Superradiant laser emission from rhodamine 6G and rhodamine B using a coaxial flashpump.
NASA Technical Reports Server (NTRS)
Mumola, P. B.
1972-01-01
Superradiant laser emission has been observed from ethanol solutions of rhodamine 6G and rhodamine B using a coaxial flashlamp pump. The dependence of input threshold energy on dye concentration is examined. The possibility of exciting other dyes to superradiance is discussed.
Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes
2014-01-01
Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.
Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata
2016-11-01
Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hochberger, Juergen; Bredt, Marion; Mueller, Gudrun; Hahn, Eckhart G.; Ell, Christian
1993-05-01
In the following study three different pulsed laser lithotripsy systems were compared for the fine fragmentation of identical sets of natural and synthetic gallstones `in vitro.' Using a pulsed coumarin dye laser (504 nm), a pulsed rhodamine 6G dye laser (595 nm), and a pulsed Alexandrite laser (755 nm) a total of 184 concrements of known chemical composition, size, and weight were disintegrated to a fragment size of 
Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar
2017-01-01
In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Tunable cytotoxicity of rhodamine 6G via anion variations.
Magut, Paul K S; Das, Susmita; Fernand, Vivian E; Losso, Jack; McDonough, Karen; Naylor, Brittni M; Aggarwal, Sita; Warner, Isiah M
2013-10-23
Chemotherapeutic agents with low toxicity to normal tissues are a major goal in cancer research. In this regard, the therapeutic activities of cationic dyes, such as rhodamine 6G, toward cancer cells have been studied for decades with observed toxicities toward normal and cancer cells. Herein, we report rhodamine 6G-based organic salts with varying counteranions that are stable under physiological conditions, display excellent fluorescence photostability, and more importantly have tunable chemotherapeutic properties. Our in vitro studies indicate that the hydrophobic compounds of this series allow production of nanoparticles which are nontoxic to normal cells and toxic to cancer cells. Furthermore, the anions, in combination with cations such as sodium, were observed to be nontoxic to both normal and cancer cells. To the best of our knowledge, this is the first demonstration that both the cation and anion play an extremely important and cooperative role in the antitumor properties of these compounds.
A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
Mandal, Paulami; Bardhan, Munmun; Ganguly, Tapan
2010-05-03
UV-vis, time-resolved fluorescence and circular dichroism spectroscopic investigations have been made to reveal the nature of the interactions between xanthene dye Rhodamine 6G and the well known protein hemoglobin. From the analysis of the steady-state and time-resolved fluorescence quenching of Rhodamine 6G in aqueous solutions in presence of hemoglobin, it is revealed that the quenching is static in nature. The primary binding pattern between Rhodamine and hemoglobin has been interpreted as combined effect of hydrophobic association and electrostatic interaction. The binding constants, number of binding sites and thermodynamic parameters at various pH of the environment have been computed. The binding average distance between the energy donor Rhodamine and acceptor hemoglobin has been determined from the Forster's theory. Copyright 2010 Elsevier B.V. All rights reserved.
Kutushov, M; Gorelik, O
2013-01-01
Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.
Laser-Induced Population Inversion in Rhodamine 6G for Lysozyme Oligomer Detection.
Hanczyc, Piotr; Sznitko, Lech
2017-06-06
Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.
Stimulated emission from aluminium anode oxide films doped with rhodamine 6G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrayev, N Kh; Zeinidenov, A K; Aimukhanov, A K
The spectral and luminescent properties of the rhodamine 6G dye in a porous matrix of aluminium anode oxide are studied. The films with a highly-ordered porous structure are produced using the method of two-stage anodic oxidation. By means of raster electron microscopy it is found that the diameter of the pores amounts to nearly 50 nm and the separation between the adjacent channels is almost 105 nm. The thickness of the films is equal to 55 μm, and the specific surface area measured using the method of nitrogen capillary condensation is 15.3 m{sup 2} g{sup -1}. Fluorescence and absorption spectramore » of rhodamine 6G molecules injected into the pores of the aluminium anode oxide are measured. It is found that under the excitation of samples with the surface dye concentration 0.3 × 10{sup 14} molecules m{sup -2} by the second harmonic of the Nd : YAG laser in the longitudinal scheme with the pumping intensity 0.4 MW cm{sup -2}, a narrow band of stimulated emission with the intensity maximum at the wavelength 572 nm appears against the background of the laser-induced fluorescence spectrum. A further increase in the pumping radiation intensity leads to the narrowing of the stimulated emission band and an increase in its intensity. The obtained results demonstrate the potential possibility of using the porous films of aluminium anode oxide, doped with laser dyes, in developing active elements for quantum electronics. (laser applications and other topics in quantum electronics)« less
Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien
2015-08-04
Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.
Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.
2011-01-01
A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.
Quirks of dye nomenclature. 5. Rhodamines.
Cooksey, C J
2016-01-01
Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.
Paik, S R; Yokoyama, K; Yoshida, M; Ohta, T; Kagawa, Y; Allison, W S
1993-12-01
The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 microM where 70% stimulation is observed at 36 degrees C. Half maximal stimulation is observed at about 3 microM dye. At rhodamine 6G concentrations greater than 10 microM, ATPase activity declines with 50% inhibition observed at about 75 microM dye. The ATPase activities of the alpha 3 beta 3 gamma and alpha 3 beta 3 gamma delta complexes assembled from isolated subunits of TF1 expressed in E. coli deleted of the unc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the alpha 3 beta 3 and alpha 3 beta 3 delta complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 microM dye at 36 degrees C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 microM dye at 30 degrees C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.
Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes.
Tedder, Sarah A; Wheeler, Jeffrey L; Danehy, Paul M
2011-02-20
A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610 nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes.
Optical properties of rhodamine 6G-doped TiO2 sol-gel films
NASA Astrophysics Data System (ADS)
Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.
2005-06-01
The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.
Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
Ren, Hui; Kulkarni, Dhaval D; Kodiyath, Rajesh; Xu, Weinan; Choi, Ikjun; Tsukruk, Vladimir V
2014-02-26
Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.
Rhodamine-WT dye losses in a mountain stream environment
Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.
1983-01-01
A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).
Laser inhibited diffusion in rhodamine-ethanol solutions
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Fuhr, P. L.; Robinson, D. W.
1981-01-01
The diffusion of rhodamine-6G dye in ethanol is observed to be inhibited by optical pumping by a cadmium laser. The diffusion process is observed as a function of the solution temperature. The relative difference in diffusion coefficients with and without optical pumping is calculated. The effect is interpreted as being due to a stronger solvent-dye interaction in the first excited singlet state of rhodamine-6G.
Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao
2015-04-01
In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan
2012-12-15
Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analysesmore » using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.« less
Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash
2016-07-01
The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U
The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.
Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S
2017-11-01
Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching
NASA Astrophysics Data System (ADS)
Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.
2017-11-01
The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.
NASA Astrophysics Data System (ADS)
Sato, Hiroyasu; Kusumoto, Yoshihumi; Nakashima, Nobuaki; Yoshihara, Keitaro
1980-04-01
The mechanism of enhancement in the energy transfer between rhodamine 6G and 3,3'-diethylthiacarbocyanine iodide by sodium lauryl sulfate in the premicellar region was studied by a picosecond laser technique. The Forster mechanism with an increased local concentration suggesting dye-rich induced micelle formation was concluded from the shape of the decay curve.
Photolysis of rhodamine-WT dye
Tai, D.Y.; Rathbun, R.E.
1988-01-01
Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.
Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...
2016-09-30
Here, rhodamines are chromophores that are employed in many dye applications. Their strong optical absorption in the visible region of the electromagnetic spectrum renders them attractive dye candidates for dye-sensitized solar cells (DSCs). However, they have not yet been systematically tested in DSCs as single- or co-sensitizers. Recent advances in concerted experimental and computational workflows involving molecular design protocols can afford a better understanding of the molecular origins of the optoelectronic properties in these sensitizers. Herein, we examine the suitability of rhodamines R560 (1), R575 (2), R590 (3), R610 (4), R620 (5), R640 (6), and R3B (7) as chromophores inmore » co-sensitized DSCs. Our study follows a stepwise approach. Initially, structural and optical properties of the dyes are investigated by experimental and computational methods to reveal structure-property relationships and other useful features for DSC applications. Subsequently, 1-7 are investigated at the dye···TiO 2 interface, both by calculations of dye-adsorption onto the surface of a modeled (TiO 2) 9 cluster, and by experimental studies of dye-adsorption on TiO 2. For that purpose, a selection of rhodamine dyes are paired together (1 and 5) and (1 and 7) for co-sensitization, among which 5 is also co-adsorbed with a fluorescein dye in order to explore chemical compatibility factors. The best dye candidates are identified from the findings of these adsorption studies in terms of dye aggregation, anchoring modes, and panchromatic response. Despite their promising dye…TiO 2 adsorption and optical prospects, our results show that rhodamines lack a suitable intramolecular charge transfer pathway for dye-to-TiO 2 electron injection to occur, thus precluding their photovoltaic function as DSC dyes. Our results are then assessed against ostensibly disparate reports of rhodamines performing successfully in DSC devices; this comparison necessitated the internal reproduction
[Fluorescence Determination of Trace Se with the Hydride-K13-Rhodamine 6G System].
Liang, Ai-hui; Li, Yuan; Huang, Shan-shan; Luo, Yang-he; Wen, Gui-qing; Jiang, Zhi-liang
2015-05-01
Se is a necessary trace element for human and animals, but the excess intake of Se caused poison. Thus, it is very important to determination of Se in foods and water. The target of this study is development of a new, sensitive and selective hydride generation-molecular fluorescence method for the determination of Se. In 0. 36 mol . L-1 sulfuric acid, NaBH4 as reducing agent, Se (IV) is reduced to H2 Se. Usin3-g I solution as absorption liquid3, I- is reduced to I- by H2Se. When adding rhodamine 6G, Rhodamine 6G and I3- form association particles, which lead to the fluorescence intensity decreased. When Se(IV) existing, Rhodamine 6G and I3- bind less, And the remaining amount of Rhodamine 6G increase. So the fluorescence intensity is enhanced. The analytical conditions were optimized, a 0. 36 ml . L-1 H2SO4, 21. 6.g . L-1 NaBH4, 23.3 µm . L-1 rhodamine 6G, and 50 µmol . L-1 KI3 were chosen for use. When the excitation wavelength is at 480nm, the Rayleigh scattering peak does not affect the fluorescence recording, and was selected for determination of Se. Under the selected conditions, Se(IV) concentration in the 0. 02~0. 60 µg . mL-1 range and the increase value of the fluorescence intensity (ΔF) at 562 nm linear relationship. The linear regression equation is ΔF562 nm =12. 6c + 20. 9. The detecton limit was 0.01 µ.g . L-1. The influence of coexistence substances on the hydride generatin-molecular fluorescence determination of 5. 07 X10(-6) mol . L-1 Se(IV) was considered in details. Results showed that this new fluorescence method is of high selectivity, that is, 0. 5 mmol. L-1 Ba2+, Ca2+, Zn2+ and Fe3+, 0. 25 mmol . L-1 . Mg2+, 0. 05 mmol . L-1 K+, 0. 2 mmol . L-1 Al3+, 0. 025 mmol . L-1 Te(VI) do not interfere with the determination. The influence of Hg2+, CD2+ and Cu2+ that precipitate with Se(IV), can be eliminated by addition of complex reagent. This hydride generation-molecular fluorescence method has been applied to determination of trace Se in water
Possibility of using Rhodamine B dye in diagnosis of some men's diseases
NASA Astrophysics Data System (ADS)
Khodjayev, Gayrat; Ismailov, Zafar F.; Kurtaliev, Eldar N.; Nizomov, Negmat; Khaydarova, Feruza U.; Hamidov, Zariddin; Khakimova, Dilorom P.
2007-09-01
The functional differences of human blood serum albumin in norm and at different patologic process were studied by spectral-luminescent method by comparison of binding constant (K) and concentration of binding sites (N) values of rhodamine B dye with blood serum. It was shown that K and N of rhodamine B dye with blood serum of sick men is decreased as compared to that for healthy men.
Measurement of ground water velocity using Rhodamine WT dye near Sheffield, Illinois
Garklavs, George; Toler, L.G.
1985-01-01
Ground-water flow velocity was estimated in a tract of land adjacent to a low-level radioactive-waste disposal site near Sheffield, Illinois, by measuring the time-of-travel between two wells spaced 110 feet apart. Rhodamine WT dye was the principal tracer used in the test. The leading edge and peak concentrations of Rhodamine WT were well defined. A ground-water velocity of 6.9 feet per day (2,500 feet per year) was computed from the arrival time of the leading edge of the tracer cloud. (USGS)
Fujimori, Keiichi; Sakata, Yuta; Moriuchi-Kawakami, Takayo; Shibutani, Yasuhiko
2017-11-01
A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1-5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums. Copyright © 2017 John Wiley & Sons, Ltd.
Strong coupling between surface plasmon polariton and laser dye rhodamine 800
NASA Astrophysics Data System (ADS)
Valmorra, Federico; Bröll, Markus; Schwaiger, Stephan; Welzel, Nadine; Heitmann, Detlef; Mendach, Stefan
2011-08-01
We report on strong coupling between surface plasmon polaritons on a thin silver film and laser dye Rhodamine 800. Attenuated total reflection measurements reveal that the pure surface plasmon polaritons interact with the Rhodamine 800 absorption lines exhibiting pronounced anticrossings in the dispersion relation. We show that the corresponding energy gap can be tailored by the concentration of dye molecules in the dielectric matrix between 50 meV and 70 meV. We can well model our data by a classical transfer matrix approach as well as by a quantum mechanical coupled oscillator ansatz.
Tsutsumi, Naoto; Hirano, Yoshinori; Kinashi, Kenji; Sakai, Wataru
2018-06-12
The fluorescent properties of dyes and fluorophores in condensed matter significantly affect the laser performance of organic dye lasers and fluorescent polymer lasers. Concentration quenching of fluorescence is commonly observed in condensed matter. Several approaches have been presented to suppress such quenching, such as the use of a dendrimer and the use of effective energy transfer in a guest-host system. The enhanced fluorescence of rhodamine 6G (R6G) dye on a vinylidene fluoride polymer is an alternative method for enhancing laser performance because of the roughness of the P(VDF-TrFE) surface and the interaction between polar β-crystals of P(VDF-TrFE) and R6G dye. In this paper, a significant improvement in slope efficiency (SE) is demonstrated without a significant depression in the lasing threshold for distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers fabricated using an R6G-dispersed cellulose acetate (CA) matrix spin-coated onto a copolymer of vinylidene fluoride and trifluoroethylene P(VDF-TrFE) thin film. SEs of 3.4 and 1.3% were measured for DBR and DFB laser devices with CA/R6G on a P(VDF-TrFE) thin film, respectively, whereas an SE of less than 1.0% was measured for both corresponding laser devices without a P(VDF-TrFE) thin film. From the aspect of simple fabrication procedures, repeatability in device fabrication and performance, stability of the device, time for device fabrication, the present approach is the most preferable way for industrial applications, requiring only the additional step of spin-coating of a P(VDF-TrFE) thin film.
Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines.
Lavis, Luke D
2017-06-20
Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology-the melding of old and new chemical knowledge-leading to useful molecules for advanced biochemical and biological experiments.
New dye-labeled terminators for improved DNA sequencing patterns.
Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M
1997-01-01
We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158
Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.
Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K
2015-05-01
Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.
NASA Astrophysics Data System (ADS)
Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida
2018-05-01
In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.
Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites
Kucki, Melanie; Fuhrmann-Lieker, Thomas
2012-01-01
The incorporation of rhodamine dyes in the cell wall of diatoms Coscinodiscus granii and Coscinodiscus wailesii for the production of luminescent hybrid nanostructures is investigated. By systematic variation of the substitution pattern of the rhodamine core, we found that carbonic acids are considerably better suited than esters because of their physiological compatibility. The amino substitution pattern that controls the optical properties of the chromophore has no critical influence on dye uptake and incorporation, thus a variety of biocomposites with different emission maxima can be prepared. Applications in biomineralization studies as well as in materials science are envisioned. PMID:21865248
Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures
NASA Astrophysics Data System (ADS)
Kuchmizhak, A. A.; Nepomnyashchii, A. V.; Vitrik, O. B.; Kulchin, Yu. N.
Biosensing characteristics of the laser-spalled nanotextures produced under single-pulse irradiation of a 500-nm thick Ag film surface were assessed by measuring spontaneous emission enhancement of overlaying Rhodamine 6G (Rh6G) molecules utilizing polarization-resolved confocal microspectroscopy technique. Our preliminary study shows for the first time that a single spalled micro-sized crater covered with sub-100 nm sharp tips at a certain excitation conditions provides up to 40-fold plasmon-mediated enhancement of the spontaneous emission from the 10-nm thick Rh6G over-layer indicating high potential of these easy-to-do structures for routine biosensing tasks.
Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes
Field, George F.; Hammond, Peter R.
1993-01-01
A novel method for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.
Sudrajat, Hanggara; Babel, Sandhya
2016-05-01
N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.
Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes
Field, G.F.; Hammond, P.R.
1993-10-26
A novel method is described for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.
Characterization of Rhodamine-123 as a Tracer Dye for Use In In vitro Drug Transport Assays
Forster, Samantha; Thumser, Alfred E.; Hood, Steve R.; Plant, Nick
2012-01-01
Fluorescent tracer dyes represent an important class of sub-cellular probes and allow the examination of cellular processes in real-time with minimal impact upon these processes. Such tracer dyes are becoming increasingly used for the examination of membrane transport processes, as they are easy-to-use, cost effective probe substrates for a number of membrane protein transporters. Rhodamine 123, a member of the rhodamine family of flurone dyes, has been used to examine membrane transport by the ABCB1 gene product, MDR1. MDR1 is viewed as the archetypal drug transport protein, and is able to efflux a large number of clinically relevant drugs. In addition, ectopic activity of MDR1 has been associated with the development of multiple drug resistance phenotype, which results in a poor patient response to therapeutic intervention. It is thus important to be able to examine the potential for novel compounds to be MDR1 substrates. Given the increasing use rhodamine 123 as a tracer dye for MDR1, a full characterisation of its spectral properties in a range of in vitro assay-relevant media is warranted. Herein, we determine λmax for excitation and emission or rhodamine 123 and its metabolite rhodamine 110 in commonly used solvents and extraction buffers, demonstrating that fluorescence is highly dependent on the chemical environment: Optimal parameters are 1% (v/v) methanol in HBSS, with λex = 505 nm, λem = 525 nm. We characterise the uptake of rhodamine 123 into cells, via both passive and active processes, and demonstrate that this occurs primarily through OATP1A2-mediated facilitated transport at concentrations below 2 µM, and via micelle-mediated passive diffusion above this. Finally, we quantify the intracellular sequestration and metabolism of rhodamine 123, demonstrating that these are both cell line-dependent factors that may influence the interpretation of transport assays. PMID:22470447
Sakamoto, Misato; Shoji, Atsushi; Sugawara, Masao
2016-07-15
Functionalized giant unilamellar vesicles (GUVs) containing a fluorescence dye Rhodamine 6G is proposed as a marker in sandwich-type immunoassay for bovine serum albumin (BSA) and lipocalin-2 (LCN2). The GUVs were prepared by the electroformation method and functionalized with anti-BSA antibody and anti-LCN2 antibody, respectively. The purification of antibody-modified GUVs was achieved by conventional centrifugation and a washing step in a flow system. To antigen on an antibody slip, antibody-modified GUVs were added as a marker and incubated. After wash-out of excess reagents and lysis of the bound GUVs with Triton X-100, the fluorescence image was captured. The fluorometric immunoassays for BSA and LCN2 exhibited lower detection limits of 4 and 80 fg ml(-)(1), respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Crawford, Lindsey; Putnam, David
2014-08-20
Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.
Synthesis of 5- and 6-Carboxy-X-rhodamines
2008-01-01
An efficient route is reported to 5- and 6-carboxy-X-rhodamines (compounds 1 and 2) that contain multiple n-propylene or γ,γ-dimethylpropylene groups bridging terminal nitrogen atoms and the central xanthene core. Gram quantities of these dyes are synthesized from inexpensive starting materials. The isolated products are activated by selective transformation of the carboxylic acid group into N-hydroxysuccinimidyl esters in situ and then conjugated with an amino group of a molecule of interest. PMID:18837556
NASA Astrophysics Data System (ADS)
Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun
2014-07-01
Two novel methods, first derivative spectrophotometric method (1D) and first derivative ratio spectrophotometric method (1DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL-1, with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by 1D method, and 0.9987 for RhB and 0.9958 for Rh6G by 1DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL-1. The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for 1D and 1DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis.
LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium
NASA Astrophysics Data System (ADS)
Akimov, A. I.; Saletskii, A. M.
2000-11-01
The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.
Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun
2014-07-15
Two novel methods, first derivative spectrophotometric method ((1)D) and first derivative ratio spectrophotometric method ((1)DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL(-1), with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by (1)D method, and 0.9987 for RhB and 0.9958 for Rh6G by (1)DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL(-1). The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for (1)D and (1)DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Correlation of surface enhanced Raman spectroscopy and nanoparticle aggregation with rhodamine 6G
NASA Astrophysics Data System (ADS)
Hoff, Christopher A.
Surface enhanced Raman spectroscopy (SERS) has fascinated the analytical chemistry field for decades. The SERS phenomenon has progressively leveraged the inherently insensitive Raman phenomenon from a novelty vibrational spectroscopy method into one capable of single molecule detection, with attendant molecular level selectivity and information. Yet, even after 40 years since its discovery, the core mechanism behind this phenomenon is still debated. This thesis presents results from a series of photometric titrations wherein solutions of 30 nm Au@Ag nanoparticles (NPs) were titrated with rhodamine 6G (R6G), spanning five orders of magnitude in R6G concentration, and which elucidate the conditions required for the onset of SERS by R6G in this system. The experiments illustrated the correlation between the Raman response and the plasmonic (via UV-Vis spectroscopy) properties of the nanoparticle solutions. It was found that the onset of R6G SERS was related much more closely to the aggregation of the nanoparticles in solution than to their R6G adsorbed surface coverage. However, triggering aggregation with sodium chloride appeared to enhance SERS by an independent mechanism, which is operative only at low, i.e., [NaCl] > 100 mM concentration.
Geng, Hao; Zhang, Xian-Fu
2015-03-15
The absorption and fluorescence spectra as well as fluorescence lifetimes of tetrasulfonated zinc phthalocyanine ZnPc(SO3Na)4 were measured in the absence and presence of four rhodamine dyes, Rhodamine B (RB), Ethyl rhodamine B (ERB), Rhodamine 6G (R6G), Rhodamine 110 (R110), and Pyronine B (PYB). The ground state complexes of phthalocyanine-(Rhodamine)2 were observed which exhibit new absorption bands. The binding constants are all very large (0.86×10(5)-0.22×10(8) M(-1)), suggesting rhodamine-phthalocyanine pairs are very good combinations for efficient selfassembly. Both the fluorescence intensity and the lifetime values of ZnPc(SO3Na)4 were decreased by the presence of rhodamines. The structural effect of rhodamines on selfassembly is significant. The ground state binding and dynamic quenching capability is PYB>R6G>ERB>RB>R110. The dynamic fluorescence quenching is due to the photoinduced electron transfer (PET). The PET rate constant is very large and in the order of 10(13) M(-1) s(-1), much greater than kf and kic (in the order of 10(8) M(-1) s(-1)), which means that the PET efficiency is almost 100%. Therefore the non-covalent Pc-rhodamine is a very good pair of donor/acceptor for potential efficient solar energy conversion. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Zhiliang; Liang, Yueyuan; Huang, Guoxia; Wei, Xiaoling; Liang, Aihui; Zhong, Fuxin
2009-01-01
A highly sensitive and selective resonance scattering spectral assay was proposed for the determination of horseradish peroxidase (HRP), based on its catalytic effect on the H2O2 oxidation of KI to form I3(-). The I3(-) combined respectively with rhodamine (Rh) dye such as rhodamine S (RhS), rhodamine 6G (Rh6G), rhodamine B (RhB) and butyl-rhodamine B (b-RhB), to form association particles (Rh-I3(n). The four Rh systems all exhibit a stronger resonance scattering (RS) peak at 424 nm. For the RhS, Rh6G, RhB and b-RhB systems, HRP concentration in the range of 3.2 x 10(-12) to 4.8 x 10(-9), 2 x 10(-11) to 3.2 x 10(-9), 1.6 x 10(-11) to 3.2 x 10(-9) and 1.6 x 10(-11) to 4 x 10(-9) g/mL was linear to its RS intensity at 424 nm, with a detection limit of 2.2 x 10(-12), 2.5 x 10(-12), 4.4 x 10(-12) and 2.6 x 10(-12 )g/mL, respectively. This RhS system was most sensitive and stable, and was applied for the determination of HRP in the hepatitis B surface antibody labeling HRP and water samples, with satisfactory results.
Feasibility of solar-pumped dye lasers
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.
1987-01-01
Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.
Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid
NASA Astrophysics Data System (ADS)
Rau, Ileana; Szukalski, Adam; Sznitko, Lech; Miniewicz, Andrzej; Bartkiewicz, Stanislaw; Kajzar, Francois; Sahraoui, Bouchta; Mysliwiec, Jaroslaw
2012-10-01
Deoxyribonucleic acid (DNA) is commonly viewed as a genetic information carrier. However, now it is recognized as a nanomaterial, rather than as a biological material, in the research field of nanotechnology. Here, we show that using pure DNA, doped with rhodamine 6G, we are able to observe amplified spontaneous emission (ASE) phenomenon. Moderate ASE threshold, photodegradation, and reasonable gain coefficient observed in this natural host gives some perspectives for practical applications of this system in biophotonics. Obtained results open the way and will be leading to construction of truly bio-lasers using nature made luminophores, such as anthocyanins.
Kinetic Analysis of Rhodamines Efflux Mediated by the Multidrug Resistance Protein (MRP1)
Saengkhae, Chantarawan; Loetchutinat, Chatchanok; Garnier-Suillerot, Arlette
2003-01-01
Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, ka = VM/km, was very similar for the four rhodamine analogs but ∼10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes. PMID:12944313
NASA Astrophysics Data System (ADS)
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 °C at different total concentrations of rhodamine B (5.89 × 10 -6 to 2.36 × 10 -4 M) and rhodamine 6G (2.34 × 10 -5 to 5.89 × 10 -4 M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TΔ S°-Δ H° plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 degrees C at different total concentrations of rhodamine B (5.89 x 10(-6) to 2.36 x 10(-4)M) and rhodamine 6G (2.34 x 10(-5) to 5.89 x 10(-4)M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TDeltaS degrees -DeltaH degrees plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.
Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A
2016-10-01
The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.
Wu, Youshen; Liu, Jiajun; Ma, Jingwen; Liu, Yongchun; Wang, Ya; Wu, Daocheng
2016-06-15
A series of fluorescent nanothermometers (FTs) was prepared with Rhodamine dye-incorporated Pluronic F-127-melamine-formaldehyde composite polymer nanoparticles (R-F127-MF NPs). The highly soluble Rhodamine dye molecules were bound with Pluronic F127 micelles and subsequently incorporated in the cross-linked MF resin NPs during high-temperature cross-link treatment. The morphology and chemical structure of R-F127-MF NPs were characterized with dynamic light scattering, electron microscopy, and Fourier-transform infrared (FTIR) spectra. Fluorescence properties and thermoresponsivities were analyzed using fluorescence spectra. R-F127-MF NPs are found to be monodispersed, presenting a size range of 88-105 nm, and have bright fluorescence and high stability in severe treatments such as autoclave sterilization and lyophilization. By simultaneously incorporating Rhodamine B and Rhodamine 110 (as reference) dyes at a doping ratio of 1:400 in the NPs, ratiometric FTs with a high sensibility of 7.6%·°C(-1) and a wide temperature sensing range from -20 to 110 °C were obtained. The FTs exhibit good stability in solutions with varied pH, ionic strengths, and viscosities and have similar working curves in both intracellular and extracellular environments. Cellular temperature variations in Hela cells during microwave exposure were successfully monitored using the FTs, indicating their considerable potential applications in the biomedical field.
NASA Astrophysics Data System (ADS)
Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.
2012-12-01
The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.
Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2
NASA Astrophysics Data System (ADS)
Shakya, Jyoti; Kasana, Parath; Mohanty, T.
2018-04-01
Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.
Decolorization and degradation of xanthene dyes by a white rot fungus, Coriolus versicolor.
Itoh, Kiyoharu; Yatome, Chizuko
2004-01-01
The decolorization of six xanthene dyes (conc. 100 microM) by a white rot fungus, Coriolus versicolor (C. versicolor), was investigated in liquid culture. The decolorization of Fluorescein, 4-Aminofluorescein, and 5-Aminofluorescein by the fungus was 85.0, 95.0, and 91.9% after 14 days incubation, respectively. However, no decolorization of Rhodamine B, Rhodamine 123 hydrate, and Rhodamine 6G was observed. The first three dyes also were decolorized with cell-free extracts from C. versicolor. The decolorization activity was 10.2, 6.7, and 7.2 microM min(-1)mg(-1), respectively. Thin layer chromatography (TLC) analyses indicated that degradation of Fluorescein was occurring with the detection of three degradation products.
Rodríguez-Cabo, Borja; Rodríguez-Palmeiro, Iago; Corchero, Raquel; Rodil, Rosario; Rodil, Eva; Arce, Alberto; Soto, Ana
2017-01-01
The photocatalytic degradation of wastewater containing three industrial dyes belonging to different families, methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB), was studied under UV-Vis irradiation using synthesised silver chloride nanoparticles. The nanocatalyst was prepared by a dissolution/reprecipitation method starting from the bulk powder and the ionic liquid trihexyl(tetradecyl)phosphonium chloride, [P 6 6 6 14 ]Cl, without addition of other solvents. The obtained catalyst was characterised by UV-Vis absorbance, X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The decolourisation of the samples was studied by UV-Vis absorbance at the corresponding wavelength. Starting from 10 ppm dye solutions and 1 g L -1 of the synthesised AgCl nanoparticles, degradation efficiencies of 98.4% for MO, 98.6% for MB and 99.9% for RhB, were achieved in 1 h. The degradation mechanisms for the different dyes were studied. Comparison with other frequently used nanocatalysts, namely P-25 Degussa, TiO 2 anatase, Ag and ZnO, highlights the strong catalytic activity of AgCl nanoparticles. Under the same experimental conditions, these nanoparticles led to higher (more than 10%) and faster degradations.
Threshold pump power of a solar-pumped dye laser
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.
1988-01-01
Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.
Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites
NASA Astrophysics Data System (ADS)
Barkhade, Tejal; Banerjee, Indrani
2018-05-01
The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.
Study Of The Specificity Of Xanthene Dye Binding To Mitochondria
NASA Astrophysics Data System (ADS)
Bunting, James R.; Kamali, Eleanor; Phan, Trung V.; Dowben, Robert M.; Matthews, J. Lester
1989-03-01
The binding of Rhodamine 123 (Rh123), Rhodamine 6G (R6G), and Rhodamine B (RhB) (from the cationic xanthene series) to isolated rat liver mitochondria maintained in State IV respiration in the presence of rotenone (NADH oxidase inhibitor) was monitored by following changes in the fluorescence signal of the dyes. Rh123 and Rh6G bind strongly with quenching, to 0.25 and 0.20, respectively, and red shift of emission maxima by 10 nm. RhB binds much less potently with slight emission enhancement of 1.2. For Rh123 added to 0.5 mg/ml mitochondria' protein, a sigmoidal relationship is obtained between percentage fluorescence quenching and log of Rh123 concentration with a 50% inflection point of 3.5x10-6M, estimating an apparent association constant of 2.9x 105M-1 for Rh123 binding. Addition of 7 uM RhB during Rh123 titration moves the sigmoidal inflection point to higher Rh123 concentrations, suggesting either RhB enhancement of binding of Rh123 fluorescence quenching by energy transfer to RhB bound. These results suggest that, to a great degree, the binding of the xanthene dyes to mitochondrial sites is specific, competitive, and probably cooperative.
Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.
2015-01-01
Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075
Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B
2015-10-01
We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang
2017-02-01
A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.
Optical sensing of hydrogen sulphate using rhodamine 6G hydrazide from aqueous medium
NASA Astrophysics Data System (ADS)
Upadhyay, Yachana; Bothra, Shilpa; Kumar, Rajender; Choi, Heung-Jin; Sahoo, Suban K.
2017-06-01
This communication reports the application of rhodamine 6G hydrazide (L) for the selective colorimetric and turn-on fluorescent sensing of hydrogen sulphate ions from aqueous medium. The ring opening of the colourless spirocyclic form of L was selectively triggered in the presence of HSO4- among the other tested anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, NO3-, ClO4-, CN-, HO-, AsO33 - and SO42 -), which gives rise to a pink colour and strong fluorescence in the visible region. Sensor L showed a detection limit down to micromolar range without any interference from the other tested competitive anions. Sensor L was applied for the construction of two inputs (HO- and HSO4-) INHIBIT type molecular logic gate and naked-eye detection of HSO4- using test paper strips.
Lasing of a Solid-State Active Element Based on Anodized Aluminum Oxide Film Doped with Rhodamine 6G
NASA Astrophysics Data System (ADS)
Shelkovnikov, V. V.; Lyubas, G. A.; Korotaev, S. V.; Kopylova, T. N.; Tel'minov, E. N.; Gadirov, R. M.; Nikonova, E. N.; Nikonov, S. Yu.; Solodova, T. A.; Novikov, V. A.
2017-04-01
Spectral-luminescent and lasing characteristics of rhodamine 6G in porous aluminum oxide films anodized under various conditions are investigated. Lasing is obtained without external resonator in the longitudinal scheme under excitation by the second harmonic of Nd3+:YAG-laser radiation. The threshold pump power densities are in the range 3.5-15 MW/cm2 depending on the anodizing conditions. Wherein, the lasing line narrows down from 12 to 5 nm.
FY 1980 Report on Dye Laser Materials
1981-02-01
C02H H Rh 19 H C2H 5 CH3 CO9H H i Rh6G H C2H 5 CH3 Co2 C2H5 H RhB C2H5 C2H!5 H CO,H H Rh3B C2A5 C2H5 H CO2CH 5 H Rh 101 RING- RING RING...Dye designations Ring SRh 101 Rh 101 - Diethyl SRh B Rh B Rhb 3B Mono ethyl (methyl) -- Rh 19 (116) Rh 6G Unsubstituted -- Rh 110 Rh 123 Nominal Single...Broadband Lasing Wave-lengths of the Rhodamine Dyes. Lasing Wavelength, n Approximate Dye Conc. x 104 Range Midpoint Rh 110 1.0 567-577 572 2.0 Rh 123
NASA Astrophysics Data System (ADS)
Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.
1994-07-01
Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).
Mesoporous aluminosilicate glasses: Potential materials for dye removal from wastewater effluents
NASA Astrophysics Data System (ADS)
Almeida, Flavio P.; Botelho, Moema B. S.; Doerenkamp, Carsten; Kessler, Elizaveta; Ferrari, Cynthia R.; Eckert, Hellmut; de Camargo, Andrea S. S.
2017-09-01
Mesoporous amorphous sodium-aluminosilicate host matrices of composition Si1-xAlxNaxO2, 0.1 ≤ x ≤ 0.33, obtained by sol-gel methodology, have been used as sequestrating agents for the cationic dye Rhodamine 6 G (Rh6G) in solution. Favorable adsorption kinetics and a wide pH working range (4-10) as well as high sorption capacities for Rh6G render these materials potentially useful reagents for effective dye removal from wastewaters. While the experimentally realized sorption capacities fall significantly below the theoretical limits, used materials can be thermally re-cycled by pyrolizing the sequestrated dye molecules. Solid state NMR and BET measurements show that this process occurs under preservation of the materials' structural integrity, allowing it to be re-used multiple times.
An evaluation of novel vital dyes for intraocular surgery.
Haritoglou, Christos; Yu, Alice; Freyer, Wolfgang; Priglinger, Siegfried G; Alge, Claudia; Eibl, Kirsten; May, Christian A; Welge-Luessen, Ulrich; Kampik, Anselm
2005-09-01
To evaluate systematically the staining characteristics and safety of potential new dyes for intraocular surgery. Six dyes were included in the investigation: light green SF (LGSF) yellowish, E68, bromophenol blue (BPB), Chicago blue (CB), rhodamine 6G, rhodulinblau-basic 3 (RDB-B3). All dyes were dissolved and diluted in a balanced saline saline solution. The light-absorbing properties of each dye were measured at a concentration of 0.05% between 200 and 1000 nm. Staining characteristics were examined by staining lens capsule tissue and epiretinal membranes (ERMs), removed intraoperatively, with dye concentrations of 1.0%, 0.5%, 0.2%, and 0.05%. Enucleated porcine eyes (postmortem time, 9 hours) were also stained. Dye-related toxicity was evaluated by a colorimetric test (MTT) measuring the inhibition of retinal pigment epithelium (RPE) cell proliferation (ARPE-19 and primary human RPE cells, passages 3-6). Cell viability was also quantified based on a two-color fluorescence cell-viability assay. Dyes were investigated in concentrations of 0.2% and 0.02%. All dyes investigated in this study stained human lens capsules, removed intraoperatively; ERMs, peeled during macular pucker surgery; and enucleated porcine eyes, depending on the concentration applied. The long-wavelength absorption maximum of the dyes was within the range of 527 to 655 nm at concentrations of 0.05%. Rhodamine G6 and RDB-B3 showed adverse effects on ARPE-19 cell proliferation at a concentration of 0.2% and were excluded from further investigation in primary RPE cells. The remaining four dyes showed no toxic effect on ARPE-19 and primary RPE cell proliferation at concentrations of 0.2% and 0.02%. Cell viability was affected by LGSF yellowish (0.2%) and CB (0.2% and 0.02%). Two dyes (E68 and BPB) showed no relevant toxicity in vitro. The systematic evaluation of dyes for intraocular use seems mandatory. In this study four dyes were identified with effective staining characteristics, with two of
Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats.
Jiang, Shiau-Han; Cheng, Yung-Yi; Huo, Teh-Ia; Tsai, Tung-Hu
2017-09-06
Rhodamine dyes have been banned as food additives due to their potential tumorigenicity. Rhodamine 110 is illegal as a food additive, although its pharmacokinetics have not been characterized, and no accurate bioanalytical methods are available to quantify rhodamine 110. The aim of this study was to develop and validate a fast, stable, and sensitive method to quantify rhodamine 110 using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to assess its pharmacokinetics and organ distribution in awake rats. Rhodamine 110 exhibited linear pharmacokinetics and slow elimination after oral administration. Furthermore, its oral bioavailability was approximately 34-35%. The distribution in the liver and kidney suggests that these organs are primarily responsible for rhodamine 110 metabolism and elimination. Our investigation describes the pharmacokinetics and a quantification method for rhodamine 110, improving our understanding of the food safety of rhodamine dyes.
Tomaselli, Simona; Giovanella, Umberto; Pagano, Katiuscia; Leone, Giuseppe; Zanzoni, Serena; Assfalg, Michael; Meinardi, Francesco; Molinari, Henriette; Botta, Chiara; Ragona, Laura
2013-10-14
New strategies are requested for the preparation of bioinspired host-guest complexes to be employed in technologically relevant applications, as sensors and optoelectronic devices. We report here a new approach employing a single monomeric protein as host for the strongly fluorescent rhodamine dye. The selected protein, belonging to the intracellular lipid binding protein family, fully encapsulates one rhodamine molecule inside its cavity forming a host-guest complex stabilized by H and π-hydrogen bonds, a salt bridge, and favorable hydrophobic contacts, as revealed by the NMR derived structural model. The protein-dye solutions are easily processable and form homogeneous thin films exhibiting excellent photophysical and morphological properties, as derived from photoluminescence and AFM data. The obtained results represent the proof of concept of the viability of this bio host-guest system for the development of bioinspired optoelectronic devices.
General Synthetic Method for Si-Fluoresceins and Si-Rhodamines
2017-01-01
The century-old fluoresceins and rhodamines persist as flexible scaffolds for fluorescent and fluorogenic compounds. Extensive exploration of these xanthene dyes has yielded general structure–activity relationships where the development of new probes is limited only by imagination and organic chemistry. In particular, replacement of the xanthene oxygen with silicon has resulted in new red-shifted Si-fluoresceins and Si-rhodamines, whose high brightness and photostability enable advanced imaging experiments. Nevertheless, efforts to tune the chemical and spectral properties of these dyes have been hindered by difficult synthetic routes. Here, we report a general strategy for the efficient preparation of Si-fluoresceins and Si-rhodamines from readily synthesized bis(2-bromophenyl)silane intermediates. These dibromides undergo metal/bromide exchange to give bis-aryllithium or bis(aryl Grignard) intermediates, which can then add to anhydride or ester electrophiles to afford a variety of Si-xanthenes. This strategy enabled efficient (3–5 step) syntheses of known and novel Si-fluoresceins, Si-rhodamines, and related dye structures. In particular, we discovered that previously inaccessible tetrafluorination of the bottom aryl ring of the Si-rhodamines resulted in dyes with improved visible absorbance in solution, and a convenient derivatization through fluoride-thiol substitution. This modular, divergent synthetic method will expand the palette of accessible xanthenoid dyes across the visible spectrum, thereby pushing further the frontiers of biological imaging. PMID:28979939
Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.
Bele, Marjan; Siiman, Olavi; Matijević, Egon
2002-10-15
Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.
Uptake of dyes by a promising locally available agricultural solid waste: coir pith.
Namasivayam, C; Radhika, R; Suba, S
2001-01-01
The adsorption of rhodamine-B and acid violet by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose and pH. The adsorption followed both Langmuir and Freundlich isotherms. The adsorption capacity was found to be 2.56 mg and 8.06 mg dye per g of the adsorbent for rhodamine-B and acid violet, respectively. Adsorption of dyes followed first order rate kinetics. Acidic pH was favorable for the adsorption of acid violet and alkaline pH was favorable to rhodamine-B. Desorption studies showed that alkaline pH was favorable for the desorption of acid violet and acidic pH was favorable for the desorption of rhodamine-B.
NASA Astrophysics Data System (ADS)
Tan Pham, Minh; Van Nguyen, Thi; Thi, Thuy Duong Vu; Nghiem Thi, Ha Lien; Thuan Tong, Kim; Thuy Tran, Thanh; Chu, Viet Ha; Brochon, Jean-Claude; Nhung Tran, Hong
2012-12-01
Organically modified silicate (ORMOSIL) nanoparticles (NPs) doped with rhodamine 6G and rhodamine B (RB) dyes were synthesized by Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). The NPs are surface functionalized by cationic amino groups. The optical characterization of dye-doped ORMOSIL NPs was studied in comparison with that of free dye in solution. The synthesized NPs were used for labeling bacteria E. coli O157:H7. The number of bacteria have been counted using the fluorescent spectra and microscope images of labeled bacteria. The results show the ability of NPs to work as biomarkers.
Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan
2016-06-01
A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parihar, Sanjay; Boricha, Vinod P; Jadeja, R N
2015-03-01
Two novel Rhodamine-pyrazolone-based colorimetric off-on fluorescent chemosensors for Fe(3+) ions were designed and synthesized using pyrazolone as the recognition moiety and Rhodamine 6G as the signalling moiety. The photophysical properties and Fe(3+) -binding properties of sensors L(1) and L(2) in acetonitrile-aqueous solution were also investigated. Both sensors successfully exhibit a remarkably 'turn-on' response, toward Fe(3+) , which was attributed to 1: 2 complex formation between Fe(3+) and L(1) /L(2) . The fluorescent and colorimetric response to Fe(3+) can be detected by the naked eye, which provides a facile method for the visual detection of Fe(3+) . Copyright © 2014 John Wiley & Sons, Ltd.
IV and IP administration of rhodamine in visualization of WBC-BBB interactions in cerebral vessels.
Reichenbach, Zachary Wilmer; Li, Hongbo; Gaughan, John P; Elliott, Melanie; Tuma, Ronald
2015-10-01
Epi-illuminescence intravital fluorescence microscopy has been employed to study leukocyte-endothelial interactions in a number of brain pathologies. Historically, dyes such as Rhodamine 6G have been injected intravenously. However, intravenous injections can predispose experimental animals to a multitude of complications and requires a high degree of technical skill. Here, we study the efficacy of injecting Rhodamine 6G into the peritoneum (IP) for the purpose of analyzing leukocyte-endothelial interactions through a cranial window during real time intravital microscopy. After examining the number of rolling and adherent leukocytes through a cranial window, we found no advantage to the intravenous injection (IV). Additionally, we tested blood from both routes of injection by flow cytometry to gain a very precise picture of the two methods. The two routes of administration failed to show any difference in the ability to detect cells. The study supports the notion that IP Rhodamine 6G works as efficaciously as IV and should be considered a viable alternative in experimental design for investigations employing intravital microscopy. Facilitated intravital studies will allow for more exploration into cerebral pathologies and allow for more rapid translation from the laboratory to the patient with less chance of experimental error from failed IV access. © 2015 Wiley Periodicals, Inc.
IV and IP Administration of Rhodamine in Visualization of WBC-BBB Interactions in Cerebral Vessels
Li, Hongbo; Gaughan, John P.; Elliott, Melanie; Tuma, Ronald
2015-01-01
Epi-illuminescence intravital fluorescence microscopy has been employed to study leukocyte-endothelial interactions in a number of brain pathologies. Historically, dyes such as Rhodamine 6G have been injected intravenously. However, intravenous injections can predispose experimental animals to a multitude of complications and requires a high degree of technical skill. Here we study the efficacy of injecting Rhodamine 6G into the peritoneum (IP) for the purpose of analyzing leukocyte-endothelial interactions through a cranial window during real time intravital microscopy. After examining the number of rolling and adherent leukocytes through a cranial window we found no advantage to the intravenous injection (IV). Additionally, we tested blood from both routes of injection by flow cytometry to gain a very precise picture of the two methods. The two routes of administration failed to show any difference in the ability to detect cells. The study supports the notion that IP Rhodamine 6G works as efficaciously as IV and should be considered a viable alternative in experimental design for investigations employing intravital microscopy. Facilitated intravital studies will allow for more exploration into cerebral pathologies and allow for more rapid translation from the laboratory to the patient with less chance of experimental error from failed IV access. PMID:26207355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V.; Kavetskaya, I. V.
2017-02-15
The deposition features of the organic dye Rhodamine B on the porous surface of silicon with average pore sizes of 50–100 and 100–250 nm are studied. Features of the composition and optical properties of the obtained systems are studied using infrared and photoluminescence spectroscopy. It is found that Rhodamine-B adsorption on the surface of por-Si with various porosities is preferentially physical. The optimal technological parameters of its deposition are determined.
New fluorinated rhodamines for optical microscopy and nanoscopy.
Mitronova, Gyuzel Yu; Belov, Vladimir N; Bossi, Mariano L; Wurm, Christian A; Meyer, Lars; Medda, Rebecca; Moneron, Gael; Bretschneider, Stefan; Eggeling, Christian; Jakobs, Stefan; Hell, Stefan W
2010-04-19
New photostable rhodamine dyes represented by the compounds 1 a-r and 3-5 are proposed as efficient fluorescent markers with unique combination of structural features. Unlike rhodamines with monoalkylated nitrogen atoms, N',N-bis(2,2,2-trifluoroethyl) derivatives 1 e, 1 i, 1 j, 3-H and 5 were found to undergo sulfonation of the xanthene fragment at the positions 4' and 5'. Two fluorine atoms were introduced into the positions 2' and 7' of the 3',6'-diaminoxanthene fragment in compounds 1 a-d, 1 i-l and 1 m-r. The new rhodamine dyes may be excited with λ=488 or 514 nm light; most of them emit light at λ=512-554 nm (compounds 1 q and 1r at λ=576 and 589 nm in methanol, respectively) and have high fluorescence quantum yields in solution (up to 98 %), relatively long excited-state lifetimes (>3 ns) and are resistant against photobleaching, especially at high laser intensities, as is usually applied in confocal microscopy. Sulfonation of the xanthene fragment with 30 % SO3 in H2SO4 is compatible with the secondary amide bond (rhodamine-CON(Me)CH2CH2COOH) formed with MeNHCH2CH2COOCH3 to providing the sterically unhindered carboxylic group required for further (bio)conjugation reactions. After creating the amino reactive sites, the modified derivatives may be used as fluorescent markers and labels for (bio)molecules in optical microscopy and nanoscopy with very-high light intensities. Further, the new rhodamine dyes are able to pass the plasma membrane of living cells, introducing them as potential labels for recent live-cell-tag approaches. We exemplify the excellent performance of the fluorinated rhodamines in optical microscopy by fluorescence correlation spectroscopy (FCS) and stimulated emission depletion (STED) nanoscopy experiments. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong
2014-07-15
A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A.; Cao, Derong
2014-07-01
A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg2+, its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K+, Na+, Ca2+, Mg2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Mn2+, Pb2+, Ni2+, Fe3+, Al3+, Cr3+ and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg2+. Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg2+ in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems.
microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G
NASA Astrophysics Data System (ADS)
Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh
2014-05-01
We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.
NASA Astrophysics Data System (ADS)
Thrall, Elizabeth S.
This thesis describes spectroscopic studies of three different systems: silver nanoparticles, the dye molecule rhodamine 6G adsorbed on graphene, and the type IV pili and 
Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh
2016-11-01
Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
Grimm, Jonathan B.; Klein, Teresa; Kopek, Benjamin G.; Shtengel, Gleb; Hess, Harald F.; Sauer, Markus
2015-01-01
Abstract The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. PMID:26661345
Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W
2014-01-03
The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright
New energy transfer dyes for DNA sequencing.
Lee, L G; Spurgeon, S L; Heiner, C R; Benson, S C; Rosenblum, B B; Menchen, S M; Graham, R J; Constantinescu, A; Upadhya, K G; Cassel, J M
1997-01-01
We have synthesized a set of four energy transfer dyes and demonstrated their use in automated DNA sequencing. The donor dyes are the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein and the acceptor dyes are a novel set of four 4,7-dichloro-substituted rhodamine dyes which have narrower emission spectra than the standard, unsubstituted rhodamines. A rigid amino acid linker, 4-aminomethylbenzoic acid, was used to separate the dyes. The brightness of each dye in an automated sequencing instrument equipped with a dual line argon ion laser (488 and 514 nm excitation) was 2-2.5 times greater than the standard dye-primers with a 2 times reduction in multicomponent noise. The overall improvement in signal-to-noise was 4- to 5-fold. The utility of the new dye set was demonstrated by sequencing of a BAC DNA with an 80 kb insert. Measurement of the extinction coefficients and the relative quantum yields of the dichlororhodamine components of the energy transfer dyes showed their values were reduced by 20-25% compared with the dichlororhodamine dyes alone. PMID:9207029
Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun
2008-11-01
A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit for ferulic acid was 8.7 x 10(-9) mol l(-1). The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 x 10(-5) mol l(-1) ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.
NASA Astrophysics Data System (ADS)
Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun
2008-11-01
A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 × 10 -6 to 1.0 × 10 -4 mol l -1 and the detection limit for ferulic acid was 8.7 × 10 -9 mol l -1. The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 × 10 -5 mol l -1 ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.
Manjubaashini, N; Kesavan, Mookkandi Palsamy; Rajesh, Jegathalaprathaban; Daniel Thangadurai, T
2018-06-01
Binding interaction of Bovine Serum Albumin (BSA) with newly prepared rhodamine 6G-capped gold nanoparticles (Rh6G-Au NPs) under physiological conditions (pH 7.2) was investigated by a wide range of photophysical techniques. Rh6G-Au NPs caused the static quenching of the intrinsic fluorescence of BSA that resulted from the formation of ground-state complex between BSA and Rh6G-Au NPs. The binding constant from fluorescence quenching method (K a = 1.04 × 10 4 L mol -1 ; LoD = 14.0 μM) is in accordance with apparent association constant (K app = 1.14 × 10 1 M -1 ), which is obtained from absorption spectral studies. Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residue of BSA and fluorophore of Rh6G-Au NPs during the interaction was calculated to be 90%. The free energy change (ΔG = -23.07 kJ/mol) of BSA-Rh6G-Au NPs complex was calculated based on modified Stern-Volmer Plot. The time-resolved fluorescence analysis confirmed that quenching of BSA follows static mechanism through the formation of ground state complex. Furthermore, synchronous and three-dimensional fluorescence measurement, Raman spectral analysis and Circular Dichroism spectrum results corroborate the strong binding between Rh6G-Au NPs and BSA, which causes the conformational changes on BSA molecule. In addition, fluorescence imaging experiments of BSA in living human breast cancer (HeLa) cells was successfully demonstrated, which articulated the value of Rh6G-Au NPs practical applications in biological systems. Copyright © 2018. Published by Elsevier B.V.
Panda, Gopal C; Das, Sujoy K; Guha, Arun K
2009-05-15
Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.
NASA Astrophysics Data System (ADS)
Le, Khai Q.; Dang, Ngo Hai
2018-05-01
This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.
Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D
2016-01-26
The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Jichlinski, P; Bonard, M; von Niederhäusern, W; Delacrétaz, G; Rink, K; Lambelet, P; Klohn, M; Bolle, J F; Graber, P
1991-09-01
A collaborative study about a pulsed dye laser Rhodamin 590 was undergone, 2 years ago, between the laser application center of EPFL and both urological departments of the university of Geneva and the university of Lausanne. First clinical results are presented. Ten patients have been treated for various ureteral stones, mainly calcium oxalate stones. Laser fragmentation was successful in seven cases. No serious complication was noted. Fragmentation efficiency seems better with a 320 microns fiber than with a 200 microns fiber.
Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles.
Soleilhac, Antonin; Girod, Marion; Dugourd, Philippe; Burdin, Béatrice; Parvole, Julien; Dugas, Pierre-Yves; Bayard, François; Lacôte, Emmanuel; Bourgeat-Lami, Elodie; Antoine, Rodolphe
2016-04-26
Nanoparticle-based temperature imaging is an emerging field of advanced applications. Herein, the sensitivity of the fluorescence of rhodamine B-doped latex nanoparticles toward temperature is described. Submicrometer size latex particles were prepared by a surfactant-free emulsion polymerization method that allowed a simple and inexpensive way to incorporate rhodamine B into the nanoparticles. Also, rhodamine B-coated latex nanoparticles dispersed in water were prepared in order to address the effect of the dye location in the nanoparticles on their temperature dependence. A better linearity of the temperature dependence emission of the rhodamine B-embedded latex particles, as compared to that of free rhodamine B dyes or rhodamine B-coated latex particles, is observed. Temperature-dependent fluorescence measurements by fluorescent confocal microscopy on individual rhodamine B-embedded latex particles were found similar to those obtained for fluorescent latex nanoparticles in solution, indicating that these nanoparticles could be good candidates to probe thermal processes as nanothermometers.
Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.
Maharana, Dusmant; Niu, Junfeng; Gao, Ding; Xu, Zesheng; Shi, Jianghong
2015-04-01
Electrochemical degradation of rhodamine B (C28H31ClN2O3) over Ti/SnO2-Sb anode was investigated in a rectangular cell. The degradation reaction follows pseudo-first-order kinetics. The degradation efficiency of rhodamine B attained >90.0% after 20 minutes of electrolysis at initial concentrations of 5 to 200 mg/L at a constant current density of 20 mA/cm2 with a 10 mmol/L Na2SO4 supporting electrolyte solution. Rhodamine B (50 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9 and 86.7%, respectively, at the optimal conditions after 30 minutes of electrolysis. The results showed that the energy efficiency of rhodamine B (50 mg/L) degradation at the optimal current densities from 2 to 30 mA/cm2 were 23.2 to 84.6 Wh/L, whereas the electrolysis time for 90% degradation of rhodamine B with Ti/SnO2-Sb anode was 36.6 and 7.3 minutes, respectively. The electrochemical method can be an advisable option for the treatment of dyes such as rhodamine B in wastewater.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Chandrahalim, Hengky; Fan, Xudong
2015-12-17
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
A novel ZrHIO6ṡ4H2O catalyst for degradation of organic dyes at room temperature
NASA Astrophysics Data System (ADS)
Li, Jiayin; Ma, Xinping; Qian, Meifan; Liu, Haoran; Liu, Qiying; Zhao, Caixian; Tian, Li; Chen, Lijuan; Tang, Jianting
It is interesting to obtain catalysts to degrade organic dye pollutants at room temperature for simultaneous purposes of environment-treating and energy-saving. In this work, a novel ZrHIO6ṡ4H2O catalyst was synthesized by reacting ZrO(NO3)2 with H5IO6 in aqueous nitric acid. The catalyst was found effective in degradation of rhodamine B (RhB) or methylene blue (MB) dyes at room temperature without light illumination. We used the ultraviolet-visible (UV-Vis) absorption spectra of dye solution as well as X-ray photoelectron spectroscopy (XPS) of ZrHIO6ṡ4H2O to confirm that the dye degradation was due to its catalytic role. Importantly, the ZrHIO6ṡ4H2O catalyst can be recycled five times without obvious activity loss and it achieved higher mineralization efficiency than the previously reported analogue in the degradation experiments.
Bichromatic emission in a ring dye laser
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Sohrab Afzal, R.; Rabinovich, W. S.
1987-01-01
An experimental study of a high-Q Rhodamine 6G ring dye laser has been performed, and bichromatic emission (BE) with wavelength spacings as large as 110 A when the laser operated bidirectionally has been measured. The BE vanished at all excitations when the laser was forced into unidirectional operation using a Faraday isolator. However, when a weak reflected beam was allowed to make a single pass in the direction opposite to that allowed by the Faraday device, BE is recovered at the higher pump powers.
NASA Astrophysics Data System (ADS)
Al-Tameemi, Mohammed N. A.
2018-03-01
In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum particle size of about 20 nm. The effect of SiO2 films as external cavity for the random gain medium is determined by the laser-induced fluorescence of this medium, and an increase of about 200% in intensity is observed after the deposition of nanostructured SiO2 thin films on two sides of the dye cell.
Emission lifetimes of a fluorescent dye under shock compression
Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...
2015-10-15
The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less
Li, Ye; Yip, Wai Tak
2004-12-07
We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.
Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling
2011-01-01
A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952
Zhang, Xian-Fu; Liu, Su-Ping; Shao, Xiao-Na
2013-09-01
The fluorescence and absorption properties of several xanthene and phthalocyanine dyes were measured in the presence and absence of chemically derived graphene (CDG) sheets. The interaction of pyronine Y (PYY) with graphene sheets was compared with that of rhodamine 6G (R6G) to reveal the effect of the molecular structure. Although the presence of the perpendicular benzene moiety in a R6G or phthalocyanine molecule does cause the difficulty for forming dye-CDG complex and make CDG less efficient in quenching the fluorescence intensity and shortening the fluorescence lifetime, it does not affect the band position of charge transfer absorption, suggesting that no molecular shape change occurred in a dye molecule caused by the interaction with CDG sheets. The spectroscopic and thermodynamic data indicated that the dye-CDG binding is of charge transfer nature, while the dynamic fluorescence quenching is due to photoinduced energy and electron transfer. Copyright © 2013 Elsevier B.V. All rights reserved.
Localization of mitochondria in living cells with rhodamine 123.
Johnson, L V; Walsh, M L; Chen, L B
1980-01-01
The laser dye rhodamine 123 is shown to be a specific probe for the localization of mitochondria in living cells. By virtue of its selectivity for mitochondria and its fluorescent properties, the detectability of mitochondria stained with rhodamine 123 is significantly improved over that provided by conventional light microscopic techniques. With the use of rhodamine 123, it is possible to detect alterations in mitochondrial distribution following transformation by Rous sarcoma virus and changes in the shape and organization of mitochondria induced by colchicine treatment. Images PMID:6965798
Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime
NASA Technical Reports Server (NTRS)
Lin, C.; Dienes, A.
1973-01-01
By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.
Sangami, G; Dharmaraj, N
2012-11-01
Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
NASA Astrophysics Data System (ADS)
Chandrahalim, Hengky; Fan, Xudong
2015-12-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
Chandrahalim, Hengky; Fan, Xudong
2015-01-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508
High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes
NASA Astrophysics Data System (ADS)
Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh
2002-03-01
The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.
Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad
2017-02-01
This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.
Photocatalytic Degradation Property of NANO-TiO2/DIATOMITE for Rodamine B Dye Wastewater
NASA Astrophysics Data System (ADS)
Liu, Yue; Zheng, Shuilin; Du, Gaoxiang; Shu, Feng; Chen, Juntao
The Nano-TiO2/Diatomite compound photocatalyst is used to degrade rhodamine B dye wastewater in photochemical reactor. The test result indicates that the rate of photodegradation of rhodamine B is influenced by reactive conditions. The best technical conditions are concentration of rhodamine B solution 10mg/L, ultraviolet light 300W, the compound photocatalyst amount used 1g/L, the pH 5.8, reaction time 20min. Under these conditions the rate of photodegradation of rhodamine B may reach as high as 97.80%. And the efficiency of photodegradation of catalyst only has a little changed in recycling.
Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent
Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.
2009-01-01
There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150
Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D
2012-02-07
Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.
NASA Astrophysics Data System (ADS)
Liu, Xi; Huang, Meizhen; Chen, Jie; Kong, Lili; Wang, Keihui
2018-05-01
A simple method, based on a roll-to-roll ultraviolet micro-pyramid imprinting technique and a nanoparticle self-assembling process in aqueous solution, to fabricate a large-area, flexible surface-enhanced Raman scattering (SERS) polyethylene glycol terephthalate substrate is proposed. The SERS substrate is demonstrated to be of high sensitivity. The detection concentration of Rhodamine 6G (R6G) measured by a portable Raman spectrometer is down to 10-9 mol l-1. The relative standard deviation values of different spots and different substrates are less than 13%. In addition, the feasibility for rapid detection of dye in herbal tea based on this SERS substrate and a portable Raman spectrometer is investigated. Three industrial dyes are employed to simulate the dyeing process. It is presented that R6G of 4.8× {{10}-7} g ml-1, malachite green of 10-6 g ml-1 and Auramine O of 10-6 g ml-1 in herbal tea could be detected rapidly. The experimental results imply that this method could be potentially applied in the field of dyed herbal tea detection.
Chang, Yue-Yue; Wu, Hai-Long; Fang, Huan; Wang, Tong; Liu, Zhi; Ouyang, Yang-Zi; Ding, Yu-Jie; Yu, Ru-Qin
2018-06-15
In this study, a smart and green analytical method based on the second-order calibration algorithm coupled with excitation-emission matrix (EEM) fluorescence was developed for the determination of rhodamine dyes illegally added into chilli samples. The proposed method not only has the advantage of high sensitivity over the traditional fluorescence method but also fully displays the "second-order advantage". Pure signals of analytes were successfully extracted from severely interferential EEMs profiles via using alternating trilinear decomposition (ATLD) algorithm even in the presence of common fluorescence problems such as scattering, peak overlaps and unknown interferences. It is worth noting that the unknown interferents can denote different kinds of backgrounds, not only refer to a constant background. In addition, the method using interpolation method could avoid the information loss of analytes of interest. The use of "mathematical separation" instead of complicated "chemical or physical separation" strategy can be more effective and environmentally friendly. A series of statistical parameters including figures of merit and RSDs of intra- (≤1.9%) and inter-day (≤6.6%) were calculated to validate the accuracy of the proposed method. Furthermore, the authoritative method of HPLC-FLD was adopted to verify the qualitative and quantitative results of the proposed method. Compared with the two methods, it also showed that the ATLD-EEMs method has the advantages of accuracy, rapidness, simplicity and green, which is expected to be developed as an attractive alternative method for simultaneous and interference-free determination of rhodamine dyes illegally added into complex matrices. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tian, Huairu; Peng, Jun; Lv, Tingting; Sun, Chen; He, Hua
2018-01-01
In present study, a stable and magnetic metal-organic framework (MOF) material was synthesized by simple solvothermal method as adsorbent to rapid removal of two organic dyes, the Rhodamine B (RB) and Rhodamine 6G (Rh6G), in water samples. The prepared material showed great characteristics of large surface area (519.86 m2 g-1), excellent magnetic responsivity (35.00 emu g-1) and rapid removal (within 5 min). Maximum adsorption capacities of the magnetic material toward RB and Rh6G were up to 219.78 and 306.75 mg g-1, respectively. Adsorption kinetics suggested the adsorption process met the pseudo-second-order kinetic model. The prepared material could be reused at least 10 times by washing with acetonitrile solution, the relative standard deviation (RSD) of these ten cycles removal efficiency was 4.8%. In conclusion, good chemical inertness, a mechanical/water stability and super-hydrophilicity feature made this MOF a promising adsorbent for targets removal from environmental water sample.
NASA Astrophysics Data System (ADS)
Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu
2018-04-01
In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.
NASA Astrophysics Data System (ADS)
Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.
2017-01-01
Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu
2017-07-01
Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.
Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh
2014-01-01
We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.
Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.
Kwon, S R; Wertz, P W; Li, Y; Chan, D C N
2012-02-01
Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Li, Dan; Zhu, Qingxia; Lv, Diya; Zheng, Binxing; Liu, Yanhua; Chai, Yifeng; Lu, Feng
2015-08-01
By using a silver nanoparticle wiper as a surface-enhanced Raman scattering substrate, a highly sensitive, convenient, and rapid platform for detecting dye adulteration of medicinal herbs was obtained. Commercially available filter paper was functionalized with silver nanoparticles to transform it into the flexible wiper. This device was found to collect dye molecules with unprecedented ease. Experiments were performed to optimize various factors such as the type of wiper used, the wetting reagent, and the wetting/wiping mode and time. Excellent wiper performance was observed in the detection of the simulated adulteration of samples with dyes at various concentrations. The limits of detection for nine dyes, including 10(-6) g/mL for malachite green, 10(-7) g/mL for Rhodamine 6G, and 5 × 10(-8) g/mL for methylene blue, were discerned. The results of this investigation show that this proposed method is potentially highly advantageous for field-based applications. Graphical Abstract Schematic diagram illustrating the fabrication of the paper-based SERS substrate, sample collection process on a herb and SERS examination with the portable Raman spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da
Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM).more » The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.« less
Chen, Di; Huang, Yun-Qing; He, Xiao-Mei; Shi, Zhi-Guo; Feng, Yu-Qi
2015-03-07
A rapid analysis method by coupling carbon nanotube film (CNTF) microextraction with desorption corona beam ionization (DCBI) was developed for the determination of Sudan dyes (I-IV) and Rhodamine B in chilli oil samples. Typically, CNTF was immersed into the diluted solution of chilli oil for extraction, which was then placed directly under the visible plasma beam tip of the DCBI source for desorption and ionization. Under optimized conditions, five dyes were simultaneously determined using this method. Results showed that the analytes were enriched by the CNTF through the π-π interactions, and the proposed method could significantly improve the sensitivities of these compounds, compared to the direct analysis by DCBI-MS/MS. The method with a linear range of 0.08-12.8 μg g(-1) and good linear relationships (R(2) > 0.93) in a multiple reaction monitoring (MRM) mode was developed. Satisfactory reproducibility was achieved. Relative standard deviations (RSDs) were less than 20.0%. The recoveries ranged from 80.0 to 110.0%, and the limits of detection (LODs) were in the range of 1.4-21 ng g(-1). Finally, the feasibility of the method was further exhibited by the determination of five illegal dyes in chilli powder. These results demonstrate that the proposed method consumes less time and solvent than conventional HPLC-based methods and avoids the contamination of chromatographic column and ion source from non-volatile oil. With the help of a 72-well shaker, multiple samples could be treated simultaneously, which ensures high throughput for the entire pretreatment process. In conclusion, it provides a rapid and high-throughput approach for the determination of such illicit additions in chilli products.
Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng
2016-07-29
Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. Copyright © 2016 Elsevier B.V. All rights reserved.
Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O
2016-04-01
Two chemiluminescence-microfluidic (CL-MF) systems, e.g., Ce(IV)-rhodamine B (RB) and Ce(IV)-rhodamine 6G (R6G), for the determination of the total phenolic content in teas and some sweeteners were evaluated. The results indicated that the Ce(IV)-R6G system was more sensitive in comparison to the Ce(IV)-RB CL system. Therefore, a simple (CL-MF) method based on the CL of Ce(IV)-R6G was developed, and the sensitivity, selectivity and stability of this system were evaluated. Selected phenolic compounds (PCs), such as quercetin (QRC), catechin (CAT), rutin (RUT), gallic acid (GA), caffeic acid (CA) and syringic acid (SA), produced analytically useful chemiluminescence signals with low detection limits ranging from 0.35 nmol L(-1) for QRC to 11.31 nmol L(-1) for SA. The mixing sequence and the chip design were crucial, as the sensitivity and reproducibility could be substantially affected by these two factors. In addition, the anionic surfactant (i.e., sodium dodecyl sulfate (SDS)) can significantly enhance the CL signal intensity by as much as 300% for the QRC solution. Spectroscopic studies indicated that the enhancement was due to a strong guest-host interaction between the cationic R6G molecules and the anionic amphiphilic environment. Other parameters that could affect the CL intensities of the PCs were carefully optimized. Finally, the method was successfully applied to tea and sweetener samples. Six different tea samples exhibited total phenolic/antioxidant levels from 7.32 to 13.5 g per 100g of sample with respect to GA. Four different sweetener samples were also analyzed and exhibited total phenolic/antioxidant levels from 500.9 to 3422.9 mg kg(-1) with respect to GA. The method was selective, rapid and sensitive when used to estimate the total phenolic/antioxidant level, and the results were in good agreement with those reported for honey and tea samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Use of the fluorescence of rhodamine B for the pH sensing of a glycine solution
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Shi, Kaixing; Shi, Jiulin; He, Xingdao
2016-10-01
The fluorescence of rhodamine B can be strongly affected by its environmental pH value. By directly introducing the dye into various glycine solution, the fluorescence was used to monitor the pH value in the range of 5.9 6.7. Two newly developed techniques for broadband analysis, the barycenter technique and the self-referenced intensity ratio technique, were employed to retrieve the pH sensing functions. While compared with traditional techniques, e.g. the peak shift monitoring, both the two new techniques presented finer precision. The obtained sensing functions may find their applications in the test of biochemical samples, body tissue fluid, water quality, etc.
Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.
Dasarathy, Dhweeja; Ito, Yoichiro
2017-09-29
A simple separatory glass bottle was used to improve separation effectiveness and cost efficiency while simultaneously creating a simpler system for separating biological compounds. Additionally, it was important to develop a scalable separation method so this would be applicable to both analytical and preparative separations. Compared to conventional foam separation methods, this method easily forms stable dry foam which ensures high purity of yielded fractions. A negatively charged surfactant, sodium dodecyl sulfate (SDS), was used as the ligand to carry a positively charged Rhodamine-G, leaving a negatively charged Evans Blue in the bottle. The performance of the separatory bottle was tested for separating Rhodamine-G from Evans Blue with sample sizes ranged from 1 to 12mg in preparative separations and 1-20μg in analytical separations under optimum conditions. These conditions including N 2 gas pressure, spinning speed of contents with a magnetic stirrer, concentration of the ligand, volume of the solvent, and concentration of the sample, were all modified and optimized. Based on the calculations at their peak absorbances, Rhodamine-G and Evans Blue were efficiently separated in times ranging from 1h to 3h, depending on sample volume. Optimal conditions were found to be 60psi N 2 pressure and 2mM SDS for the affinity ligand. This novel separation method will allow for rapid separation of biological compounds while simultaneously being scalable and cost effective. Published by Elsevier B.V.
Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.
Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A
2015-02-07
The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.
Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.
Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A
2009-12-15
Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.
Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen
2013-11-12
We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.
NASA Astrophysics Data System (ADS)
Ma, Xinping; Li, Jiayin; Liu, Haoran; Tang, Jianting
2018-07-01
It is still desirable to obtain the catalysts to degrade organic dye pollutants at room temperature, which meets the current demands of pollutant-removing and energy-saving simultaneously. By a facile precipitation method, we prepared in this work a new, highly efficient CeHIO6·4H2O catalyst. By characterization, it was found that the CeHIO6·4H2O sample is in nature a yellow inorganic semiconductor with particle size of 0.2-10 μm, band gap of 2.75 eV, low surface area of 1.52 m2 g-1 and amorphous structure. The CeHIO6·4H2O catalyst showed high activity in degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) in the dark at room temperature. After being used for 3 cycles, it did not undergo significant loss of activity and kept its chemical composition unchanged in the degradation experiments. More importantly, its activity is remarkably higher than that of the previously reported Ce(IO3)4, CeGeO4, ZrHIO6·4H2O and Ce-doped MoO3 analogues. The major active species and the catalytic mechanism for the dye degradation were proposed.
New fluorescent pH sensors based on covalently linkable PET rhodamines
Aigner, Daniel; Borisov, Sergey M.; Orriach Fernández, Francisco J.; Fernández Sánchez, Jorge F.; Saf, Robert; Klimant, Ingo
2012-01-01
A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. PMID:22967541
Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal.
Khamparia, Shraddha; Jaspal, Dipika Kaur
2017-07-15
Treatment of polluted water has been considered as one of the most important aspects in environmental sciences. Present study explores the decolorization potential of a low cost natural adsorbent Xanthium strumarium L. seed hull for the adsorption of a toxic xanthene dye, Rhodamine B (RHB). The characterization of the adsorbent revealed the presence of high amount of carbon, when exposed to Electron Dispersive Spectroscopy (EDS). Further appreciable decolorization took place which was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis noticing shift in peaks. Isothermal studies indicated multilayer adsorption following Freundlich isotherm. The rate of adsorption was supported by second order kinetics directing a chemical phenomenon during the process with dominance of film diffusion as the rate governing step. Moreover paper aims at correlating the chemical arena to the mathematical aspect providing an in-depth information of the studied treatment process. For proper assessment and validation of the observed data, experimental data has been statistically treated by applying different error functions namely, Chi-square test (χ 2 ), Sum of absolute errors (EABS) and Normalized standard deviation (NSD). Further practical applicability of the low cost adsorbent was evaluated by continuous column mode studies with 72.2% of dye recovery. Xanthium strumarium L. proved to be environment friendly low cost natural adsorbent for decolorizing RHB from aquatic system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid
NASA Astrophysics Data System (ADS)
Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.
2011-03-01
Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.
Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.
Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong
2014-01-29
Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.
Study of decolorisation of binary dye mixture by response surface methodology.
Khamparia, Shraddha; Jaspal, Dipika
2017-10-01
Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6 M DR81, 12 × 10 -6 M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu
2015-03-01
Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.
Ultrasonic-assisted dyeing of Nylon-6 nanofibers.
Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo
2017-11-01
We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.
Belov, Vladimir N; Mitronova, Gyuzel Yu; Bossi, Mariano L; Boyarskiy, Vadim P; Hebisch, Elke; Geisler, Claudia; Kolmakov, Kirill; Wurm, Christian A; Willig, Katrin I; Hell, Stefan W
2014-10-06
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈10(4) M(-1) cm(-1)) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε=3-8×10(4) M(-1) cm(-1) and fluorescence quantum yields (ϕ)=40-85% in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (ϕ=20-38%). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40% of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible
Liu, Chuangjun; Best, Quinn A.; Suarez, Brian; Pertile, Jack; McCarroll, Matthew E.; Scott, Colleen N.
2015-01-01
A series of fluorescent pH probes based on the spiro-cyclic rhodamine core, aminomethylrhodamines (AMR), was synthesized and the effect of cycloalkane ring size on the acid/base properties of the AMR system was explored. The study involved a series of rhodamine 6G (cAMR6G) and rhodamine B (cAMR) pH probes with cycloalkane ring sizes from C-3 to C-6 on the spiro-cyclic amino group. It is known that the pKa value of cycloalkylamines can be tuned by the different ring sizes in accordance with the Baeyer ring strain theory. Smaller ring amines have lower pKa value, i.e. they're less basic, such that the relative order in cycloalkylamine basicity is: cyclohexyl>cyclopentyl>cyclobutyl>cyclopropyl. Herein, it was found that the pKa values of the cAMR and cAMR6G systems can also be predicted by Baeyer ring strain theory. The pKa values for the cAMR6G series were shown to be higher than the cAMR series by a value of approximately 1. PMID:25686771
Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina
2016-01-01
The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.
NASA Astrophysics Data System (ADS)
Areibat, Lila Elamari Mohamed; Kamari, Azlan
2017-05-01
Wastewater originating from industrial effluents contains many types of pollutants including dyes. Anionic and cationic dyes are very toxic and they can cause several problems to aquatic system. In present study, razor clam shell was used as a potential adsorbent to remove two classes of dyes, namely anionic (Congo red, CR) and cationic (Rhodamine B, RB) dyes from aqueous solution. Batch adsorption experiments were performed to study the effects of three experimental parameters, namely solution pH, adsorbent dosage and initial dye concentration, on adsorption capacity of CR and RB onto razor clam shell. Results indicated that pH 2.0 was optimum pH for adsorbent to adsorb both CR and RB. At an initial concentration of 20 mg/L, the removal percentages of CR and RB were 97% and 38%, respectively. The Freundlich and Langmuir isotherm models were used to describe adsorption behaviour of CR and RB, as well as the relationship between adsorbent and adsorbate. The adsorption equilibrium data were well fitted to Freundlich isotherm model. The separation factor (RL) constants suggest that both CR and RB were favourably adsorbed by razor clam shell. Razor clam shell was characterised by using two techniques, namely Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). Overall, this study suggests that razor clam shell has great potential to be an alternative to expensive adsorbents.
Conversion of the luminescence of laser dyes in opal matrices to stimulated emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimov, O K; Basiev, T T; Orlovskii, Yu V
The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located withinmore » the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)« less
Rhodamine-Injected Eggs to Photographically Identify Small Nest-Predators
Thomas J. Maier; Richard M. DeGraaf
2000-01-01
Photographs that clearly disclose avian-nest predators are difficult to obtain, particularly when predators are small and exhibit subtle depredatory behavior. We exposed House Sparrow (Passer domesticus) eggs injected with Rhodamine B dye in camera-monitored ground nests for 12-d periods at 76 sites within mixed-hardwood forest stands in central...
NASA Astrophysics Data System (ADS)
Das, Sourav; Manam, J.
2018-05-01
In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.
Rh6G released from solid and nanoporous SiO2 spheres prepared by sol-gel route
NASA Astrophysics Data System (ADS)
García-Macedo, J. A.; Francisco S., P.; Franco, A.
2015-10-01
Porous silica nanoparticles are considering good systems for drug cargo and liquid separation. In this work we studied the release of rhodamine 6G (Rh6G) from solid and porous silica nanoparticles. Solid and porous SiO2 spheres were prepared by sol-gel method. Nanoporous channels were produced by using a surfactant that was removed by chemical procedure. Rh6G was incorporated into the channels by impregnation. The hexagonal structure of the pores was detected by XRD and confirmed by HRTEM micrographs. Rh6G released from the particles by stirring them in water at controlled speed was studied as function of time by photoluminescence. Released ratio was faster in the solid nanoparticles than in the porous ones. In the last case, a second release mechanism was observed. It was related with rhodamine coming out from the porous.
Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol; ...
2017-05-02
The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less
Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu
2014-12-01
In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations <10%. The overall recoveries are in the range of 98-103% in chili powder and in the range of 87-100% in chili oil depending on the concentration of rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Yuen Y; Wood, Andrew W
2009-10-01
We have applied a non-contact method for studying the temperature changes produced by radiofrequency (RF) radiation specifically to small biological samples. A temperature-dependent fluorescent dye, Rhodamine B, as imaged by laser scanning confocal microscopy (LSCM) was used to do this. The results were calibrated against real-time temperature measurements from fiber optic probes, with a calibration factor of 3.4% intensity change degrees C(-1) and a reproducibility of +/-6%. This non-contact method provided two-dimensional and three-dimensional images of temperature change and distributions in biological samples, at a spatial resolution of a few micrometers and with an estimated absolute precision of around 1.5 degrees C, with a differential precision of 0.4 degree C. Temperature rise within tissue was found to be non-uniform. Estimates of specific absorption rate (SAR) from absorbed power measurements were greater than those estimated from rate of temperature rise, measured at 1 min intervals, probably because this interval is too long to permit accurate estimation of initial temperature rise following start of RF exposure. Future experiments will aim to explore this.
Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar
2016-11-01
Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Dayong; Fei, Xuening; Gu, Yingchun; Wang, Cuihong; Tang, Yalin; Li, Ran; Zhou, Jianguo
2015-08-21
Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.
Investigating rhodamine B-labeled peptoids: scopes and limitations of its applications.
Birtalan, Esther; Rudat, Birgit; Kölmel, Dominik K; Fritz, Daniel; Vollrath, Sidonie B L; Schepers, Ute; Bräse, Stefan
2011-01-01
The fluorophore rhodamine B is often used in biological assays. It is inexpensive, robust under a variety of reaction conditions, can be covalently linked to bioactive molecules, and has suitable spectral properties in terms of absorption and fluorescence wavelength. Nonetheless, there are some drawbacks: it can readily form a spirolactam compound, which is nonfluorescent, and therefore may not be the dye of choice for all fluorescence microscopy applications. Herein this spirolactam formation was observed by purifying such a labeled peptoid with high performance liquid chromatography (HPLC) and monitored in detail by making a series of analytical HPLC runs over time. Additionally, a small library of eight peptoids with rhodamine B as label was synthesized. Analysis of the absorption properties of these molecules demonstrated that the problem of fluorescence loss can be overcome by coupling secondary amines with rhodamine B.
On a PLIF quantification methodology in a nonlinear dye response regime
NASA Astrophysics Data System (ADS)
Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.
2016-06-01
A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V
The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less
Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining
Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.
2014-01-01
Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365
Two Photon Spectroscopy Can Serve as a Marker of Protein Denaturation Pathway.
Das, Dipak Kumar; Islam, Sk Imadul; Samanta, Nirnay; Yadav, Yogendra; Goswami, Debabrata; Mitra, Rajib Kumar
2018-06-25
Rhodamine group of molecules are widely used dyes for imaging of biological molecules. Application of these dyes however includes a limitation that these molecules absorb in the visible range of the spectrum, which does not fall in the 'biologically transparent window' (BTW). Two photon absorption (TPA) process could come up with an alternate solution to this as these dyes could be excited in the near infrared (NIR) window to extract similar information. To validate this we have investigated TPA cross section (TPACS, σ 2 ) of two rhodamine dyes, namely Rhodamine 6G (R6G), Rhodamine B (RhB), site selectively bound with a model protein, bovine serum albumin (BSA), by exciting at 800 nm. Two photon spectroscopy and imaging confirms the binding of the dye to the protein. The decreases in TPACS with increasing temperature at a fixed BSA concentration excellently follows the temperature induced structural transition of BSA as the protein transforms from a molten globule to unfolded conformation beyond 60 °C, which has previously been established through circular dichroism (CD) measurements. The thus established resemblance in TPACS and CD measurement trends thus strongly affirms the suitability of TPA process in protein imaging and as an alternative marker to tracking its conformational transformations using NIR radiation.
Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana.
Khamparia, Shraddha; Jaspal, Dipika
2016-12-01
The present study aims at exploring the potential of the seeds of a tropical weed, Argemone mexicana (AM), for the removal of a toxic xanthene textile dye, Rhodamine B (RHB), from waste water. Impact of pH, adsorbent dosage, particle size, contact time and dye concentration have been assessed during adsorption. The weed has been well characterized by several latest techniques thereby providing an indepth information of the mechanism during adsorption. About 80% removal has been attained with 0.06 g of adsorbent over the studied system. Thermodynamic and kinetic studies, followed by second order kinetic model, directed towards the endothermic nature of adsorption. The results obtained from batch experiments were modelled using Langmuir and Freundlich isotherm and were analysed on the basis of R 2 and six error functions for selection of appropriate model. Langmuir isotherm was found to be best fitted to the experimental data with high values of R 2 and lower values of error functions. Adsorption study revealed the affinity of AM seeds for the dye ions present in waste water, introducing a novel adsorbent in field of waste water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Animal Bone Supported SnO2 as Recyclable Photocatalyst for Degradation of Rhodamine B Dye.
Wu, Yun; Wang, Hui; Cao, Mengdie; Zhang, Yichi; Cao, Feifei; Zheng, Xinsheng; Hu, Jinfei; Dong, Jiangshan; Xiao, Zhidong
2015-09-01
SnO2 nanoparticles supported on an animal bone which serves as inexpensive and environment-friendly natural products were developed by a facile hydrothermal approach. As a promising photocatalyst, the novel SnO2/porcine bone material exhibited high photocatalytic activity towards the degradation of rhodamine B (RhB) dye under UV-Vis irradiation. About 97.3% of RhB can be effectively decomposed by the catalysis with the SnO2/porcine bone in 90 min, while only 51.5% of RhB can be degraded by pure SnO2 nanoparticles. Moreover, the photocatalytic activity was incremental with the increase of cycle times in previous five cycles. It is mainly because the photocatalyst which has been used for several times possesses a stronger ability of light absorption and utilization compared to the fresh catalyst according to the results of the characterization and relative experiments. It is noteworthy that the animal bone support can improve the activity for the photocatalyst, which would provide further impetus to alternate synthesis strategies for photocatalysts and make the photocatalysis process faster, less expensive, and more environmentally friendly.
Modification of Rhodamine WT tracer tests procedure in activated sludge reactors
NASA Astrophysics Data System (ADS)
Knap, Marta; Balbierz, Piotr
2017-11-01
One of the tracers recommended for use in wastewater treatment plants and natural waters is Rhodamine WT, which is a fluorescent dye, allowing to work at low concentrations, but may be susceptible to sorption to activated sludge flocs and chemical quenching of fluorescence by dissolved water constituents. Additionally raw sewage may contain other natural materials or pollutants exhibiting limited fluorescent properties, which are responsible for background fluorescence interference. This paper presents the proposed modifications to the Rhodamine WT tracer tests procedure in activated sludge reactors, which allow to reduce problems with background fluorescence and tracer loss over time, developed on the basis of conducted laboratory and field experiments.
Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz
2018-04-01
Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes
Hammond, P.R.
1983-12-29
Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.
Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes
Hammond, Peter R.
1986-01-01
Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.
Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay
Jouan, Elodie; Le Vée, Marc; Mayati, Abdullah; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier
2016-01-01
In vitro evaluation of P-glycoprotein (P-gp) inhibitory potential is now a regulatory issue during drug development, in order to predict clinical inhibition of P-gp and subsequent drug–drug interactions. Assays for this purpose, commonly based on P-gp-expressing cell lines and digoxin as a reference P-gp substrate probe, unfortunately exhibit high variability, raising thus the question of developing alternative or complementary tests for measuring inhibition of P-gp activity. In this context, the present study was designed to investigate the use of the fluorescent dye rhodamine 123 as a reference P-gp substrate probe for characterizing P-gp inhibitory potential of 16 structurally-unrelated drugs known to interact with P-gp. 14/16 of these P-gp inhibitors were found to increase rhodamine 123 accumulation in P-gp-overexpressing MCF7R cells, thus allowing the determination of their P-gp inhibitory potential, i.e., their half maximal inhibitor concentration (IC50) value towards P-gp-mediated transport of the dye. These IC50 values were in the range of variability of previously reported IC50 for P-gp and can be used for the prediction of clinical P-gp inhibition according to Food and Drug Administration (FDA) criteria, with notable sensitivity (80%). Therefore, the data demonstrated the feasibility of the use of rhodamine 123 for evaluating the P-gp inhibitory potential of drugs. PMID:27077878
NASA Astrophysics Data System (ADS)
Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin
2013-06-01
Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.
NASA Astrophysics Data System (ADS)
Sangareswari, M.; Meenakshi Sundaram, M.
2017-05-01
Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV-DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV-Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.
Bera, Kamal Kanti; Majumdar, Rituparna; Chakraborty, Malay; Bhattacharya, Swapan Kumar
2018-06-15
Nano particles of a few α/β Bi 2 O 3 hetero-junctions of various compositions synthesized by one- pot hydrothermal method, exhibit exceptional and synergistic photo-catalytic activity for the degradation of Rhodamine-B in aqueous solution under natural sunlight. Pure α and pure β Bi 2 O 3 are also synthesized by control post heating of synthesized hetero-junction. The nano-materials were characterized by diffraction (XRD), microscopic and spectroscopic techniques. The XRD reveals α-β phase hetero-junctions of Bi 2 O 3 are made of α-Bi 2 O 3 and β-Bi 2 O 3 with average dimensions within 13-113 and 5-71 nm respectively and having band gap range of 2.4- 2.9 eV. The spectrophotometrically determined % degradation of the dye and associated rate constant on the best hetero-junction are increased by 4.5(/2.1) and 3.3(/1.2) times than these on pure α (/β). The effects of operational parameters and trapping agents have been analyzed. The maximum removal of the dye was achieved up to 99.6% in 3 h using 0.5 g/L photo-catalyst at pH 3. The reusability test shows that the photo-catalytic activity is retained excellently due to change in chemical nature of the catalyst from α -Bi 2 O 3 to β-Bi 2 O 3, Bi 2 O 2 CO 3 and BiOCl. A suitable mechanism is proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
Light-induced translocation of Pyronine G from mitochondria to nucleoli in monkey kidney CV-1 cells
NASA Astrophysics Data System (ADS)
Geze, Marc; Dellinger, M.; Bazin, M.; Santus, Rene C.
1996-12-01
Pyronine G (3,6-bis-N,N-dimethylaminoxanthylium chloride; PG) is a cationic dye that concentrates in mitochondria of living cells due to the high membrane potential of these organelles, similarly to rhodamine 123 and many other cationic dyes. Pyronine G also shows a preferential affinity for RNA. Upon light irradiation PG has been shown to induce cell death, but the photosensitizing properties of this molecule and the mechanism of cell death are not well understood. Microfluorometry and most particularly microspectrofluorometry are now powerful non-invasive techniques for quantitative studies of single living cells in real time which allow, for example, knowing how living cells are affected by photosensitization. To demonstrate the usefulness of image acquisition with high resolution and high sensitive camera, we present data on photosensitizer relocalization during illumination leading to functional and structural damage in the cells.
Influence of selected fluorescent dyes on small aquatic organisms
NASA Astrophysics Data System (ADS)
Rowiński, Paweł; Chrzanowski, Marcin
2011-02-01
Rhodamine B and Rhodamine WT are fluorescent dyes commonly used as tracers in hydrological investigations. Since introducing intensely red substances into rivers raises understandable doubts of ecological nature, the authors aimed at examining the influence of these dyes on small water fauna using bioindication methods. Quantitative results, calculated with the use of Bliss-Weber probit statistical method, were achieved by means of standardized ecotoxicological tests containing ready-to-hatch resting forms of fairy shrimp (Thamnocephalus platyurus). Qualitative studies included observation of water flea crustacean (Daphnia magna) and horned planorbis snail (Planorbis corneus), both typically present in rivers and representative for temperate climate, as well as guppy fish (Poecilla reticulata), paramecium protozoan (Paramaecium caudatum) and the above-mentioned fairy shrimp. The investigation revealed that both dyes in concentrations used for hydrological purposes are low enough to exert almost no toxic impact on water fauna considered.
NASA Astrophysics Data System (ADS)
Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha
2016-02-01
Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.
Laser velocimetry with fluorescent dye-doped polystyrene microspheres.
Lowe, K Todd; Maisto, Pietro; Byun, Gwibo; Simpson, Roger L; Verkamp, Max; Danehy, Paul M; Tiemsin, Pacita I; Wohl, Christopher J
2013-04-15
Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 μm mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential.
NASA Astrophysics Data System (ADS)
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-01
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.
NASA Astrophysics Data System (ADS)
Pikulik, L. G.; Chernyavskii, V. A.; Grib, A. F.
2000-06-01
Spectral studies of induced quasi-crystal properties (which can be quantitatively characterised by the difference in the refractive indices of ordinary and extraordinary waves, Δn=no—ne) in Rhodamine 6G and Rhodamine 4C solutions in glycerine excited in the visible and UV ranges of the absorption spectrum are presented. It is demonstrated that the observed spectral dependences of Δn of these dye solutions excited in the visible (long-wavelength) and UV (short-wavelength) ranges of the absorption spectrum can be interpreted in terms of an oscillator model of a molecule. The proposed method for the analysis of induced optical anisotropy in solutions of organic compounds allows the relative orientation of oscillators in a molecule and, thus, the relative orientation of electronic transitions in a molecule to be determined in a reliable way.
Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...
2016-09-22
Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.
Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO 2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered
NASA Astrophysics Data System (ADS)
Maurin, Mathieu; Stéphan, Olivier; Vial, Jean-Claude; Marder, Seth R.; van der Sanden, Boudewijn
2011-03-01
Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.
Lu, Xujin; Lloyd, David K; Klohr, Steven E
2016-01-01
A feasibility study was conducted for a sensitive and robust dye immersion method for the measurement of container closure integrity of unopened prefilled syringes using fluorescence spectrophotometry as the detection method. A Varian Cary Eclipse spectrofluorometer was used with a custom-made sample holder to position the intact syringe in the sample compartment for fluorescence measurements. Methylene blue solution was initially evaluated as the fluorophore in a syringe with excitation at 607 nm and emission at 682 nm, which generated a limit of detection of 0.05 μg/mL. Further studies were conducted using rhodamine 123, a dye with stronger fluorescence. Using 480 nm excitation and 525 nm emission, the dye in the syringe could be easily detected at levels as low as 0.001 μg/mL. The relative standard deviation for 10 measurements of a sample of 0.005 μg/mL (with repositioning of the syringe after each measurement) was less than 1.1%. A number of operational parameters were optimized, including the photomultiplier tube voltage, excitation, and emission slit widths. The specificity of the testing was challenged by using marketed drug products and a protein sample, which showed no interference to the rhodamine detection. Results obtained from this study demonstrated that using rhodamine 123 for container closure integrity testing with in-situ (in-syringe) fluorescence measurements significantly enhanced the sensitivity and robustness of the testing and effectively overcame limitations of the traditional methylene blue method with visual or UV-visible absorption detection. Ensuring container closure integrity of injectable pharmaceutical products is necessary to maintain quality throughout the shelf life of a sterile drug product. Container closure integrity testing has routinely been used to evaluate closure integrity during product development and production line qualification of prefilled syringes, vials, and devices. However, container closure integrity testing
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-05
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Steele, Terry W J; Huang, Charlotte L; Kumar, Saranya; Widjaja, Effendi; Chiang Boey, Freddy Yin; Loo, Joachim S C; Venkatraman, Subbu S
2011-10-01
Hydrophobic, antirestenotic drugs such as paclitaxel (PCTX) and rapamycin are often incorporated into thin film coatings for local delivery using implantable medical devices and polymers such as drug-eluting stents and balloons. Selecting the optimum coating formulation through screening the release profile of these drugs in thin films is time consuming and labor intensive. We describe here a high-throughput assay utilizing three model hydrophobic fluorescent compounds: fluorescein diacetate (FDAc), coumarin-6, and rhodamine 6G that were incorporated into poly(d,l-lactide-co-glycolide) (PLGA) and PLGA-polyethylene glycol films. Raman microscopy determined the hydrophobic fluorescent dye distribution within the PLGA thin films in comparison with that of PCTX. Their subsequent release was screened in a high-throughput assay and directly compared with HPLC quantification of PCTX release. It was observed that PCTX controlled-release kinetics could be mimicked by a hydrophobic dye that had similar octanol-water partition coefficient values and homogeneous dissolution in a PLGA matrix as the drug. In particular, FDAc was found to be the optimal hydrophobic dye at modeling the burst release as well as the total amount of PCTX released over a period of 30 days. Copyright © 2011 Wiley-Liss, Inc.
Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping
2013-01-01
This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823
Trusov, K K
1994-02-20
A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho
2018-07-27
The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s > 2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.
Bagheri, Habib; Daliri, Rasoul; Roostaie, Ali
2013-09-10
A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35-5.00μgL(-1) with R(2)=0.9991 was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.10μgL(-1) and 0.35μgL(-1) (n=3), respectively. The relative standard deviation for water sample with 0.5μgL(-1) of RhB was 4.2% (n=5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94-99%. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Elham; Kaykhaii, Massoud
2016-07-01
A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60 mg/L, 0.10-0.80 mg/L, and 0.03-0.30 mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1 μg/L.
Ghasemi, Elham; Kaykhaii, Massoud
2016-07-05
A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60mg/L, 0.10-0.80mg/L, and 0.03-0.30mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1μg/L. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng
2016-06-01
Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g-1) and record-breaking adsorption rate (475 mg g-1 min-1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.
Protein-specific localization of a rhodamine-based calcium-sensor in living cells.
Best, Marcel; Porth, Isabel; Hauke, Sebastian; Braun, Felix; Herten, Dirk-Peter; Wombacher, Richard
2016-06-28
A small synthetic calcium sensor that can be site-specifically coupled to proteins in living cells by utilizing the bio-orthogonal HaloTag labeling strategy is presented. We synthesized an iodo-derivatized BAPTA chelator with a tetramethyl rhodamine fluorophore that allows further modification by Sonogashira cross-coupling. The presented calcium sensitive dye shows a 200-fold increase in fluorescence upon calcium binding. The derivatization with an aliphatic linker bearing a terminal haloalkane-function by Sonogashira cross-coupling allows the localization of the calcium sensor to Halo fusion proteins which we successfully demonstrate in in vitro and in vivo experiments. The herein reported highly sensitive tetramethyl rhodamine based calcium indicator, which can be selectively localized to proteins, is a powerful tool to determine changes in calcium levels inside living cells with spatiotemporal resolution.
Dye-dispersion study at proposed pumped-storage project on Hudson River at Cornwall, New York
Dunn, Bernard; Gravlee, George C.
1978-01-01
Data were collected during a dye-dispersion study on a 6-mile, tide-affected reach of the Hudson River near the proposed Cornwall Pumped Storage Project on September 21-22, 1977. The results indicated that complete mixing did not occur during the first tidal cycle but was complete after two or more cycles. The fluorometric dye-tracing procedure was used to determine the dispersion characteristics of the water mass. Rhodamine WT dye, 20-percent solution, was continuously injected on the west side of the river throughout an ebb tide, and its movement was monitored during a 30-hour period. Samples were collected both individually and continuously. Automatic dye samplers were used at selected cross sections near each bank. Bathymetric measurements were made at eight cross sections between Newburgh and West Point to determine the depths. (Woodard-USGS)
Kaushik, Prachi; Malik, Anushree
2013-05-01
Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.
NASA Astrophysics Data System (ADS)
Rahdar, Abbas; Almasi-Kashi, Mohammad
2017-01-01
In the present work, the dynamic and spectroscopic properties of water-in-decane dioctyl sodium sulfosuccinate (AOT) microemulsions comprising dye, Rhodamine B (RB), were studied by varying content of decane at the constant water content (W = 20), by using dynamic light scattering (DLS), UV/visible, and fluorescence techniques. The characterization results of DLS of AOT micelles showed that by decreasing concentration of Rhodamine B in the water/AOT/decane microemulsion, the inter-droplet interactions changed from attractive to repulsive as the mass fraction of nano-droplets (MFD) increased. A deviation in the absorption spectra of Rhodamine B from the Beer's law at the high Rhodamine B concentration (0.001) was observed in the AOT reversed micelles. The Quenching in the emission intensity of AOT droplets comprising Rhodamine B and red shift in λmax of fluorescence of dye was observed as a function of concentration of RB in AOT RMs. The Stokes shift of AOT droplets containing the high concentration of RB, increased with mass fraction of nano-droplet (MFD), whereas at the low Rhodamine B concentration, its variation remained constant up to MFD = 0.07, and then increased.
Development of rapid continuous dyeing process for heavy-weight nylon 6,6 carpet
USDA-ARS?s Scientific Manuscript database
An improved continuous dyeing process for coloration of heavy-weight (60-70 oz/yd2), residential nylon 6,6 carpet is reported. By inserting a slot steam applicator after the dye pad and before the box steamer to preheat the carpet to around 180°F (greater than the nylon wet glass transition temperat...
Pang, Yean Ling; Abdullah, Ahmad Zuhairi
2012-05-01
Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes. Copyright © 2011 Elsevier B.V. All rights reserved.
Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.
El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K
2014-06-01
Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.
Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes
Haugland, Richard P.; Whitaker, James E.
1993-01-01
Novel fluorescent dyes based on the rhodol structure are provided. The new reagents contain functional groups capable of forming a stable fluorescent product with functional groups typically found in biomolecules or polymers including amines, phenols, thiols, acids, aldehydes and ketones. Reactive groups in the rhodol dyes include activated esters, isothiocyanates, amines, hydrazines, halides, acids, azides, maleimides, aldehydes, alcohols, acrylamides and haloacetamides. The products are detected by their absorbance or fluorescence properties. The spectral properties of the fluorescent dyes are sufficiently similar in wavelengths and intensity to fluorescein or rhodamine derivatives as to permit use of the same equipment. The dyes, however, show less spectral sensitivity to pH in the physiological range than does fluorescein, have higher solubility in non-polar solvents and have improved photostability and quantum yields.
Reddy, Kamani Sudhir K; Chen, Yen-Chiao; Wu, Chih-Chung; Hsu, Chia-Wei; Chang, Ya-Ching; Chen, Chih-Ming; Yeh, Chen-Yu
2018-01-24
Since their introduction, dye-sensitized solar cells (DSCs) have achieved huge success at a laboratory level. Recently, research is concentrated to visualize large DSC modules at the commercial platform. In that aspect, we have tested structurally simple porphyrin-based dye SK6 and anthracene-based dye CW10 for DSCs application under simulated 1 sun (AM 1.5G) and indoor light sources. These two dyes can be easily synthesized and yet are efficient with cell performances of ca. 5.42% and ca. 5.75% (without coadsorbent/additive) for SK6 and CW10, respectively, under AM 1.5G illumination. The power conversion efficiency (PCE) of SK6 reported in this work is the highest ever reported; this is achieved by optimizing the adsorption of SK6 on TiO 2 photoanode using the most suitable solvent and immersion period. Cosensitization of SK6 with CW10 on TiO 2 surface has boosted cell performance further and achieved PCE of ca. 6.31% under AM 1.5G illumination. Charge-transfer properties of individual and cosensitized devices at TiO 2 /dye/electrolyte interface were examined via electrochemical impedance spectroscopy. To understand the cell performances under ambient light conditions, we soaked individual and cosensitized devices under T5 and light-emitting diode light sources in the range of 300-6000 lx. The PCE of ca. 22.91% under T5 light (6000 lx) with J SC = 0.883 mA cm -2 , V OC = 0.646 V, and FF = 0.749 was noted for the cosensitized device, which equals a power output of 426 μW cm -2 . These results reveal that DSCs made of structurally simple dyes performed efficiently under both 1 sun (AM 1.5G) and indoor light conditions, which is undoubtedly a significant achievement when it comes to a choice of commercial application.
NASA Astrophysics Data System (ADS)
Azeez, Luqmon; Lateef, Agbaje; Adebisi, Segun A.; Oyedeji, Abdulrasaq O.
2018-03-01
This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity ( q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (Δ H°, Δ S° and Δ G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy ( E) and activation energy ( E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption).
Thennarasu, G; Kavithaa, S; Sivasamy, A
2011-08-01
The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses. Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation. The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV-Visible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses. The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.
The effect of endodontic materials on the optical density of dyes used in marginal leakage studies.
Kubo, Claudio Hideki; Valera, Marcia Carneiro; Gomes, Ana Paula Martins; Mancini, Maria Nadir Gasparoto; Camargo, Carlos Henrique Ribeiro
2008-01-01
The aim of this study was to determine the effect of the exposure of different endodontic materials to different dye solutions by evaluating the optical density of the dye solutions. Seventy-five plastic tubes were filled with one of the following materials: AH Plus, Sealapex, Portland cement, MTA (Angelus and Pro Root) and fifteen control plastic tubes were not. Each specimen of material and control was immersed in a container with 1 ml of each dye solution. A 0.1 ml-dye solution aliquote was removed before immersion and after 12, 24, 48 and 72 hours of each specimen immersion to record its optical density (OD) in a spectrophotometer. Statistical analysis was performed with ANOVA and Tukey tests (5%). No significant difference was found among any of the solution OD values for AH Plus cement. Portland cement promoted different OD values after 12 hours of immersion. MTA-Angelus cement presented different OD values only for 2% rhodamine B and the MTA-Pro Root cement presented different OD values in all 2% rhodamine B samples. Sealapex cement promoted a reduction in the India Ink OD values. Dye evaluation through OD seems to be an interesting method to select the best dye solution to use in a given marginal leakage study.
Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh
2017-09-01
In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.
McCann, Thomas E.; Kosaka, Nobuyuki; Koide, Yuichiro; Mitsunaga, Makoto; Choyke, Peter L.; Nagano, Tetsuo; Urano, Yasuteru; Kobayashi, Hisataka
2011-01-01
Optical imaging is emerging as an important tool to visualize tumors. However, there are many potential choices among the available fluorophores. Optical imaging probes that emit in the visible range can image superficial tumors with high quantum yields, however, if deeper imaging is needed then near infrared (NIR) fluorophores are necessary. Most commercially available NIR fluorophores are cyanine based and are prone to non-specific binding and relatively limited photostability. Silica-containing rhodamine (SiR) fluorophores represent a new class of NIR fluorophores, which permit photoactivation via H-dimer formation as well as demonstrate improved photostability. This permits higher tumor-to-background ratios (TBRs) to be achieved over longer periods of time. Here, we compared an avidin conjugated with SiR700 (Av-SiR700) to similar compounds based on cyanine dyes (Av-Cy5.5 and Av-Alexa Fluor 680) in a mouse tumor model of ovarian cancer metastasis. We found that the Av-SiR700 probe demonstrated superior quenching enabling activation after binding-internalization to the target cell. As a result, Av-SiR700 had higher TBRs compared to Av-Cy5.5, and better biostability compared to Av-Alexa Fluor 680. PMID:22034863
NASA Astrophysics Data System (ADS)
Pang, Jiawei; Han, Qiaofeng; Liu, Weiqi; Shen, Zichen; Wang, Xin; Zhu, Junwu
2017-11-01
A novel basic bismuth nitrate, [Bi6O6(OH)2](NO3)4·2H2O (denoted as BiON-4N), was easily obtained at room temperature in the existence of 2-methoxyethanol (CH3OCH2CH2OH; 2ME) with a pH value ranging from 4.5 to 7.0. The morphology of BiON-4N could be easily tailored by changing the variety and amount of bases like urea, hexamethylenetetramine (HMTA), NaOH and NH3·H2O. When the solution pH was decreased lower than 4.5, another basic bismuth nitrate, [Bi6O5(OH)3](NO3)5·3H2O (denoted as BiON-5N), could be synthesized. Among those, BiON-4N nanoparticles obtained with 40 mmol of HMTA exhibited superior photocatalytic activity for rhodamine B (RhB) degradation with an efficiency of 100% within 4 min of UV light irradiation, which was much higher than that of commercial TiO2 (P25). The excellent photocatalytic performance of BiON-4N was mainly attributed to higher surface area (13.1 m2 g-1) in comparison with other basic bismuth nitrates. Furthermore, the as-prepared BiON-5N revealed excellent adsorption performance for the anions like methyl orange (MO) and K2Cr2O7, and especially for MO, the maximum adsorption capacity arrived up to 730 mg g-1, which should be relevant to highly positively charged surface. This work provides a new strategy for developing bismuth-based nanomaterials in the big bismuth family as potential photocatalyst and adsorbent for the removal of dyes and contaminants.
NASA Astrophysics Data System (ADS)
Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.
2018-05-01
Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.
Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D
2015-01-01
In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.
Absolute tracer dye concentration using airborne laser-induced water Raman backscatter
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1981-01-01
The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.
Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng
2015-11-16
In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage
Runkel, Robert L.
2015-01-01
Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.
Synthesis of Tb{sub 4}O{sub 7} complexed with reduced graphene oxide for Rhodamine-B absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Hui, E-mail: hope@lzu.edu.cn; Zhou, Yang; Chen, Keqin
2016-05-15
Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb{sub 4}O{sub 7} complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb{sub 4}O{sub 7} particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, andmore » the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.« less
Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite
NASA Astrophysics Data System (ADS)
Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.
2018-03-01
We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.
Random lasing from Rhodamine 6G doped ethanediol solution based on the cicada wing nanocones
NASA Astrophysics Data System (ADS)
Zhang, Hua; Feng, Guoying; Zhang, Hong; Yang, Chao; Yin, Jiajia; Dai, Shenyu; Zhou, Shouhuan
2016-06-01
Random lasing from Rhdomaine 6G (Rh6G) doped ethanediol solution based on the cicada wing nanostructures as scatterers has been demonstrated. The optical positive feedback of the random laser is provided by these nanocones on the cicada wing, where the scale of the nanocones and the distance between them is about 150 nm and 200 nm, respectively. Al-coated reflector has been introduced to reduce the loss of the pump energy from the bottom, and moreover lower the laser threshold, which is about 126.0 μJ/pulse. Due to the liquid gain medium, the lifetime of this random laser is longer than conventional random lasers. This random laser shows the potential applications in biological random laser and photonic devices.
Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR.
Sidstedt, Maja; Hedman, Johannes; Romsos, Erica L; Waitara, Leticia; Wadsö, Lars; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter
2018-04-01
Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. Graphical abstract PCR inhibition mechanisms of hemoglobin and immunoglobulin G (IgG). Cq quantification cycle, dsDNA double-stranded DNA, ssDNA single-stranded DNA.
Guo, Jianchang; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W
2014-01-30
In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room-temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B (RhB) dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively charged sulforhodamine 640 (SR640) is slower than that of its positively charged counterpart rhodamine 6G (R6G). An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No significant dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are relatively independent of this solvent parameter.
Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin
2017-10-11
A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.
Halloysite nanotubule clay for efficient water purification.
Zhao, Yafei; Abdullayev, Elshad; Vasiliev, Alexandre; Lvov, Yuri
2013-09-15
Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface; therefore, these clay nanotubes have efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. The equilibrium adsorption data were described by Langmuir and Freundlich isotherms. Copyright © 2013 Elsevier Inc. All rights reserved.
Coomassie Brilliant Blue G-250 Dye: An Application for Forensic Fingerprint Analysis.
Brunelle, Erica; Le, Anh Minh; Huynh, Crystal; Wingfield, Kelly; Halámková, Lenka; Agudelo, Juliana; Halámek, Jan
2017-04-04
The Bradford reagent, comprised of the Coomassie Brilliant Blue G-250 dye, methanol, and phosphoric acid, has been traditionally used for quantifying proteins. Use of this reagent in the Bradford assay relies on the binding of the Coomassie Blue G-250 dye to proteins. However, the ability of the dye to react with a small group of amino acids (arginine, histidine, lysine, phenylalanine, tyrosine, and tryptophan) makes it a viable chemical assay for fingerprint analysis in order to identify the biological sex of the fingerprint originator. It is recognized that the identification of biological sex has been readily accomplished using two other methods; however, both of those systems are reliant upon a large group of amino acids, 23 to be precise. The Bradford assay, described here, was developed specifically to aid in the transition from targeting large groups of amino acids, as demonstrated in the previous studies, to targeting only a single amino acid without compromising the intensity of the response and/or the ability to differentiate between two attributes. In this work, we aim to differentiate between female fingerprints and male fingerprints.
NASA Astrophysics Data System (ADS)
Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono
2018-04-01
The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.
Johnson, Brian J; Mitchell, Sara N; Paton, Christopher J; Stevenson, Jessica; Staunton, Kyran M; Snoad, Nigel; Beebe, Nigel; White, Bradley J; Ritchie, Scott A
2017-09-01
Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.
Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.
2016-01-01
Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929
NASA Astrophysics Data System (ADS)
Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.
2007-03-01
The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.
Testing the Fraunhofer line discriminator by sensing fluorescent dye
NASA Technical Reports Server (NTRS)
Stoertz, G. E.
1969-01-01
The experimental Fraunhofer Line Discriminator (FLD) has detected increments of Rhodamine WT dye as small as 1 ppb in 1/2 meter depths. It can be inferred that increments considerably smaller than 1 ppb will be detectable in depths considerably greater than 1/2 meter. Turbidity of the water drastically reduces luminescence or even completely blocks the transmission of detectable luminescence to the FLD. Attenuation of light within the water by turbidity and by the dye itself are the major factors to be considered in interpreting FLD records and in relating luminescence coefficient to dye concentration. An airborne test in an H-19 helicopter established feasibility of operating the FLD from the aircraft power supply, and established that the rotor blades do not visibly affect the monitoring of incident solar radiation.
Sanjini, N S; Winston, B; Velmathi, S
2017-01-01
Copper oxide nanoparticles have been successfully synthesized by microwave assisted precipitation method. Different precursors like copper chloride, copper nitrate and copper sulphate were used for synthesis of CuO nanoparticles with different shape, size and catalytic activity. Sodium hydroxide acts as a capping agent and ethanol as solvent for the synthesis. The XRD study was conducted to confirm the single phase monoclinic structure of as-synthesized and annealed CuO nano particles. The morphology of the as-synthesized and annealed CuO samples was analyzed by high resolution field emission scanning electron microscope. Fourier transform infrared spectroscopy was done for all the synthesized CuO nanoparticles for functional group characterization. The wide band gap and photocatalytic activity were studied by UV-Visible spectroscopy. The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in aqueous solution were investigated under UV light (254 nm). In all the cases annealed samples showed good catalytic activity compared to as-synthesized CuO nanoparticles. The CuO nanoparticles from CuCl2 precursor act as excellent photocatalyst for both MB and RhB compared to CuNO₃ and CuSO₄.
NASA Astrophysics Data System (ADS)
Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan
2018-05-01
Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.
Chen, Jieping; Zhu, Xiashi
2016-06-01
Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples. Copyright © 2016. Published by Elsevier Ltd.
Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640
NASA Astrophysics Data System (ADS)
Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.
2018-04-01
Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.
Bujacz, Anna; Wierzbicka-Woś, Anna; Kur, Józef
2013-01-01
The presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm) of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified and its UV-VIS absorbance spectrum and emission spectrum were assayed. Simultaneously, the same spectroscopic studies were carried out for rhodamine B in the absence or presence of RSFP protein or native E. coli proteins, respectively. The results of the spectroscopic studies suggested that the fluorescence of E. coli cells expressing rsfp gene under UV illumination is due to the interaction of rhodamine B molecules with the RSFP protein. Finally, this interaction was proved by a crystallographic study and then by site-directed mutagenesis of rsfp gene sequence. The crystal structures of RSFP apo form (1.98 Å) and complex RSFP/RB (1.90 Å) show a trimer of RSFP molecules located on the crystallographic six fold screw axis. The RSFP complex with rhodamine B revealed the binding site for RB, in the pocket located on the interface between symmetry related monomers. PMID:23383268
Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.
Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R
2016-09-01
Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). Copyright © 2016 Elsevier Ltd. All rights reserved.
Johnson, Brian J.; Mitchell, Sara N.; Paton, Christopher J.; Stevenson, Jessica; Staunton, Kyran M.; Snoad, Nigel; Beebe, Nigel; White, Bradley J.; Ritchie, Scott A.
2017-01-01
Background Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. Methodology/Principle findings Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. Conclusions/Significance These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males. PMID:28957318
Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S
2015-06-18
Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.
NASA Astrophysics Data System (ADS)
Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez
2018-02-01
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.
Near-infrared squaraine dyes for fluorescence enhanced surface assay
Matveeva, Evgenia G.; Terpetschnig, Ewald A.; Stevens, Megan; Patsenker, Leonid; Kolosova, Olga S.; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces. The fluorescence signal enhancement obtained for the two dyes was greater than that previously recorded for Rhodamine Red-X and AlexaFluor-647 labels. PMID:20046935
Sukriti; Sharma, Jitender; Chadha, Amritpal Singh; Pruthi, Vaishali; Anand, Prerna; Bhatia, Jaspreet; Kaith, B S
2017-04-01
Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL -1 and auramine-O 26 mgL -1 , at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R 2 value about 0.99. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.
Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong
2002-06-10
Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions.
Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.
Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W
1995-06-01
The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.
Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa
2011-08-01
A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.
Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K
2015-08-10
Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.
Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin
2018-06-01
In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.
Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.
Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun
2015-05-01
Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.
A volumetric three-dimensional digital light photoactivatable dye display
NASA Astrophysics Data System (ADS)
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-07-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.
A volumetric three-dimensional digital light photoactivatable dye display
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-01-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887
Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa
2016-01-01
In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda
2004-12-01
New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.
NASA Astrophysics Data System (ADS)
Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.
2017-09-01
Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities ( q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy ( E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.
FLUX OF IONIC DYES ACROSS MICRONEEDLE-TREATED SKIN: EFFECT OF DYE MOLECULAR CHARACTERISTICS
Gomaa, Yasmine A.; Garland, Martin J.; McInnes, Fiona; Donnelly, Ryan F.; El-Khordagui, Labiba K.; Wilson, Clive
2014-01-01
Drug flux across microneedle (MN)-treated skin is influenced by the characteristics of the MN array, microconduits and drug molecules in addition to the overall diffusional resistance of microconduits and viable tissue. Relative implication of these factors has not been fully explored. In the present study, the in vitro permeation of a series of six structurally related ionic xanthene dyes with different molecular weights (MW) and chemical substituents, across polymer MN-pretreated full thickness porcine skin was investigated in relation of their molecular characteristics. Phosphate buffer saline pH 7.4, the medium used in skin permeation experiments, was used to determine the equilibrium solubility of the dyes and their partition coefficient both in the isotropic n-octanol/ aqueous system and porcine skin/ aqueous system. Additionally, dissociation constants were determined potentiometrically. Results indicated that for rhodamine dyes, skin permeation of the zwitterionic form which predominates at physiological pH, was significantly reduced by an increase in MW, the presence of the chemically reactive isothiocyanate substituent reported to interact with stratum corneum proteins and the skin thickness. These factors were generally shown to override aqueous solubility, an important determinant of drug diffusion in an aqueous milieu. Findings provided more insight into the mechanism of drug permeation across MN-treated skin, of importance to both the design of MN-based transdermal drug delivery systems and in vitro skin permeation research. PMID:22960319
NASA Astrophysics Data System (ADS)
Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang
2018-03-01
The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.
A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.
Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam
2017-01-01
A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.
Co-extruded mechanically tunable multilayer elastomer laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra
2011-04-01
We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.
Bibliography of Soviet Laser Developments Number 57, January-February 1982.
1983-03-02
1 3. Crystal: Miscellaneous ............. 2 4. Semiconductor a. InP..............................................3 b . Pbl...Nd...........................................6 6. Glass: Miscellaneous................................7 B . Liquid Lasers I. Organic Dyes a. Rhodamine...8 b . Miscellaneous Dyes...............................8 2. Incrganic Liquids
Fluorescent measurements in whole blood and plasma using red-emitting dyes
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.
2000-04-01
We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.
Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N
2017-06-06
Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.
Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie
2016-02-12
Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
2016-05-23
The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2}more » and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.« less
Schnepfe, M.M.
1973-01-01
A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.
NASA Astrophysics Data System (ADS)
Cen, Huoshi; Nan, Zhaodong
2018-10-01
Zn-doped Fe3O4 can be used as a catalyst in the photo-Fenton process to degrade dye molecules dissolved in water, in which cluster-shaped Zn-doped Fe3O4 (CSZnFe) was synthesized. To enhance the catalytic activity, monodisperse Zn-doped Fe3O4 (MZnFe) was facilely synthesized by a modified solvothermal method through replacement of sodium acetate by urea as a base. The particle size of MZnFe was about 9-16 nm. MZnFe exhibits a larger surface area and higher photo-Fenton catalytic activity for degradation of rhodamine B in water than CSZnFe. Additionally, MZnFe exhibits high saturation magnetization (about 80 emu/g), which is very convenient for separation of MZnFe from solution by a magnet. The growth processes for MZnFe were proposed on the basis of results from in situ calorimetry and other techniques, which indicated different formation mechanisms for MZnFe and CSZnFe.
BiVO4 -TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method.
Odling, Gylen; Robertson, Neil
2016-09-19
Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP-OES), XPS, photoluminescence and Mott-Schottky analyses. SILAR processing was found to deposit monoclinic-scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films' visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2 . The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo-first-order rate constant of 0.004 min(-1) . As a reference material, the same SILAR modification has been made to an inactive wide-band-gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4 -ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self-sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst's conduction band. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Al-Fahdan, Najat Saeed; Asiri, Abdullah M; Irfan, Ahmad; Basaif, Salem A; El-Shishtawy, Reda M
2014-12-01
Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1-Cis-SQ3 and Trans-SQ1-Trans-SQ3). The effect of electron donating (-OCH3) and electron withdrawing (-COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG (inject)), relative driving force of electron injection (ΔG r (inject)), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG (inject), ΔG r (inject) and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.
Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl.
Mancuso, Giuseppe; Langone, Michela; Laezza, Marco; Andreottola, Gianni
2016-09-01
A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37min using Ecowirl combined with NaOCl (4.0mgL(-1)) as compared to the 100min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Linda; Bim, Odair; Lopes, Adolfo Coelho de Oliveira; Francisconi-Dos-Rios, Luciana Fávaro; Maenosono, Rafael Massunari; D'Alpino, Paulo Henrique Perlatti; Honório, Heitor Marques; Atta, Maria Teresa
2016-01-01
This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey's test (α=5%). RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface.
Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A
2017-11-01
As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the
Oliveira, Elisabete; Bértolo, Emilia; Núñez, Cristina; Pilla, Viviane; Santos, Hugo M.; Fernández‐Lodeiro, Javier; Fernández‐Lodeiro, Adrian; Djafari, Jamila; Capelo, José Luis
2017-01-01
Abstract Red and green are two of the most‐preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune‐staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most‐relevant results on the use of red and green fluorescent dyes in the fields of bio‐, chemo‐ and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron–dipyrromethene (BODIPY), 7‐nitobenz‐2‐oxa‐1,3‐diazole‐4‐yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P‐oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed. PMID:29318095
Reda, S M; Soliman, K A
2016-02-01
This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100 mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.
Tracer gauge: An automated dye dilution gauging system for ice‐affected streams
Clow, David W.; Fleming, Andrea C.
2008-01-01
In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.
Mull, D.S.; Smoot, J.L.; Liebermann, T.D.
1988-01-01
Because of the vulnerability of karst aquifers to contamination and the need for water managers to know recharge areas and groundwater flow characteristics for springs and wells used for public water supply, qualitative and quantitative dye tracing techniques were used during a groundwater investigation in the Elizabethtown area, Hardin County, in north-central Kentucky. The principal aquifer in the Elizabethtown area is thick, nearly horizontal beds of limestone, and thin beds of shale of Mississippi age. As much as 65% of all water pumped for the city water supply is obtained from two springs and two wells that obtain water from these rocks. Sinkholes were classified according to their ability to funnel runoff directly into the groundwater flow system, based primarily on the nature of the swallet draining the sinkhole. The presence of bedrock in the sinkhole nearly always ensured a well defined swallet leading to the subsurface. Qualitative and quantitative dye tracing techniques and equipment are discussed in detail. Qualitative dye tracing with fluorescein dye and passive dye detectors, consisting of activated coconut charcoal identified point to point connection between representative sinkholes, sinking streams, and karst windows and the city springs and wells. Qualitative tracing confirmed the presence of infiltrated surface water from a perennial stream, Valley Creek, in water from city wells and generally confirmed the direction of groundwater flow as shown by a water level contour map. Quantitative dye tracing with rhodamin WT, automatic samplers, discharge measurements, and fluorometric analyses were used to determine flow characteristics such as traveltime for arrival of the leading edge, peak concentration, trailing edge, and persistence of the dye cloud at the spring resurgence. Analyses of the dye recovery curves for quantitative dye traces completed between the same sinkholes and a city spring, and during different flow conditions showed that the
Aderibigbe, Segun A; Adegoke, Olajire A; Idowu, Olakunle S; Olaleye, Sefiu O
2012-01-01
The study is a description of a sensitive spectrophotometric determination of aceclofenac following azo dye formation with 4-carboxyl-2,6-dinitrobenzenediazonium ion (CDNBD). Spot test and thin layer chromatography revealed the formation of a new compound distinct from CDNBD and aceclofenac. Optimization studies established a reaction time of 5 min at 30 degrees C after vortex mixing the drug/CDNBD for 10 s. An absorption maximum of 430 nm was selected as analytical wavelength. A linear response was observed over 1.2-4.8 μg/mL of aceclofenac with a correlation coefficient of 0.9983 and the drug combined with CDNBD at stoichiometric ratio of 2 : 1. The method has a limit of detection of 0.403 μg/mL, limit of quantitation of 1.22 μg/mL and is reproducible over a three day assessment. The method gave Sandell's sensitivity of 3.279 ng/cm2. Intra- and inter-day accuracies (in terms of errors) were less than 6% while precisions were of the order of 0.03-1.89% (RSD). The developed spectrophotometric method is of equivalent accuracy (p > 0.05) with British Pharmacopoeia, 2010 potentiometric method. It has the advantages of speed, simplicity, sensitivity and more affordable instrumentation and could found application as a rapid and sensitive analytical method of aceclofenac. It is the first described method by azo dye derivatization for the analysis of aceclofenac in bulk samples and dosage forms.
Fael, Hanan; Sakur, Amir Al-Haj
2015-11-01
A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.
Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.
Kaur, Matinder; Choi, Dong Hoon
2015-01-07
The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.
Tabaraki, Reza; Sadeghinejad, Negar
2017-06-01
Biosorption of Methyl Blue (MB), Fuchsin Acid (FA), Rhodamine B (RB), Methylene Blue (MEB), Bromocresol purple (BC) and Methyl Orange (MO) onto Sargassum ilicifolium was studied in a batch system. Effect of dye structure on biosorption by Sargassum ilicifolium was studied to define the correlation between chemical structure and biosorption capacity. Different dye groups such as triarylmethane (MB, FA and BC), monoazo (MO), thiazine (MEB) and xanthene (RB) were studied. At optimum experimental conditions for each dye, biosorption capacity was determined and compared. The results indicate that the chemical structure (triarylmethane, monoazo, thiazine, xanthene), number of sulfonic groups, basicity (element of chromophore group: S, N, O) and molecular weight of dye molecules influence their biosorption capacity. Experimental parameters such as biosorbent dose, pH, contact time, and initial dye concentration were optimized for each dye. The biosorption kinetic data were successfully described by the pseudo second-order model. The biosorption results were also analyzed by the Langmuir and Freundlich isotherms. Finally, biosorption capacities obtained using Sargassum ilicifolium were compared with the ones presented in the literature.
Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J
1991-01-01
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678
NASA Astrophysics Data System (ADS)
Hassani, Aydin; Eghbali, Paria; Ekicibil, Ahmet; Metin, Önder
2018-06-01
Monodisperse cobalt ferrite (CoFe2O4) nanoparticles (NPs) were synthesized by thermal decomposition of metal precursors in the presence of surfactants and then assembled on mesoporous graphitic carbon nitride (mpg-C3N4) via sonication of two components in ethanol solution. The yielded nanocomposite, namely CoFe2O4/mpg-C3N4, were characterized by using many advanced analytical techniques (TEM, HR-SEM, EDX, XRD, BET, PPMS-VSM, UV-vis DRS and ICP-MS). The magnetic properties of the CoFe2O4/mpg-C3N4 nanocomposite were studied by using M-H and M-T loops and the magnetic saturation and blocking temperature of the nanocomposite were found to be 6.1 emu/g and 269 K, respectively. The nanocomposite were then tested in the photocatalytic degradation of Malachite Green (MG) and showed considerably high photocatalytic activity under UV-light irradiation. The effects of various key operating parameters comprising catalyst amount, initial dye concentration, pH and reaction time span for the degradation of MG dye were studied to optimize the reaction conditions. The maximum degradation efficiency (DE %) of 93.41% was obtained by using 0.08 g L-1 catalyst and 10 mg L-1 MG dye at pH 5 within 120 min reaction time. Besides MG, the photocatalytic degradation of several other organic dyes (methylene blue, acid orange 7 and rhodamine B) was also studied to exhibit the performance of CoFe2O4/mpg-C3N4 nanocomposite under the optimized conditions. The results revealed that the kinetic of dye removal process could be designated through the application of pseudo-first-order kinetic model. In addition to high photocatalytic activity, CoFe2O4/mpg-C3N4 nanocomposite could be magnetically recovered after the dye degradation and reused for consecutive five runs without a significant loss (nearly 17%) in their initial performance.
Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen
2017-11-15
A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.
Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan
2017-12-01
Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
Quirks of dye nomenclature. 6. Malachite green.
Cooksey, C J
2016-08-01
Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.
Best, Quinn A; Johnson, Amanda E; Prasai, Bijeta; Rouillere, Alexandra; McCarley, Robin L
2016-01-15
We successfully synthesized a fluorescent probe capable of detecting the cancer-associated quinoneoxidoreductase isozyme-1 within human cells, based on results from an investigation of the stability of various rhodamines and seminaphthorhodamines toward the biological reductant NADH, present at ∼100-200 μM within cells. While rhodamines are generally known for their chemical stability, we observe that NADH causes significant and sometimes rapid modification of numerous rhodamine analogues, including those oftentimes used in imaging applications. Results from mechanistic studies lead us to rule out a radical-based reduction pathway, suggesting rhodamine reduction by NADH proceeds by a hydride transfer process to yield the reduced leuco form of the rhodamine and oxidized NAD(+). A relationship between the structural features of the rhodamines and their reactivity with NADH is observed. Rhodamines with increased alkylation on the N3- and N6-nitrogens, as well as the xanthene core, react the least with NADH; whereas, nonalkylated variants or analogues with electron-withdrawing substituents have the fastest rates of reaction. These outcomes allowed us to judiciously construct a seminaphthorhodamine-based, turn-on fluorescent probe that is capable of selectively detecting the cancer-associated, NADH-dependent enzyme quinoneoxidoreductase isozyme-1 in human cancer cells, without the issue of NADH-induced deactivation of the seminaphthorhodamine reporter.
Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng
2016-05-01
In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6) M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.
Juang, Yaju; Liu, Yijin; Nurhayati, Ervin; Thuy, Nguyen Thi; Huang, Chihpin; Hu, Chi-Chang
2016-02-01
Titania nanotubes (TNTs) were fabricated on Ti mesh substrates by the anodizing technique. The effects of preparation variables, such as anodizing voltage, time and calcination temperature on the textural characteristics and photocatalytic activity of TNTs were investigated. The surface morphology, crystalline phase, and chemical composition were analyzed using field emission-scanning electron microscopy and X-ray diffraction. The photo-electrochemical properties of TNTs were examined by voltammetry. The TNTs were tested as a photoanode for advanced oxidation processes, such as photocatalytic, electrocatalytic, and photoelectrocatalytic decolorization of Orange G dye. The well-arranged TNTs electrode prepared in this work showed a high photocurrent density of 101 µA cm(-2) at an optimum length-to-diameter aspect ratio of 31.2. In dye decolorization tests, the electrochemical photocatalytic system using TNTs as the photoanode achieved total decolorization and 64% mineralization under extended reaction time. These results show that TNTs prepared by this method is greatly stable in prolonged use and suitable as a photoanode in the photocatalytic/photoelectrocatalytic treatments of dye wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa
2016-01-01
ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201
Moutaouakkil, A; Blaghen, M
2011-01-01
Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g(-1) h(-1) with a 50% conversion time (t1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.
Fabrication and characterization of nanowalls CdS/dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Abdulelah, Haider; Ali, Basil; Mahdi, M. A.; Hassan, J. J.; Al-Taay, H. F.; Jennings, P.
2017-06-01
A microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate nanowalls CdS nanocrystalline thin film. Nanomaterials (such as nanowalls structure) have attracted significant attention due to their fascinating properties and unique applications, especially in optoelectronic nanodevices. Here we describe the fabrication of dye sensitized solar cells (DSSCs) based nanowalls cadmium sulfide (CdS) nanocrystalline thin films. The surface morphology, crystalline structure, and optical properties of the prepared nanocrystalline thin films are investigated. Rhodamine B, Malachite green, Eosin methylene blue, and Cresyl violet perchlorate dyes are used to fabricate the DSSCS devices. Current-voltage (I-V) characteristics show that the nanowall CdS/Eosin methylene blue device is the highest conversion efficiency of 0.89% under 100 mW/cm2. However, heat treatment of the fabricated solar cells causes significant enhancement in the output of all devices.
NASA Astrophysics Data System (ADS)
Banerjee, Shashwat S.; Chen, Dong-Hwang
2009-05-01
We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe3O4 magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.
Liu, Jia-Ming; Liu, Zhen-Bo; Hu, Li-Xiang; He, Hang-Xia; Yang, Min-Lan; Zhou, Ping; Chen, Xin-Hua; Zheng, Min-Min; Zeng, Xiao-Yi; Xu, Yue-Long
2006-10-15
In the presence of heavy atom perturber LiAc, the silicon dioxide nanoparticle containing rhodamine 6G (R) and dibromoluciferin (D) (R-D-SiO(2)) can emit strong and stable solid-substrate room temperature phosphorescence signal of R (lambda(ex)/lambda(em)=481/648 nm) and D (lambda(ex)/lambda(em)=457/622 nm) on the surface of acetyl cellulose membrane (ACM). R-D-SiO(2) is used to label triticum vulgare lectin (WGA). Then two types of affinity adsorption reactions, R-D-SiO(2)-WGA- alkaline phosphatase (ALP) (direct method) and WGA-ALP-WGA-R-D-SiO(2) (sandwich method), are carried out on ACM. The conditions and the analytical characteristics for the determination of ALP using affinity adsorption solid-substrate room temperature phosphorimetry (AA-SS-RTP) were studied. For a 0.40-microl drop of sample, results show that the detection limits of the sandwich method are 0.16 ag spot(-1)(457/622 nm) and 0.17 ag spot(-1)(481/648 nm), and the detection limits of the direct method are 0.41 ag spot(-1) (457/622 nm) and 0.44 ag spot(-1) (481/648 nm). The contents of ALP in human serum correlated well with those obtained by enzyme-linked immunoassay. This study shows that AA-SS-RTP whether by the sandwich method or the direct method, can combine very well the characteristics of both high sensitivity of SS-RTP and specificity of the immunoreaction. Simultaneously, whether the phosphorescence excitation/emission wavelength of either R or D in R-D-SiO(2) is chosen to determine ALP, this can promote the agility and widen the adaptability of AA-SS-RTP.
Sommerwerk, Sven; Heller, Lucie; Kerzig, Christoph; Kramell, Annemarie E; Csuk, René
2017-02-15
Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC 50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Gao, Duo; Gao, Liquan; Zhang, Chenran; Liu, Hao; Jia, Bing; Zhu, Zhaohui; Wang, Fan; Liu, Zhaofei
2015-06-01
Integrin αvβ6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin αvβ6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin αvβ6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin αvβ6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin αvβ6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Picosecond pulse measurements using the active laser medium
NASA Technical Reports Server (NTRS)
Bernardin, James P.; Lawandy, N. M.
1990-01-01
A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.
Fabrication of N, P-codoped reduced graphene oxide and its application for organic dye removal
NASA Astrophysics Data System (ADS)
Wu, Yu; Yang, Feng; Liu, Xiaoxia; Tan, Guangqun; Xiao, Dan
2018-03-01
N, P-codoped reduced graphene oxide (PA-RGO) was synthesized from graphene oxide (GO) and phytic acid (PA) mixture with the reductant of hydrazine hydrate (N2H4) via one-pot solution method. PA can modify the surface of RGO to enhance the hydrophilicity of RGO, and supply anionic functional groups, which can complex with cationic dye via anion-cation interaction. PA-RGO with different amount doped PA were used to remove multiple organic dyes from aqueous solution. The adsorption properties of the PA-RGO-2.0 towards Rhodamine B (RhB) were investigated under various parameters such as different pH of initial solution, different dosage of the PA-RGO-2.0, shaking speed and temperature. To study structural and chemical characterization of PA-RGO-2.0, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), X-ray photoelectron and spectroscopy (XPS) were used, and UV-vis spectrum was used to monitor the absorbance of adsorbate. The batch adsorption experiments of RhB on PA-RGO-2.0 showed that the RhB equilibrium capacity was about 149 mg/g. In addition, the adsorption process was well-matched with the pseudo-second-order rate model. The as-prepared composites were found to be highly selective for cationic organic dyes. The good reusability of PA-RGO indicated that the adsorbent possessed potential practical application.
Lu, Yu-Jing; Hu, Dong-Ping; Zhang, Kun; Wong, Wing-Leung; Chow, Cheuk-Fai
2016-07-15
A series of C1-, C2-and C3-symmetric pyridinium conjugates with different styrene-like side groups were synthesized and were utilized as G-quadruplex selective fluorescent probes. The new compounds were well-characterized. Their selectivity, sensitivity, and stability towards G-quadruplex were studied by fluorescence titration, native PAGE experiments, FRET and circular dichroism (CD) analyses. These new compounds investigated in the fluorescence assays were preferentially bound with G-quadruplex DNA compared with other type of nucleic acids and it is fascinating to realize the effects of molecular symmetry and associated side groups showing unexpectedly great influence on the fluorescent signal enhancement for the discrimination of G-quadruplexes DNA from other nucleic acids. This may correlate with the pocket symmetry and shape of the G-quadruplex DNA inherently. Among the compounds, a C2-symmetric dye (2,6-bis-((E)-2-(1H-indol-3-yl)-vinyl)-1-methylpyridin-1-ium iodide) with indolyl-groups substituted was screened out from the series giving the best selectivity and sensitivity towards G-quadruplexes DNA, particularly telo21, due to its high equilibrium binding constant (K=2.17×10(5)M(-1)). In addition, the limit of detection (LOD) of the dye to determine telo21 DNA in bioassays was found as low as 33nM. The results of the study give insight and certain crucial factors, such as molecular symmetry and the associated side groups, on developing of effective fluorescent dyes for G-quadruplex DNA applications including G-quadruplex structure stabilization, biosensing and clinical applications. The compound was also demonstrated as a very selective G-quadruplex fluorescent agent for living cell staining and imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats.
Cheng, Yung-Yi; Tsai, Tung-Hu
2017-02-08
The International Agency for Research on Cancer (IARC) demonstrated rhodamine B as a potential carcinogen in 1978. Nevertheless, rhodamine B has been illegally used as a colorant in food in many countries. Few pharmacokinetic and toxicological investigations have been performed since the first pharmacokinetic study on rhodamine B in 1961. The aims of this study were to develop a simple and sensitive high-performance liquid chromatography method with fluorescence detection for the quantitative detection of rhodamine B in the plasma and organs of rats and to estimate its pharmacokinetics and biodistribution. The results demonstrated that the oral bioavailabilities of rhodamine B were 28.3 and 9.8% for the low-dose and high-dose exposures, respectively. Furthermore, rhodamine B was highly accumulated in the liver and, to a lesser extent, the kidney, but was undetectable in the brain. These results provide useful information for improving the pharmacokinetics and biodistribution of rhodamine B, supporting additional food safety evaluations.
Rathbun, R.E.
1979-01-01
Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)
Cheng, Yung-Yi; Tsai, Tung-Hu
2016-06-05
Rhodamine B is an illegal and potentially carcinogenic food dye. The aim of this study was to develop a convenient, rapid, and sensitive UHPLC-MS/MS method for pharmacokinetic studies in rats. Rat plasma samples were deproteinized with acetonitrile and separated by UHPLC on a reverse-phase C18e column (100mm×2.1mm, 2μm) using a mobile phase consisting of methanol-5mM ammonium acetate (90:10, v/v). Detection was performed using a triple quadrupole tandem mass spectrometer in the selected reaction monitoring mode at [M](+) ion m/z 443.39→399.28 for rhodamine B and [M+H](+) ion m/z 253.17→238.02 for 5-methoxyflavone as the internal standard. This method was specific and produced linear results over a concentration range of 0.5-100ng/mL, with a lower limit of quantitation of 0.5ng/mL. All validation parameters, including the inter-day, intra-day, matrix effect, recovery, and stability in rat plasma, were acceptable according to the biological method validation guidelines developed by the FDA (2001). This method was successfully applied to a pharmacokinetic study in rats; oral administration of 1mg/kg of rhodamine B yielded a time to maximum concentration (Tmax) of 1.3±0.4h and an elimination half-life of 8.8±1.4h, with a clearance of 229.7±19.4mL/h/kg. These pharmacokinetic results provide a constructive contribution to our understanding of the absorption mechanism of rhodamine B and support additional food safety evaluations. Copyright © 2016 Elsevier B.V. All rights reserved.
Klymchenko, Andrey S
2017-02-21
Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies
Johnson, Sharon M.; Steinheimer, Thomas R.
1984-01-01
Rhodamine WT is used by surface water hydrologists for time of travel and dispersion studies in which flow characteristics of surface streams are determined. Surface water contamination by nitrosamines formed from Rhodamine WT and nitrite ion has been studied. A method for residue analysis of N-nitrosodiethylamine (NDEA) has been developed and evaluated using river samples spiked with Rhodamine WT and nitrite ion. It permits rapid and reliable determination of NDEA at a minimum concentration of 0. 03 mu g/L. The method uses solid-phase extraction and capillary gas chromatography.
1984-09-10
0") AD STUDIES ON THE INHALATION TOXICITY CO• OF DYES PRESENT IN COLORED Ln SMOKE MUNIlIONS U FINAL REPORT FOR PHASE III STUDIES : SFOUR- ELK...3 RECIIEPIT’S CATA6.0G NUMBE.• 4. TITLE (and ,ubiltI.e) S. TYPE OF REPORT & PERIOD COygC r., Studies on the Inhalation Toxicity of Dyes Final: Phase...III Present in Colored Smoke Munitions. Final Report Fh for Phase 111 Studies : FoLr-Week Inhalation G. PERFORMING ORO. REPORT N,’,ER Exposures of Rats
Desiderio, C; Marra, C; Fanali, S
1998-06-01
The separation of synthetic dyes, used as color additives in cosmetics, by micellar electrokinetic capillary chromatography (MEKC) is described in this study. The separation of seven dyes, namely eosine, erythrosine, cyanosine, rhodamine B, orange II, chromotrope FB and tartrazine has been achieved in about 3 min in an untreated fused silica capillary containing as background electrolyte a 25 mM tetraborate/phosphate buffer, pH 8.0, and 30 mM sodium dodecyl sulfate. The electrophoretic method exhibits precision and relatively high sensitivity. A detection limit (LOD, signal/noise = 3) in the range of 5-7.5 X 10(-7) M of standard compounds was recorded. Intra-day repeatability of all the studied dye determinations (8 runs) gave the following results (limit values), % standard deviation: 0.24-1.54% for migration time, 0.99-1.24% for corrected peak areas, 0.99-1.24% for corrected peak area ratio (analyte/internal standard) and 1.56-2.74% for peak areas. The optimized method was successfully applied to the analysis of a lipstick sample where eosine and cyanosine were present.
Tehini, Georges; Rifai, Khaldoun; Bou Nasser Eddine, Farah; El Zein, Nabil; Badran, Bassam
2014-01-01
Objectives. Hollow space between implant and abutment may act as reservoir for commensal and/or pathogenic bacteria representing a potential source of tissue inflammation. Microbial colonization of the interfacial gap may ultimately lead to infection and bone resorption. Using Rhodamine B, a sensitive fluorescent tracer dye, we aim in this study to investigate leakage at implant-abutment connection of three implant systems having the same prosthetic interface. Materials and Methods. Twenty-one implants (seven Astra Tech, seven Euroteknika, and seven Dentium) with the same prosthetic interface were connected to their original abutments, according to the manufacturers' recommendation. After determination of the inner volume of each implant systems, the kinetic quantification of leakage was evaluated for each group using Rhodamine B (10−2 M). For each group, spectrophotometric analysis was performed to detect leakage with a fluorescence spectrophotometer at 1 h (T0) and 48 h (T1) of incubation time at room temperature. Results. Astra Tech had the highest inner volume (6.8 μL), compared to Dentium (4 μL) and Euroteknika (2.9 μL). At T0 and T1, respectively, the leakage volume and percentage of each system were as follows: Astra Tech 0.043 μL or 1.48% (SD 0.0022), 0.08 μL or 5.56% (SD 0.0074), Euroteknika 0.09 μL or 6.93% (SD 0.0913), 0.21 μL or 20.55% (SD 0.0035), and Dentium 0.07 μL or 4.6% (SD 0.0029), 0.12 μL or 10.47% (SD 0.0072). Conclusion. The tested internal conical implant-abutment connections appear to be unable to prevent leakage. In average, Astra Tech implants showed the highest inner volume and the least leakage. PMID:24899896
Oliveira, Dayane; Prieto, Lúcia; Araújo, Cíntia; Coppini, Erick; Pereira, Gisele; Paulillo, Luís
2014-12-01
To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.
2007-03-01
The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.
G6PDdb, an integrated database of glucose-6-phosphate dehydrogenase (G6PD) mutations.
Kwok, Colin J; Martin, Andrew C R; Au, Shannon W N; Lam, Veronica M S
2002-03-01
G6PDdb (http://www.rubic.rdg.ac.uk/g6pd/ or http://www.bioinf.org.uk/g6pd/) is a newly created web-accessible locus-specific mutation database for the human Glucose-6-phosphate dehydrogenase (G6PD) gene. The relational database integrates up-to-date mutational and structural data from various databanks (GenBank, Protein Data Bank, etc.) with biochemically characterized variants and their associated phenotypes obtained from published literature and the Favism website. An automated analysis of the mutations likely to have a significant impact on the structure of the protein has been performed using a recently developed procedure. The database may be queried online and the full results of the analysis of the structural impact of mutations are available. The web page provides a form for submitting additional mutation data and is linked to resources such as the Favism website, OMIM, HGMD, HGVBASE, and the PDB. This database provides insights into the molecular aspects and clinical significance of G6PD deficiency for researchers and clinicians and the web page functions as a knowledge base relevant to the understanding of G6PD deficiency and its management. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Lu, Dingze; Wang, Hongmei; Shen, Qingqing; Kondamareddy, Kiran Kumar; Neena D
2017-07-01
The new multifunctional composite Fe3O4@SiO2@Bi2WO6@g-C3N4 (FSBG) hierarchical microspheres with Bi2WO6/g-C3N4 heterostructure as an outer shell and Fe3O4@SiO2 as a magnetic core have been synthesized and characterized for photocatalytic applications. An efficient and adoptable approach of synthesizing magnetic Bi2WO6/g-C3N4 hierarchical microspheres of grape-like morphology is realized. The as-synthesized structures exhibit highly efficient visible-light absorption and separation efficiency of photo-induced charge. The visible-light-induced photocatalytic activity of g-C3N4, Fe3O4@SiO2@Bi2WO6, and FSBG is evaluated by investigating the photodegradation of Rhodamine B (RhB) and hydrogen (H2) out of water. The comparative study reveals that the FSBG microspheres exhibit an optimum visible-light-induced photocatalytic activity in degrading Rhodamin B (RhB), which is 3.06 and 1.92 times to that of g-C3N4 and Fe3O4@SiO2@Bi2WO6 systems respectively and 3.89 and 2.31 times in the production of hydrogen (H2) out of water, respectively. The FSBG composite microspheres also exhibit good magnetic recoverability. An alternate mechanism for the enhanced visible-light photocatalytic activity is given in the present manuscript.
Photocatalytic Properties of g-C₃N₄-TiO₂ Heterojunctions under UV and Visible Light Conditions.
Fagan, Rachel; McCormack, Declan E; Hinder, Steven J; Pillai, Suresh C
2016-04-14
Graphitic carbon nitride ( g -C₃N₄) and titanium dioxide (TiO₂) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g -C₃N₄ has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO₂ and g -C₃N₄. A simple method of preparing g -C₃N₄ through the pyrolysis of melamine was employed, which was then added to undoped TiO₂ material to form the g -C₃N₄-TiO₂ system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), diffuse absorbance, and photoluminescence analysis. Photocatalysis studies were conducted using the model dye, rhodamine 6G utilizing visible and UV light irradiation. Raman spectroscopy confirmed that a composite of the materials was formed as opposed to a mixture of the two. Using XPS analysis, a shift in the nitrogen peak to that indicative of substitutional nitrogen was detected for all doped samples. This is then mirrored in the diffuse absorbance results, which show a clear decrease in band gap values for these samples, showing the effective band gap alteration achieved through this preparation process. When g -C₃N₄-TiO₂ samples were analyzed under visible light irradiation, no significant improvement was observed compared that of pure TiO₂. However, under UV light irradiation conditions, the photocatalytic ability of the doped samples exhibited an increased reactivity when compared to the undoped TiO₂ (0.130 min -1 ), with 4% g -C₃N₄-TiO₂ (0.187 min -1 ), showing a 43.9% increase in reactivity. Further doping to 8% g -C₃N₄-TiO₂ lead to a decrease in reactivity against rhodamine 6G. BET analysis determined that the surface area of the 4% and 8% g -C
Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol
NASA Astrophysics Data System (ADS)
Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team
2013-03-01
A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.
Guadie, Awoke; Gessesse, Amare; Xia, Siqing
2018-04-23
Considering the saline-alkaline nature of textile wastewater and treatment requirements, microbial samples were collected from Ethiopian Rift Valley Soda Lakes. A large number of bacteria (121) were isolated from dye-uncontaminated Lakes Chitu (81.0%), Abijata (15.7%) and Arenguadie (3.3%), of which 95 isolates (78.5%) were found dye decolorizer. Many dye decolorizer from Lake Chitu positively correlated with higher pH (10.3 ± 0.1), salinity (64.6 ± 2.0%), conductivity (6.1 ± 0.3 mS cm -1 ) and Na+ (18.4 ± 0.6 g L -1 ) values observed than Abijata and Arenguadie Lakes. Through subsequent screening mechanism, strain A55 was selected to investigate the effect of nutrient (carbon and nitrogen), dissolved oxygen and dye concentration using Reactive Red 184 (RR 184). Based on morphological, biochemical and 16S rRNA gene sequence analysis, the strain was identified as Halomonas sp. Decolorization efficiencies were significantly enhanced with carbon (≥98%) and organic nitrogen (∼100%) than non-carbon/nitrogen (both<55%) supplements. Complete decolorization efficiencies were also observed under anoxic and anaerobic growth conditions. However, growing the isolate with nitrate (<30%) and aerobic (<10%) condition significantly decreased (p < 0.05) color removal efficiency. Kinetic analysis showed that pseudo-first-order best describes RR 184 decolorization process. Overall, the ability of Halomonas sp. strain A55 decolorized different dyes indicate that alkaline soda lake isolates are the potential candidate for treating color containing effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of dissolved oxygen on dye removal by zero-valent iron.
Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien
2010-10-15
Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution. 2010 Elsevier B.V. All rights reserved.
Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.
Li, Li; Liu, Shuangxi; Zhu, Tan
2010-01-01
Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.
Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren
2015-12-01
Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.
Isolation and Characterization of Precise Dye/Dendrimer Ratios
Dougherty, Casey A.; Furgal, Joseph C.; van Dongen, Mallory A.; Goodson, Theodore; Banaszak Holl, Mark M.; Manono, Janet; DiMaggio, Stassi
2014-01-01
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne `click' ligand, separation into sample containing precisely defined `click' ligand/particle ratios using reverse-phase high performance liquid chromatography (rp-HPLC), followed by reaction with excess azide-functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using rp-HPLC. These materials were characterized using 1H and 19F NMR, rp-HPLC, UV-Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. PMID:24604830
Rueangweerayut, Ronnatrai; Bancone, Germana; Harrell, Emma J; Beelen, Andrew P; Kongpatanakul, Supornchai; Möhrle, Jörg J; Rousell, Vicki; Mohamed, Khadeeja; Qureshi, Ammar; Narayan, Sushma; Yubon, Nushara; Miller, Ann; Nosten, François H; Luzzatto, Lucio; Duparc, Stephan; Kleim, Jörg-Peter; Green, Justin A
2017-09-01
Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol 487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40-60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose-response was evident in G6PD-heterozygous subjects ( N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (-2.65 to -2.95 g/dL [ N = 3]) and primaquine (-1.25 to -3.0 g/dL [ N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61-80% ( N = 2) and > 80% ( N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days.
Rueangweerayut, Ronnatrai; Bancone, Germana; Harrell, Emma J.; Beelen, Andrew P.; Kongpatanakul, Supornchai; Möhrle, Jörg J.; Rousell, Vicki; Mohamed, Khadeeja; Qureshi, Ammar; Narayan, Sushma; Yubon, Nushara; Miller, Ann; Nosten, François H.; Luzzatto, Lucio; Duparc, Stephan; Kleim, Jörg-Peter; Green, Justin A.
2017-01-01
Abstract. Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40–60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose–response was evident in G6PD-heterozygous subjects (N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (−2.65 to −2.95 g/dL [N = 3]) and primaquine (−1.25 to −3.0 g/dL [N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61–80% (N = 2) and > 80% (N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days. PMID:28749773
Xu, Chao; Hedin, Niklas; Shi, Hua-Tian; Zhang, Qian-Feng
2014-04-11
Ternary supertetrahedral chalcogenolate clusters were interlinked with bipyridines into a microporous semiconducting framework with properties qualitatively different from those of the original clusters. Both the framework and the clusters were effective photocatalysts, and rapidly degraded the dye rhodamine B.
NASA Astrophysics Data System (ADS)
Qiu, W.; Sun, J.; Zheng, C.
2017-12-01
The dye wastewater draw an increasing attention as its high environmental risks. This research were fabricated novel catalysts including Bi2S3 nanorods, Bi2O3/Bi2S3 thin films, and ZnO/Bi2S3 thin films in order to solve the problem of dye wastewater, and the morphology and structure of as-synthesized catalysts were characterized. The hollow nanostructure of the Bi2O3/Bi2S3 samples have a large specific surface area and their direct band gap energy is 2.3 eV. The ZnO/Bi2S3 thin films form a homogeneously layered heterostructure and their average diameter is ranging from 70 to 80 nm. As a typical type of dye pollutant, rhodamine B (RhB) was degraded by these synthesized catalysts with UV irradiation to evaluate their application properties. As a result, ZnO/Bi2S3 thin films have the best performance, which degrade 95% of the RhB within 120 min with a rate constant (k) of 0.0113 min-1. Bi2O3/Bi2S3 thin films have a similar degradation efficacy with k of 0.0092 min-1. The Bi2S3 nanorods have a k of 0.0092 min-1 which is worse than the Bi2O3/Bi2S3 and ZnO/Bi2S3 thin films, however, still better than the common photocatalysts such as TiO2 and Bi2WO6 materials. Therefore, these novel catalysts synthesized in this research are worth to treat with the dye wastewater in the future application.
Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud
2016-02-01
This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.
NASA Astrophysics Data System (ADS)
Claussen, U.
1984-01-01
The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.
Continuous-wave organic dye lasers and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapira, Ofer; Chua, Song-Liang; Zhen, Bo
2014-09-16
An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuouslymore » so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.« less
AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M
2015-10-01
Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly
2017-10-01
Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noninvasive control of rhodamine-loaded capsules distribution in vivo
NASA Astrophysics Data System (ADS)
Stelmashchuk, O.; Tarakanchikova, Y.; Seryogina, E.; Piavchenko, G.; Zherebtsov, E.; Dunaev, A.; Popov, A.; Meglinski, I.
2018-04-01
Using fluorescence spectroscopy system with fibre-optical probe, we investigated the dynamics of propagation and circulation in the microcirculatory system of experimental nanocapsules fluorescent-labelled (rhodamine TRITC) nanocapsules. The studies were carried out in clinically healthy Wistar rats. The model animals were divided into control group and group received injections of the nanocapsules. The fluorescent measurements conducted transcutaneously on the thigh surface. The administration of the preparation with the rhodamine concentration of 5 mg/kg of animal weight resulted in twofold increase of fluorescence intensity by reference to the baseline level. As a result of the study, it was concluded that fluorescence spectroscopy can be used for transdermal measurements of the rhodamine-loaded capsules in vivo.
NASA Astrophysics Data System (ADS)
Yousefi, Hessamoddin; Yahyazadeh, Asieh; Yazdanbakhsh, Mohammad Reza; Rassa, Mehdi; Moradi-e-Rufchahi, Enayat O.'llah
2012-05-01
A series of hetarylazoaminouracil dyes were prepared by coupling of 6-amino-1,3-dimethyluracil with eight diazotized heterocyclic amines in nitrosyl sulphuric acid. The prepared azo dyes were characterized by UV-Vis, FT-IR, 13C NMR, 1H NMR spectroscopic techniques and elemental analysis. The solvatochromism of dyes was evaluated with respect to wavelength of maximum absorption (λmax) in seven solvents with different polarities: acetic acid, methanol, water, chloroform, acetonitrile, dimethyl sulfoxide and dimethyl formamide. The effects of acid, base and concentration of the dye on the visible absorption spectra were also reported. In addition, the antimicrobial activity of the synthesized dyes was evaluated on Escherichia coli, Bacillus subtilis, Micrococcus leuteus and Pseudomonas aeruginosa.
Areerob, Yonrapach; Cho, Ju Yong; Jang, Won Kweon; Oh, Won-Chun
2018-03-01
Fe 3 O 4 -graphene/ZnO@mesoporous-SiO 2 (MGZ@SiO 2 ) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60min, 11, 50mg/L, 1.00g/L, and 40W/m 2 , respectively. The MGZ@SiO 2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO 2 can be applied asa novel-design catalyst for the removal of organic pollutants from aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of the routing procedure to study dye and gas transport in the West Fork Trinity River, Texas
Jobson, Harvey E.; Rathbun, R.E.
1984-01-01
Rhodamine-WT dye, ethylene, and propane were injected at three sites along a 21.6-kilometer reach of the West Fork Trinity River below Fort Worth, Texas. Complete dye concentration versus time curves and peak gas concentrations were measured at three cross sections below each injection. The peak dye concentrations were located and samples were collected at about three-hour intervals for as many as six additional cross sections. These data were analyzed to determine the longitudinal dispersion coefficients as well as the gas desorption coefficients using both standard techniques and a numerical routing procedure. The routing procedure, using a Lagrangian transport model to minimize numerical dispersion, provided better estimates of the dispersion coefficient than did the method of moments. At a steady flow of about 0.76 m2/s, the dispersion coefficient varied from about 0.7 m2/s in a reach contained within a single deep pool to about 2.0 m2/s in a reach containing riffles and small pools. The bulk desorption coefficients computed using the routing procedure and the standard peak method were essentially the same. The liquid film coefficient could also be obtained using the routing procedure. Both the bulk desorption coefficient and the liquid film coefficient were much smaller in the pooled reach than in the reaches containing riffles.
Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun
2015-01-01
We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730
Cho, Bum Hwi; Ko, Weon Bae
2013-11-01
ZrO2 nanoparticles were synthesized by combining a solution containing zinconyl chloride in distilled water with a NH4OH solution under microwave irradiation. Graphene and ZrO2 nanocomposites were synthesized in an electric furnace at 700 degrees C for 2 hours. The heated graphene-ZrO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, UV-vis spectrophotometry was used to evaluate the heated graphene-ZrO2 nanocomposites as a catalyst in the photocatalytic degradation of organic dyes. The photocatalytic effect of the heated graphene-ZrO2 nanocomposites was compared with that of unheated graphene nanoparticles, heated graphene nanoparticles, and unheated graphene-ZrO2 nanocomposites in organic dyes (methylene blue, methyl orange, and rhodamine B) under ultraviolet light at 254 nm.
NASA Astrophysics Data System (ADS)
Prima, Eka Cahya; Hidayat, Novianto Nur; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno
2017-01-01
This study reports the novel spectroscopic investigations and enhanced the electron transfers of Citrus reticulata and Musa acuminata fruit peels as the photosensitizers for the dye-sensitized solar cells. The calculated TD-DFT-UB3LYP/6-31 + G(d,p)-IEFPCM(UAKS), experiment spectra of ultra-violet-visible spectroscopy, and Fourier transform infrared spectroscopy studies indicate the main flavonoid (hesperidin and gallocatechin) structures of the dye extracts. The optimized flavonoid structures are calculated using Density functional theory (DFT) at 6-31 + G(d,p) level. The rutinosyl group of the hesperidin pigment (Citrus reticulata) will be further investigated compared to the gallocatechin (Musa acuminata) pigment. The acidity of the dye extract is treated by adding 2% acetic acid. The energy levels of the HOMO-LUMO dyes are measured by a combined Tauc plot and cyclic voltammetry contrasted with the DFT data. The electrochemical impedance spectroscopy will be performed to model the dye electron transfer. As for the rutinosyl group presence and the acidic treatment, the acidified Citrus reticulata cell under continuous light exposure of 100 mW·cm- 2 yields a short-circuit current density (Jsc) of 3.23 mA/cm2, a photovoltage (Voc) of 0.48 V, and a fill factor of 0.45 corresponding to an energy conversion efficiency (η) of 0.71% because the shifting down HOMO-LUMO edges and the broadening dye's absorbance evaluated by a combined spectroscopic and TD-DFT method. The result also leads to the longest diffusion length of 32.2 μm, the fastest electron transit of 0.22 ms, and the longest electron lifetime of 4.29 ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei-long; Bassett, Will P.; Christensen, James M.
The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less
Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.
Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna
2016-09-01
The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.
Electromagnetic Radiation: Final Range Environmental Assessment, Revision 1
2009-12-03
scanning, research, and medical treatment and surgical procedures. There are many different types of lasing materials as identified below ( Indiana ...vapor (red) 0.627 Xenon chloride (Excimer-UV) 0.308 Helium neon (red) 0.633 Xenon fluoride (Excimer-UV) 0.351 Krypton (red) 0.647 Helium cadmium (UV...0.325 Rhodamine 6G dye (tunable) 0.570-0.650 Nitrogen (UV) 0.337 Ruby (CrAlO3) (red) 0.694 Helium cadmium (violet) 0.441 Gallium arsenide (diode
Yao, Yunjin; Wu, Guodong; Lu, Fang; Wang, Shaobin; Hu, Yi; Zhang, Jie; Huang, Wanzheng; Wei, Fengyu
2016-11-01
Low-cost catalysts with high activity and stability toward producing strongly oxidative species are extremely desirable, but their development still remains a big challenge. Here, we report a novel strategy for the synthesis of a magnetic CoFe 2 O 4 /C 3 N 4 hybrid via a simple self-assembly method. The CoFe 2 O 4 /C 3 N 4 was utilized as a photo-Fenton-like catalyst for degradation of organic dyes in the presence of H 2 O 2 under natural indoor light irradiation, a green and energy-saving approach for environmental cleaning. It was found the CoFe 2 O 4 /C 3 N 4 hybrid with a CoFe 2 O 4 : g-C 3 N 4 mass ratio of 2:1 can completely degrade Rhodamine B nearly 100 % within 210 min under room-light irradiation. The effects of the amount of H 2 O 2 (0.01-0.5 M), initial dye concentration (5-20 mg/L), solution pH (3.08-10.09), fulvic acid concentration (5-50 mg/L), different dyes and catalyst stability on the organic dye degradation were investigated. The introduction of CoFe 2 O 4 on g-C 3 N 4 produced an enhanced separation efficiency of photogenerated electron - hole pairs by a Z-scheme mechanism between the interfaces of g-C 3 N 4 and CoFe 2 O 4 , leading to an excellent activity as compared with either g-C 3 N 4 or CoFe 2 O 4 and their mixture. This study demonstrates an efficient way to construct the low-cost magnetic CoFe 2 O 4 /C 3 N 4 heterojunction as a typical Z-scheme system in environmental remediation.
Talio, María C; Zambrano, Karen; Kaplan, Marcos; Acosta, Mariano; Gil, Raúl A; Luconi, Marta O; Fernández, Liliana P
2015-10-01
A new environmental friendly methodology based on fluorescent signal enhancement of rhodamine B dye is proposed for Pb(II) traces quantification using a preconcentration step based on the coacervation phenomenon. A cationic surfactant (cetyltrimethylammonium bromide, CTAB) and potassium iodine were chosen for this aim. The coacervate phase was collected on a filter paper disk and the solid surface fluorescence signal was determined in a spectrofluorometer. Experimental variables that influence on preconcentration step and fluorimetric sensitivity have been optimized using uni-variation assays. The calibration graph using zero th order regression was linear from 7.4×10(-4) to 3.4 μg L(-1) with a correlation coefficient of 0.999. Under the optimal conditions, a limit of detection of 2.2×10(-4) μg L(-1) and a limit of quantification of 7.4×10(-4) μg L(-1) were obtained. The method showed good sensitivity, adequate selectivity with good tolerance to foreign ions, and was applied to the determination of trace amounts of Pb(II) in refill solutions for e-cigarettes with satisfactory results validated by ICP-MS. The proposed method represents an innovative application of coacervation processes and of paper filters to solid surface fluorescence methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-02-20
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.
Quantification of the luminescence intensity of natural materials
NASA Technical Reports Server (NTRS)
Watson, R. D.; Hessin, T. D.; Hemphill, W. R.
1973-01-01
Review of some of the results of an evaluation of the use of an airborne Fraunhofer line discriminator (FLD) for the detection of sun-stimulated luminescence emitted by rhodamine WT dye and some other materials. Rhodamine dye is reported to have been detected by airborne FDL in sea water in concentrations of less than 2 ppb. Experiments with a fluorescence spectrometer in the laboratory indicate that luminescence of some samples of crude and refined petroleum exceeds the luminescence intensity of rhodamine dye in concentrations of 10 ppm.
Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.
Helseth, Lars Egil
2012-02-13
The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.
Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.
Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain
2017-01-01
Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Solvent effects on the photophysical properties of coumarin dye
NASA Astrophysics Data System (ADS)
Bhavya, P.; Melavanki, Raveendra; Manjunatha, M. N.; Koppal, Varsha; Patil, N. R.; Muttannavar, V. T.
2018-05-01
The absorption and emission spectrum of fluorescent coumarin dye namely, 3-Hydroxy-3-[2-oxo-2-(3-oxo-3H-benzo[f]chromen-2-yl)-ethyl]-1,3-dihydro-indol-2-one [3HBCD] has been recorded at room temperature in solvents of different polarities. The exited state dipole moments (μe) were estimated from Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The geometry of the molecule was fully optimized and the μg was also calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The μg and μg were calculated by means of solvatochromic shift method. It was observed that μe was higher than μg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected coumarin dye. Further, the changes in the dipole moment (Δμ) was calculated from solvatochromic shift method.
A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing
Huang, Yi-Lin; Walker, Alison S.; Miller, Evan W.
2015-01-01
This paper describes the design and synthesis of a photostable, far-red to near-infrared (NIR) platform for optical voltage sensing. We developed a new, sulfonated silicon rhodamine fluorophore and integrated it with a phenylenevinylene molecular wire to create a Berkeley Red Sensor of Transmembrane potential, or BeRST 1 (“burst”). BeRST 1 is the first member of a class of farred to NIR voltage sensitive dyes that make use of a photoinduced electron transfer (PeT) trigger for optical interrogation of membrane voltage. We show that BeRST 1 displays bright, membrane-localized fluorescence in living cells, high photostability, and excellent voltage sensitivity in neurons. Depolarization of the plasma membrane results in rapid fluorescence increases (24% ΔF/F per 100 mV). BeRST 1 can be used in conjunction with fluorescent stains for organelles, Ca2+ indicators, and voltage-sensitive fluorescent proteins. In addition, the red-shifted spectral profile of BeRST 1, relative to commonly employed optogenetic actuators like ChannelRhodopsin2 (ChR2), which require blue light, enables optical electrophysiology in neurons. The high speed, sensitivity, photostability and long-wavelength fluorescence profiles of BeRST 1 make it a useful platform for the non-invasive, optical dissection of neuronal activity. PMID:26237573
Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency.
Ghann, William; Kang, Hyeonggon; Uddin, Jamal; Gonawala, Sunalee J; Mahatabuddin, Sheikh; Ali, Meser M
2018-01-01
Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm -2 , AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight.
Zhang, Xinying; Wu, Yan; Xiao, Gao; Tang, Zhenping; Wang, Meiyin; Liu, Fuchang; Zhu, Xuefeng
2017-01-01
Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25) and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria. PMID:28273118
Anti-theft device staining on banknotes detected by mass spectrometry imaging.
Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique
2016-03-01
We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. Copyright © 2016. Published by Elsevier Ireland Ltd.
Sudan III dye strongly induces CYP1A1 mRNA expression in HepG2 cells.
Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi
2012-01-01
Sudan dyes possess a high affinity to the aryl hydrocarbon receptor (AHR) and potently induce its target genes, such as cytochrome P450 (CYP) 1A1, through unknown mechanisms. We investigated a detailed event occurring in cells after binding of Sudan dye to AHR in HepG2 cells. Treatment with 10 µM Sudan III caused rapid translocation of AHR into the nucleus and increased expression levels of human CYP1A1 mRNA by approximately 20-fold after 16 and 24 h. The transactivation was due to the activation of a region located at -1137 to +59 bp from CYP1A1, in particular, four xenobiotic responsive elements (XREs) existing in the region. AHR and the Ah receptor nuclear translocator interacted with XRE sequences in a gel shift assay using nuclear extract from Sudan III--treated HepG2 cells. Moreover, we suggest that constitutive androstane receptor could modify CYP1A1 transactivation by Sudan III. Copyright © 2012 Wiley Periodicals, Inc.
Prima, Eka Cahya; Hidayat, Novianto Nur; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno
2017-01-15
This study reports the novel spectroscopic investigations and enhanced the electron transfers of Citrus reticulata and Musa acuminata fruit peels as the photosensitizers for the dye-sensitized solar cells. The calculated TD-DFT-UB3LYP/6-31+G(d,p)-IEFPCM(UAKS), experiment spectra of ultra-violet-visible spectroscopy, and Fourier transform infrared spectroscopy studies indicate the main flavonoid (hesperidin and gallocatechin) structures of the dye extracts. The optimized flavonoid structures are calculated using Density functional theory (DFT) at 6-31+G(d,p) level. The rutinosyl group of the hesperidin pigment (Citrus reticulata) will be further investigated compared to the gallocatechin (Musa acuminata) pigment. The acidity of the dye extract is treated by adding 2% acetic acid. The energy levels of the HOMO-LUMO dyes are measured by a combined Tauc plot and cyclic voltammetry contrasted with the DFT data. The electrochemical impedance spectroscopy will be performed to model the dye electron transfer. As for the rutinosyl group presence and the acidic treatment, the acidified Citrus reticulata cell under continuous light exposure of 100mW·cm -2 yields a short-circuit current density (J sc ) of 3.23mA/cm 2 , a photovoltage (V oc ) of 0.48V, and a fill factor of 0.45 corresponding to an energy conversion efficiency (η) of 0.71% because the shifting down HOMO-LUMO edges and the broadening dye's absorbance evaluated by a combined spectroscopic and TD-DFT method. The result also leads to the longest diffusion length of 32.2μm, the fastest electron transit of 0.22ms, and the longest electron lifetime of 4.29ms. Copyright © 2016 Elsevier B.V. All rights reserved.
Tietje, Kristin; Rivera-Ingraham, Georgina; Petters, Charlotte; Abele, Doris; Dringen, Ralf; Bickmeyer, Ulf
2013-01-01
The marine plathyhelminth Macrostomum lignano was recently isolated from Adriatic shore sediments where it experiences a wide variety of environmental challenges, ranging from hypoxia and reoxygenation, feeding on toxic algae, to exposure to anthropogenic contaminants. As multidrug resistance transporters constitute the first line of defense against toxins and toxicants we have studied the presence of such transporters in M. lignano in living animals by applying optical methods and pharmacological inhibitors that had been developed for mammalian cells. Application of the MDR1 inhibitor Verapamil or of the MRP1 inhibitors MK571 or Probenecid increased the intracellular fluorescence of the reporter dyes Fura-2 am, Calcein am, Fluo-3 am in the worms, but did not affect their staining with the dyes Rhodamine B, CMFDA or Ageladine A. The marine sponge alkaloid Ageladine A remained intracellularly trapped for several days in the worms, suggesting that it does not serve as substrate of multidrug resistance exporters. In addition, Ageladine A did not affect multidrug resistance-associated protein (MRP)-mediated dye export from M. lignano or the MRP1-mediated glutathione (GSH) export from cultured rat brain astrocytes. The data obtained demonstrate that life-imaging is a useful tool to address physiological drug export from intact marine transparent flatworms by using multiphoton scanning microscopy. PMID:24135911
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-05
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye
NASA Astrophysics Data System (ADS)
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-01
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.
Rhodamine spirolactam sensors operated by sulfur-cooperated metal complexation
NASA Astrophysics Data System (ADS)
Heo, Gisuk; Lee, Dahye; Kim, Chi Gwan; Do, Jung Yun
2018-01-01
New rhodamine Schiff base sensors were developed to improve selective sensing by introducing sulfide, ester, and dithiocarbonate groups, as well as using ketones coupled to rhodamine-hydrazine. Metal sensing proceeded through the 1:1 complexation of the metal ion for most sensors in the presence of Cu2 + and Hg2 +. A sensor carrying a dithiocarbonate group responded selectively to Hg2 + showing a strong colorimetric change and intense fluorescence. The association constants of the sensors were determined from a linear plot performed at micro-molar concentrations to afford values in the range of 104. Sensing was interrupted at the initial time of Hg2 + exposure due to the isomerization of imine and preferential metal bonding of two dithiocarbonate groups regardless of the main structure of rhodamine. The sensors exhibited the reversible and reproducible performance for Hg2 + sensing.
Dye system for dye laser applications
Hammond, Peter R.
1991-01-01
A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.
A thiourea-appended rhodamine chemodosimeter for mercury(II) and its bioimaging application
NASA Astrophysics Data System (ADS)
Tantipanjaporn, Ajcharapan; Prabpai, Samran; Suksen, Kanoknetr; Kongsaeree, Palangpon
2018-03-01
A rhodamine-thiourea conjugate RTP with an o-phenylenediamine linker was developed as a fluorogenic chemodosimeter for Hg2+ detection. In the presence of Hg2+, a colorless solution of RTP turned pink with a maximum absorption band at 555 nm and with a 62-fold fluorescence enhancement at 578 nm (Φ = 0.34). RTP is highly selective to Hg2+ among other metal ions with a detection limit of 1.6 nM (0.3 ppb). A similar rhodamine analog with a flexible ethylenediamine spacer was less selective and less sensitive than RTP. Hg2+ induced cyclic guanylation to yield a benzimidazole moiety and a subsequent ring-opening of the spirolactam unit resulted in chromogenic and fluorogenic changes. The membrane-permeable RTP probe was successfully demonstrated in monitoring of Hg2+ in cultured HeLa cells.
Song, Kaijing; Ding, Chuanmin; Zhang, Bing; Chang, Honghong; Zhao, Zhihuan; Wei, Wenlong; Wang, Junwen
2018-06-01
The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS 2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab 2 -Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl 2 ), the photocurrent increases linearly 10 pg mL -1 to 80 ng mL -1 CEA concentration range, with a 3.2 pg mL -1 detection limit. Graphical abstract Flower-like GO-MoS 2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.
NASA Astrophysics Data System (ADS)
Dutta, Arun Kumar; Ghorai, Uttam Kumar; Chattopadhyay, Kalyan Kumar; Banerjee, Diptonil
2018-05-01
Amorphous carbon nanotubes were synthesized using low temperature solid state reaction. The as synthesized a-CNTs were used to remove two different textile dyes, Methyl Orange and Rhodamine B from water. Two ways of removal were followed; i.e. Adsorption and UV assisted catalysis. Adsorption experiment was carried out under various conditions. Analysis of the adsorption data was performed using Langmuir, Freundlich and Temkin models. It has been shown that the as prepared samples can effectively be used as adsorbent of textile dyes. Exposure of visible or UV light can make no significant additional effect to the removal efficiency. The mechanism of the adsorption has been found to be following a pseudo 1st order mechanism with corresponding correlation factor >0.95. Also it has been shown that presence of impurities can drastically kill the performance of the sample. This detail comparative study has been reported for the first time.
First principles DFT study of dye-sensitized CdS quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam, E-mail: shyam387@gmail.com
2014-04-24
Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positionsmore » of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.« less
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291
Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
Chai, Xiaoyun; Cui, Xiaoyan; Wang, Baogang; Yang, Fan; Cai, Yi; Wu, Qiuye; Wang, Ting
2015-11-16
Phosphorus has been successfully fused into a classic rhodamine framework, in which it replaces the bridging oxygen atom to give a series of phosphorus-substituted rhodamines (PRs). Because of the electron-accepting properties of the phosphorus moiety, which is due to effective σ*-π* interactions and strengthened by the inductivity of phosphine oxide, PR exhibits extraordinary long-wavelength fluorescence emission, elongating to the region above 700 nm, with bathochromic shifts of 140 and 40 nm relative to rhodamine and silicon-substituted rhodamine, respectively. Other advantageous properties of the rhodamine family, including high molar extinction coefficient, considerable quantum efficiency, high water solubility, pH-independent emission, great tolerance to photobleaching, and low cytotoxicity, stay intact in PR. Given these excellent properties, PR is desirable for NIR-fluorescence imaging in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Saralamba, Naowarat; Day, Nicholas P J; Imwong, Mallika
2016-06-01
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is an X-linked hereditary genetic defect that is the most common polymorphism and enzymopathy in humans. To investigate functional properties of two clinical variants, G6PDViangchan and G6PDViangchan+Mahidol, these two mutants were created by overlap-extension PCR, expressed in Escherichia coli and purified to homogeneity. We describe an overexpression and purification method to obtain substantial amounts of functionally active protein. The KM for G6P of the two variants was comparable to the KM of the native enzyme, whereas the KM for NADP(+) was increased 5-fold for G6PDViangchan and 8-fold for G6PDViangchan+Mahidol when compared with the native enzyme. Additionally, kcat of the mutant enzymes was markedly reduced, resulting in a 10- and 18-fold reduction in catalytic efficiency for NADP(+) catalysis for G6PDViangchan and G6PDViangchan+Mahidol, respectively. Furthermore, the two variants demonstrated significant reduction in thermostability, but similar susceptibility to trypsin digestion, when compared with the wild-type enzyme. The presence of NADP(+) is shown to improve the stability of G6PD enzymes. This is the first report indicating that protein instability and reduced catalytic efficiency are responsible for the reduced catalytic activity of G6PDViangchan and G6PDViangchan+Mahidol and, as a consequence, contribute to the clinical phenotypes of these two clinical variants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders
2010-11-24
Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.
Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro
2016-10-01
In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Infantile hemangioma: pulsed dye laser versus surgical therapy
NASA Astrophysics Data System (ADS)
Remlova, E.; Dostalova, T.; Michalusova, I.; Vranova, J.; Jelinkova, H.; Hubacek, M.
2014-05-01
Hemangioma is a mesenchymal benign tumor formed by blood vessels. Anomalies affect up to 10% of children and they are more common in females than in males. The aim of our study was to compare the treatment efficacy, namely the curative effect and adverse events, such as loss of pigment and appearance of scarring, between classical surgery techniques and laser techniques. For that reason a group of 223 patients with hemangioma was retrospectively reviewed. For treatment, a pulsed dye laser (PDL) (Rhodamine G, wavelength 595 nm, pulsewidth between 0.45 and 40 ms, spot diameter 7 mm, energy density 9-11 J cm-2) was used and the results were compared with a control group treated with classical surgical therapy under general anesthesia. The curative effects, mainly number of sessions, appearance of scars, loss of pigment, and relapses were evaluated as a marker of successful treatment. From the results it was evident that the therapeutic effects of both systems are similar. The PDL was successful in all cases. The surgery patients had four relapses. Classical surgery is directly connected with the presence of scars, but the system is safe for larger hemangiomas. It was confirmed that the PDL had the optimal curative effect without scars for small lesions (approximately 10 mm). Surgical treatment under general anesthesia is better for large hemangiomas; the disadvantage is the presence of scars.
NASA Astrophysics Data System (ADS)
Mandal, Subhra; Zhou, You; Shibata, Annemarie; Destache, Christopher J.
2015-08-01
In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs) fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) is still one of the world's major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV) therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid) (PLGA) nanoparticles (cARV-NPs) as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye) loaded NPs (Rho6G NPs) have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (<500 ng/ml) and that release was sustained for a minimum of 4 days of treatment. Therefore, high drug assimilation and sustained release properties of PLGA-NPs make them an attractive vehicle for cARV nano-drug delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.
NASA Astrophysics Data System (ADS)
Cao, Duojun; Qian, Ying
2016-07-01
A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.
Polymer based plasmonic elements with dye molecules
NASA Astrophysics Data System (ADS)
Zhang, Douguo; Wang, Xiangxian; Chen, Yikai; Han, Lu; Wang, Pei; Ming, Hai
2012-11-01
Recently, dielectric loaded surface plasmons (SPs) elements are inducing highly interesting in the field of nanooptics, which are composed of dielectric nanostructures fabricated on a metallic thin film. This configuration will provide a route to novel integrated micro-optical devices and components combining photonics and electronics on the same chip. The advantages are easy fabrication, easy integration, and also the potential to realizing active plasmonic devices. In this talk, we will present our recent work in this field. Polymer (PMMA) nano-structures are fabricated on a silver film by the electron beam lithography (EBL) and laser interference lithography. These nano-structures are used to manipulate the behaviors of the SPs, such as converging, diverging, and guiding the propagation of SPs in subwavelength scale. Except for the pure PMMA nano-structures, dye materials (Rhodamine B, RhB) doped PMMA structures are also fabricated on the silver film. The RhB molecules will work as the active medium to excite the SPs or compensation the loss of SPs wave. The dye doped PMMA nanostructure provides a choice to realize active plasmonic elements, such as SPs Bragg gratings. On the other hand, the interaction between the fluorescence molecules and SPs will give rise to some new optical phenomena, such as directional fluorescence emission, anisotropic fluorescence emission. These polymer based plasmonic structures are investigated with a home-built leakage radiation microscopy (LRM).
Pressure Studies of Protein Dynamics
1989-02-26
infrared flash photolysis system with the monitoring light produced by a Spectra-Physics/ Laser Analytics tunable- diode laser and detected by a liquid...refrigerator. Time range extends from about 100 ms to 100 s. The diode laser current is modulated at 10 kHz and the signal is amplified with a PAR 5101...Photolysis is obtained with a Phase-R D 121OOC dye laser using rhodamine 6G (pulse 4 width 500 ns, 0.3 J). Kinetic spectra are obtained from about 10
Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser
NASA Technical Reports Server (NTRS)
Fan, T. Y.; Byer, Robert L.
1987-01-01
Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.
European Scientific Notes. Volume 35, Number 4,
1981-04-30
Physics in 1.915. Sir Lawrence used have utilized a laser excitation source X-ray analysis to obtain the first struc- consisting of a CW rhodamine 6G dye...imported. In case of a war or 44% of the samples that were tested in other crisis, it is entirely possilble summer positively determined the pros- that...that sibility that it would be the innocent this is due to the fact that there is victim of a war in lhich it was neutral, more sunshine in summer than
Metal-enhanced fluorescence of dye-doped silica nano particles.
Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L
2015-03-01
Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.
Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr
2014-10-15
Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less
Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes
NASA Astrophysics Data System (ADS)
Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.
2013-11-01
This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.
Li, Kan; Xu, Yunlan; He, Yi; Yang, Chen; Wang, Yalin; Jia, Jinping
2013-04-02
A fuel cell that functioned as a photo fuel cell (PFC) when irradiated with UV light and as a dye self-photosensitization photo fuel cell (DSPFC) when irradiated with visible light was proposed and investigated in this study. The system included a BiOCl/Ti plate photoanode and a Pt cathode, and dye solutions were employed as fuel. Electricity was generated at the same time as the dyes were degraded. 26.2% and 24.4% Coulombic efficiency were obtained when 20 mL of 10 mg · L(-1) Rhodamine B solution was treated with UV for 2 h and visible light for 3 h, respectively. Irradiation with natural and artificial sunlight was also evaluated. UV and visible light could be utilized at the same time and the photogenerated current was observed. The mechanism of electricity generation in BiOCl/Ti PFC and DSPFC was studied through degradation of the colorless salicylic acid solution. Factors that affect the electricity generation and dye degradation performance, such as solution pH and cathode material, were also investigated and optimized.
Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B
NASA Astrophysics Data System (ADS)
Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout
2018-05-01
In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.
Photocatalytic Properties of g-C3N4–TiO2 Heterojunctions under UV and Visible Light Conditions
Fagan, Rachel; McCormack, Declan E.; Hinder, Steven J.; Pillai, Suresh C.
2016-01-01
Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g-C3N4 has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO2 and g-C3N4. A simple method of preparing g-C3N4 through the pyrolysis of melamine was employed, which was then added to undoped TiO2 material to form the g-C3N4–TiO2 system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), diffuse absorbance, and photoluminescence analysis. Photocatalysis studies were conducted using the model dye, rhodamine 6G utilizing visible and UV light irradiation. Raman spectroscopy confirmed that a composite of the materials was formed as opposed to a mixture of the two. Using XPS analysis, a shift in the nitrogen peak to that indicative of substitutional nitrogen was detected for all doped samples. This is then mirrored in the diffuse absorbance results, which show a clear decrease in band gap values for these samples, showing the effective band gap alteration achieved through this preparation process. When g-C3N4–TiO2 samples were analyzed under visible light irradiation, no significant improvement was observed compared that of pure TiO2. However, under UV light irradiation conditions, the photocatalytic ability of the doped samples exhibited an increased reactivity when compared to the undoped TiO2 (0.130 min−1), with 4% g-C3N4–TiO2 (0.187 min−1), showing a 43.9% increase in reactivity. Further doping to 8% g-C3N4–TiO2 lead to a decrease in reactivity against rhodamine 6G. BET analysis determined that the surface area of the 4% and 8% g-C3N4–TiO2 samples were very similar, with values of 29.4 and
2012-01-01
Background A series of some novel arylazo pyridone dyes was synthesized from the corresponding diazonium salt and 6-hydroxy-4-phenyl-3-cyano-2-pyridone using a classical reaction for the synthesis of the azo compounds. Results The structure of the dyes was confirmed by UV-vis, FT-IR, 1H NMR and 13C NMR spectroscopic techniques and elemental analysis. The solvatochromic behavior of the dyes was evaluated with respect to their visible absorption properties in various solvents. Conclusions The azo-hydrazone tautomeric equilibration was found to depend on the substituents as well as on the solvent. The geometry data of the investigated dyes were obtained using DFT quantum-chemical calculations. The obtained calculational results are in very good agreement with the experimental data. PMID:22824496
Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa
2017-09-01
Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Badaro, Emmerson; Souza-Lima, Rodrigo A; Novais, Eduardo A; Maia, Mauricio; Hirai, Flávio; Meyer, Carsten H; Farah, Michel Eid; Rodrigues, Eduardo B
2015-01-01
To investigate the retinal toxicity by electroretinography (ERG), clinical examination and histology after intravitreal injection of biological stains in two concentrations: Trisodium (0.50 g/L and 1.00 g/L), Orangell (0.25 g/L and 1.00 g/L) and Methyl Violet (0.50 g/L and 1.00 g/L). Eighteen New-Zealand albinos rabbits were assigned in six groups (n = 3 in each group). The animals in group 1 received Trisodium in the dose of 0.50 g/L and group 2 received 1.00 g/L; Group 3 received Orangell in the dose of 0.25 g/L and group 4 received 1.00 g/L; Group 5 received Methyl Violet in the dose of 1.00 g/L and group 6 received 0.50 g/L. A volume of 0.05 mL of dye was injected in the right eyes, whereas the left eyes received the same volume of balanced salt solution (BSS) as control. ERG recordings and clinical examination were performed at baseline and seven days after intravitreal injection. The ERG responses at one week after injection were compared with baseline levels. A decrease in the post-injection amplitude of more than 50% was considered remarkable. After the 7-day follow-up, rabbits were euthanized and eye enucleated for light microscopy (LM) histological evaluation. At clinical examination by indirect ophthalmoscopy seven days after dye injection, all eyes were negative for cataract, hemorrhage, retinal detachment, and intraocular opacities. Amplitude analysis of maximum scotopic b-wave showed no significant reduction in either dye injected or control eyes. Neither dye nor BSS caused significant retinal alteration on LM at doses tested. Trisodium, Orangell and Methyl Violet can be applied in future studies in order to prove the capacity to stain preretinal tissues and vitreous without toxicity. The three dyes did not induce significant ERG amplitude reduction or LM alterations in this preliminary experimental research. Trisodium, Orangell and Methyl Violet may be potentially useful vital dyes for ocular surgery, and deserve further
Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity
NASA Astrophysics Data System (ADS)
Borisova, Tatiana
2008-06-01
Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.
NASA Astrophysics Data System (ADS)
Moreau, David; Lefort, Claire; Bardet, Sylvia M.; O'Connor, Rodney P.
2016-03-01
Infrared laser light radiation can be used to depolarize neurons and to stimulate neural activity. The absorption of infrared radiation and heating of biological tissue is thought to be the underlying mechanism of this phenomenon whereby local temperature increases in the plasma membrane of cells either directly influence membrane properties or act via temperature sensitive ion channels. Action potentials are typically measured electrically in neurons with microelectrodes, but they can also be observed using fluorescence microscopy techniques that use synthetic or genetically encoded calcium indicators. In this work, we studied the impact of infrared laser light on neuronal calcium signals to address the mechanism of these thermal effects. Cultured primary mouse hippocampal neurons expressing the genetically encoded calcium indicator GCaMP6s were used in combination with the temperature sensitive fluorophore Rhodamine B to measure calcium signals and temperature changes at the cellular level. Here we present our all-optical strategy for studying the influence of infrared laser light on neuronal activity.
Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-03-01
In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-radiative decay paths in rhodamines: new theoretical insights.
Savarese, Marika; Raucci, Umberto; Adamo, Carlo; Netti, Paolo A; Ciofini, Ilaria; Rega, Nadia
2014-10-14
We individuate a photoinduced electron transfer (PeT) as a quenching mechanism affecting rhodamine B photophysics in solvent. The PeT involves an electron transfer from the carboxylate group to the xanthene ring of rhodamine B. This is finely modulated by the subtle balance of coulombic and non-classical interactions between the carboxyphenyl and xanthene rings, also mediated by the solvent. We propose the use of an electronic density based index, the so called DCT index, as a new tool to assess and quantify the nature of the excited states involved in non-radiative decays near the region of their intersection. In the present case, this analysis allows us to gain insight on the interconversion process from the bright state to the dark state responsible for the quenching of rhodamine B fluorescence. Our findings encourage the use of density based indices to study the processes affecting excited state reactions that are characterized by a drastic change in the excitation nature, in order to rationalize the photophysical behavior of complex molecular systems.
Bibliography of Soviet Laser Developments, Number 50, November-December 1980.
1981-11-30
ADA B 37 DEFENSE INTELLIGENCE AGENCY WASHINGTON Dc OIRECTORAT-ETC F/6 201", BIBLIOGRAPHY OF SOVIET LASER DEVELOPMENTS, NOVEMBER-DECEMBER I 9-ETCIU...Semiconductor: Simple Junction a. GaAs.............................................3 b . CUS..............................................3 5...Glass: Nd...........................................6 B . Liquid Lasers 1. Organic Dyes a. Rhodamine........................................6 b
Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes
NASA Technical Reports Server (NTRS)
Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)
2000-01-01
Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.
NASA Astrophysics Data System (ADS)
Kaur, Simranjeet; Kaur, Harpreet
2018-05-01
The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.
Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K
2015-02-05
The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Abney, Kristopher K; Ramos-Hunter, Susan J; Romaine, Ian M; Godwin, J Shawn; Sulikowski, Gary A; Weaver, Charles David
2018-04-21
This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated Porcine Liver Esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder
NASA Astrophysics Data System (ADS)
Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.
2017-11-01
In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.
Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.
Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk
2017-07-29
The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.
Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal
2011-12-01
The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.
Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue
2014-07-15
A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.
Roubinet, Benoit; Bischoff, Matthias; Nizamov, Shamil; Yan, Sergey; Geisler, Claudia; Stoldt, Stefan; Mitronova, Gyuzel Y; Belov, Vladimir N; Bossi, Mariano L; Hell, Stefan W
2018-05-11
Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor superresolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-L-alanyl - beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The superresolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N,N,N',N'-tetramethyl rhodamine.
Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan
2014-03-01
The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.
Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V
2013-09-15
Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.
Jain, Suyog N; Gogate, Parag R
2018-03-15
Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494
NASA Astrophysics Data System (ADS)
Alamelu, K.; Ali, B. M. Jaffar
2018-04-01
We demonstrate a hydrothermal method combined with polyol reduction process for the synthesis of an Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites in which the Ag, Pt and TiO2 nanoparticles are dispersed on the Sulfonated graphene oxide nanosheets. The structural and optical properties of obtained nanocomposites were characterized by XRD, UV-DRS, Raman, FTIR and Photoluminescence spectroscopy. The nanocomposites shows increased light absorption ability in the visible region due to surface plasmon resonance effect of noble metal. The rate of electron-hole pair recombination was significating reduced for nanocomposites system compare to pure. Also, their Performance for the photocatalytic degradation of Rhodamine B as a model organic pollutant is explored. The results showed that Ag-TiO2-SGO and Pt-TiO2-SGO nanocomposites could degrade 95% of the dye within 90 min, under natural sunlight irradiation. The reaction kinetics of ternary nanocomposites exhibit more than 2.2 fold increased photocatalytic activity compared to pristine TiO2. Sulfonated graphene based ternary photocatalyst are potential candidates for wastewater treatment in real time application, due to this ability degrade cationic and anionic dyes.
NASA Astrophysics Data System (ADS)
Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin
2014-05-01
The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter ( D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) ( z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected
Li, Juan; Gong, Ji-Lai; Zeng, Guang-Ming; Zhang, Peng; Song, Biao; Cao, Wei-Cheng; Liu, Hong-Yu; Huan, Shuang-Yan
2018-10-01
Treating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process. Neutrally charged Rhodamine B (RB), positively charged Methylene blue (MB), and negatively charged Congo red (CR) were chosen as model pollutants for investigating filtration performance of the membrane. The results of filtration experiments showed that the Zr-MOFs-PUF membrane could simultaneously remove RB, MB, and CR not only from their binary system including RB/MB, RB/CR, and MB/CR mixtures, but also from RB/MB/CR ternary system. The removal of dyes by Zr-MOFs-PUF membrane was mainly attributed to the electrostatic interactions, hydrogen bond interaction, and Lewis acid-base interactions between the membrane and dye molecules. The maximum removal efficiencies by Zr-MOFs-PUF membrane were 98.80% for RB at pH ≈ 7, 97.57% for MB at pH ≈ 9, and 87.39% for CR at pH ≈ 3. Additionally, when the NaCl concentration reached 0.5 mol/L in single dye solutions, the removal efficiencies of RB, MB, and CR by Zr-MOFs-PUF membrane were 93.08%, 79.52%, and 97.82%, respectively. All the results suggested that the as-prepared Zr-MOFs-PUF membrane has great potential in practical treatment of dye wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.
Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com; Najafi, Farhood
2012-07-15
Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticlemore » (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.« less
Transient storage assessments of dye-tracer injections in rivers of the Willamette Basin, Oregon
Laenen, A.; Bencala, K.E.
2001-01-01
Rhodamine WT dye-tracer injections in rivers of the Willamette Basin yield concentration-time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One-dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first-order decay coefficients to be on the order of 10-5/sec for the nonconservative Rhodamine WT. On an individual subreach basis, the first-order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool-and-riffle, gravel-bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through graveland-cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and
Le Postollec, A; Coussot, G; Baqué, M; Incerti, S; Desvignes, I; Moretto, P; Dobrijevic, M; Vandenabeele-Trambouze, O
2009-09-01
Detecting life in the Solar System is one of the great challenges of new upcoming space missions. Biochips have been proposed as a way to detect organic matter on extraterrestrial objects. A biochip is a miniaturized device composed of biologically sensitive systems, such as antibodies, which are immobilized on a slide. In the case of in situ measurements, the main concern is to ensure the survival of the antibodies under space radiation. Our recent computing simulation of cosmic ray interactions with the martian environment shows that neutrons are one of the dominant species at soil level. Therefore, we have chosen, in a first approach, to study antibody resistance to neutrons by performing irradiation experiments at the Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine (AIFIRA) platform, a French ion beam facility at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan in Bordeaux. Antibodies and fluorescent dyes, freeze-dried and in buffer solution, were irradiated with 0.6 MeV and 6 MeV neutrons. Sample analyses demonstrated that, in the conditions tested, antibody recognition capability and fluorescence dye intensity are not affected by the neutrons.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku
2016-12-20
Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.
NASA Astrophysics Data System (ADS)
Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh
2017-11-01
In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.
Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash
NASA Astrophysics Data System (ADS)
Jumaeri; Kusumastuti, E.; Santosa, S. J.; Sutarno
2017-02-01
Adsorption of Crystal Violet (CV) dye using zeolite A synthesized from coal fly ash (ZA) has been done. Effect of pH, contact time, and the initial concentration of dye adsorption was studied in this adsorption. Model experimental of adsorption isotherms and adsorption kinetics were also studied. The adsorption is done in a batch reactor at room temperature. A total of 0.01 g of zeolite A was added to the Erlenmeyer flask 50 mL containing 20 mL of the dye solution of Crystal Violet in a variety of conditions of pH, contact time and initial concentration. Furthermore, Erlenmeyer flask and its contents were shaken using an orbital shaker at a speed of 200 rpm. After a specified period of adsorption, the solution was centrifuged for 2 minutes so that the solids separated from the solution. The concentration of the dye after adsorption determined using Genesis-20 Spectrophotometer. The results showed that the Zeolite A synthesized from coal fly ash could be used as an effective adsorbent for Crystal Violet dye. The optimum adsorption occurs at pH 6, and contact time 45 minutes. At the initial concentration of 2 to 6 mg/L, adsorption is reduced from 79 to 62.8%. Crystal Violet dye adsorption in zeolite A fulfilled kinetic model of pseudo-order 2 and model of Freundlich adsorption isotherm.
Grzybowski, Marek; Taki, Masayasu; Yamaguchi, Shigehiro
2017-09-21
The substitution of an oxygen atom in rhodols with a phosphine oxide (P=O) moiety affords P=O-bridged rhodols as a new type of near-infrared (NIR) fluorophore. This compound class can be readily accessed upon exposure of the corresponding rhodamines to aqueous basic conditions. The electron-withdrawing effect of the P=O group facilitates the hydrolytic deamination, and, moreover, prolonged exposure to aqueous basic conditions generates P=O-bridged fluoresceins, that is, a series of three P=O-bridged xanthene dyes is available in one simple operation. The P=O-bridged rhodols show significant bathochromic shifts of the longest-wavelength absorption maximum (Δλ=125 nm; >3600 cm -1 ) upon changing the solvent from toluene to water, whereas the emission is shifted less drastically (Δλ=70 nm; 1600 cm -1 ). The hydrogen bonding between the P=O and C=O groups with protic solvents results in substantial stabilization of the LUMO level, which is responsible for the solvatochromism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yi, Chenyi; Giordano, Fabrizio; Cevey-Ha, Ngoc-Le; Tsao, Hoi Nok; Zakeeruddin, Shaik M; Grätzel, Michael
2014-04-01
We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic structure and properties of unsubstituted rhodamine in different electron states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyukhov, V.Ya.
1988-04-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S/sub 4/) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
Electronic structure and properties of unsubstituted rhodamine in different electron states
NASA Astrophysics Data System (ADS)
Artyukhov, V. Ya.
1987-10-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S4) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
Preparation and characterization of 'green' hybrid clay-dye nanopigments
NASA Astrophysics Data System (ADS)
Kaya, Mehmet; Onganer, Yavuz; Tabak, Ahmet
2015-03-01
We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200-500 °C compared to the raw bentonite.
Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2015-10-01
The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deng, Jing; Chen, Yi-Jing; Lu, Yu-An; Ma, Xiao-Yan; Feng, Shan-Fang; Gao, Naiyun; Li, Jun
2017-06-01
CoFe 2 O 4 /ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe 2 O 4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe 2 O 4 /OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO 4 - ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe 2 O 4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe 2 O 4 /OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe 2 O 4 /OMC nanocomposites compared to that of CoFe 2 O 4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).
Hammond, Peter R.; Feeman, James F.; Field, George F.
1998-01-01
Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.
De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard
2018-03-16
Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.
Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang
2015-03-15
Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Basic dye decomposition kinetics in a photocatalytic slurry reactor.
Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming
2006-09-01
Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.
Gupta, Nirja; Pillai, Ajai Kumar; Parmar, Prachi
2015-03-15
A novel, sensitive, selective and simple kinetic spectrophotometric method has been developed for determination of trace levels of carbaryl based on its inhibitory effect on the oxidation of rhodamine-B by chlorine and bromine released from reaction of potassium bromate with hydrochloric acid in micellar medium. A linear relationship was observed between the inhibitory effect and the concentration of the compound. The absorbance was monitored at the maximum wavelength of 555 nm. The effect of different parameters such as pH, temperature and concentration of rhodamine-B, potassium bromate and surfactant on the reaction were investigated and optimum conditions were established. Under the selected experimental conditions, carbaryl was determined in the range of 0.04-0.4 μg mL(-1). Sandell's sensitivity and molar absorptivity were found to be 0.00055 μg cm(-2) and 3.658×10(5) L mol(-1) cm(-1) respectively. The proposed method was applied satisfactorily for the determination of carbaryl in water and different grain samples. The results were compared with those obtained by reference method and were found to be in agreement. Copyright © 2014 Elsevier B.V. All rights reserved.
Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita
2018-06-01
The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Bo; Huang, Yuming
2014-06-25
Dispersive liquid-phase microextraction with solidification of floating organic drop (SFO-DLPME) is one of the most interesting sample preparation techniques developed in recent years. In this paper, a new, rapid, and efficient SFO-DLPME coupled with high-performance liquid chromatography (HPLC) was established for the extraction and sensitive detection of banned Sudan dyes, namely, Sudan I, Sudan II, Sudan III, and Sudan IV, in foodstuff and water samples. Various factors, such as the type and volume of extractants and dispersants, pH and volume of sample solution, extraction time and temperature, ion strength, and humic acid concentration, were investigated and optimized to achieve optimal extraction of Sudan dyes in one single step. After optimization of extraction conditions using 1-dodecanol as an extractant and ethanol as a dispersant, the developed procedure was applied for extraction of the target Sudan dyes from 2 g of food samples and 10 mL of the spiked water samples. Under the optimized conditions, all Sudan dyes could be easily extracted by the proposed SFO-DLPME method. Limits of detection of the four Sudan dyes obtained were 0.10-0.20 ng g(-1) and 0.03 μg L(-1) when 2 g of foodstuff samples and 10 mL of water samples were adopted, respectively. The inter- and intraday reproducibilities were below 4.8% for analysis of Sudan dyes in foodstuffs. The method was satisfactorily used for the detection of Sudan dyes, and the recoveries of the target for the spiked foodstuff and water samples ranged from 92.6 to 106.6% and from 91.1 to 108.6%, respectively. These results indicated that the proposed method is simple, rapid, sensitive, and suitable for the pre-concentration and detection of the target dyes in foodstuff samples.
Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo
2011-06-17
The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.
NASA Astrophysics Data System (ADS)
Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.
2017-07-01
This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.
Triphenylmethane dye activation of beta-arrestin.
Barak, Larry S; Bai, Yushi; Snyder, Joshua C; Wang, Jiangbo; Chen, Wei; Caron, Marc G
2013-08-13
β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy.
Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku
2016-01-01
Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating. PMID:28774145
Cloete, Kevin Wesley; Ristow, Peter Gustav; Kasu, Mohaimin; D'Amato, Maria Eugenia
2017-03-01
CE equipment detects and deconvolutes mixtures containing up to six fluorescently labeled DNA fragments. This deconvolution is done by the collection software that requires a spectral calibration file. The calibration file is used to adjust for the overlap that occurs between the emission spectra of fluorescence dyes. All commercial genotyping and sequencing kits require the installation of a corresponding matrix standard to generate a calibration file. Due to the differences in emission spectrum overlap between fluorescent dyes, the application of existing commercial matrix standards to the electrophoretic separation of DNA labeled with other fluorescent dyes can yield undesirable results. Currently, the number of fluorescent dyes available for oligonucleotide labeling surpasses the availability of commercial matrix standards. Therefore, in this study we developed and evaluated a customized matrix standard using ATTO 633, ATTO 565, ATTO 550, ATTO Rho6G, and 6-FAM dyes for which no commercial matrix standard is available. We highlighted the potential genotyping errors of using an incorrect matrix standard by evaluating the relative performance of our custom dye set using six matrix standards. The specific performance of two genotyping kits (UniQTyper™ Y-10 version 1.0 and PowerPlex® Y23 System) was also evaluated using their specific matrix standards. The procedure we followed for the construction of our custom dye matrix standard can be extended to other fluorescent dyes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela
2018-05-01
The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia
2017-08-01
In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.
Thermal bleaching in single fluorescent molecules under two-photon excitation regime
NASA Astrophysics Data System (ADS)
Chirico, Giuseppe; Cannone, Fabio; Baldini, Giancarlo; Diaspro, Alberto
2003-07-01
Single molecule spectroscopy often requires the immobilization of the molecules onto solid or quasi-solid substrates and the use of relatively high excitation intensity We have studied the fluorescence emission of four common dyes used for bio-imaging studies, rhodamine 6G, fluorescein, pyrene and indo-1 at the single molecule level under two-photon excitation regime. We focus on two-photon excitation thermal effects on the stability of the single molecules, influencing the internal photo-dynamics and the total duration of the fluorescent emission. Single dye molecules, spread on a glass substrate by spin coating, show a constant fluorescence output till a sudden transition to a dark state very close to the background. The bleaching time that is found to vary in the series pyrene, Indo-1, fluorescein and rhodamine 6G from the fastest to the slowest one respectively, has a Gaussian distribution suggesting that bleaching is not due to photo-bleaching. Moreover it shows a correlation to the amount of absorbed power not re-irradiated as fluorescence and to the complexity of the molecule. These observations are interpreted as thermal bleaching where the temperature increase is induced by the two-photon excitation process. This study should be extended to different trapping media of interest in single molecule basic research and applications, such as silica and polyacrylamide gels or nanosctructured polyelectrolyte matrices. We think that the observed behavior and the correlations found to the molecular chemical and physical parameters, may be of some help for the design of molecules with switching on-off behavior of longer duration.
Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.
Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K
2016-03-01
The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Hammond, P.R.; Feeman, J.F.; Field, G.F.
1998-08-11
Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.
Tleugabulova, Dina; Duft, Andy M; Brook, Michael A; Brennan, John D
2004-01-06
The fluorescence-based nanosize metrology approach, proposed recently by Geddes and Birch (Geddes, C. D.; Birch, D. J. S. J. Non-Cryst. Solids 2000, 270, 191), was used to characterize the extent of binding of a fluorescent cationic solute, rhodamine 6G (R6G), to the surface of silica particles after modification of the surface with the hydrophilic polymer poly(ethylene oxide) (PEO) of various molecular weights. The measurement of the rotational dynamics of R6G in PEO solutions showed the absence of strong interactions between R6G and PEO chains in water and the ability of the dye to sense the presence of polymer clusters in 30 wt % solutions. Time-resolved anisotropy decays of polymer-modified Ludox provided direct evidence for distribution of the dye between bound and free states, with the bound dye showing two decay components: a nanosecond decay component that is consistent with local motions of bound probes and a residual anisotropy component due to slow rotation of large silica particles. The data showed that the dye was strongly adsorbed to unmodified silica nanoparticles, to the extent that less than 1% of the dye was present in the surrounding aqueous solution. Addition of PEO blocked the adsorption of the dye to a significant degree, with up to 50% of the probe being present in the aqueous solution for Ludox samples containing 30 wt % of low molecular weight PEO. The addition of such agents also decreased the value and increased the fractional contribution of the nanosecond rotational correlation time, suggesting that polymer adsorption altered the degree of local motion of the bound probe. Atomic force microscopy imaging studies provided no evidence for a change in the particle size upon surface modification but did suggest interparticle aggregation after polymer adsorption. Thus, this redistribution of the probe is interpreted as being due to coverage of particles with the polymer, resulting in lower adsorption of R6G to the silica. The data clearly
Single mode pulsed dye laser oscillator
Hackel, R.P.
1992-11-24
A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.
AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B
NASA Astrophysics Data System (ADS)
Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di
2018-03-01
The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (< 60 nm) on diatomite and the conversion of Ag to AgBr nanoparticles (< 600 nm). Experimental results show that 95% of Rhodamine B could be removed within 20 min, and the degradation rate constant ( κ) is 0.11 min-1 under 100 mW/cm2 light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.
He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying
2015-08-17
Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qian, Xing; Zhu, Yi-Zhou; Chang, Wen-Ying; Song, Jian; Pan, Bin; Lu, Lin; Gao, Huan-Huan; Zheng, Jian-Yu
2015-05-06
A novel class of metal-free organic dyes based on benzo[a]carbazole have been designed, synthesized, and used in dye-sensitized solar cells for the first time. These types of dyes consisted of a cyanoacrylic acid moiety as the electron acceptor/anchoring group and different electron-rich spacers such as thiophene (JY21), furan (JY22), and oligothiophene (JY23) as the π-linkers. The photophysical, electrochemical, and photovoltaic properties, as well as theoretical calculations of these dyes were investigated. The photovoltaic performances of these dyes were found to be highly relevant to the π-conjugated linkers. In particular, dye JY23 exhibited a broad IPCE response with a photocurrent signal up to about 740 nm covering the most region of the UV-visible light. A DSSC based on JY23 showed the best photovoltaic performance with a Jsc of 14.8 mA cm(-2), a Voc of 744 mV, and a FF of 0.68, achieving a power conversion efficiency of 7.54% under standard AM 1.5 G irradiation.
Li, Guisheng; Jiang, Bo; Xiao, Shuning; Lian, Zichao; Zhang, Dieqing; Yu, Jimmy C; Li, Hexing
2014-08-01
A photosensitized BiOCl catalyst was found to be effective for photocatalytic water purification and air remediation under visible light irradiation (λ > 420 nm). Prepared by a solvothermal method, the BiOCl crystals possessed a 3D hierarchical spherical structure with the highly active facets exposed. When sensitized by Rhodamine B (RhB), the photocatalyst system was more active than N-doped TiO2 for breaking down 4-chlorophenol (4-CP, 200 ppm) and nitric monoxide (NO, 500 ppb). The high activity could be attributed to the hierarchical structure (supplying feasible reaction tunnels for adsorption and transition of reactants or products) and the efficient exposure of the {001} facets. The former provides an enriched oxygen atom density that promotes adsorption of cationic dye RhB, and creates an oxygen vacancy state. The HO˙ and ˙O2(-) radicals produced from the injected electrons from the excited dye molecule (RhB*) into the conduction band of BiOCl were responsible for the excellent photocatalytic performance of the RhB-BiOCl system.
Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie
2017-01-01
Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375
Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C
2003-06-01
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.
Christiansen effect in disperse systems with resonant absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D A; Isaeva, Elmira A; Isaeva, A A
We discuss the results of experimental studies of competition of absorption and scattering of laser radiation propagating in dispersive media with resonant absorption. As media under study, use is made of a suspension of polystyrene particles in solutions of rhodamine 6G in ethylene glycol probed by laser light with a wavelength of 532 nm. It is found that an increase in the dye concentration leads to an increase in optical transmittance of suspensions and an increase in speckle modulation of the forward-scattered radiation. We interpret these features as a manifestation of Christiansen effect in disperse systems with resonance absorption.
Kratzer, Charles R.; Biagtan, Rhoda N.
1997-01-01
Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye
Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.
Sewu, Divine D; Boakye, Patrick; Woo, Seung H
2017-01-01
Biochar was produced from Korean cabbage (KC), rice straw (RS) and wood chip (WC) and the use as alternative adsorbents to activated carbon (AC) in wastewater treatment was investigated. Congo red (CR) and crystal violet (CV) were used as a model anionic and cationic dye, respectively. Initial solution pH had little effect on CR and CV adsorption onto all biochars except for AC on CR. The isotherm models and kinetic data showed that adsorption of CR and CV onto all biochars were dominantly by chemisorption. All biochars had lower adsorption capacity for CR than AC. KC showed higher Langmuir maximum adsorption capacity (1304mg/g) than AC (271.0mg/g), RS (620.3mg/g) and WC (195.6mg/g) for CV. KC may be a good alternative to conventional AC as cheap, superb and industrially viable adsorbent for removal of cationic dyes in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photodegradation and Photophysics of Laser Dyes
1994-06-30
research. "The Photophysics and Photochem istry of’ Orgainic Laser Dyecs uander Conditions oit Binding to Polymethacrylic Acid in Water** thcsis...c 13. ABSTRACT (Maximum 200 wotrds) 6 The solubilization of laser dyes in water with the aid of the polyelectrolyte, poly(methacr,-- lic acid ) (PMAA...moderately acidic pH. Polymer-bound dyes in water display markedly enhanced emission yield, lifetime, and polarization. Dye materials are also less
Triphenylmethane Dye Activation of Beta-Arrestin
2013-01-01
β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.
Novel energy relay dyes for high efficiency dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon
2015-02-01
4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342
Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus
Pan, Hongmiao; Feng, Jinhui; Cerniglia, Carl E.
2018-01-01
Azo dyes are widely used in the plastic, paper, cosmetics, food, and pharmaceutical industries. Some metabolites of these dyes are potentially genotoxic. The toxic effects of azo dyes and their potential reduction metabolites on Staphylococcus aureus ATCC BAA 1556 were studied. When the cultures were incubated with 6, 18, and 36 μg/ml of Orange II and Sudan III for 48 h, 76.3, 68.5, and 61.7% of Orange II and 97.8, 93.9, and 75.8% of Sudan III were reduced by the bacterium, respectively. In the presence of 36 μg/ml Sudan III, the cell viability of the bacterium decreased to 61.9% after 48 h of incubation, whereas the cell viability of the control culture without the dye was 71.5%. Moreover, the optical density of the bacterial cultures at 10 h decreased from 0.74 to 0.55, indicating that Sudan III is able to inhibit growth of the bacterium. However, Orange II had no significant effects on either cell growth or cell viability of the bacterium at the tested concentrations. 1-Amino-2-naphthol, a metabolite common to Orange II and Sudan III, was capable of inhibiting cell growth of the bacterium at 1 μg/ml and completely stopped bacterial cell growth at 24–48 μg/ml. On the other hand, the other metabolites of Orange II and Sudan III, namely sulfanilic acid, p-phenylenediamine, and aniline, showed no significant effects on cell growth. p-Phenylenediamine exhibited a synergistic effect with 1-amino-2-naphthol on cell growth inhibition. All of the dye metabolites had no significant effects on cell viability of the bacterium. PMID:21451978
12 CFR 563g.6 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Effective date. 563g.6 Section 563g.6 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.6 Effective date. (a) Except as provided for in paragraph (d) of this section, an offering circular filed by a...
Villabona-Monsalve, Juan P; Calderón-Losada, Omar; Nuñez Portela, M; Valencia, Alejandra
2017-10-19
We report the measurement of the entangled two-photon absorption (ETPA) cross section, σ E , at 808 nm on organic chromophores in solution in a low photon flux regime. We performed measurements on zinc tetraphenylporphyrin (ZnTPP) in toluene and rhodamine B (RhB) in methanol. This is, to the best of our knowledge, the first time that σ E is measured for RhB. Additionally, we report a study of the dependence of σ E on the molecular concentration for both molecular systems. In contrast to previous experiments, our measurements are based on detecting the pairs of photons that are transmitted by the molecular system. By using a coincidence count circuit it was possible to improve the signal-to-noise ratio. This type of work is important for the development of spectroscopic and microscopic techniques using entangled photons.
Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan
Asgari, Ghorban; Farjadfard, Sima
2013-01-01
We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1 mg/L of BCP is 10 min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6 mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1 mg/L, within a short reaction time of 20 min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163
Extrinsic Fluorescent Dyes as Tools for Protein Characterization
Hawe, Andrea; Sutter, Marc
2008-01-01
Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization. PMID:18172579
NASA Astrophysics Data System (ADS)
Chen, Suqing; Liang, Huading; Shen, Mao; Jin, Yanxian
2018-04-01
In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g-1 surface area and a high-saturation magnetization of 31.5 emu g-1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C-Au@void@TiO2-Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C-Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microcomposites can be completely separated and reused for four times.
Watson, Robert D.; Theisen, Arnold F.; Prezelin, Barbara B.
1981-01-01
Laboratory measurements of the excitation spectra of 13 species of phytoplankton (six diatoms, five dinoflagellates and two chrysophytes) were obtained with the emission wavelength held constant at 656.3 nm and the excitation wavelength scanned from 320 to 640 nm. Integrated excitation intensities were normalized to a standard concentration of rhodamine wt dye and the resulting luminescence compared to the minimum detectable FLD level of 0.12 parts per billion (p.p.b.) rhodamine wt. Results demonstrated that all 13 species would be detectable with an FLD at concentrations of 10.0 and 5.0 μg/1 of chlorophyll a and that only one would not be detectable at a chlorophyll a concentration of 1.0 μg/1.
Jalloh, Amadu; Jalloh, Muctarr; Gamanga, Idrissa; Baion, David; Sahr, Foday; Gbakima, Aiah; Willoughby, Victor R; Matsuoka, Hiroyuki
2008-01-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in Africa is of high prevalence, although precise data are lacking in many individual nations. We investigated 129 unrelated subjects (71 male subjects, 58 female subjects) visiting a teaching hospital in Freetown, Sierra Leone, to collect baseline data on the distribution of G6PD deficiency among respective ethnic groups in the country. We confirmed eight G6PD-deficient male subjects by two formazan-based blood tests (11.3% of the male subjects examined), and also detected the common 376A > G mutation in 11 male subjects and eight female subjects by sequencing exons 3-5 of the G6PD gene. Selected samples were further sequenced for exons 2-13 and introns 5, 7, 8, and 11. Among the deficient male subjects, six were G6PD A- carrying the double mutations (202G > A and 376A > G), all of whom were in the Temne and Mende ethnic groups. Others included A- Betica, and a novel variant having double mutations in exon 5 (311G > A and 376A > G forming 104 Arg > His and 126 Asn > Asp, respectively), which we designate as G6PD Sierra Leone. Subsequent haplotype analysis linked this novel variant to the G6PD A- "family".
Alam, Rabiul; Islam, Abu Saleh Musha; Sasmal, Mihir; Katarkar, Atul; Ali, Mahammad
2018-05-10
A new sensor (L3) based on Rhodamine-B-en (2) and 2-(pyridin-2-ylmethoxy)benzaldehyde (1) has been developed for highly sensitive and selective recognition of NO in purely aqueous medium where the reaction of NO with the fluorophore leads to an unusual formation of nitrosohydroxylamine with the selective opening of the spirolactam ring over different cations, anions, amino-acids and other biological species with prominent enhancement in absorption and emission intensities. A large enhancement of fluorescence intensity for NO (11 fold) was observed upon addition of 3 equivalents of NO into the sensor in aqueous HEPES buffer (20 mM) at pH 7.20, μ = 0.05 M NaCl with naked eye detection. The corresponding Kf value was evaluated to be (7.55 ± 2.04) × 104 M-1 from the fluorescence titration plot. Quantum yields of L3 and the [L3 + NO] compound are found to be 0.07 and 0.77, respectively, using Rhodamine-6G as the standard. The LOD for NO was determined by the 3σ method and found to be 83.4 nM. The L3 sensor has low cytotoxicity, and is cell permeable and suitable for in vitro NO sensing. The in vivo compatibility of the sensor was also checked on zebrafish.
NASA Astrophysics Data System (ADS)
Reeta Mary, I.; Sonia, S.; Navadeepthy, D.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.
2018-05-01
In this study, hydroxyapatite nested bundles (HNBs) were successfully constructed from nanosticks as nanoscale building blocks via a facile, solvothermal process without using any surfactant. The fabricated HNBs were structurally analyzed using X-ray diffraction and Fourier transform infrared spectroscopy, which confirmed the purity of the HNBs. The surface characteristics were determined by field emission scanning electron microscopy and Brunauer-Emmett-Teller analysis, and the optical characteristics by ultraviolet (UV)-visible spectroscopy. The synthesized HNBs were tested to determine their activity during the degradation of methylene blue, methylene violet, and rhodamine B via photocatalysis under UV irradiation. The degradation efficiency of HNBs and the rate of degradation can be explained based on the properties of the HNBs and cationic dyes.
NASA Astrophysics Data System (ADS)
Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.
2017-02-01
In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.
G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)
... In rare cases, G6PD deficiency leads to chronic anemia . With the right precautions, a child with G6PD deficiency can lead a healthy and ... to rule out other possible causes of the anemia. If you feel that your child may be at risk because of either a ...
Cross-reactions among hair dye allergens.
Basketter, David A; English, John
2009-01-01
p-Phenylenediamine (PPD) is an important hair dye allergen, but there remains a reasonable suspicion that other hair dye chemicals may also be responsible for a proportion of the clinical burden of hair dye allergy. To assess to what extent presently assessed additional patch test agents contribute to the diagnosis of non-PPD hair dye allergy. A retrospective analysis was conducted of patch test results with hair dye allergens, focusing on the extent to which patients who were positive for allergic reactions to other hair dye allergens also had a concomitant positive reaction to PPD. For the hair dye allergens other than p-toluenediamine (PTD), reactions in the absence of a concomitant positive reaction to PPD were very rare. Positive reactors to PTD were also positive for reactions to PPD in 5 of every 6 cases. Pyrogallol positives often occurred in the absence of a PPD positive, but were never judged to be of clinical relevance. Hair dye chemicals other than PPD may be of importance, but the presently tested materials, with the possible exception of PTD, are normally positive only when a PPD-positive reaction is also present, suggesting that their use in patch testing in hair dye allergy is likely to be of limited value.
Domingo, Gonzalo J; Satyagraha, Ari Winasti; Anvikar, Anup; Baird, Kevin; Bancone, Germana; Bansil, Pooja; Carter, Nick; Cheng, Qin; Culpepper, Janice; Eziefula, Chi; Fukuda, Mark; Green, Justin; Hwang, Jimee; Lacerda, Marcus; McGray, Sarah; Menard, Didier; Nosten, Francois; Nuchprayoon, Issarang; Oo, Nwe Nwe; Bualombai, Pongwit; Pumpradit, Wadchara; Qian, Kun; Recht, Judith; Roca, Arantxa; Satimai, Wichai; Sovannaroth, Siv; Vestergaard, Lasse S; Von Seidlein, Lorenz
2013-11-04
Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as "radical cure"), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide.Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient's G6PD status is known before deciding to administer an 8-aminoquinoline-based drug.In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.
Kahn, Maria; LaRue, Nicole; Zhu, Changcheng; Pal, Sampa; Mo, Jack S; Barrett, Lynn K; Hewitt, Steve N; Dumais, Mitchell; Hemmington, Sandra; Walker, Adrian; Joynson, Jeff; Leader, Brandon T; Van Voorhis, Wesley C; Domingo, Gonzalo J
2017-01-01
A large gap for the support of point-of-care testing is the availability of reagents to support quality control (QC) of diagnostic assays along the supply chain from the manufacturer to the end user. While reagents and systems exist to support QC of laboratory screening tests for glucose-6-phosphate dehydrogenase (G6PD) deficiency, they are not configured appropriately to support point-of-care testing. The feasibility of using lyophilized recombinant human G6PD as a QC reagent in novel point-of-care tests for G6PD deficiency is demonstrated. Human recombinant G6PD (r-G6PD) was expressed in Escherichia coli and purified. Aliquots were stored at -80°C. Prior to lyophilization, aliquots were thawed, and three concentrations of r-G6PD (representing normal, intermediate, and deficient clinical G6PD levels) were prepared and mixed with a protective formulation, which protects the enzyme activity against degradation from denaturation during the lyophilization process. Following lyophilization, individual single-use tubes of lyophilized r-G6PD were placed in individual packs with desiccants and stored at five temperatures for one year. An enzyme assay for G6PD activity was used to ascertain the stability of r-G6PD activity while stored at different temperatures. Lyophilized r-G6PD is stable and can be used as a control indicator. Results presented here show that G6PD activity is stable for at least 365 days when stored at -80°C, 4°C, 30°C, and 45°C. When stored at 55°C, enzyme activity was found to be stable only through day 28. Lyophilized r-G6PD enzyme is stable and can be used as a control for point-of-care tests for G6PD deficiency.
Kharge, Angana Banerjee; Wu, You
2014-01-01
In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246
Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African-American Men
2014-10-01
prostate cancer cell line cybrids was not effective and we have instead decided to use the Rhodamine -6-G procedure. Thus far PNT1A cybrid cell lines...the original protocol. To overcome these difficulties, we tested multiple alternative approaches including rhodamine -6G (R6G) mediated short-term
Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African American Men
2015-12-01
for generating prostate cancer cell line cybrids was not effective and we have instead used a Rhodamine -6-G procedure. PNT1A cybrid cell lines have...difficulties, we tested multiple alternative approaches including rhodamine -6G (R6G) mediated short-term mitochondrial dysfunction in generating rho zero cells
NASA Astrophysics Data System (ADS)
Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo
2005-01-01
The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.
Putnam, Larry D.; Long, Andrew J.
2007-01-01
The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO
Osman, Osman I.
2017-01-01
The structure, reactivity, natural bond orbital (NBO), linear and nonlinear optical (NLO) properties of three thiazole azo dyes (A, B and C) were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters, dipole moments, HOMO-LUMO (highest occupied molecular orbital, lowest unoccupied molecular orbital) energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4) chloroform (CHCl3), dichloromethane (CH2Cl2) and dimethlysulphoxide (DMSO). The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38°; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6°. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO) technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO) behaviour. PMID:28157151
NASA Astrophysics Data System (ADS)
Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli
2018-03-01
Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.
A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.
Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan
2014-11-11
A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar
2013-11-01
Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties.
NASA Astrophysics Data System (ADS)
Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.
2016-03-01
Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.
3-D Modeling of a Nearshore Dye Release
NASA Astrophysics Data System (ADS)
Maxwell, A. R.; Hibler, L. F.; Miller, L. M.
2006-12-01
The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool
A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.
Jiao, Yang; Zhang, Lei; Zhou, Peng
2016-04-01
This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The species status of Echinococcus canadensis has long been controversial, mainly because it consists of the mitochondrial genotypes G6, G7, G8 and G10 with different host affinity: G6 (camel strain) and G7 (pig strain) with domestic cycles and G8 (cervid strain) and G10 (Fennoscandian cervid strain...
Yang, Dongqin; He, Yanyan; Chen, Funan
2017-09-01
The flow-injection chemiluminescence (FI-CL) behavior of a gold nanocluster (Au NC)-enhanced rhodamine B-KMnO 4 system was studied under alkaline conditions for the first time. In the present study, the as-prepared bovine serum albumin-stabilized Au NCs showed excellent stability and reproducibility. The addition of trace levels of fluvoxamine maleate (Flu) led to an obvious decline in CL intensity in the rhodamine B-KMnO 4 -Au NCs system, which could be used for quantitative detection of Flu. Under optimized conditions, the proposed CL system exhibited a favorable analytical performance for Flu determination in the range 2 to 100 μg ml -1 . The detection limit for Flu measurement was 0.021 μg ml -1 . Moreover, this newly developed system revealed outstanding selectivity for Flu detection when compared with a multitude of other species, such as the usual ions, uric acid and a section of hydroxy compounds. Additionally, CL spectra, UV-visible spectroscopes and fluorescence spectra were measured in order to determine the possible reaction mechanism. This approach could be used to detect Flu in human urine and human serum samples with the desired recoveries and could have promising application under physiological conditions. Copyright © 2017 John Wiley & Sons, Ltd.
Biosorption of Azo dyes by spent Rhizopus arrhizus biomass
NASA Astrophysics Data System (ADS)
Salvi, Neeta A.; Chattopadhyay, S.
2017-10-01
In the present study, spent Rhizopus arrhizus biomass was used for the removal of six azo dyes from aqueous solutions. The dye removal capacity of the biomass was evaluated by conducting batch tests as a function of contact time, biomass dosage, pH and initial dye concentrations. The pseudo-second-order kinetic model fitted well with the experimental data with correlation coefficients greater than 0.999, suggesting that chemisorptions might be the rate limiting step. The equilibrium sorption data showed good fit to the Langmuir isotherm model. Among the six dyes tested, the maximum monolayer adsorption capacity for fast red A and metanil yellow was found to be 108.8 and 128.5 mg/g, respectively. These encouraging results suggest that dead Rhizopus arrhizus biomass could be a potential biomaterial for the removal of azo dyes from aqueous dye solution.
Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells.
Wang, Kun-Peng; Chen, Ju-Peng; Zhang, Si-Jie; Lei, Yang; Zhong, Hua; Chen, Shaojin; Zhou, Xin-Hong; Hu, Zhi-Qiang
2017-09-01
The thiophene-modified rhodamine 6G (GYJ) has been synthesized as a novel chemosensor. The sensor has sufficiently high selectivity and sensitivity for the detection of Fe 3+ and Al 3+ ions (M 3+ ) by fluorescence and ultraviolet spectroscopy with a strong ability for anti-interference performance. The binding ratio of M 3+ -GYJ complex was determined to be 2:1 according to the Job's plot. The binding constants for Fe 3+ and Al 3+ were calculated to be 3.91 × 10 8 and 5.26 × 10 8 M -2 , respectively. All these unique features made it particularly favorable for cellular imaging applications. The obvious fluorescence microscopy experiments demonstrated that the probes could contribute to the detection of Fe 3+ and Al 3+ in related cells and biological organs with satisfying resolution. Graphical abstract GYJ has high selectivity and sensitivity for the detection of Fe(III) and Al(III) with the binding ratio of 2:1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of thismore » coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.« less
NASA Astrophysics Data System (ADS)
Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.
2017-07-01
The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.
[Adsorption of a dye by sludges and the roles of extracellular polymeric substances].
Kong, Wang-sheng; Liu, Yan
2007-12-01
This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).
NASA Astrophysics Data System (ADS)
Soleilhac, Antonin; Bertorelle, Franck; Dugourd, Philippe; Girod, Marion; Antoine, Rodolphe
2017-06-01
We describe the use of an extrinsic fluorophore (rhodamine B isothiocyanate) as a versatile probe to measure rotational motions of proteins. To illustrate the usefulness of this probe, we describe the fluorescence anisotropy values of this fluorophore covalently linked to myoglobin protein measured in aqueous solutions of increased methanol content. Methanol-induced unfolding is revealed by the transition from constrained to free rotation of the covalently attached rhodamine B fluorophore.
Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun
2015-11-24
Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less
Albumin binds self-assembling dyes as specific polymolecular ligands.
Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz
2006-12-15
Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.
Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater.
Liang, Jieying; Ning, Xun-An; Kong, Minyi; Liu, Daohua; Wang, Guangwen; Cai, Haili; Sun, Jian; Zhang, Yaping; Lu, Xingwen; Yuan, Yong
2017-12-01
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% COD Cr were removed following treatment at the four plants. The average concentration of Σ 12 PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ 12 PAEs in effluent of the four plants were >0.1, indicating that Σ 12 PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and COD Cr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants. Copyright © 2017. Published by Elsevier Ltd.
On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.
Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping
2012-09-07
We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.
NASA Astrophysics Data System (ADS)
Chen, Xia; Sun, Wei; Bai, Yinjuan; Zhang, Feifei; Zhao, Junxia; Ding, Xiaohu
2018-02-01
Three rhodamine schiff-base type fluorescent sensors R1-R3 for detecting iron ion (Fe3 +), 2-furanacrolein rhodamine hydrazone (R1), furfural rhodamine hydrazone (R2) and 2-furanacrolein rhodamine ethylenediamine (R3) have been synthesized by using rhodamine B derivatives and furan derivatives as staring materials. And their recognition abilities for Fe3 + were studied by fluorescence spectroscopy. The result showed that R1 is a best selective probe for Fe3 + over other metal ions in EtOH/H2O (1:1, v/v) due to having 2-furanacrolein for unique space coordination structural. The recognition of Fe3 + and mechanism of the sensor were characterized and determined by fluorescence spectra and Fukui function. And the fluorescence intensity of the probe R1 for Fe3 + was proportional to its concentration with the linear correlation coefficient of 0.9965 and the binding constant of 7.66 × 104 M- 1. And the cell imaging experiment indicated a successful application of the probe R1 for Fe3 + in living cell.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen
2018-02-01
In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.
NASA Astrophysics Data System (ADS)
Li, Cuiqin; Guo, Suyue; Lin, Zhiyu; Wang, Jun; Ge, Tengjie
2016-02-01
Two branched alkylamino-compounds (AAC, R12-0.5G, and R12-1.0G), were synthesized from dodecylamine, methyl acrylate and ethylenediamine. The surface tension measurements on branched alkylamino- compounds demonstrated that surface activity of R12-1.0G is superior to that of R12-0.5G at 25°C. It has been found that the self-assembly of R12-1.0G and lauric acid formed by electrostatic interaction and the self-assembly of the molecule might transfer water-soluble dyes from water to toluene. These AAC might be applied for treating dyes in wastewater. The mass ratio of lauric to toluene, the concentration of R12-1.0G, and hydrophilic groups of dyes affected the transfer rate of the water-soluble dyes. The transfer rates of the watersoluble dyes by R12-1.0G were higher than that of 1.0G polyacrylamide-acrylamide.
Dye to use with virus challenge for testing barrier materials.
Lytle, C D; Felten, R P; Truscott, W
1991-01-01
Can FD&C Blue no. 1 dye photoinactivate bacteriophages phi X174, T7, PRD1, and phi 6 under laboratory lighting conditions? At high levels of light, the dye (500 microM) photoinactivated only phi 6. Thus, this dye can be used at concentrations up to 500 microM with bacteriophages phi X174, T7, and PRD1 to test barrier material integrity. PMID:1872612
Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.
Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan
2018-02-01
The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.
Mather-type dense plasma focus as a new optical pump for short-wavelength high-power lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, J.J.; Kim, K.
For the first time, a Mather-type dense plasma focus (MDPF) is successfully operated as an optical pump for lasers. Rhodamine-6G dye is optically pumped using the MDPF fluorescence, producing a laser pulse 1 ..mu..s in duration and more than 50 kW in output power. No optimization is attempted either of the laser cavity or of the lasing medium concentration and volume. A brief description of the experimental setup is presented, along with a summary and discussion of the results. The advantages of the present optical pump source and, in particular, their implications for the pumping of short-wavelength lasers are discussed.
Hegde, Mithra N; Vyapaka, Pallavi; Shetty, Shishir
2009-01-01
Aims/Objectives: The aim of this in vitro study is to study, measure and compare the microleakage in three different newer direct composite resins using a self-etch adhesive bonding system in class V cavities by fluorescent dye penetration technique. Materials and Methods: Class V cavities were prepared on 45 human maxillary premolar teeth. On all specimens, one coat of G-Bond (GC Japan) applied and light cured. Teeth are then equally divided into 3 groups of 15 samples each. Filtek Z350 (3M ESPE), Ceram X duo (Dentsply Asia) and Synergy D6 (Coltene/Whaledent) resin composites were placed on samples of Groups I, II and III, respectively, in increments and light cured. After polishing the restorations, the specimens were suspended in Rhodamine 6G fluorescent dye for 48 h. The teeth were then sectioned longitudinally and observed for the extent of microleakage under the florescent microscope. Statistical Analysis Used: The results were subjected to statistical analysis using Kruskal Wallis and Mann–Whitney U Test. Results: Results showed no statistically significant difference among three groups tested. Conclusions: None of the materials tested was able to completely eliminate the microleakage in class V cavities. PMID:20543926
Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem
2012-01-01
Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686
SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process
NASA Astrophysics Data System (ADS)
Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.
2011-11-01
Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.
NASA Astrophysics Data System (ADS)
Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.
2012-03-01
The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.
Photocatalytic ability of Bi6Ti3WO18 nanoparticles with a mix-layered Aurivillius structure
NASA Astrophysics Data System (ADS)
Mi, Longqing; Feng, Yongyi; Cao, Lei; Xue, Mingqiang; Qin, Chuanxiang; Huang, Yanlin; Qin, Lin; Seo, Hyo Jin
2018-01-01
Aurivillius phase layered perovskites Bi6Ti3WO18 was prepared by the sol-gel citrate-complexation synthesis. The sample developed into the plate-like nanoparticles with the exposed (001) facets. The phase formation and structure have been verified via X-ray polycrystalline powder diffraction (XRD) Rietveld refinements. The nanoparticles were investigated via the measurements such as FE-SEM, TEM, EDS, and the surface analyses. UV-Vis absorption data revealed that the Aurivillius compound has a direct band characteristic with the band energy of 2.214 eV. The band structure of Bi6Ti3WO18 nanoparticles was discussed on the base of the experiments and theoretical calculation. Bi3+-containing Aurivillius Bi6Ti3WO18 shows efficient photocatalytic degradation for rhodamine B dye (RhB) with the visible light irradiation ( λ > 420 nm). Dynamic characteristic of the light-created excitons was measured by the luminescence and decay lifetime. The multivalent properties of W and Ti ions in the Aurivillius-like lattices of Bi6Ti3WO18 photocatalyst were discussed.
Wu, Kuan-Lin; Li, Cheng-Hsuan; Chi, Yun; Clifford, John N; Cabau, Lydia; Palomares, Emilio; Cheng, Yi-Ming; Pan, Hsiao-An; Chou, Pi-Tai
2012-05-02
Dicarboxyterpyridine chelates with π-conjugated pendant groups attached at the 5- or 6-position of the terminal pyridyl unit were synthesized. Together with 2,6-bis(5-pyrazolyl)pyridine, these were used successfully to prepare a series of novel heteroleptic, bis-tridentate Ru(II) sensitizers, denoted as TF-11-14. These dyes show excellent performance in dye-sensitized solar cells (DSCs) under AM1.5G simulated sunlight at a light intensity of 100 mW cm(-2) in comparison with a reference device containing [Ru(Htctpy)(NCS)(3)][TBA](3) (N749), where H(3)tctpy and TBA are 4,4',4"-tricarboxy-2,2':6',2"-terpyridine and tetra-n-butylammonium cation, respectively. In particular, the sensitizer TF-12 gave a short-circuit photocurrent of 19.0 mA cm(-2), an open-circuit voltage (V(OC)) of 0.71 V, and a fill factor of 0.68, affording an overall conversion efficiency of 9.21%. The increased conjugation conferred to the TF dyes by the addition of the π-conjugated pendant groups increases both their light-harvesting and photovoltaic energy conversion capability in comparison with N749. Detailed recombination processes in these devices were probed by various spectroscopic and dynamics measurements, and a clear correlation between the device V(OC) and the cell electron lifetime was established. In agreement with several other recent studies, the results demonstrate that high efficiencies can also be achieved with Ru(II) sensitizers that do not contain thiocyanate ancillaries. This bis-tridentate, dual-carboxy anchor configuration thus serves as a prototype for future omnibearing design of highly efficient Ru(II) sensitizers suited for use in DSCs. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan
2017-09-01
Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.
Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.
Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun
2014-12-18
During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs.
A highly selective chemiluminescent probe for the detection of chromium(VI)
NASA Astrophysics Data System (ADS)
Jin, Yan; Sun, Yonghua; Li, Chongying; Yang, Chao
2018-03-01
In present work, rhodamine B hydrazide and rhodamine 6G hydrazide were synthesized and the chemiluminescence performance has been investigated. Based on the chemiluminescence of rhodamine 6G hydrazide-chromium(VI), a selective and sensitive method for the direct detection of chromium(VI) was developed. The chemiluminescence intensity was linearly related to the concentration of chromium(VI) in the range of 2.60 × 10- 8-8.00 × 10- 6 mol/L with a correlation coefficient of r = 0.998 and a detection limit of 1.4 × 10- 8 mol/L (S/N = 3). The results indicated rhodamine 6G hydrazide was an excellent chemiluminescent probe for chromium(VI) without reduction of chromium(VI) to chromium(III). A possible mechanism of CL emission was also suggested.