars. Coronal margins were located in enamel and gingival margins in cementum. The teeth were randomly divided into six groups of ten restorations each. Cavities were restored with an adhesive system (Single Bond, 3M ESPE, St. Paul, Minn., USA), a compomer (F2000, 3M ESPE), or a composite resin (Z100, 3M ESPE) according to the manufacturer's directions. Acid red dye (Seek, Ultradent, South Jordan, Ut., USA) and basic fuchsin dye (Vide Cárie, Inodon, Porto Alegre, Brazil) were tested. Control groups were prepared without the use of dyes. After 7 days of storage in distilled water, the restorations were polished and the teeth were subjected to thermal cycling followed by immersion in 2% methylene blue. The teeth were sectioned, and microleakage scores were evaluated under magnification (40x). Data were submitted to statistical analysis using the nonparametric Kruskal-Wallis test. A statistically significant difference ( P<0.05) in microleakage was found between the materials in cementum (Z100>F2000) but not in enamel. Control and experimental groups using dyes showed similar results. It was concluded that dyes for caries detection did not increase microleakage of the adhesive materials tested.

  1. The effect of different π-bridge configuration on bi-anchored triphenylamine and phenyl modified triphenylamine based dyes for dye sensitized solar cell (DSSC) application: A theoretical approach.

    PubMed

    Pounraj, P; Mohankumar, V; Pandian, M Senthil; Ramasamy, P

    2018-01-01

    Twenty eight bi-anchored triphenylamine (TH-1 to TH-14) and phenyl modified triphenylamine (PH-TH-1 to PH-TH-14) based metal free organic dyes are designed for DSSC application. The electronic effect of different π-bridge configurations in donor-π-bridge-acceptor (D-π-A) 2 structure was theoretically simulated and verified using density functional theory (DFT) and time dependent density functional theory (TD-DFT). The triphenylamine and phenyl modified triphenylamine groups are used as donor and cyanoacrylic acid group is used as acceptor. Thiophene and cyanovinyl groups are used as π-bridge. The ground state molecular structure was optimized by density functional theory and the electronic absorption spectra were calculated by time dependent density functional theory. The light harvesting efficiency (LHE), dye regeneration energy (ΔG reg ) and electron injection energy (ΔG inject ) are determined by computational examination. It is observed that, when the number of π-bridge increases, the band gap of the dye decreases. Also the absorption maximum and molar extinction coefficient of the dyes are increased. Theoretical result shows that the thiophene-cyanovinyl and thiophene-thiophene-cyanovinyl-cyanovinyl configurations give broader and red shifted absorption spectrum compared to other configurations. Also the results of phenyl modified triphenylamine (PH-TH) dyes clearly show better absorption and dye regeneration energy compared to TH dyes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    PubMed

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.

    PubMed

    Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor

    2012-01-15

    A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    NASA Astrophysics Data System (ADS)

    Ishida, Tateki

    2015-01-01

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  5. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Tateki

    2015-01-22

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  6. Photo-degradation of basic green 1 and basic red 46 dyes in their binary solution by La2O3-Al2O3nanocomposite using first-order derivative spectra and experimental design methodology.

    PubMed

    Fahimirad, Bahareh; Asghari, Alireza; Rajabi, Maryam

    2017-05-15

    In this work, the lanthanum oxide-aluminum oxide (La 2 O 3 -Al 2 O 3 ) nanocomposite is introduced as an efficient photocatalyst for the photo-degradation of the dyes basic green 1 (BG1) and basic red 46 (BR46) in their binary aqueous solution under the UV light irradiation. The properties of this catalyst are determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and UV-visible spectrophotometry. The first-order derivative spectra are used for the simultaneous analysis of the dyes in their binary solution. The screening investigations indicate that five parameters including the catalyst dosage, concentration of the dyes, irradiation time, and solution pH have significant effects on the photo-degradation of the dyes. The effects of these variables together with their interactions in the photo-degradation of the dyes are studied using the Box-Behnken design (BBD). Under the optimum experimental conditions, obtained via the desirability function, the photo-catalytic activities of La 2 O 3 -Al 2 O 3 and pure Al 2 O 3 are also investigated. The results obtained show an enhancement in the photo-catalytic activity when La 2 O 3 nanoparticles are loaded on the surface of Al 2 O 3 nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).

    PubMed

    Ford, Lauren; Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S

    2017-03-03

    Madder (Rubia tinctorum L.) has been widely used as a red dye throughout history. Acid-sensitive colorants present in madder, such as glycosides (lucidin primeveroside, ruberythric acid, galiosin) and sensitive aglycons (lucidin), are degraded in the textile back extraction process; in previous literature these sensitive molecules are either absent or present in only low concentrations due to the use of acid in typical textile back extraction processes. Anthraquinone aglycons alizarin and purpurin are usually identified in analysis following harsh back extraction methods, such those using solvent mixtures with concentrated hydrochloric acid at high temperatures. Use of softer extraction techniques potentially allows for dye components present in madder to be extracted without degradation, which can potentially provide more information about the original dye profile, which varies significantly between madder varieties, species and dyeing technique. Herein, a softer extraction method involving aqueous glucose solution was developed and compared to other back extraction techniques on wool dyed with root extract from different varieties of Rubia tinctorum. Efficiencies of the extraction methods were analysed by HPLC coupled with diode array detection. Acidic literature methods were evaluated and they generally caused hydrolysis and degradation of the dye components, with alizarin, lucidin, and purpurin being the main compounds extracted. In contrast, extraction in aqueous glucose solution provides a highly effective method for extraction of madder dyed wool and is shown to efficiently extract lucidin primeveroside and ruberythric acid without causing hydrolysis and also extract aglycons that are present due to hydrolysis during processing of the plant material. Glucose solution is a favourable extraction medium due to its ability to form extensive hydrogen bonding with glycosides present in madder, and displace them from the fibre. This new glucose method offers an

  8. Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.

  9. Host compounds for red phosphorescent OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  10. Maintenance of residual activity of Bt toxin by using natural and synthetic dyes: a novel approach for sustainable mosquito vector control.

    PubMed

    Chandrashekhar, Patil; Rahul, Suryawanshi; Hemant, Borase; Chandrakant, Narkhede; Bipinchandra, Salunke; Satish, Patil

    2015-01-01

    Mosquito control protein from Bacillus thuringiensis gets inactivated with exposure to sunlight. To address this issue, the potential of synthetic and natural dye was investigated as sunlight protectants. Bt SV2 in absence of dyes when exposed to sunlight showed reduced effectiveness against the fourth instars of mosquito larvae. Whereas acriflavin, congo red and violacein were able to maintain 86.4%, 91.6% and 82.2% mosquito larvicidal efficacy of Bt SV2 against IVth instars larvae of Anopheles stephensi Meigen after exposure to sunlight. Similarly, beetroot dye, acriflavin, congo red and violacein maintained 98.4%, 97.1%, 90.8% and 70.7% larvicidal activities against Aedes aegypti Linnaeus after sunlight exposure. Prodigiosin was found to be the best photo-protectant by simultaneously protecting and enhancing Bt activity by 6.16% and 22.16% against A. stephensi and A. aegypti, respectively. Combination of dyes with Bt formulations can be a good strategy for mosquito control programmes in tropical and sub-tropical regions.

  11. Effect of viscosity on photoinduced electron transfer reaction: An observation of the Marcus inverted region in homogeneous solvents

    NASA Astrophysics Data System (ADS)

    Saini, Rajesh Kumar; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2016-09-01

    The viscosity effect of homogeneous solvents on the dynamics of photoinduced electron transfer (PET) reaction among the coumarins and N,N-dimethylaniline (DMA) is investigated using steady-state and time-resolved fluorescence spectroscopy. A bell shape Marcus inversion in the ET rates has been detected in the plot of ET rate constant (kq) with free energy change (ΔG0) in viscous solvents decanol and EG, but it is not observed in DMSO like low viscous solvent. We have also reported that there is no complex formation between the coumarin dye and DMA molecule by using fluorescence correlation spectroscopy.

  12. Near-infrared absorption in symmetric squarylium and croconate dyes: a comparative study using symmetry-adapted cluster-configuration interaction methods.

    PubMed

    Prabhakar, Ch; Yesudas, K; Krishna Chaitanya, G; Sitha, Sanyasi; Bhanuprakash, K; Rao, V Jayathirtha

    2005-09-29

    Symmetric croconate (CR) and squarylium dyes (SQ) are well-known near-infrared (NIR) dyes and, in general, are considered to be donor-acceptor-donor type molecules. It is established in the literature that CR dyes absorb in a longer wavelength region than the corresponding SQ dyes. This has been attributed to the CR ring being a better acceptor than the SQ ring. Thus increasing the donor capacity should lead to a bathochromic shift in both SQ and CR. On the other hand, some experiments reported in the literature have revealed that increasing the conjugation in the donor part of the SQ molecule leads first to red shift, which upon a further increase of the conjugation changes to a blue shift. Hence, to understand the role of the central ring and the substitutions in the absorption of these dyes, we carried out high-level symmetry-adapted cluster-configuration interaction (SAC-CI) calculations of some substituted SQ and CR dyes and compare the absorption energy with the existing experimental data. We found that there is very good agreement. We also carried out SAC-CI calculations of some smaller model molecules, which contain the main oxyallyl substructure. We varied the geometry (angle) of the oxyallyl subgroup and the substitution in these model molecules to establish a correlation with the bathochromic shift. We found that the charge transfer is very small and does not play the key role in the red shift, but on the other hand, the perturbation of the HOMO-LUMO gap (HLG) from both the geometry and substitution seems to be responsible for this shift. We suggest as a design principle that increasing the donor capacity of the groups may not help in the red shift, but introducing groups which perturb the HLG and decrease it without changing the MO character should lead to a larger bathochromic shift.

  13. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection.

    PubMed

    Sato, Ayaka; Ikeda, Yuya; Yamaguchi, Koichi; Vohra, Varun

    2018-03-16

    Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS) matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  14. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    PubMed

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. On-line SPE-UHPLC method using fused core columns for extraction and separation of nine illegal dyes in chilli-containing spices.

    PubMed

    Khalikova, Maria A; Satínský, Dalibor; Smidrkalová, Tereza; Solich, Petr

    2014-12-01

    The presented work describes the development of a simple, fast and effective on-line SPE-UHPLC-UV/vis method using fused core particle columns for extraction, separation and quantitative analysis of the nine illegal dyes, most frequently found in chilli-containing spices. The red dyes Sudan I-IV, Sudan Red 7B, Sudan Red G, Sudan Orange G, Para Red, and Methyl Red were separated and analyzed in less than 9 min without labor-consuming pretreatment procedure. The chromatographic separation was performed on Ascentis Express RP-Amide column with gradient elution using mixture of acetonitrile and water, as a mobile phase at a flow rate of 1.0 mL min(-1) and 55°C of temperature. As SPE sorbent for cleanup and pre-concentration of illegal dyes short guard fused core column Ascentis Express F5 was used. The applicability of proposed method was proven for three different chilli-containing commercial samples. Recoveries for all compounds were between 90% and 108% and relative standard deviation ranged from 1% to 4% for within- and from 2% to 6% for between-day. Limits of detection showed lower values than required by European Union regulations and were in the range of 3.3-10.3 µg L(-1) for standard solutions, 5.6-235.6 µg kg(-1) for chilli-containing spices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-05

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.

  17. Dual emission of chalcone-analogue dyes emitting in the red region

    NASA Astrophysics Data System (ADS)

    Fayed, Tarek A.; Awad, Mohamed K.

    2004-08-01

    The photophysical properties of new synthesized chalcones namely; 1-(4 '-R-phenyl)-5-(4 '-dimethylaminophenyl)-2,4- pentadien-1-one, [R=H ( 1), Cl ( 2) and OCH 3 ( 3)] were studied in different solvents by using steady-state absorption and emission spectroscopy. The fluorescence spectra of these chalcones exhibit dual emission in medium and polar solvents. The dual emission was attributed to population of a polar locally excited (LE) state and a highly dipolar intramolecular charge transfer (ICT) state. The changes in dipole moments upon excitation were calculated from the solvatochromic plots. The total fluorescence quantum yields ( φf) were also determined, and their values are strongly dependent on the nature of substitutent and the solvent polarity. Semiempirical molecular orbital calculations using the atom superposition and electron delocalization molecular orbital (ASED-MO) method were also performed to investigate the molecular and electronic structures of these chalcones in both the ground and excited state. The change of the dipole moment upon excitation was explained on the basis of changes in the charge redistribution over the whole skeleton of the molecules, which agree well with the experimental results. Also, the nature and energy of the electronic transitions were elucidated and discussed in relation to the experimental data.

  18. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    PubMed

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Brown seaweed pigment as a dye source for photoelectrochemical solar cells

    NASA Astrophysics Data System (ADS)

    Calogero, Giuseppe; Citro, Ilaria; Di Marco, Gaetano; Armeli Minicante, Simona; Morabito, Marina; Genovese, Giuseppa

    2014-01-01

    Chlorophylls based-dyes obtained from seaweeds represent attractive alternatives to the expensive and polluting pyridil based Ru complexes because of their abundance in nature. Another important characteristic is that the algae do not subtract either cropland or agricultural water, therefore do not conflict with agro-food sector. This pigment shows a typical intense absorption in the UV/blue (Soret band) and a less intense band in the red/near IR (Q band) spectral regions and for these reasons appear very promising as sensitizer dyes for DSSC. In the present study, we utilized chlorophylls from samples of the brown alga Undaria pinnatifida as sensitizer in DSSCs. The dye, extracted by frozen seaweeds and used without any chemical purification, showed a very good fill factor (0.69). Even the photelectrochemical parameters if compared with the existent literature are very interesting.

  20. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    PubMed Central

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S.

    2012-01-01

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s. PMID:23235441

  1. Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Chow, Philip C. Y.

    2014-06-19

    7-(Diethylamino)-coumarin-3-carboxylic acid (1) has been used as a laser dye, fluorescent label, and biomedical inhibitor in many different applications. Although this dye is typically used in the solution phase, it is prone to molecular aggregation, resulting in many inconsistent optoelectronic properties being reported in the literature. In this paper, the UV—vis absorption and fluorescence spectra of 1 are investigated in three representative solvents: cyclohexane [nonpolar and non-hydrogen bonding (NHB)], ethanol (moderately polar and hydrogen-bond accepting/donating), and DMSO (strongly polar and hydrogen-bond accepting). These experimental results, in conjunction with (time-dependent) density functional theory (DFT/TDDFT) based quantum calculations, have led to themore » identification of the J-aggregates of 1, and rationalized its different aggregation characteristic in cyclohexane in contrast to that of another similar compound, coumarin 343. We show here that these aggregates are largely responsible for the anomalous optoelectronic properties of this compound. In addition, DFT calculations and 1H NMR spectroscopy measurements suggest that the intramolecular hydrogen bond in 1 could be "opened up" in hydrogen-bond accepting solvents, affording significant molecular conformational changes and complex formation effects. The comprehensive understanding of the molecular aggregation and complex formation mechanisms of 1 acquired through this work forms a foundation for the knowledge-based molecular design of organic dyes with tailored aggregation tendencies or anti-aggregation characteristics to cater for different opapplications.« less

  2. Treatment of synthetic textile wastewater containing dye mixtures with microcosms.

    PubMed

    Yaseen, Dina A; Scholz, Miklas

    2018-01-01

    The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH 4 -N), and nitrate-nitrogen (NO 3 -N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development.

  3. The influence of the distance between the donor-acceptor groups of polymethine dyes on their photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Seliverstova, E.; Ibrayev, N.

    2018-01-01

    Spectral-luminescent and photovoltaic properties of polymethine dyes of various structures are studied. It is shown that an increase in the length of the methylene chain between the active chromophores leads to a red-wave shift of the absorption and fluorescence spectra. Significant changes in the absorptivity and lifetime of fluorescence do not occur in this case. The best photovoltaic parameters have cells sensitized with shorter dye molecules. It is shown, that for a longer dye the resistance associated with electron recombination on the TiO2/electrolyte surface is much higher than the electron transfer resistance in the semiconductor, which reduces the efficiency of electron transfer in the solar cell, sensitized with longer dye molecules.

  4. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye.

    PubMed

    Geethakarthi, A; Phanikumar, B R

    2012-03-01

    The removal of azo Reactive Red 31(RR31) from synthetic dye solution using tannery sludge-developed activated carbon (TSC) was investigated. TSC was prepared from a combination of physical and chemical activation. The developed TSC was characterized by FT-IR, SEM, TG-DTA, specific surface area and zero point charge of pH (pH(zpc)). The isotherm models, kinetic models and thermodynamic parameters were also analysed to describe the adsorptive behaviour of TSC. The effect of contact time, initial dye concentration, carbon dosage, agitation speed, initial pH and temperature were carried out for batch adsorption studies. The isotherm plot of the dye RR31 on TSC fitted better with the Langmuir adsorption isotherm than the Freundlich model. The maximum monolayer adsorption capacity of TSC in the removal of RR31 ranged from 23.15 to 39.37 mg/g. The thermodynamic parameters showed the endothermic and physical nature of the Reactive Red 31 adsorption on TSC. The entropy and enthalpy values were 181.515 J/Kmol and 5.285 kJ/mol, respectively. The developed cationic tannery sludge carbon was found to be an effective adsorbent in the removal of the anionic azo reactive dye RR31.

  5. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    PubMed Central

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  7. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple.

    PubMed

    Daeneke, Torben; Uemura, Yu; Duffy, Noel W; Mozer, Attila J; Koumura, Nagatoshi; Bach, Udo; Spiccia, Leone

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  9. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali, E-mail: rozali@ukm.edu.my

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye onmore » 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.« less

  10. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

    PubMed

    Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D

    2016-01-26

    The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  12. Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.

    PubMed

    Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K

    2016-03-01

    The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, NM; Aukema, KG; Gralnick, JA

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high

  14. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

    PubMed

    He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng

    2018-04-15

    A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.

    PubMed

    Wallisch, Melanie; Sulmann, Stefan; Koch, Karl-Wilhelm; Christoffers, Jens

    2017-05-11

    Diaminoterephthalates are fluorescent dyes and define scaffolds, which can be orthogonally functionalized at their two carboxylate residues with functional residues bearing task specific reactive groups. The synthesis of monofunctionalized dyes with thiol groups for surface binding, an azide for click chemistry, and a biotinoylated congener for streptavidin binding is reported. Two bifunctionalized dyes were prepared: One with an azide for click chemistry and a biotin for streptavidin binding, the other with a maleimide for reaction with thiol and a cyclooctyne moiety for ligation with copper-free click chemistry. In general, the compounds are red to orange, fluorescent materials with an absorption at about 450 nm and an emission at 560 nm with quantum yields between 2-41 %. Of particular interest is the maleimide-functionalized compound, which shows low fluorescence quantum yield (2 %) by itself. After addition of a thiol, the fluorescence is "turned on"; quantum yield 41 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optoelectronic and photoacoustic studies of an organic dye synthesized through green route

    NASA Astrophysics Data System (ADS)

    Vijayakumar, S.; Sreelatha, S.; Hatamimoslehabadi, M.; Yelleswarappu, C. S.

    2017-10-01

    An azo dye was prepared through an environmentally benign and economically feasible synthesis route with cardanol as a starting material. Cardanol is a cost-effective and renewable natural source obtained from Cashew Nut Shell Liquid, a by-product of the cashew industry. The dye was spectrally characterized by IR, UV-Vis, NMR and fluorescence studies. UV-Vis absorption showed a bathochromic shift between solvents of lower and higher polarities. Nonlinear optical and photoacoustic properties were studied using a frequency doubled Nd:YAG laser producing 532 nm laser pulses of 3 ns pulse width. Results show that the nonlinear absorption coefficient decreases with the increase of on-axis intensity, suggesting excited state absorption as the principal mechanism. The observed nonlinearity has applications in optoelectronics.

  18. Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red.

    PubMed

    Abdollahi, Nasrin; Masoomi, Mohammad Yaser; Morsali, Ali; Junk, Peter C; Wang, Jun

    2018-07-01

    A 3-D Zn(II) based metal-organic framework (MOF) of [Zn 4 (oba) 3 (DMF) 2 ] was synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H 2 oba) via sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography, scanning electron microscopy, and X-ray powder diffraction were used to characterize these MOF samples. The effect of different times of irradiation and various concentrations of primary reagents were experimented for obtaining monotonous morphology. The results show that uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the concentration. N 2 adsorption was applied to examine the effect of synthesis method on porosity of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency of this MOF in removal of the dye pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.

    PubMed

    Panda, Gopal C; Das, Sujoy K; Guha, Arun K

    2009-05-15

    Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.

  20. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770 mg g−1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  1. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  2. A study of Reactive Red 198 adsorption on iron filings from aqueous solutions.

    PubMed

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Khademi, Fahime

    2014-01-01

    In recent years, reactive dyes have been widely used in textile industries with particular efficiency. They dyes are often toxic, carcinogenic and mutagenic. Improper treatment and non-scientific disposal of dyed wastewater from these industries into water sources has created many environmental problems and concerns around the world. The purpose of the present study is to investigate the efficiency of iron filings in adsorption of Reactive Red 198 from aqueous solutions. This study was conducted using an experimental method at the laboratory scale. In this study, the effects of operating parameters such as pH (1-11), initial dye concentration (40-400 mg/L), contact time (5-120 min) and iron dose (0.1-1 g) with a mesh of<100 were studied. Dye concentration was determined using a spectrophotometer at a wavelength of 520 nm. The results indicated that maximum adsorption capacity of the dye in question was obtained at pH 3, contact time of 60 min and adsorbent dose of 1 g. At initial dye concentration of 100 and 200 mg/L, by increasing the dose of waste iron from 0.1 to 1 g, the removal percentage increased from approximately 76.89% to 97.28% and from 22.64% to 68.03%, respectively. At pH 3, contact time of 5 min and constant waste iron dose of 0.8 g, the dye removal efficiency was 85.34%. By increasing the contact time to 120 min, the removal efficiency increased to 99.2%. Welding iron waste as an inexpensive and available adsorbent has an optimum ability for adsorption of Reactive Red 198 from aqueous solutions.

  3. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium

    NASA Astrophysics Data System (ADS)

    Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.

    2018-02-01

    A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.

  4. A pillar[5]arene based gel from a low-molecular-weight gelator for sustained dye release in water.

    PubMed

    Yao, Yong; Sun, Yan; Yu, Huaxu; Chen, Wenrui; Dai, Hong; Shi, Yujun

    2017-12-12

    A soft gel based on pillar[5]arene was successfully prepared using a carbazone reaction. Furthermore, dyes such as TPP or TPPE can be incorporated into this gel and were observed to be released in a sustained way in water due to solvent exchange.

  5. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    PubMed Central

    Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.P.; da Silva, M.

    2009-01-01

    The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments. PMID:24031428

  6. An ensemble and single-molecule fluorescence microscopy investigation of phase-separated monolayer films stained with Nile Red.

    PubMed

    Lu, Yin; Porterfield, Robyn; Thunder, Terri; Paige, Matthew F

    2011-01-01

    Phase-separated Langmuir-Blodgett monolayer films prepared from mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were stained via spin-casting with the polarity sensitive phenoxazine dye Nile Red, and characterized using a combination of ensemble and single-molecule fluorescence microscopy measurements. Ensemble fluorescence microscopy and spectromicroscopy showed that Nile Red preferentially associated with the hydrogenated domains of the phase-separated films, and was strongly fluorescent in these areas of the film. These measurements, in conjunction with single-molecule fluorescence imaging experiments, also indicated that a small sub-population of dye molecules localizes on the perfluorinated regions of the sample, but that this sub-population is spectroscopically indistinguishable from that associated with the hydrogenated domains. The relative importance of selective dye adsorption and local polarity sensitivity of Nile Red for staining applications in phase-separated LB films as well as in cellular environments is discussed in context of the experimental results. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  8. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs.

  9. Photoinduced intramolecular charge transfer and photophysical characteristics of (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM) in different media

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; El-Daly, Samy A.; Alamry, Khalid A.; Arshad, Muhammad Nadeem; Pannipara, Mehboobali

    2015-10-01

    A new fluorophore, (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM), was synthesized by knoevenagel condensation of 4-(dimethylamino) benzaldehyde and 2-methylbenzyl cyanide in ethanol using NaOH as base. The electronic absorption and emission characteristic of DPM was studied in different solvents. The X-ray crystallographic structure of DPM was also investigated. A crystalline solid of DPM gives a strong green emission at about 533 nm; these phenomena are important for the application of DPM dye in organic photo emitting diode. DPM exhibits a red shift in its emission spectrum as solvent polarity increases, indicating a large change in the dipole moment of dye molecule upon excitation due to intramolecular charge transfer in excited DPM*. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. The DPM dye displays solubilization in cationic (CTAB) micelle and could be used as a probe to determine the critical micelle concentration (CMC) of CTAB.

  10. Solvent relaxation of fluorescent labels as a new tool for the detection of polarity and rigidity changes in membranes

    NASA Astrophysics Data System (ADS)

    Hof, Martin; Hutterer, Rudi

    1998-04-01

    Since solvent relaxation (SR) exclusively depends on the physical properties of the dye environment, SR spectroscopy of defined located labels in amphiphilic assemblies accomplishes the characterisation of specific domains. The most accurate way to characterise SR is the determination of the time-dependent Stokes shift. The time course of the Stokes shift, expressed as a solvent relaxation time, gives information about both the rigidity and polarity of the dye environment. The absolute value of the Stokes shift following the excitation is correlated with the polarity of the probed region. The validity of this approach for the investigation of phospholipid bilayers is illustrated by listing the parameters influencing the SR kinetics of appropriate membrane labels: membrane curvature, percentage of phosphatidylserine (PS) in small unilamell vesicles (SUV), addition of Ca2+ ions, binding of vitamin-K dependent proteins, percentage of diether-lipids in phosphatidylcholine (PC)-vesicles, and temperature.

  11. Triazine dyes are agonists of the NAADP receptor

    PubMed Central

    Billington, Richard A; Bak, Judit; Martinez-Coscolla, Ana; Debidda, Marcella; Genazzani, Armando A

    2004-01-01

    NAADP has been shown to be a potent calcium-releasing second messenger in a wide variety of cell types to date. However, research has been hampered by a lack of pharmacological agents, with which to investigate NAADP-induced calcium release, and by the molecular identity of its cellular target protein being unknown.In the present paper, the sea urchin egg model was used to investigate whether triazine dyes, which can act as nucleotide mimetics, can bind to the NAADP receptor, induce Ca2+ release and be used for affinity chromatography of the receptor.Indeed, all the triazine dyes tested (Reactive Red 120 (RR120), Reactive Green 19 (RG19), Reactive Green 5 (RG5), Cibacron Blue 3GA and Reactive Yellow 86) displayed micromolar affinities, except for Reactive Orange 14. Furthermore, unlike NAADP, RR120, RG19 and RG5 did not bind in an irreversible manner.The compound that displayed the highest affinity, RR120, was tested in a 45Ca2+ efflux assay. This compound released Ca2+ via the NAADP receptor, as shown by the ability of subthreshold NAADP concentrations to inhibit this release. Furthermore, heparin and ruthenium red were unable to block RR120-induced Ca2+ release.We have also shown that RG5 and RG19, immobilised on resins, retain the ability to bind to the receptor, and that this interaction can be disrupted by high salt concentrations. As a proof of principle, we have shown that this can be used to partially purify the NAADP receptor by at least 75-fold.In conclusion, triazine dyes interact with the NAADP receptor, and this could be exploited in future to create a new generation of pharmacological tools to investigate this messenger and, in combination with other techniques, to purify the receptor. PMID:15265807

  12. Dispersed synthesis of uniform Fe3O4 magnetic nanoparticles via in situ decomposition of iron precursor along cotton fibre for Sudan dyes analysis in food samples.

    PubMed

    Bentahir, Yassine; Elmarhoum, Said; Salghi, Rachid; Algarra, Manuel; Ríos, Angel; Zougagh, Mohammed

    2017-11-01

    Fe 3 O 4 magnetic nanoparticles, with a negative charge surface, are known to have efficient adsorbent properties, but they tend to be agglomerated into larger aggregates or flocs, which can cause loss of specific area. The addition of cotton fibre, as a stabiliser in preparation of the Fe 3 O 4 nanoparticles, is able to efficiently reduce particle aggregation, and thus, effective particle size, resulting in much greater specific surface area and adsorption sites. Fe 3 O 4 nanoparticles synthesis was accomplished by in situ high-temperature decomposition of the precursor ferric ion in the presence of cotton fibre and ethylene glycol solvent. The morphology of Fe 3 O 4 nanoparticles was characterised by field emission scanning electron microscopy and X-ray diffraction, which confirmed that the magnetic nanoparticles are highly dispersed. These Fe 3 O 4 nanoparticles were used for clean-up and pre-concentration of Sudan dyes in chilli and hot red sauces, prior to their determination by capillary liquid chromatography diode array detection. A comparative study of analyte pre-concentration was conducted with magnetic nanoparticles prepared with and without cotton fibre showing that both solid phases adsorb the analytes, but higher recoveries were obtained when using cotton fibre which therefore was selected for extraction of Sudan dyes.

  13. An easy and effective method for the intercalation of hydrophobic natural dye into organo-montmorillonite for improved photostability

    NASA Astrophysics Data System (ADS)

    Taguchi, Taiga; Kohno, Yoshiumi; Shibata, Masashi; Tomita, Yasumasa; Fukuhara, Choji; Maeda, Yasuhisa

    2018-05-01

    β-carotene (BC) is one of the naturally occurring dyes belonging to the carotenoids group. Although it is more environmentally friendly and better suited for humans compared with synthetic dyes, it destabilizes with light and heat, easily losing its color under irradiation. Extended application of BC are therefore limited. The aim of this study is to improve the stability of BC by intercalation into the montmorillonite layers modified with a cationic surfactant, by a simple mixing and minimal solvent use. The physical mixing of small quantities of concentrated BC/hexane solutions with organo-modified montmorillonite successfully resulted in the composite material. The length and the number of alkyl chains of the surfactant used for the organic modification influenced the stability enhancement of the incorporated dye. The improved stability of the dye molecules incorporated in the interlayer space was found to be due to restricted contact with atmospheric oxygen.

  14. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Suppression of Red Blood Cell Autofluorescence for Immunocytochemistry on Fixed Embryonic Mouse Tissue.

    PubMed

    Whittington, Niteace C; Wray, Susan

    2017-10-23

    Autofluorescence is a problem that interferes with immunofluorescent staining and complicates data analysis. Throughout the mouse embryo, red blood cells naturally fluoresce across multiple wavelengths, spanning the emission and excitation spectra of many commonly used fluorescent reporters, including antibodies, dyes, stains, probes, and transgenic proteins, making it difficult to distinguish assay fluorescence from endogenous fluorescence. Several tissue treatment methods have been developed to bypass this issue with varying degrees of success. Sudan Black B dye has been commonly used to quench autofluorescence, but can also introduce background fluorescence. Here we present a protocol for an alternative called TrueBlack Lipofuscin Autofluorescence Quencher. The protocol described in this unit demonstrates how TrueBlack efficiently quenches red blood cell autofluorescence across red and green wavelengths in fixed embryonic tissue without interfering with immunofluorescent signal intensity or introducing background staining. We also identify optimal incubation, concentration, and multiple usage conditions for routine immunofluorescence microscopy. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  17. Etoposide-induced blood-brain barrier disruption. Effect of drug compared with that of solvents.

    PubMed

    Spigelman, M K; Zappulla, R A; Johnson, J; Goldsmith, S J; Malis, L I; Holland, J F

    1984-10-01

    The intracarotid infusion of the anti-neoplastic compound, etoposide, has been shown to exert a dose-dependent effect on blood-brain barrier (BBB) permeability. Etoposide, however, is formulated in a complex solvent solution containing alcohol, Tween 80, polyethylene glycol 300, and citric acid. To investigate the contribution of the solvent solution to BBB disruption, the authors studied Sprague-Dawley rats after the internal carotid artery infusion of the solvent solution with and without the addition of etoposide. Experiments were performed at four doses of drug and/or solvent. Disruption of the BBB was evaluated qualitatively by the appearance of the systemically administered dye, Evans blue, in the cerebral hemispheres and quantitatively by the ratio of gamma counts of the technetium-labeled chelate of diethylenetriaminepentaacetic acid (99mTc-DTPA) in the ipsilateral:contralateral hemisphere. Significant barrier opening was obtained in all four groups of animals infused with solvent plus etoposide. In the corresponding groups of rats infused with the solvent solution alone, BBB disruption was markedly lower. Only in the group infused with the largest dose of solvent was the hemispheric ratio of 99mTc-DTPA significantly different from saline-infused animals. Each of the groups with solvent plus etoposide had 99mTc-DTPA ratios significantly different from the control group. Intracarotid infusion and subsequent BBB disruption were well tolerated by the animals receiving either solvent alone or solvent and etoposide. Disruption of the BBB secondary to the intracarotid infusion of etoposide is primarily caused by the drug itself and not by the solvent solution.

  18. A simple system for the identification of fluorescent dyes capable of reporting differences in secondary structure and hydrophobicity among amyloidogenic protein oligomers

    NASA Astrophysics Data System (ADS)

    Yates, Emma

    2012-02-01

    Thioflavin T and Congo Red are fluorescent dyes that are commonly used to identify the presence of amyloid structures, ordered protein aggregates. Despite the ubiquity of their use, little is known about their mechanism of interaction with amyloid fibrils, or whether other dyes, whose photophysics indicate that they may be more responsive to differences in macromolecular secondary structure and hydrophobicity, would be better suited to the identification of pathologically relevant oligomeric species in amyloid diseases. In order to systematically address this question, we have designed a strategy that discretely introduces differences in secondary structure and hydrophobicity amidst otherwise identical polyamino acids. This strategy will enable us to quantify and compare the affinities of Thioflavin T, Congo Red, and other, incompletely explored, fluorescent dyes for different secondary structural elements and hydrophobic motifs. With this information, we will identify dyes that give the most robust and quantitative information about structural differences among the complex population of oligomeric species present along an aggregation pathway between soluble monomers and amyloid fibrils, and correlate the resulting structural information with differential oligomeric toxicity.

  19. Ratiometric Imaging Using a Single Dye Enables Simultaneous Visualization of Rac1 and Cdc42 Activation.

    PubMed

    MacNevin, Christopher J; Toutchkine, Alexei; Marston, Daniel J; Hsu, Chia-Wen; Tsygankov, Denis; Li, Li; Liu, Bei; Qi, Timothy; Nguyen, Dan-Vinh; Hahn, Klaus M

    2016-03-02

    Biosensors that report endogenous protein activity in vivo can be based on environment-sensing fluorescent dyes. The dyes can be attached to reagents that bind selectively to a specific conformation of the targeted protein, such that binding leads to a fluorescence change. Dyes that are sufficiently bright for use at low, nonperturbing intracellular concentrations typically undergo changes in intensity rather than the shifts in excitation or emission maxima that would enable precise quantitation through ratiometric imaging. We report here mero199, an environment-sensing dye that undergoes a 33 nm solvent-dependent shift in excitation. The dye was used to generate a ratiometric biosensor of Cdc42 (CRIB199) without the need for additional fluorophores. CRIB199 was used in the same cell with a FRET sensor of Rac1 activation to simultaneously observe Cdc42 and Rac1 activity in cellular protrusions, indicating that Rac1 but not Cdc42 activity was reduced during tail retraction, and specific protrusions had reduced Cdc42 activity. A novel program (EdgeProps) used to correlate localized activation with cell edge dynamics indicated that Rac1 was specifically reduced during retraction.

  20. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic

  1. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    PubMed Central

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  2. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.

    PubMed

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M

    2015-12-01

    Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.

  3. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  4. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "congo red".

    PubMed

    Khanjani, Somayeh; Morsali, Ali

    2014-07-01

    A metal-organic framework MOF-5 has been synthesized on silk fiber through electrostatic layer-by-layer assembly. The silk surface coating was formed via sequential dipping in an alternating bath of metal and ligand solutions at room temperature by direct mixing. SEM was used to investigate the growth of MOF-5 coating as materials for separation membrane due to their desirable properties in adsorptive removal of congo red (CR) from contaminated water. The adsorption capacity of MOF-5 is remarkable high in the liquid phase. The adsorption of CR at various concentration and contact time in spontaneous process were studied. The silk fibers containing MOF-5 open a wide field of possible applications, such as protection layers or membranes in pollution remediation wastewater and any effluent. Desorption of the dye can be carried out by using NaOH solution with more than about 50% recovery of congo red from MOF-5 coated on silk membrane filtration. In order to investigate the role of sonicating on the morphology of products, one of the reactions was performed with ultrasound irradiation and the crystal growth is completed more than other methods. The samples and adsorption of CR were characterized with SEM, powder X-ray diffraction (XRD) and UV-visible spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  6. Genotoxicity of Dyes Present in Colored Smoke Munitions.

    DTIC Science & Technology

    1986-07-07

    Salmonella bacteria with and without S-9 ..... .......... 32 10. Mutagenic activity of Disperse Red 15 in TA-1538 stain of Salmonella bacteria with and...0.50 4 𔃾 4 MNNG 0 05 - . ..... I . ~*- A191 735 GENOTOXICITY OF DYES PRESENT IN COLORED SMOKE MUNITIONS 2/2 I (U) L VELACE BIOMEDICAL AND ENVIRONMENTAL...for the Salmonella I mutagenicity test. Mutat. Res. 113:173-215. i Perry, P. and S. wolr. 1974. New gieinsa ineLhod for differential staining I of

  7. The solvent effects on dimethyl phthalate investigated by FTIR characterization, solvent parameter correlation and DFT computation

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian

    2018-06-01

    This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.

  8. Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes.

    PubMed

    Tedder, Sarah A; Wheeler, Jeffrey L; Danehy, Paul M

    2011-02-20

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610 nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes.

  9. Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination

    Treesearch

    John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller

    2018-01-01

    Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...

  10. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  11. Fluorimetric studies and noncovalent labeling of protein with the near-infrared dye HITCI for analysis by CE-LIF.

    PubMed

    Yan, Weiying; Colyer, Christa L

    2005-08-01

    1,1',3,3,3',3'-Hexamethylindotricarbocyanine iodide (HITCI) is a commercially available, positively charged, indocarbocyanine dye used typically as a laser dye in the near infrared (NIR). The absorbance and fluorescence properties of HITCI in a variety of solvent systems were determined. Results indicate that the fluorescence of HITCI is not significantly affected by the pH. Titration of HITCI with human serum albumin (HSA) and trypsinogen was carried out to investigate the interactions between this dye and proteins. These studies revealed that the absorbance and fluorescence properties of the dye change upon binding to protein in a wide range of solution pH's. The potential use of HITCI as a noncovalent protein labeling probe, therefore, was explored. Determination and separation of HITCI and HITCI-protein complexes was performed by capillary electrophoresis with diode-laser induced fluorescence detection (CE-LIF). Both pre-column and on-column noncovalent labeling methods are demonstrated.

  12. The fluorescence theatre: a cost-effective device using theatre gels for fluorescent protein and dye screening.

    PubMed

    Heil, John R; Nordeste, Ricardo F; Charles, Trevor C

    2011-04-01

    Here we report a simple cost-effective device for screening colonies on plates for expression of the monomeric red fluorescent protein mRFP1 and the fluorescent dye Nile red. This device can be built from any simple light source, in our case a Quebec Colony Counter, and cost-effective theatre gels. The device can be assembled in as little as 20 min, and it produces excellent results when screening a large number of colonies.

  13. NIR fluorescent dyes: versatile vehicles for marker and probe applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Chapman, Gala; Beckford, Garfield; Henary, Maged

    2013-02-01

    The use of the NIR spectral region (650-900 nm) is advantageous due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. Near-Infrared (NIR) dyes are increasingly used in the biological and medical field. The binding characteristics of NIR dyes to biomolecules are possibly controlled by several factors, including hydrophobicity, size and charge just to mention a few parameters. Binding characteristics of symmetric carbocyanines and found that the hydrophobic nature of the NIR dye is only partially responsible for the binding strength. Upon binding to biomolecules significant fluorescence enhancement can be observed for symmetrical carbocyanines. This fluorescence amplification facilitates the detection of the NIR dye and enhances its utility as NIR reporter. This manuscript discusses some probe and marker applications of such NIR fluorescent dyes. One application discussed here is the use of NIR dyes as markers. For labeling applications the fluorescence intensity of the NIR fluorescent label can significantly be increased by enclosing several dye molecules in nanoparticles. To decrease self quenching dyes that have relatively large Stokes' shift needs to be used. This is achieved by substituting meso position halogens with amino moiety. This substitution can also serve as a linker to covalently attach the dye molecule to the nanoparticle backbone. We report here on the preparation of NIR fluorescent silica nanoparticles. Silica nanoparticles that are modified with aminoreactive moieties can be used as bright fluorescent labels in bioanalytical applications. A new bioanalytical technique to detect and monitor the catalytic activity of the sulfur assimilating enzyme using NIR dyes is reported as well. In this spectroscopic bioanalytical assay a family of Fischer based n-butyl sulfonate substituted dyes that exhibit distinct variation in absorbance and fluorescence properties and strong binding to serum albumin as its

  14. Substituent and solvent effects on the UV/vis absorption spectra of 5-(3- and 4-substituted arylazo)-4,6-dimethyl-3-cyano-2-pyridones

    NASA Astrophysics Data System (ADS)

    Mijin, Dušan Ž.; Ušćumlić, Gordana S.; Perišić-Janjić, Nada U.; Valentić, Nataša V.

    2006-01-01

    Absorption spectra of seventeen 5-(3- and 4-substituted arylazo)-4,6-dimethyl-3-cyano-2-pyridones have been recorded in 12 protic and aprotic solvents in the range 200-600 nm. The effects of substituents on the absorption spectra of these new azo dyes are interpreted by correlation of absorption frequencies with Hammett equation. The solute-solvent interactions were clarified on the basis of linear solvation energy relationships concept proposed by Kamlet and Taft. The 2-pyridone/2-hydroxypiridine tautomeric equilibration is found to depend upon substituents as well as on solvents.

  15. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    PubMed

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Direct analysis of textile dyes from trace fibers by automated microfluidics extraction system coupled with Q-TOF mass spectrometer for forensic applications.

    PubMed

    Sultana, Nadia; Gunning, Sean; Furst, Stephen J; Garrard, Kenneth P; Dow, Thomas A; Vinueza, Nelson R

    2018-05-19

    Textile fiber is a common form of transferable trace evidence at the crime scene. Different techniques such as microscopy or spectroscopy are currently being used for trace fiber analysis. Dye characterization in trace fiber adds an important molecular specificity during the analysis. In this study, we performed a direct trace fiber analysis method via dye characterization by a novel automated microfluidics device (MFD) dye extraction system coupled with a quadrupole-time-of-flight (Q-TOF) mass spectrometer (MS). The MFD system used an in-house made automated procedure which requires only 10μL of organic solvent for the extraction. The total extraction and identification time by the system is under 12min. A variety of sulfonated azo and anthraquinone dyes were analyzed from ∼1mm length nylon fiber samples. This methodology successfully characterized multiple dyes (≥3 dyes) from a single fiber thread. Additionally, it was possible to do dye characterization from single fibers with a diameter of ∼10μm. The MFD-MS system was used for elemental composition and isotopic distribution analysis where MFD-MS/MS was used for structural characterization of dyes on fibers. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  18. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimov, O K; Basiev, T T; Orlovskii, Yu V

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located withinmore » the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)« less

  19. A dye-sensitized photoelectrochemical tandem cell for light driven hydrogen production from water

    DOE PAGES

    Sherman, Benjamin D.; Sheridan, Matthew V.; Wee, Kyung -Ryang; ...

    2016-12-02

    Here, tandem junction photoelectrochemical water-splitting devices, whereby two light absorbing electrodes targeting separate portions of the solar spectrum generate the voltage required to convert water to oxygen and hydrogen, enable much higher possible efficiencies than single absorber systems. We report here on the development of a tandem system consisting of a dye-sensitized photoelectrochemical cell (DSPEC) wired in series with a dye-sensitized solar cell (DSC). The DSPEC photoanode incorporates a tris(bipyridine)ruthenium(II)-type chromophore and molecular ruthenium based water oxidation catalyst. The DSPEC was tested with two more-red absorbing DSC variations, one utilizing N719 dye with an I 3 –/I – redox mediatormore » solution and the other D35 dye with a tris(bipyridine)cobalt ([Co(bpy) 3] 3+/2+) based mediator. The tandem configuration consisting of the DSPEC and D35/[Co(bpy) 3] 3+/2+ based DSC gave the best overall performance and demonstrated the production of H 2 from H 2O with the only energy input from simulated solar illumination.« less

  20. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater.

    PubMed

    Borges, Gabriella Alexandre; Silva, Luciana Pereira; Penido, Jussara Alves; de Lemos, Leandro Rodrigues; Mageste, Aparecida Barbosa; Rodrigues, Guilherme Dias

    2016-12-01

    This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.